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Abstract. In this paper, we study the hypercyclicity of the weighted translation Cu,g defined on
Orlicz space LΦ(G) where G is a locally compact group, g ∈ G and u is a weight function on
G . It is shown that when g ∈G is a torsion element, then Cu,g cannot be hypercyclic. However,
for an aperiodic element g ∈ G , necessary and sufficient conditions for Cu,g and its adjoint are
given to be hypercyclic.

1. Introduction and preliminaries

A bounded linear operator T on a Fréchet space X is called hypercyclic if there is
a vector x∈X whose orbit {Tnx : n = 0,1,2, . . .} is dense in X , where Tn stands for the
n -th iterate of T and T 0 is the identity map. Such a vector is called a hypercyclic vector
for the operator T . We recall the well-known equivalence between hypercyclicity and
topological transitivity. An operator T acting on a Fréchet space X is hypercyclic if
and only if for each pair of no-empty open sets (U,V) in X , there exists an n∈ N such
that Tn(U)∩V �= /0 . Further, an operator T satisfies the Hypercyclic Criterion if and
only if the operator T ⊕T is hypercyclic on X ⊕X . An operator T on a Fréchet space
X is weakly mixing if and only if T ⊕T is hypercyclic on X ⊕X . It is readily seen
that weakly mixing maps are topologically transitive but in the topological setting, the
converse is not true. For example, any irrational rotation of the circle T is topologically
transitive but it is not weakly mixing. An operator T is topologically mixing whenever
for each pair of no-empty open sets (U,V ) in X , there exists an N ∈ N such that
Tn(U)∩V �= /0 for all n � N . The operators of the form “identity plus a backward shift”
are the example of topologically mixing operators which are also hypercyclic. The
books [2] and [5] are the best interesting references in the dynamics of linear operators.

Let G be a locally compact group with the identity e and a right Haar measure
μ . A continuous, even and convex function Φ : R → R+ ∪ {0} is called a Young’s
function whenever Φ(0) = 0 and limt→∞ Φ(t) = ∞ . Usually for each Young’s function
Φ , another Young’s function Ψ : R → R+ ∪{0} defined by

Ψ(y) := sup{x|y|−Φ(x) : x � 0}
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is associated which is called complementary Young’s function of Φ .

Let LΦ(G) denote the set of all Borel measurable functions f on G such that∫
G Φ(k| f |)dμ < ∞ for some constant k > 0. It is plain that LΦ(G) is a vector space

and equipped with the norm

NΦ( f ) = inf
{

k > 0 :
∫

G
Φ

( | f |
k

)
dμ � 1

}

which is a Banach space and called an Orlicz space. A Young’s function Φ is said to
satisfy condition Δ2 -regular if there is a constant k > 0 such that Φ(2t) � kΦ(t) for
large values of t when μ(G) < ∞ . In case μ(G) = ∞ , Φ(2t) � kΦ(t) for each t > 0.
For further information the interested reader is referred to [7]. It is well known that
the hypercyclic phenomenon is occurred only on infinite-dimensional and separable
spaces([2, 5]). Hence we assume that G is second countable and Young’s function Φ
is Δ2 -regular([7]). A bounded continuous function u : G → (0,∞) is called a weight.
For g ∈ G let νg be the unit point mass at g . Given a weight u on G and g ∈ G , a
weighted translation Cu,g : LΦ(G) → LΦ(G) is defined by

Cu,g( f ) := u · f ∗νg f ∈ LΦ(G)

where f ∗νg is the following convolution

f ∗νg(t) :=
∫

G
f (tx−1)dνg(x) = f (tg−1) t ∈ G.

Indeed it is the right translation of f by g−1 . Further, it is easy to see that f ∗ νg ∈
LΦ(G) whenever f ∈ LΦ(G) . For if, consider

∫
G

Φ(k| f ∗νg(t)|)dμ(t) =
∫

G
Φ(k| f (tg−1)|)dμ(t) =

∫
G

Φ(k| f (y)|)dμ(y) < ∞

where tg−1 = y and dμ(t) = dμ(yg) = dμ(y) .
Since the spectrum of hypercyclic operators meets the unit circle ([2] or [5]), then a

weighted translation Cu,g cannot be hypercyclic when ‖u‖∞ � 1. Another case which
Cu,g cannot be hypercyclic, appears whenever g is a torsion element. Recall that an
element g ∈ G is called a torsion element if it is of finite order. An element g ∈ G
is called periodic if the closed subgroup G(g) generated by g is compact. Further,
an element in G is aperiodic if it is not periodic. The hypercyclicity of the weighted
translations on Lp(G) for 1 � p < ∞ has been widely studied in [3] and [4]. In this
paper, we study the hypercyclicity of the weighted translation Cu,g on Orlicz space
LΦ(G) . For an aperiodic element g ∈ G , we give a necessary and sufficient condition
for Cu,g to be hypercyclic. Moreover, it is shown that when g ∈ G is a torsion element
then Cu,g cannot be hypercyclic.
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2. Hypercyclicity of weighted translations On LΦ(G)

One of the hypercyclicity criteria is the following which is known as Kitai’s hy-
percyclicity criterion.

DEFINITION 2.1. ([6]) Let X be a topological vector space and T : X → X be a
bounded linear operator. We say that T satisfies the hypercyclicity criterion if there ex-
ist an increasing sequence of integers (nk) , two dense sets D1,D2 ⊂ X and a sequence
of maps Snk : D2 → X (not necessarily linear or continuous) such that

• Tnk(x) → 0 for any x ∈ D1 ;

• Snk(y) → 0 for any y ∈ D2 ;

• TnkSnk(y) → 0 for any y ∈ D2 .

For the possible setting, nk = k and D1 = D2 , it is called Kitai’s hypercyclicity criterion.

In this section, we characterize the hypercyclicity of the weighted translation Cu,g

when g ∈ G is torsion and aperiodic. For an aperiodic, a given necessary and sufficient
condition is proved by Kitai’s hypercyclicity criterion.

LEMMA 2.2. Let g ∈ G be a torsion element. Then a weighted translation Cu,g :
LΦ(G) → LΦ(G) is not hypercyclic.

Proof. The method of proof is similar to the one used in [3]. Let m ∈ N be the
order of the element g i.e., gm = e . For each t ∈ G , let um,g(t) := ∏m−1

i=0 u(tg−i) where
g0 = e . We shall proceed the proof with the two cases ‖um,g‖∞ � 1 and ‖um,g‖∞ > 1.
The first case proceeds along the same lines as the proof of Lemma 1.1 in [3]. The orbit
of Cu,g at LΦ(G) may appear like

{ f ,Cu,g( f ),C2
u,g( f ), . . . ,Cm−1

u,g ( f ),

um,g f ,um,gCu,g( f ),um,gC
2
u,g( f ), . . . ,um,gC

m−1
u,g ( f ),

u2
m,g f ,u2

m,gCu,g( f ),u2
m,gC

2
u,g( f ), . . . ,u2

m,gC
m−1
u,g ( f ),

...

}.
Indeed, because of ‖um,g‖∞ � 1, it is clear that the orbit of the weighted translation

Cu,g is bounded and hence it cannot be dense in LΦ(G) .
For the case ‖um,g‖∞ > 1, suppose on contrary that Cu,g is hypercyclic. Then

one may readily find a compact subset K ⊆ G and an ε > 0 such that μ(K) > 2
Φ( 1

ε )
.

Moreover we may assume that u(x) > 1 for all x ∈ K , since u is continuous. The
hypercyclicity of Cu,g guaranties the hypercyclicity of the its m-th iterate, say Cm

u,g .
To see this well-known fact consult, [1]. Let χK be the characteristic function of K .
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Clearly χK ∈LΦ(G) , since NΦ(χK)= 1
Φ−1( 1

μ(K) )
and μ is a regular measure. Recall that

for a Young’s function Φ , Φ−1 : [0,+∞) → [0,+∞] is defined by Φ−1(y) := inf{x �
0 : Φ(x) > y} with inf( /0) = +∞ .

That a Young’s function Φ is assumed to be Δ2 -regular, ensures that the set of all
simple functions and the set of all continuous functions with the compact supports are
dense in Orlicz space LΦ(G) (c.f., [7]). Hence, one may find f ∈ LΦ(G) and n ∈ N ,
sufficiently large such that

NΦ( f −2χK) < ε and NΦ((Cm
u,g)

n f ) < ε.

Set S = {t ∈ K : | f (t)| < 1} . Then

ε > NΦ( f −2χK) � NΦ(χS( f −2χK))
� NΦ(χS)

=
1

Φ−1( 1
μ(S) )

.

Therefore, we have μ(S) < 1
Φ( 1

ε )
. On the other hand,

ε > NΦ((Cm
u,g)

n f ) � NΦ(χK−S(Cm
u,g)

n f )
� NΦ((un

m,g f )χK−S)
� NΦ(χK−S)

=
1

Φ−1( 1
μ(K−S) )

.

Similarly, we obtain that μ(K −S) < 1
Φ( 1

ε )
. But we know that μ(K) = μ(S)+ μ(K−

S) < 2
Φ( 1

ε )
which is a contradiction. �

THEOREM 2.3. Let g ∈ G be an aperiodic element and let Cu,g be a weighted
translation on LΦ(G) . Then the following conditions are equivalent:

(i) Cu,g is hypercyclic.

(ii) For each compact subset K ⊆G with μ(K) > 0 , there is a sequence of Borel sets
{Vk} ⊆ K such that μ(Vk) → μ(K) as k → ∞ and both sequences

un,g := (
n−1

∏
i=0

u ∗ν i
g)

−1 and un,g−1 :=
n

∏
i=1

u ∗ν i
g−1

possess respectively subsequences {unk,g}∞
k=1 and {unk,g−1}∞

k=1 such that

lim
k→∞

‖unk,g|Vk‖∞ = lim
k→∞

‖unk,g−1 |Vk‖∞ = 0.
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Proof. We take the same approach as in [3]. However, the novelty of our approach
lies on the structure of Orlicz spaces and the hypercyclicity criterion (Definition 2.1).
Suppose that Cu,g is hypercyclic. Let K ⊆ G be a compact set with μ(K) > 0 and let
ε > 0. Since g ∈ G is an aperiodic element, then by Lemma 2.1 in [3], there exists
an N ∈ N such that K ∩Kg−n = /0 for n > N . We know that the set of all hypercyclic
vectors for Cu,g and the set of all simple functions form dense subsets in LΦ(G) . Of
course, both these facts depend on Young’s function Φ which is assumed to be Δ2 -
regular. Hence there exist a hypercyclic vector f ∈ LΦ(G) and n0 ∈ N , n0 > N , such
that

NΦ( f − χK) < ε2
1 and NΦ(Cn0

u,g f − χK) < ε2
1

where ε1 is chosen in such a way that 0 < ε1 < ε
1+ε . Put Pε1 = {t ∈K : | f (t)−1|� ε1} .

Now note that

ε2
1 > NΦ( f − χK)

� NΦ(χK( f −1))
� NΦ(χPε1

( f −1))

� NΦ(χPε1
ε1)

=
ε1

Φ−1( 1
μ(Pε1 ) )

.

Then Φ−1( 1
μ(Pε1 ) ) > 1

ε1
and so 1

μ(Pε1 ) > Φ( 1
ε1

) which yields that μ(Pε1) < 1
Φ( 1

ε1
)
. Let

Rε1 = {t ∈ G−K : | f (t)| � ε1} . Then μ(Rε1) < 1
Φ( 1

ε1
)

since

ε2
1 > NΦ( f − χK)

� NΦ(χG−K f )
� NΦ(χRε1

f )

� NΦ(χRε1
ε1)

=
ε1

Φ−1( 1
μ(Rε1 ) )

.

Let Sn0,ε1 = {t ∈ K : |un0,g(t)
−1 f (tg−n0)−1|� ε1} . Then, consider the following

ε2
1 > NΦ(Cn0

u,g f − χK)
� NΦ(χSn0,ε1

(Cn0
u,g f − χK))

= inf
{

k > 0 :
∫

Sn0,ε1

Φ
(1

k
|un0,g(t)

−1 f (tg−n0)− χK(t)|
)
dμ(t) � 1

}

� NΦ(ε1χSn0,ε1
)

= ε1
1

Φ−1( 1
μ(Sn0,ε1 ) )
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to deduce that μ(Sn0,ε1) < 1
Φ( 1

ε1
)
. But for each t ∈ K− (Sn0,ε1 ∪Rε1g

n0) , we have

un0,g(t) <
| f (tg−n0)|

1− ε1
<

ε1

1− ε1
< ε,

since K∩Kgn0 = /0 . Let Un0,ε1 = {t ∈K : |un0,g−1(t) f (t)|� ε1} . Again, by the assump-
tion K∩Kgn0 = /0 and the fact that μ is a right invariant Haar measure, we have

ε2
1 > NΦ(Cn0

u,g f − χK)

= inf
{

k > 0 :
∫

G
Φ

(1
k
|un0,g(t)

−1 f (tg−n0)− χK(t)|
)
dμ(t) � 1

}

= inf
{

k > 0 :
∫

G
Φ

(1
k
|un0,g−1(t) f (t)− χK(tgn0)|

)
dμ(t) � 1

}

� inf
{

k > 0 :
∫
Un0 ,ε1

Φ
(1

k
|un0,g−1(t) f (t)− χK(tgn0)|

)
dμ(t) � 1

}

= inf
{

k > 0 :
∫
Un0 ,ε1

Φ
(1

k
|un0,g−1(t) f (t)|

)
dμ(t) � 1

}

= NΦ(χUn0 ,ε1
un0,g−1 f )

� ε1NΦ(χUn0,ε1
)

= ε1
1

Φ−1( 1
μ(Un0 ,ε1 ) )

,

which implies in turn that μ(Un0,ε1) < 1
Φ( 1

ε1
)
. Note that for each t ∈ K− (Un0,ε1 ∪Pε1) ,

we have
un0,g−1(t) <

ε1

| f (t)| <
ε1

1− ε1
< ε.

Eventually, define Vn0,ε1 := K− (Pε1 ∪Rn0,ε1 ∪Sn0,ε1 ∪Un0,ε1) . It is evident that, μ(K−
Vn0,ε1) < 4

Φ( 1
ε1

)
, ‖un0,g−1 |Vn0,ε1

‖∞ < ε and ‖un0,g|Vn0,ε1
‖∞ < ε .

Proceeding inductively, for each k ∈ N there is a Borel set Vk ⊆ K and n1 < n2 <
.. . < nk < .. . such that μ(K−Vk) < 4

Φ( 1
k )

, ‖unk,g−1 |Vk‖∞ < 1
k and ‖unk,g|Vk‖∞ < 1

k .

For the reverse implication, we use Kitai’s hypercyclicity criterion (Definition 2.1)
essentially. Let {Vk}⊆K , {unk,g} and {unk,g−1} be items satisfying condition (ii) . We
use the fact that the set of all continuous functions with compact supports say Cc(G) ,
is dense in LΦ(G) , since Young’s function Φ is assumed to be Δ2 -regular. For more
details see [7]. We mean the support of a function f by the set {t ∈ G : f (t) �= 0}
which is denoted by σ( f ) , for simplicity. Take D1 = D2 = Cc(G) and define the maps
Snk,g : Cc(G) → LΦ(G) by

Snk,g( f ) := unk,g f ∗νg−1 .

In this circumstance, we have Cnk
u,g(Snk,g( f )) = f . It remains to show that

NΦ(Cnk
u,g f ) → 0 and NΦ(Snk,g( f )) → 0 as k → ∞ . Let ε > 0 and let {unk,g−1} be



HYPERCYCLICITY OF WEIGHTED TRANSLATIONS ON ORLICZ SPACES 33

bounded on σ( f ) by M . By the hypothesis, there exists an N ∈ N such that μ(σ( f )−
VN) < ε

MNΦ( f ) . Now, by Egoroff’s theorem, there is a Borel set WN ⊆ σ( f ) such that

μ(WN −σ( f )) < ε
MNΦ( f ) and {unk,g−1} converges to 0 uniformly on WN . Hence, there

exists an Ń ∈N such that for each nk > Ń , unk,g−1 < ε
NΦ( f ) on WN . Now, by the change

of variable formula, for nk > Ń we have

NΦ(Cnk
u,g f ) = NΦ(Cnk

u,g f χσ( f ))

= inf
{

k > 0 :
∫

σ( f )gnk
Φ

(1
k
|u(t)u(tg−1) . . .u(tg−(nk−1)) f (tg−nk)|

)
dμ(t) � 1

}

= inf
{

k > 0 :
∫

σ( f )
Φ

(1
k
|u(tgnk)u(tg(nk−1)) . . .u(tg) f (t)|

)
dμ(t) � 1

}

� NΦ(unk,g−1 f χWN )+NΦ(unk,g−1 f χσ( f )−WN
)

<
ε

NΦ( f )
NΦ( f )+

2ε
MNΦ( f )

MNΦ( f )

= 3ε.

By repeating the similar method for the sequence {unk,g} , one may obtain that
NΦ(Snk,g( f )) < 3ε and the proof is completed. �

PROPOSITION 2.4. Let g∈G be an aperiodic element and let Cu,g be a weighted
translation on LΦ(G) . Then the following conditions are equivalent:

(i) Cu,g satisfies the Hypercyclic Criterion.

(ii) Cu,g is hypercyclic.

(iii) Cu,g⊕Cu,g is hypercyclic.

(iv) Cu,g is weakly mixing.

Proof. We only prove the implication (ii) ⇒ (iii) . In fact, the condition (ii) in
Theorem 2.3 implies that Cu,g ⊕Cu,g is topologically transitive. For if, consider two
pairs of non-empty open sets (U1,V1) and (U2,V2) in LΦ(G) . Choose the functions
fi,hi ∈Cc(G) with fi ∈Ui and hi ∈Vi (i=1,2). Let K = σ( f1)∪σ( f2)∪σ(g1)∪σ(g2)
be a compact set in G . Let {Vk} ⊆ K , {unk,g}∞

k=1 and {unk,g−1}∞
k=1 be satisfied the

condition (ii) in Theorem 2.3. There exists an N1 ∈ N , such that for all n > N1 ,
K∩Kg±n = /0 since g is aperiodic. Moreover, for each ε > 0 there exists N2 ∈ N such
that for each k > N2 and nk > N1 , unk,g−1 < ε

NΦ( fi)
on Vk . Hence, for k > N2 , by the
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change of variable formula we have

NΦ(Cnk
u,g fiχVk)

= inf
{

k > 0 :
∫
Vkg

nk
Φ

(1
k
|u(t)u(tg−1) . . .u(tg−(nk−1)) fi(tg−nk)|

)
dμ(t) � 1

}

= inf
{

k > 0 :
∫
Vk

Φ
(1

k
|u(tgnk)u(tg−(nk−1)) . . .u(tg) fi(t)|

)
dμ(t) � 1

}

= NΦ(unk,g−1 fiχVk)
< ε.

Now define a map Du,g on the subspace LΦ
c (G) of functions in LΦ(G) with compact

support by Du,g( f ) := f
u ∗ νg−1 . Then for each f ∈ LΦ

c (G) , Cu,gDu,g( f ) = f . Again,
there exists N3 ∈ N such that for each k > N3 and nk > N1 such that unk,g < ε

NΦ(hi)
on

Vk . For k > N3 note that

NΦ(Dnk
u,ghiχVk)

= inf
{

k > 0 :
∫
Vkg

−nk
Φ

( 1
k|u(tg) . . .u(tgnk)| |hi(tgnk)|

)
dμ(t) � 1

}

= inf
{

k > 0 :
∫
Vk

Φ
( 1

k|u(tg−(nk−1))u(tg−(nk−2)) . . .u(t)| |hi(t)|
)
dμ(t) � 1

}

= NΦ(unk,ghiχVk)
< ε.

For each k ∈ N , let
ρi,k = fiχVk +Dnk

u,ghiχVk .

Clearly ρi,k ∈ LΦ(G) ,

NΦ(ρi,k − f ) � NΦ( fi)μ(K−Vk)+NΦ(Dnk
u,ghiχVk)

and
NΦ(Cnk

u,gρi,k −hi) � NΦ(hi)μ(K−Vk)+NΦ(Cnk
u,g fiχVk).

Hence limk→∞ ρi,k = fi , limk→∞Cnk
u,gρi,k = hi and Cnk

u,g(Ui) ∩Vi �= /0 for some k ∈
N . �

COROLLARY 2.5. Let g ∈ G be an aperiodic element and let Cu,g be a weighted
translation on LΦ(G) . Then the following conditions are equivalent:

(i) Cu,g is topologically mixing.

(ii) For each compact subset K ⊆G with μ(K) > 0 , there is a sequence of Borel sets
{Vn} ⊆ K such that μ(Vn) → μ(K) as n → ∞ and both sequences

un,g = (
n−1

∏
i=0

u ∗ν i
g)

−1 and un,g−1 =
n

∏
i=1

u ∗ν i
g−1
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satisfy
lim
n→∞

‖un,g|Vn‖∞ = lim
n→∞

‖un,g−1|Vn‖∞ = 0.

Proof. Using the full sequences {un,g} and {un,g−1} instead of subsequences, the
implication (ii) ⇒ (i) holds by Theorem 2.3. Indeed, we have used the fact that an
operator on a separable F-space satisfying the hypercyclicity criterion with respect to
the full sequence (n) , is in turn topologically mixing [2]. For the reverse implication,
let K ⊆ G be compact with μ(K) > 0, ε > 0 and χK ∈ LΦ(G) be the characteristic
function. Take U = { f ∈ LΦ(G) : NΦ( f −χK) < ε} which is a non-empty open subset.
Since Cu,g is assumed to be topologically mixing and g is an aperiodic element, one
may find N ∈N such that for all n > N , Cn

u,g(U)∩U �= /0 and K∩Kgn = /0 (c.f. Lemma
2.1 in [3]) hold simultaneously. Hence for each n > N , we can choose a function fn ∈U
meanwhile Cn

u,g fn ∈ U . Then NΦ( f − χK) < ε and NΦ(Cn
u,g fn − χK) < ε . Now, the

rest of proof can be proceed by the similar arguments used in the proof of Theorem
2.3. �

PROPOSITION 2.6. Let g ∈ G be an aperiodic element and let C∗
u,g : LΨ(G) →

LΨ(G) be the adjoint of a weighted translation Cu,g on LΦ(G) provided that Ψ is
assumed to be Δ2 -regular. Then C∗

u,g is hypercyclic if and only if for each compact
subset K ⊆ G with μ(K) > 0 , there is a sequence of Borel sets {Vk} ⊆ K such that
μ(Vk) → μ(K) as k → ∞ and both sequences

dn,g−1 := (
n

∏
i=1

u ∗ν i
g−1)−1 and dn,g :=

n−1

∏
i=0

u ∗ν i
g

possess respectively subsequences {dnk,g−1}∞
k=1 and {dnk,g}∞

k=1 such that

lim
k→∞

‖dnk,g−1 |Vk‖∞ = lim
k→∞

‖dnk,g|Vk‖∞ = 0.

Proof. Let 〈· , ·〉 : LΦ(G)×LΨ(G)→C be the duality defined by 〈h, f 〉=
∫
G h f dμ ,

for any h ∈ LΦ(G) and f ∈ LΨ(G)([7, Corollary 4.1.9]). Now, consider the following
computations

〈h,C∗
u,g f 〉 = 〈Cu,gh, f 〉 = 〈uh ∗νg, f 〉

=
∫

G
u(t)h(tg−1) f (t)dμ(t)

=
∫

G
u(tg)h(t) f (tg)dμ(tg)

=
∫

G
h(t)u ∗νg−1(t) f ∗νg−1(t)dμ(t)

= 〈h,u ∗νg−1 · f ∗νg−1〉.
Therefore, the adjoint of Cu,g is obtained by

C∗
u,g f = u ∗νg−1 · f ∗νg−1 ,
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which is again a weighted translation. Moreover, one may easily check that

C∗n

u,g f = [
n

∏
i=1

u ∗ν i
g−1] f ∗νn

g−1 .

Hence, by scrutinizing the proof of Theorem 2.3, it is inferred that C∗
u,g is hypercyclic

if the sequences (∏n
i=1 u ∗ ν i

g−1)−1 and ∏n−1
i=0 u ∗ ν i

g satisfy condition (ii) of Theorem
2.3. �

REMARK 2.7. In fact, C∗
u,g is hypercyclic if the weight function u∗νg−1 satisfies

that condition for g−1 while Cu,g is hypercyclic whenever the weight function u satis-
fies so for g . However, the hypercyclicity of C∗

u,g and Cu,g can be coincided in some
senses. As a specific example, one may consider the bilateral weighted shift on Z , the
group of all integer numbers which is due to H. N. Salas [8].

EXAMPLE 2.8. Consider the following Young’s functions

Φ1(t) = (e+ |t|) ln(e+ |t|)− e,

Φ2(t) = |t|α(1+ | log |t||) α > 1,

Φ3(t) = |t|α lnβ (|t|+ e) α > 1, β � 1,

where e is Napier’s constant. It is not so hard to check that all three mentioned func-
tions are Δ2 -regular. Especially Ψ2 and Ψ3 , the complementary of Φ2 and Φ3 re-
spectively, are also Δ2 -regular. Define the weight function u on G = R by

u(t) =

⎧⎨
⎩

1
2 , 1 � t,
− t

2 +1, −1 � t � 1,
3
2 , t � −1.

Let K = [a,b] . Take Vk = [a,b− 1
k ) . For g > 0 , choose k0 ∈ N such that a+n0g > 1 .

Then for each k � k0 and t ∈Vk we have

0 < uk,g−1(t) = u(t +g)u(t +2g) · · ·u(t + kg)
� u(a+g)u(a+2g) · · ·u(a+ k0g)
� M,

where M is a constant independent of k . Moreover, note that for each t ∈ Vk and
q � k0g, we have u(t +q) = 1

2 . Hence for k � k0 ,

uk,g−1(t) = u(a+g)u(a+2g) · · ·u(a+ k0g)u(a+(k0 +1)g) · · ·u(a+ kg)

� M(
1
2
)k−k0 → 0 as k → ∞.

The same argument can be applied to the sequence {uk,g}∞
k=1 convincing that the con-

dition (ii) of Theorem 2.3 is established and hence Cu,g is hypercyclic.
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