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INVERSE STURM–LIOUVILLE PROBLEM

FOR A STAR GRAPH BY THREE SPECTRA

VYACHESLAV PIVOVARCHIK

(Communicated by F. Gesztesy)

Abstract. A three spectra problem for a star graph of three edges is solved. The given data are
1) the spectrum of a boundary value problem on the whole graph with the Dirichlet boundary
conditions at the pendant vertices, continuity and Kirchhoff’s conditions at the interior vertex,
2) the spectrum of the Dirichlet-Neumann problem on one of the edges, 3) the spectrum of the
Dirichlet-Dirichlet problem on the union of two other edges. The aim is to find the potentials on
the edges. Conditions on three sequences of numbers are found sufficient to be the spectra of
these three problems.

1. Introduction

Usually the term ’quantum graphs’ means metric graphs considered as quasi-one-
dimensional domains with differential operations defined on these domains, see e. g.
[20], [3]. In quantum mechanics the Sturm-Liouville or the Dirac equation are consid-
ered on the edges of a graph subject to matching conditions at the interior vertices and
boundary conditions at the pendant vertices. These are Dirichlet, Neumann or Robin
conditions at pendant vertices and continuity conditions together with Kirchhoff’s con-
ditions at interior vertices. These conditions correspond to selfadjoint operators see
[19]. Such models are often used in problems of free-electron theory of conjugate
molecules in chemistry and in the theory of quantum wires and thin wave-guides. The
differential operations together with the matching and boundary conditions define an
operator which is usually called continuous Laplacian. Since the literature on this topic
is vast we refer just to some of the authors: [1], [6], [7], [10], [11], [12], [19], [21].

Finite-dimensional analogues of the above boundary value problems appear in the
theory of vibrations of nets and graphs of the so called Stieltjes strings or Sturmian
systems (see [13], [14], [15], [26]). Another source of boundary value problems on
graphs is synthesis of electrical circuits (see, e.g. [32]).

Let us summarize the main results known for inverse problems on graphs.
1. In case of commensurable lengths of the edges and zero potentials the spectrum

does not determine uniquely the form of the graph [16]. In case of non-commensurable
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lengths of the edges and zero potentials the spectrum determines uniquely the form of
the graph [2].

2. If we consider two spectral problems with Dirichlet boundary condition at a
pendant vertex the first one and with Neumann boundary condition at this vertex the
second one, then the spectra of these two problems uniquely determine the potential on
the edge incident with this pendant vertex (see [5] and [35]).

3. Inverse problem for a star graph where the given data consists of the spectrum
on the whole graph and the spectra of the Dirichlet-Dirichlet problems on the edges was
solved in [29]–[31].

4. Estimates on maximal possible multiplicity of an eigenvalue depends only on
the form of the graph [25], [17]. Estimates on all possible multiplicities of eigenvalues
for the problem on a star graph see in [4].

5. Ambarzumian’s theorem is true for trees [8] and some other graphs [33], [18].
Our goal is to solve an inverse problem on a star graph with different potentials on

the edges. We use classical results of I. Gel’fand, B.M. Levitan [24], V.A. Marchenko
[27] as a tools in our investigation.

In Sec. 2 we give physical motivation for the problem under consideration. We
show that such problems occur in description of transverse vibrations of a star graph of
smooth strings as well as in quantum theory of waveguides. In Sec.3 we consider the
direct problem, i.e. we describe location of the spectra (including the asymptotics) of
the boundary value problem on the whole star graph, of the Dirichlet-Neumann problem
on one of the edges and of the Dirichlet-Dirichlet problem on the union of the rest two
edges. In Sec. 4 we consider the corresponding inverse problem. We find conditions
sufficient for three sequences of numbers to be the spectra of these three problems.

2. Physical motivation

Let us consider a plane star graph of three smooth inhomogeneous stretched strings
(labeled by subscripts 1,2,3) each having one end joined at the interior vertex of the
graph and the other end fixed. Small transverse vibrations of such a graph with the
edges denoted by e j ( j = 1,2,3) are described by the following system of equations

∂ 2

∂ s2 u j(s,t)−ρ j(s)
∂ 2

∂ t2
u j(s,t) = 0, j = 1,2,3, s ∈ [0, l], (1)

u j(0,t) = 0, (2)

u1(l,t) = u2(l,t) = u3(l, t), (3)

3

∑
1

∂
∂ s

u j(s,t)

∣∣∣∣∣
s=l

= 0. (4)

The strings are supposed to be of the same length l . Here u j(s,t) stands for the trans-
verse displacement of the j-th string at position s and time t , ρ j(s) is the density of
the j -th string. Conditions (2) mean that the pendant vertices are fixed, conditions (3)
mean continuity of the net at the interior vertex, condition (4) describes the balance of
forces at the interior vertex.
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Substituting u j(s,t) = v j(λ ,s)eiλ t into (1)–(4) we obtain

∂ 2

∂ s2 v j(λ ,s)+ λ 2ρ j(s)v j(λ ,s) = 0, ( j = 1,2,3), s ∈ [0, l],

v j(λ ,0) = 0,

v1(λ , l) = v2(λ , l) = v3(λ , l),

3

∑
1

∂
∂ s

v j(λ ,s)

∣∣∣∣∣
s=l

= 0.

If the densities ρ j(s) belong to the Sobolev space W 2
2 (0, l) and ρ j(s) > 0 for s ∈ [0, l] ,

then we write ρ j[x j]
de f
= ρ j(s(x j)) , apply the Liouville transformation [9] (p. 292), see

also [28] (p. 47):

x j(s) =
∫ s

0
ρ j(s′)1/2ds′,

y j(λ ,x j) = ρ j[x j]1/4v j(λ ,s(x j))

and obtain
y′′j + λ 2y j −q j(x)y j = 0, j = 1,2,3, x ∈ [0,a j], (5)

y j(λ ,0) = 0, j = 1,2,3, (6)

ρ1[a1]−1/4y1(λ ,a1) = ρ2[a2]−1/4y2(λ ,a2) = ρ3[a3]−1/4y3(λ ,a3), (7)

3

∑
j=1

y′j(λ ,a j)+ βy1(λ ,a1) = 0, (8)

where primes denote x-differentiation and

q j(x j) = ρ j[x j]−1/4 d2

dx2
j

(
ρ j[x j]1/4

)
, (9)

a j =
∫ l

0
ρ j(s)1/2ds,

β = −1
4

3

∑
j=1

ρ j[a j]−1 dρ j[x j]
dx j

∣∣∣∣
x j=a j

.

Thus, we consider problem (5)–(8). It is known (see, i.e. [28], Theorem 8.4.1)
that the spectrum of problem (5)–(8) obtained this way consists of real nonzero normal
(isolated Fredholm) eigenvalues.

This problem occurs also in quantum mechanics when one considers a quantum
particle subject to the Schrödinger equation moving in a quasi-one-dimensional star-
shaped wave-guide. In this case q j are not obtained from (9) but are real L2(0,a j)-
functions and problem (5)–(8) may have a finite number of pure imaginary eigenvalues
located symmetrically with respect to the origin (see [28], Theorem 8.4.1). In the sequel
we consider this general case.
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3. Direct problem

For the sake of simplicity we suppose in what follows a1 = a2 = a3
de f
= a , ρ1[a1] =

ρ2[a2] = ρ3[a3] . Thus, we deal with the main problem:

− y′′j +q j(x j)y = λ 2y j, x j ∈ [0,a], j = 1,2,3, (10)

y j(0) = 0, j = 1,2,3, (11)

y1(a) = y2(a) = y3(a), (12)

y′1(a)+ y′2(a)+ y′3(a)+ βy1(a) = 0 (13)

with real potentials q j ∈ L2(0,a) and a real constant β . The spectrum of the main
problem we denote by {λk}∞

−∞, k �=0 (λ−k = −λk ).
Simultaneously we consider the Dirichlet-Neumann problem on the edge e1

− y′′1 +q1(x)y1 = λ 2y1, x ∈ [0,a] (14)

y1(0) = y′1(a) = 0, (15)

with the spectrum denoted by {μk}∞
−∞, k �=0 (μ−k = −μk ), and the Dirichlet-Dirichlet

problem on the union of edges e2∪ e3

− y′′j +q j(x)y j = λ 2y j, x j ∈ [0,a] j = 2,3, (16)

y j(0) = 0, j = 2,3, (17)

y2(a) = y3(a), (18)

y′2(a)+ y′3(a)+ βy2(a) = 0 (19)

with the spectrum denoted by {νk}∞
−∞, k �=0 (ν−k = −νk ).

Let us denote by s j(λ ,x) ( j = 1,2,3) the solution of (10) which satisfies the
conditions

s j (λ ,0) = s′j(λ ,0)−1 = 0.

Looking for a solution of (10)–(13) in the form y j = Cjs j(λ ,x) where Cj are
constants we find that the spectrum of problem (10)–(13) coincides with the set of
zeros of the function

φ(λ ) := s′1(λ ,a)s2(λ ,a)s3(λ ,a)+ s1(λ ,a)s′2(λ ,a)s3(λ ,a)+ s1(λ ,a)s2(λ ,a)s′3(λ ,a)+

β s1(λ ,a)s2(λ ,a)s3(λ ,a). (20)

In the same way, the spectrum of problem (16)–(19) coincides with the set of zeros of
the function

ψ(λ ) := s′2(λ ,a)s3(λ ,a)+ s2(λ ,a)s′3(λ ,a)+ β s2(λ ,a)s3(λ ,a). (21)

The spectrum of problem (14)–(15) coincides with the set of zeros of s′1(λ ,a) .
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DEFINITION 1. (see Definition 12.2.2 in [28] or Section 2.5 in [34]). An entire
function ω of exponential type � σ is said to belong to the Paley-Wiener class L σ if
its restriction to the real axis belongs to L2(−∞,∞) .

We will use the following representations (see e.g. [28] Corollary 12.2.10):

s j(λ ,a) =
sinλa

λ
−Bj

cosλa
λ 2 +

f (λ )
λ 2 , (22)

s′j(λ ,a) = cosλa+Bj
sinλa

λ
+

f (λ )
λ

, (23)

where Bj ∈R . Here and in the sequel we use the same notation f for different functions
from L a .

Substituting (22) and (23) into (21) we obtain

ψ(λ ) =
sin2λa

λ
− (B2 +B3)cos2λa

λ 2 +
F(λ )

λ 2 (24)

where F ∈ L 2a .

DEFINITION 2. ([28], Definition. 5.1.20). The function θ is said to be a Nevan-
linna function, or N -function if:

(i) θ is analytic in the half-planes Imλ > 0 and Imλ < 0;
(ii) θ (λ ) = θ (λ ) if Imλ �= 0;
(iii) Imλ Imθ (λ ) � 0 for Imλ �= 0.

DEFINITION 3. ([28], Definition. 5.1.26).
1. The class N ep of essentially positive Nevanlinna functions is the set of all

functions θ ∈N which are analytic in C\[0,∞) with the possible exception of finitely
many poles.

2. The class N ep
+ is the set of all functions θ ∈ N ep such that for some γ ∈ R

we have θ (λ ) > 0 for all λ ∈ (−∞,γ) .

LEMMA 1. 1. ψ(
√

z)
s′2(

√
z,a)s′3(

√
z,a) ∈ N ep

+ ,

2. s2(
√

z,a)s3(
√

z,a)
ψ(

√
z) ∈ N ep

+ ,

3. φ(
√

z)
ψ(

√
z)s′1(

√
z,a) ∈ N ep

+ ,

Proof. 1. Since
s j(

√
z,a)

s′j(
√

z,a) ∈ N ep
+ we conclude that

ψ(
√

z)
s′2(

√
z,a)s′3(

√
z,a)

=
s2(

√
z,a)

s′2(
√

z,a)
+

s3(
√

z,a)
s′3(

√
z,a)

∈ N ep
+ .

2. We evaluate

s2(
√

z,a)s3(
√

z,a)
ψ(

√
z)

=

((
s2(

√
z,a)

s′2(
√

z,a)

)−1

+
(

s3(
√

z,a)
s′3(

√
z,a)

)−1

+ β

)−1

.
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Since
s j(

√
z,a)

s′j(
√

z,a) ∈ N ep
+ we conclude by Lemma 5.1.22 in [28] that

s2(
√

z,a)s3(
√

z,a)
ψ(

√
z)

∈ N .

It is clear from (22) and (23) that
s j(

√
z)

s′j(
√

z,a) →
z→−∞

+0 and therefore statement 2 is true.

3. Since

φ(
√

z)
s′1(

√
z,a)ψ(

√
z)

=
s2(

√
z,a)s3(

√
z,a)

ψ(
√

z)
+

s1(
√

z,a)
s′1(

√
z,a)

we arrive at statement 3. �

COROLLARY 1. 1. The sequence {λ 2
k }∞

k �=1 of zeros of φ(
√

z) interlace with the

union {ξ 2
k }∞

k=1 := {μ2
k }∞

k=1∪{ν2
k }∞

k=1 of sequences of zeros of the functions s′1(
√

z,a)
and ψ(

√
z):

−∞ < ξ 2
1 � λ 2

1 � ξ 2
2 � λ 2

2 � . . . � ξ 2
k � λ 2

k � . . .

2. Multiplicity of any λ 2
k and any ξ 2

k does not exceed 2.
3. If λ 2

k = λ 2
k+1 is a double zero then ξ 2

k < λ 2
k = ξ 2

k+1 = λ 2
k+1 < ξ 2

k+2 .

Proof. Statement 1 follows from statement 3 of Lemma 1. Statement 2 for λ 2
k

is a consequence of the general result in [17] (Theorem 4.3) while for ξ 2
k it follows

from simplicity of μ2
k and ν2

k . To prove statement 3 we notice that if λ 2
k = λ 2

k+1 then
interlacing in statement 1 implies λ 2

k = ξ 2
k+1 = λ 2

k+1 . In this case s j(λk,a) = 0 for
j = 1,2,3. Assume that ξk+1 is a double zero, then ξk = λk = μp for some p . That
means s′1(λk,a) = s′1(μp,a) = 0 what contradicts s1(λk,a) = 0. �

NOTATION. We set Bj = 1
2π
∫ a
0 q j(x)dx and here and in the sequel use the same

notation {βk}∞
−∞,k �=0 (or {βk}∞−∞ ) for all sequences which belong to l2 .

DEFINITION 4. We call the indexing of the sequence {λk} of real numbers proper
if:

(i) λ−k = −λk ;
(ii) λk � λp if k > p > 0;
(iii) the multiplicities are taken into account;
(iv) the index set is Z if 0 ∈ {λk} and is Z\{0} if 0 /∈ {λk} .

LEMMA 2. ([28], Theorem 7.4.7 with ν̃ = 0).
1. The set {μk}∞

−∞,k �=0 of zeros of s′1(λ ,a) which being indexed properly (μ−k =
−μk , (μk)2 < (μk+1)2 for k ∈ N) behave asymptotically as follows:

μk =
π(k−1/2)

a
+

B1

k
+

βk

k
.
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2. The set {νk}∞
−∞,k �=0 of zeros of ψ(λ ) can be represented as a union of se-

quences
{

ν(2)
k

}∞

−∞,k �=0
and

{
ν(3)

k

}∞

−∞,k �=0
which being enumerated properly behave

asymptotically as follows:

ν(2)
k =

πk
a

+
B2 +B3

2k
+

βk

k
,

ν(3)
k =

π(k−1/2)
a

+
B2 +B3 + β

π
2k

+
βk

k
.

LEMMA 3. ([28], Theorem 7.4.7 with ν̃ = 0). The set {λk}∞
−∞,k �=0 of zeros of

ϕ(λ ) can be represented as the union of three subsequences
3∪

j=1

{
ρ ( j)

k

}∞

−∞,k �=0
which

being enumerated properly behave asymptotically as follows:

ρ ( j)
k =

πk
a

+
Mj

k
+

βk

k
, j = 1,2, (25)

ρ (3)
k =

π(k− 1
2 )

a
+

1
3k

(
3

∑
j=1

Bj +
β
π

)
+

βk

k
, (26)

where Mj ( j = 1,2 ) are the solutions (all real but not necessarily different) of the
equation

P(M)
de f
= 3M2 −2(B1 +B2 +B3)M +(B1B2 +B1B3 +B2B3) = 0.

LEMMA 4. ([28], Corollary 7.4.8) Let q j(x) belong to the Sobolev space W 1
2 (0,a) .

Then
1. The sequences {μk}∞

−∞,k �=0 behave asymptotically as follows

μk =
π(k−1/2)

a
+

B1

(k− 1
2 )

+
βk

k2 .

2. The sequences
{

ν( j)
k

}∞

−∞,k �=0
behave asymptotically as follows:

ν(2)
k =

πk
a

+
B2 +B3

2k
+

βk

k2 ,

ν(3)
k =

π(k−1/2)
a

+
B2 +B3 + β

π
2k−1

+
βk

k2 .

3. Instead of (25)-(26) we have

ρ ( j)
k =

πk
a

+
Mj

k
+

βk

k2 , j = 1,2,

ρ (3)
k =

π(k− 1
2)

a
+

1

3(k− 1
2 )

(
3

∑
j=1

Bj +
β
π

)
+

βk

k2 .
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REMARK 1. If q j(x) ∈W 2
2 (0,a) for j = 2,3 then

ν(3)
k =

π(k−1/2)
a

+
B2 +B3 + β

π
2k−1

+
B
k3 +

βk

k3 , (27)

where B is a real constant.

In the next section we find sufficient conditions on three sequences of real numbers
to be the spectra of the three above problems and give a method of recovering q1 , q2 ,
q3 using {λk}∞

−∞, k �=0 , {μk}∞
−∞, k �=0 , {νk}∞

−∞, k �=0 .

4. Inverse problem

Here we deal with the problem of recovering the potentials {q j(x)} ( j = 1,2,3)
and the parameter β from the spectral data.

DEFINITION 5. (see, e.g. Definition 11.2.15 in [28] or [23], Sec. 1) An entire
function ω of positive exponential type is said to be a sine type function if

(i) there is h > 0 such that all zeros of ω lie in the strip {λ ∈ C : |Imλ | < h} ,
(ii) there are h1 ∈ R and positive numbers m < M such that m � |ω(λ )| � M

holds for λ ∈ C with Imλ = h1 ,
(iii) the exponential type of ω in the lower half-plane coincides with the exponen-

tial type of ω in the upper half-plane.

The next theorem is the version of Theorem 8.4.1 in [28] adapted for the case of
a star graph of two edges, i.e. for the graph P2 which consists of the edges e2 and
e3 . Also we omit requirement ν2

1 > 0 and admit q j be arbitrary real functions from
L2(0,a) . It can be achieved shifting λ 2 → λ 2 + c where c ∈ R in Theorem 8.4.1 of
[28].

THEOREM 1. Let three properly indexed sequences (ν̃( j)
k )∞

k−∞,k �=0 , j = 2,3 , and
(νk)∞

k=−∞,k �=0 of real numbers be given, satisfying the following conditions:

1. The sequences (ν̃( j)
k )∞

k=−∞,k �=0 , j = 2,3 , are such that:

(i) ν̃( j)
1 > 0 ;

(ii) ν̃( j)
k �= ν̃( j′)

k′ whenever (k, j) �= (k′, j′);
(iii)

ν̃( j)
k =

πk
a

+
B̃ j

k
+

βk

k2 , j = 2,3, k ∈ N, (28)

where the B̃ j are real constants, B̃2 �= B̃3 .
2. The sequence (νk)∞

k=−∞,k �=0 can be represented as the union of two properly

indexed subsequences (ρ̃ ( j)
k )∞

k=−∞,k �=0 , k = 2,3 , which behave asymptotically

ρ̃ (2)
k =

πk
a

+
M̃2

k
+

βk

k2 , k ∈ N,
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ρ̃ (3)
k =

π(k− 1
2 )

a
+

B̃0

k
+

βk

k2 , k ∈ N,

where B̃0 ∈ R and M̃2 = B̃2+B̃3
2

3. The properly indexed sequences of real numbers (νk)∞
k=−∞,k �=0 and (ξ̃k)∞

k=−∞,k �=0

interlace, where the sequence (ξ̃k)∞
k=−∞,k �=0 is the union of the sequences (ν̃( j)

k )∞
k=−∞,k �=0 ,

j = 2,3 :
ν2

1 < ξ̃ 2
1 < ν2

2 < ξ̃ 2
2 < .. . .

Then there exists a unique set (q2,q3,β ) where real functions q j ∈ L2(0,a) and
β ∈ R such that the sequence (νk)∞

k=−∞,k �=0 coincides with the spectrum of problem
(16)–(19), where

β = π
(
2B̃0− B̃2− B̃3

)
,

and such that the sequences (ν̃( j)
k )∞

k=−∞, k �=0 , j = 2,3 , coincide with the spectra of
problems

− y′′j +q j(x)y j = λ 2y j, x j ∈ [0,a] j = 2,3, (29)

y j(0) = y j(a) = 0, j = 2,3. (30)

Now we are ready to state the main result of this paper.
Denote by Q the class of sets {{q j(x)}3

j=1,β} , which satisfy the following con-
ditions: the real-valued functions q j(x) ( j ∈ 1,2,3) belong to L2(0,a) , β ∈ R .

THEOREM 2. Let three properly indexed sequences be given denoted by
{μk}∞

−∞,k �=0 , {νk}∞
−∞,k �=0 and {λk}∞

−∞,k �=0 satisfying the following conditions:

1. {νk}∞
−∞,k �=0 = {ν(2)

k }∞
−∞,k �=0

⋃{ν(3)
k }∞

−∞,k �=0 , {λk}∞
−∞,k �=0 =

3∪
j=1

{
ρ ( j)

k

}∞

−∞,k �=0
,

where

μk =
π(k−1/2)

a
+

D1

(k− 1
2)

+
βk

k2 , k ∈ N, (31)

ν(2)
k =

πk
a

+
D2

2k
+

βk

k2 , k ∈ N, (32)

ν(3)
k =

π(k−1/2)
a

+
D3

2k−1
+

T
k3 +

βk

k3 , k ∈ N,

ρ ( j)
k =

πk
a

+
Mj

k
+

βk

k2 , j = 1,2, k ∈ N,

ρ (3)
k =

π(k− 1
2 )

a
+

B0

(k− 1
2)

+
βk

k2 , k ∈ N.

Here Dj ( j = 1,2,3) , Mj ( j = 1,2) , B0 and T are real constants and

B0 =
D1

3
+

2D3

3
,
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M1 +M2 =
2D1

3
+

2D2

3
,

D2
2 +4D1D2 > 12M1M2. (33)

2. The sequences {λk}∞
−∞,k �=0 and {ξk}∞

−∞
de f
= {μk}∞

−∞,k �=0
⋃{νk}∞

−∞,k �=0 (ξ−k =
−ξk , ξk < ξk+1 ) interlace in the strict sense:

ξ 2
1 < λ 2

1 < ξ 2
2 < λ 2

2 < .. . (34)

Then there exists a set
{
{q j(x)}3

j=1,β
}
∈ Q such that the sequence {λk}∞

−∞,k �=0

coincides with the spectrum of problem (10)–(13), where

β = π(D3−D2)

and the sequence {νk}∞
−∞, k �=0 , coincides with the spectrum of problem (16)–(19) and

{μk}∞
−∞, k �=0 coincides with the spectrum of problem (14)–(15).

Proof. Let us construct the functions

φ j(λ ) = a
∞

∏
k=1

(
a2

π2k2

(
(ρ ( j)

k )2 −λ 2
))

, j = 1,2, (35)

φ3(λ ) =
∞

∏
k=1

(
a2

π2(k− 1
2 )2

(
(ρ (3)

k )2−λ 2
))

, (36)

ψ2(λ ) = a
∞

∏
k=1

(
a2

π2k2

(
(ν(2)

k )2 −λ 2
))

, (37)

ψ3(λ ) =
∞

∏
k=1

(
a2

π2(k− 1
2 )2

(
(ν(3)

k )2 −λ 2
))

, (38)

τ(λ ) =
∞

∏
k=1

(
a2

π2(k− 1
2 )2

(
(μk)2 −λ 2)) .

It is known (see Lemma 12.3.4 in [28]) that

φ j(λ ) =
sinλa

λ
− πMj cosλa

λ 2 +
Ej sinλa

λ 3 +
f (λ )
λ 3 , j = 1,2, (39)

φ3(λ ) = cosλa+
πB0 sinλa

λ
+

E3 cosλa
λ 2 +

f (λ )
λ 2 , (40)

ψ2(λ ) =
sinλa

λ
− πD2 cosλa

λ 2 +
N2 sinλa

λ 3 +
f (λ )
λ 3 , (41)

ψ3(λ ) = cosλa+
πD3 sinλa

λ
+

N3 cosλa
λ 2 +

f (λ )
λ 2 , (42)
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τ(λ ) = cosλa+
πD1 sinλa

λ
+

E cosλa
λ 2 +

f (λ )
λ 2 , (43)

where EJ ∈ R ( j = 1,2,3), Nj ∈ R ( j = 2,3).
It is clear in view of (39)–(43) that the functions ϕ(λ ) = λ 2φ1(λ )φ2(λ )φ3(λ ) ,

λ ψ1(λ )ψ2(λ ) and τ(λ ) are of sine type.
Consider the functional equation

τ(λ )X(λ )+2ψ2(λ )ψ3(λ )Y (λ ) = 3φ1(λ )φ2(λ )φ3(λ ) (44)

with a pair of unknown functions (X ,Y ) . It is clear that due to τ(μk) = 0 we have

Y (μk) =
3φ1(μk)φ2(μk)φ3(μk)

2ψ2(μk)ψ3(μk)
(45)

where the denominator is nonzero because {μk}∞
−∞, k �=0∩{νk}∞

−∞, k �=0 = /0 due to (34).
By Lemma 1.4.3 in [27] or Lemma 12.2.1 in [28] we know that for any Paley-

Wiener function f the sequence { f (μk)}∞
−∞,k �=0 ∈ l2 . Substituting (31) into (39)–(42)

we obtain

φ j(μk) =
sin μka

μk
− πMj cosμka

μ2
k

+
Ej sinμka

μ3
k

+
f (μk)

μ3
k

(46)

=
(−1)k−1a

π(k−1/2)
+O(k−3),

φ3(μk) = cosμka+
πB0 sinμka

μk
+

E3 cosμka

μ2
k

+
f (μk)

μ2
k

(47)

= (−1)k aD1

k
+(−1)k−1 aB0

k
+

βk

k2 ,

ψ2(μk) =
sinμka

μk
− πD2 cosμka

μ2
k

+
N1 sinμka

μ3
k

+
f (μk)

μ3
k

(48)

=
(−1)k−1a

π(k−1/2)
+O(k−3),

ψ3(μk) = cosμka+
πD3 sinμka

μk
+

N2 cosμka

μ2
k

+
f (μk)
μ2

k

(49)

= (−1)k aD1

k
+(−1)k−1 aD3

k
+

βk

k2 .

We look for a solution (X ,Y ) of equation to (44) in the form where

Y (λ ) =
sinλa

λ
− πD1 cosλa

λ 2 +
Ỹ (λ )

λ 2 . (50)
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Then using (45) we obtain from (50)

Ỹ (μk) = −μk sinμka+ πD1 cosμka+
3μ2

k φ1(μk)φ2(μk)φ3(μk)
2ψ2(μk)ψ3(μk)

.

In view of (46)–(49) this implies

Ỹ (μk) = (−1)k π(k−1/2)
a

+(−1)k−1 3π(k−1/2)
2a

(B0−D1)
(D3 −D1)

+ βk = βk.

Since τ is sine-type we conclude (see [23], Theorem A or [28], Theorem 11.3.14)
that the series

Ỹ (λ ) = τ(λ )
∞

∑
−∞, k �=0

Ỹ (μk)
dτ(λ )
dλ

∣∣∣∣
λ=μk

(λ − μk)

converges uniformly to a function from L a on any compact domain of the complex
plane and on the real axis in the norm of L2(−∞,∞) . Thus if we denote {σk}∞

−∞,k �=0
the sequence of zeros of Y then due to (50) Lemma 3.4.2 in [26] or Lemma 12.3.2 in
[28] implies

σk =
πk
a

+
πD1

k
+

βk

k
. (51)

Now let us consider equation (45). If μk = ξp , then due to (34) there are p− k squares
of zeros of the function ψ2(λ )ψ3(λ ) and p−1 squares of zeros of φ1(λ )φ2(λ )φ3(λ )
located on the interval (−∞,μ2

k ) . Since due to (35)–(38) ψ j(λ ) →
λ 2→−∞

+∞ and

φ j(λ ) →
λ 2→−∞

+∞ we arrive at ψ2(λ )ψ3(λ ) →
λ 2→−∞

+∞ and φ1(λ )φ2(λ )φ3(λ ) →
λ 2→−∞

+∞ .

Thus, (−1)p−kψ2(μk)ψ3(μk) > 0 and (−1)p−1φ1(μk)φ2(μk)φ3(μk) > 0 and, conse-
quently,

Y (μk)(−1)k−1 =
3φ1(μk)φ2(μk)φ3(μk)

2ψ2(μk)ψ3(μk)
(−1)k−1 > 0, k � 1.

Therefore, taking into account (51), (31) we conclude that {σk}∞
−∞,k �=0 interlace with

{μk}∞
−∞,k �=0 :

μ2
1 < σ2

1 < μ2
2 < σ2

2 < .. .

Using Theorem 3.4.1 in [27] or Theorem 12.6.2 in [28] we conclude that there exists
a unique real function q1 ∈ L2(0,a) which generates the Dirichlet-Neumann problem
(14), (15) with the spectrum {μk}∞

−∞, k �=0 and Dirichlet-Dirichlet problem

−y′′1 +q1(x)y = λ 2y1, x ∈ [0,a]

y1(0) = y1(a) = 0.

with the spectrum {σk}∞
−∞, k �=0 . The method of recovering q1 is described, e. g., in

[27], Theorem 3.3.1 or [28], Proposition 12.4.8.
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We are looking for a solution (X ,Y ) to (44) with X of the form

X(λ ) =
sin2 λa

λ 2 −πD2
sinλacosλa

λ 3 +3V
sin2 λa

λ 4 (52)

+π2(3M1M2 −D1D2)
cos2 λa

λ 4 +
X̃(λ )

λ 4 ,

where
V = −R1−R2−R3 +S,

Rj =
D2

3

8
+

aD3

2π
+

aD3Mj

2
− a2Ej

π2 ( j = 1,2),

R3 = T +
D3

3

48
+

D2
3

8
+

D3

2
+

E3D3

2
,

S = T +
D3

3

48
+

D2
3

8
+

D3

2
+

ED3

2
.

Substituting λ = ν(2)
k into (44) we obtain

X(ν(2)
k ) =

3φ1(ν
(2)
k )φ2(ν

(2)
k )φ3(ν

(2)
k )

τ(ν(2)
k )

. (53)

Here τ(ν(2)
k ) �= 0 because of (34). Substituting (32) into (39), (40) and (43) we arrive

at

φ j(ν
(2)
k ) =

(−1)ka2

πk2

(
D2

2
−Mj

)
+

βk

k2 , j = 1,2, (54)

φ3(ν
(2)
k ) = (−1)k +O(k−2), (55)

τ(ν(2)
k ) = (−1)k +O(k−2). (56)

Using (54)–(56) we obtain from (53) that

X(ν(2)
k ) =

3φ1(ν
(2)
k )φ2(ν

(2)
k )φ3(ν

(2)
k )

τ(ν(2)
k )

(57)

=
a4

π2k4

(
−D2

2

4
−D1D2 +3M1M2

)
+

βk

k4 .

On the other hand, (52) implies

X(ν(2)
k ) =

a4

π2(k−1/2)4

(
−D2

2

4
−D1D2 +3M1M2

)
+

X̃(ν(2)
k )

k4 . (58)

Comparing (57) with (58) we obtain

{X̃(ν(2)
k )}∞

−∞,k �=0 ∈ l2. (59)
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Substituting λ = ν(3)
k into (44) we obtain

X(ν(3)
k ) =

3φ1(ν
(3)
k )φ2(ν

(3)
k )φ3(ν

(3)
k )

τ(ν(3)
k )

. (60)

Here τ(ν(3)
k ) �= 0 because of (34). Since

φ j(ν
(3)
k ) =

(−1)k−1a
π(k−1/2)

(
1− Rj

k2

)
+

βk

k3 , j = 1,2,

φ3(ν
(3)
k ) = (−1)k a

k−1/2

(
−D3

2
+B0− R3

k2

)
+

βk

k3 , (61)

and

τ(ν(3)
k ) = (−1)k a

k−1/2

(−D3

2
+D1− S

k2

)
+

βk

k3

we conclude that

3φ1(ν
(3)
k )φ2(ν

(3)
k )φ3(ν

(3)
k )

τ(ν(3)
k )

=
3a2

π2(k−1/2)2

(
B0 − D3

2

D1− D3
2

+
V
k2

)
+

βk

k4 (62)

=
a2

π2(k−1/2)2 +
3V
k4 +

βk

k4 .

On the other hand, (52) implies

X(ν(3)
k ) =

a2

π2(k−1/2)2 +
3V
k4 +

X̃(ν(3)
k )

k4 . (63)

Substituting (62) into (60) and comparing the result with (63) we obtain

{X̃(ν(3)
k )}∞

−∞,k �=0 ∈ l2

and with account of (59)
{X̃(νk)}∞

−∞,k �=0 ∈ l2.

Since λ ψ2(λ )ψ3(λ ) is a sine-type function with simple zeros (ν( j)
k = ν(i)

p if and
only if k = p and j = i) we conclude (see [23], Theorem A or [28], Theorem 11.3.14)
that the series

X̃(λ ) = λ ψ2(λ )ψ3(λ )
∞

∑
−∞, k �=0

X̃(νk)
dλ ψ2(λ )ψ3(λ )

dλ

∣∣∣∣
λ=νk

(λ −νk)
(64)

converges uniformly to a function from L 2a on any compact domain of the complex
plane and on the real axis in the norm of L2(−∞,∞) . Here we set X̃(0) = 0 by defini-
tion. Substituting (64) into (52) we find X(λ ) .
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If we denote by {χk}∞
−∞,k �=0 the sequence of zeros of X then we conclude that this

sequence can be given as the union of two subsequences {χk}∞
−∞,k �=0 = {χ (2)

k }∞
−∞,k �=0∪

{χ (3)
k }∞

−∞,k �=0 where

χ ( j)
k =

πk
a

+
Tj

k
+

βk

k
, (65)

T2 =
π
2

(D2 +
√

D2
2 +4D1D2−12M1M2),

T3 =
π
2

(D2−
√

D2
2 +4D1D2−12M1M2)

(see Proposition 4.5 in [22]). Here Tj ∈ R due (33). The sequences {χk}∞
−∞,k �=0 =

{χ (2)
k }∞

−∞,k �=0 ∪ {χ (3)
k }∞

−∞,k �=0 and {νk}∞
−∞,k �=0 = {ν(2)

k }∞
−∞,k �=0 ∪ {ν(3)

k }∞
−∞,k �=0 satisfy

the condition 1 of Theorem 1 with ν̃( j)
k = χ ( j)

k , B̃ j = Tj , ρ̃ ( j)
k = ν( j)

k , M̃2 = D2 and
B̃0 = D3 .

Let us prove that they satisfy condition 2 in Theorem 1. To this end we nitice that
by (44) we have

X(νk) =
3φ1(νk)φ2(νk)φ3(νk)

τ(νk)

where τ(νk) �= 0 for all k due to (34). If νk = ξp , then there are p− k squares of
zeros of the function τ(λ ) and p− 1 squares of zeros of φ1(λ )φ2(λ )φ3(λ ) on the
interval (−∞,ν2

k ) . Since τ(λ ) →
λ 2→−∞

= +∞ and φ j(λ ) →
λ 2→−∞

= +∞ we conclude that

τ(λ ) →
λ 2→−∞

= +∞ and φ1(λ )φ2(λ )φ3(λ ) →
λ 2→−∞

= +∞ . Thus, (−1)p−kτ(νk) > 0 and

(−1)p−1φ1(νk)φ2(νk)φ3(νk) > 0 and, consequently,

X(νk)(−1)k−1 =
3φ1(νk)φ2(νk)φ3(νk)

τ(νk)
(−1)k−1 > 0.

Therefore, taking into account (52), (28) we conclude that {νk}∞
−∞,k �=0 interlace with

{χk}∞
−∞,k �=0 :

ν2
1 < χ2

1 < ν2
2 < χ2

2 < .. .

Thus, by Theorem 1 there exists a pair q2,q3 of real functions from L2(0,a)
and a real constant β such that the spectrum of problem (16)–(19) is {νk}∞

−∞,k �=0 =

{ν(2)
k }∞

−∞,k �=0 ∪{ν(3)
k }∞

−∞,k �=0 and the spectra of problems (29), (30) are {χ (2)
k }∞

−∞,k �=0

and {χ (3)
k }∞

−∞,k �=0 . For the method of recovering of {q2,q3,β} see the proof of Theo-
rem 8.4.1 in [28], in particular, in our terms β = π(2D3−T2−T3) .

We have already seen that obtained q1 generates problem (14), (15) with the spec-
trum {μk}∞

−∞,k �=0 . It remains to prove that the spectrum of problem (10)–(13) generated
by the found q1,q2,q3 and β coincides with {λk}∞

−∞,k �=0 . Indeed, for j = 1,2,3, let
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S j(λ ,x) be the solution to (29) with the potential q j which satisfies S j(λ ,0) = 0 and
S′j(λ ,0) = 1. By (20) the characteristic function φ of problem (10)–(13) is given by

φ(λ ) := S′1(λ ,a)S2(λ ,a)S3(λ ,a)+S1(λ ,a)(S′2(λ ,a)S3(λ ,a)
+S2(λ ,a)S′3(λ ,a)+ βS2(λ ,a)S3(λ ,a)). (66)

We already know that the sequence of zeros of S′1(λ ,a) coincides with the sequence
of zeros of τ(λ ) while the sequence of zeros of (S′2(λ ,a)S3(λ ,a)+S2(λ ,a)S′3(λ ,a)+
βS2(λ ,a)S3(λ ,a)) coincides with the sequence of zeros of ψ1(λ )ψ2(λ ) . Comparing
(23) with (43) we see that S′1(λ ,a) and τ(λ ) have the same leading terms. Since
S′1(λ ,a) and τ(λ ) are sine type functions with the same set of zeros and the same
leading term it follows from Lemma 11.2.29 in [28] that

S′1(λ ,a) ≡ τ(λ ). (67)

We have seen that the set of zeros of

(S′2(λ ,a)S3(λ ,a)+S2(λ ,a)S′3(λ ,a)+ βS2(λ ,a)S3(λ ,a))

coincides with {νk}∞
−∞,k �=0 . Using (21) and (24) we obtain

S′2(λ ,a)S3(λ ,a)+S2(λ ,a)S′3(λ ,a)+ βS2(λ ,a)S3(λ ,a) =
sin2λa

λ
− f (λ )

λ
.

Comparing (24) with the formula

2ψ2(λ )ψ3(λ ) =
sin2λa

λ
− f (λ )

λ
which is a consequence of (41) and (42) we conclude that the sine type functions
2λ ψ2(λ )ψ3(λ ) and λ (S1(λ ,a)(S′2(λ ,a)S3(λ ,a)+S2(λ ,a)S′3(λ ,a)+βS2(λ ,a)S3(λ ,a))
have the same leading terms and the same set of zeros and by Lemma 11.2.29 in [28]

S′2(λ ,a)S3(λ ,a)+S2(λ ,a)S′3(λ ,a)+ βS2(λ ,a)S3(λ ,a) ≡ 2ψ2(λ )ψ3(λ ). (68)

As we have seen the set of zeros {χk}∞
−∞,k �=0 is the union of the spectra of problems

(29), (30) with j = 2 and with j = 3, i.e. the union of the sets of zeros of S2(λ ,a) and
S3(λ ,a) . Comparing (52) with the representations (22) for S2(λ ,a) and S3(λ ,a) we
see that X(λ ) and S2(λ ,a)S3(λ ,a) have the same main term and therefore

X(λ ) = S2(λ ,a)S3(λ ,a). (69)

The comparison of (50) with (22) for j = 1 implies

Y (λ ) ≡ S1(λ ,a). (70)

Substituting (67)–(70) into (66) we obtain

φ(λ ) = τ(λ )X(λ )+2ψ2(λ )ψ3(λ )Y (λ ).

Comparing this equation with (44) we arrive at φ(λ ) = 3φ1(λ )φ2(λ )φ3(λ ) . �
Comparing Theorem 2 with Lemmas 1–3 and Remark 1 we see that the sufficient

conditions of Theorem 2 are close to the necessary conditions.
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