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ON THE OPEN BALL CENTERED AT AN

INVERTIBLE ELEMENT OF A BANACH ALGEBRA

SEBASTIAN GEETHIKA AND DANIEL SUKUMAR

(Communicated by Z.-J. Ruan)

Abstract. Let A be a complex unital Banach algebra. Since the set of invertible elements is open,
there is an open ball around every invertible element. In this article, we investigate the Banach
algebras for which the radius given by the Neumann series is optimal.

1. Introduction

Let A be a complex unital Banach algebra with unit e . The sets G(A) and Sing(A)
denote the set of invertible and singular elements of A respectively. The spectrum,
spectral radius and the resolvent of an element a in A , are denoted by σ(a) , r(a) and
ρ(a) respectively.

It is well known that G(A) is open in A , as the open ball centered at any invert-

ible element a with radius 1
‖a−1‖ , denoted by B

(
a, 1

‖a−1‖
)

, is contained in G(A) ([2]

Theorem 2.11). It is a natural to ask if there is a bigger open ball centered at a inside
G(A)? It will be convenient to have the following definition.

DEFINITION 1. An element a∈ G(A) is said to satisfy condition (B) (or belongs
to the B class) if the biggest open ball centered at a , contained in G(A) , is of radius

1
‖a−1‖ i.e

B

(
a,

1
‖a−1‖

)
∩Sing(A) �= φ .

We say a Banach algebra A satisfies condition (B) if every a∈G(A) satisfies condition
(B) .

Condition (B) was first encountered by Kulkarni and Sukumar in [7] where Corol-
lary 2.21 says that in a Banach algebra A satisfying condition (B) , every member of
the ε -condition spectrum of an element a in A (denoted by σε(a)), is a spectral value
of a perturbed a . Further in [5] Theorem 3.3 states that if A is Banach algebra satisfy-
ing condition (B) , and a ∈ A , then for every open set Ω containing σ(a) , there exists
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0 < ε < 1 such that σε(a) ⊂ Ω . For examples and properties of ε -condition spectrum
see [7]. The ε -condition spectrum is a handy tool in the numerical solutions of operator
equations. Like in the case where if X is a Banach space and T : X → X is a bounded
linear map, then λ /∈ σε (T ) means that the operator equation Tx−λx = y has a stable
solution for every y ∈ X .

A similar but a more particular class of operators on a Hilbert space, called the G1

class of operators have received considerable attention in literature earlier (See [9] and
related references therein).

In this article we investigate the classical Banach algebras that satisfy condition
(B) , the ones which do not, and discuss their basic properties. The basic approach
adopted to show if a∈G(A) satisfies condition (B) is calculating ‖a−1‖ and producing
an element s ∈ Sing(A) such that ‖a− s‖= 1

‖a−1‖ .
Firstly we give a sufficient condition [Theorem 1] for a Banach algebra to satisfy

condition (B) . Then we characterize all commutative Banach algebras in which condi-
tion (B) holds [Theorem 2] and also see that such algebras are isomorphic to a uniform
algebra [Theorem 3]. We study linear maps that preserve condition (B) and also the
algebras where the same fails to hold. Next we prove that every C*-algebra satisfies
condition (B) [Theorem 5]. Later we provide some sufficient conditions for the same
to be satisfied in other algebras.

2. Main results

A will denote a complex unital Banach algebra throughout and the fact that for
any a ∈ A , r(a) = ‖a‖ if and only if ‖a2‖ = ‖a‖2 will be used frequently.

We begin by giving a sufficient condition for an element a ∈ G(A) to satisfy con-
dition (B) .

THEOREM 1. Let a ∈ G(A) such that ‖(a−1)2‖ = ‖a−1‖2 , then a satisfies con-
dition (B) .

Proof. Since ‖(a−1)2‖ = ‖a−1‖2 , by the compactness of spectrum there exists
λ0 ∈ σ(a) such that

1
‖a−1‖ =

1
r(a−1)

= inf{|λ | : λ ∈ σ(a)} = |λ0|.

The element s = a− λ0 ∈ A can be taken as a singular element in the boundary of

B
(
a, 1

‖a−1‖
)

with the required property. �

Now we will see that the sufficient condition in Theorem 1 turns out to be neces-
sary for commutative Banach algebras.

THEOREM 2. Let A be a commutative Banach algebra. Then a ∈ G(A) satisfies
condition (B) if and only if ‖(a−1)2‖ = ‖a−1‖2 .
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Proof. If a satisfies (B) , there exists s ∈ Sing(A) such that

‖a−1‖2 =
1

‖a− s‖2 � 1
‖(a− s)2‖ =

1
‖a2− (sa+as− s2)‖ � ‖(a−1)2‖,

where sa+as− s2 ∈ Sing(A) as A is commutative. Thus we have ‖a−1‖2 = ‖(a−1)2‖ .
�

COROLLARY 1. Let A be a finite dimensional Banach algebra that satisfies con-
dition (B) . Then A is commutative if and only if ‖a2‖ = ‖a‖2 for every a ∈ A.

Proof. The proof follows from the fact that invertible elements are dense in a finite
dimensional Banach algebra and Corrolary 15.8 in [2]. �

REMARK 1. The converse of Theorem 1 may not be true if A is non-commutative.
For this, we will see later (Theorem 5) that any invertible operator on a Hilbert space
satisfies condition (B) , but if we take J to be a complex valued invertible matrix such
that J−1 is a Jordan matrix with r(J−1) < 1, then r(J−1) �= ‖J−1‖.

REMARK 2. In the commutative case, as (B) is solely dependent on the spectral
radius of a−1 ∈ A , a will satisfy (B) even in the smallest Banach subalgebra containing
e,a and a−1 .

REMARK 3. It can be shown that in a commutative unital Banach algebra, the
elements satisfying condition (B) form a monoid under multiplication.

Next we see how a commutative unital Banach algebra that satisfies condition (B)
is isomorphic to a uniform algebra.

A uniform algebra, U is a Banach subalgebra of C(X) with the uniform norm
such that U separates the points of X (a compact Hausdorff space) and contains the
constants. Since r(a) = ‖a‖ for every a in a uniform algebra, by Theorem 1, U satis-
fies condition (B) . A (unital) Banach function algebra satisfies the same axioms as a
uniform algebra except that the complete norm on the algebra need not be the uniform
norm. A Banach function algebra may not satisfy condition (B) as seen in the this
example.

EXAMPLE 1. Let C(1)[0,1] be the space of all complex valued functions on [0,1]
with continuous first order derivative equipped with the norm

‖ f‖ = ‖ f‖∞ +‖ f (1)‖∞ for all f ∈C(1)[0,1].

Then (C(1)[0,1],‖.‖ ) is a commutative semi simple Banach function algebra. Consider
the function f (x) = ex for all x ∈ [0,1] and notice that ‖( f−1)2‖ �= ‖ f−1‖2.

THEOREM 3. Let A be a commutative Banach algebra that satisfies condition (B),
then A is isomorphic to a uniform algebra.
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Proof. As A satisfies condition (B) , by Theorem 2 we have r(a) = ‖a‖ for every
a ∈ G(A) , and hence for every a ∈ A

r((a−λ )−1) = ‖(a−λ )−1‖ (λ ∈ ρ(a))

i.e,

‖(a−λ )−1‖ =
1

dist(λ ,σ(a))
(λ ∈ ρ(a)).

Hence from Corollary 3.13 of [6] we get

‖a‖ � exp(1)r(a) for every a ∈ A. (1)

Let MA denote the character space of A , which is a compact Hausdorff space. From
equation (1), and by using the Gelfand transform, A is isomorphic onto a subalgebra of
C(MA) which is closed, point separating and contains the constants. �

The next example shows that the converse of Theorem 3 may not hold.

EXAMPLE 2. Let A = C2 , with coordinate wise multiplication. A with the norm
‖(a,b)‖∞ = max{|a|, |b|} , is a uniform algebra. A is also a Banach algebra with the
norm ‖(a,b)‖1 = |a|+ |b| and (A,‖.‖1) is isomorphic to (A,‖.‖∞) . But (A,‖.‖1) does
not satisfy condition (B) , as r(a,b) < ‖(a,b)‖1 if and only if (a,b) is invertible in
(A,‖.‖1) .

The mere definition of condition (B) results into the following theorem.

THEOREM 4. Let A and B be unital Banach algebras. Let φ : A → B be an
isometric Banach algebra isomorphism. Then φ preserves condition (B) .

In the following example we see that Theorem 4 may not hold if φ is not onto.

EXAMPLE 3. Consider the complex field C . Then the identity map is an isometric
homomorphism from C into (C(1)[0,1],‖.‖) but (C(1)[0,1],‖.‖) does not satisfy (B)
(See Example 1).

Further if we drop the isometry condition, Theorem 4 may not work.

EXAMPLE 4. Let X be a locally compact Hausdorff space and X∞ denote the
one point compactification of X . Then X∞ is a compact Hausdorff space (See [4],
Chapter 5, Theorem 21). C(X∞) , being a uniform algebra satisfies condition (B) .
Let C0(X) denote the vector space of all continuous functions on X that vanish at
infinity. Then C0(X) is a Banach algebra with point wise multiplication and the sup-
norm ‖ f‖X = supx∈X | f (x)| . C0(X) is unital if and only if X compact. Let C0(X)e

denote the unitization of C0(X) (See [3] section 2.3). In particular, we will take X to

be the open interval (1,∞) . Then by Proposition 16.5 in [2] ,
(

1
x2 ,1

)
has the inverse(

−1
1+x2 ,1

)
in C0((1,∞))e . But in view of Theorem 2,

(
1
x2 ,1

)
does not satisfy condition

(B) . Define the map ψ : C0((1,∞))e →C((1,∞)∞) by

ψ( f ,λ ) = f + λe,
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where e(x) = 1 for every x∈ (1,∞)∞ and each f ∈C0((1,∞)) is extended by assigning
zero to the point ∞ . It can be proved that ψ is a Banach algebra isomorphism, but not
an isometry (See [3] Lemma 2.3.2).

From the next example we see that finite dimensional Banach algebras may fail to
satisfy condition (B) .

EXAMPLE 5. Consider L1(Z2) = { f | f : Z2 −→C} with the norm ‖ f‖= | f (0)|+
| f (1)| and multiplication defined as

( f ∗ g)(0) = f (0)g(0)+ f (1)g(1)

( f ∗ g)(1) = f (0)g(1)+ f (1)g(0).

Here the identity element being (e(0),e(1)) = (1,0) . From Theorem 2 it is easy to
verify that f = (1,0) and g = (0, i) satisfies condition (B) but f + g does not. In
particular, as in this case, α f + βe may not satisfy condition (B) for some α,β ∈ C.

Now we use polar decomposition of invertible elements in a C*-algebra to prove
condition (B) for the same.

THEOREM 5. Let A be any C*-algebra, then A satisfies condition (B) .

Proof. Let a ∈ G(A) , then a has a unique decomposition a = bu where b � 0

and u is a unitary element in A . Moreover, b = (aa∗)
1
2 ( by Corollary 6.40 in [1] ).

Continuous functional calculus implies the invertibility of b from the invertibility of a ,
moreover b−1 � 0 and

‖b−1‖2 = ‖b−1b−1∗‖ = ‖a−1a−1∗‖ = ‖a−1‖2.

Hence ‖b−1‖ = ‖a−1‖ . Since b−1 is self adjoint,

1
‖b−1‖ =

1
sup{|λ | : λ ∈ σ(b−1)} = {inf |λ | : λ ∈ σ(b)} = |λ0| say.

As a−λ0u = bu−λ0u = (b−λ0e)u , non invertibility of b−λ0e implies a−λ0u is
not invertible and

‖a− (a−λ0u)‖ = ‖λ0u‖ = |λ0| = 1
‖b−1‖ =

1
‖a−1‖ . �

Let X be a complex Banach space. Recall that B(X) is the algebra of all bounded
linear operators on X under product as composition of operators and the operator norm
as norm. Since B(H) is a C*- algebra, by Theorem 5, it satisfies condition (B) . If
we consider a Banach space instead of a Hilbert space, we have a sufficient condition.
An operator T ∈ B(X) is called norm attaining if there exists an element x ∈ X with
‖x‖ = 1, such that ‖Tx‖ = ‖T‖ .

THEOREM 6. Let T ∈G(B(X)) such that T−1 is norm attaining, then T satisfies
condition (B) .
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Proof. We have that T−1 is norm attaining, hence there exist x,y∈X ,‖x‖= ‖y‖=
1 such that

T−1x = ‖T−1‖y.
Using Hahn Banach theorem there exist f ∈ X∗ for which ‖ f‖ = f (y) = 1. Consider
A ∈ B(X) defined as

Au = −‖T−1‖−1 f (u)x for every u ∈ X .

In particular Ay =−‖T−1‖−1x . Using the fact that T−1x = ‖T−1‖y , we get ‖T−1‖−1x =
Ty and hence Ay = −Ty , implying 0 ∈ σ(T +A). Observe that ‖A‖ � ‖T−1‖−1 . We
want that ‖T − (T +A)‖ = ‖T−1‖−1 . Suppose not and ‖A‖ < ‖T−1‖−1 . Then

‖A−T +T‖ = ‖T − (T +A)‖ < ‖T−1‖−1,

which implies (T+A) is invertible, a contradiction. Hence ‖A‖ = ‖T−1‖−1 . �

REMARK 4. The converse of Theorem 6 may not be true. Let H denote the
Hilbert space (�2,‖.‖2) and {en}n∈N be the standard orthonormal basis for (�2,‖.‖2) .
Consider T ∈ B(H) defined as T (en) =

(
1+ 1

(n+1)

)
en for all n � 1. Then T is invert-

ible and satisfies condition (B) as H is a Hilbert space, but T−1 is not norm attaining.

REMARK 5. If X is finite dimensional, then any T ∈ B(X) attains its norm, and
hence from Theorem 6, B(X) satisfies condition (B) .

Recall that if 1 � p < ∞ and {Xα}α∈Λ is a family of Banach spaces, then their
�p -direct sum is the space

X =
{

x ∈ ∏
α∈Λ

Xα : ∑
α∈Λ

‖xα‖p < ∞
}

endowed with the norm

‖x‖ =

(
∑

α∈Λ
‖xα‖p

) 1
p

THEOREM 7. Let X be the �p direct sum of the family {Xα : α ∈ λ} of finite
dimensional Banach spaces, 1 < p < ∞ . Then B(X) satisfies condition (B) .

Proof. Let T ∈ G(B(X)) , then

1
‖T−1‖ = inf{‖Tx‖ : ‖x‖ = 1}.

From ([10], Lemma 3.4) we have that there exists a S ∈ B(X) such that ‖S‖ � 1
‖T−1‖

and inf{‖(T + S)x‖ : ‖x‖ = 1} = 0 which gives us that T + S is singular, and hence
acts as the required singular element on the boundary. �
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3. End remarks

REMARK 6. The (B) condition has been dealt with clearly for commutative Ba-
nach algebras, C*-Algebra and some cases of B(X). Further it is required to understand
and clearly characterize all Banach algebras that satisfy condition (B) and which do
not.

REMARK 7. After observing examples 1, 2, 5 and Theorem 3, it is natural to ask
if we can extend Corollary 1 to the following: Let A be a Banach algebra satifying
condition(B) , then A is commutative iff ‖a2‖ = ‖a‖2 for every a ∈ A .

REMARK 8. Finally, can we simplify the proof of Theorem 5 in [8], if we add in
the hypothesis that the complex commutative Banach algebra satisfies condition (B)?
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