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EIGENVALUE ASYMPTOTICS FOR ZAKHAROV–SHABAT

SYSTEMS WITH LONG–RANGE POTENTIALS
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Abstract. We study the spectrum of Zakharov-Shabat (ZS) systems with long-range potentials
that have infinitely many purely imaginary eigenvalues accumulating at the origin. We consider
N(s), the number of imaginary eigenvalues with imaginary part strictly larger than s . If the
potential q(t) is positive and falls off like |t|−γ , 0 < γ � 1, and satisfies some additional tech-
nical conditions, we prove that N(s) ∼ π−1 ∫{t:q(t)>s}(q(t)2 − s2)1/2 dt. Therefore, we have a
connection with the well known phase volume integral from quantum mechanics for the number
of eigenvalues less than −s2 for a Schrödinger operator with potential −q(t)2. However, in con-
trast to Schrödinger operators, a major difficulty arises from the fact that the ZS system, since
it is nonselfadjoint, may have eigenvalues that are not algebraically simple. We will pay spe-
cial attention to this difficulty and prove a new result (Theorem 6.6) which says that nonsimple
eigenvalues do not occur if s is sufficiently small.

1. Introduction

Consider the Zakharov-Shabat system

v′(t,ξ ) =
( −iξ q(t)
−q(t) iξ

)
v(t,ξ ), t ∈ R, (1.1)

where the prime denotes differentiation with respect to t ∈R , ξ is a spectral parameter,
and q(t) is called the potential. The overbar denotes the complex conjugate. In general,
q is a complex-valued function, but in this paper we will assume it to be real. The
equation (1.1) can be written as an eigenvalue problem in the form

(H0 +Q)v = ξ v, (1.2)

where

H0 = iJ
d
dt

, J =
(

1 0
0 −1

)
, v =

(
v1

v2

)
, (1.3)

and (since q is real),

Q =
(

0 −iq
−iq 0

)
. (1.4)
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The operator H0 is selfadjoint on L2(R,C2) (on its maximal domain) but Q is skew-
selfadjoint. This means that the eigenvalues ξ in (1.1) may very well be complex.
We mention that eigenvalues are complex numbers ξ (with Imξ > 0) for which (1.1)
(resp.(1.2)) has a solution in v∈ L2(R,C2). We do not discuss the continuous spectrum
in any detail but only mention that under the conditions of this paper the continuous
spectrum coincides with the real axis ([2, Corollary 5.5, p. 174]). In our study of the
eigenvalues, we may restrict ourselves to C+ (the open upper complex half plane),
because, since q is real, if ξ is an eigenvalue, then ξ , −ξ , −ξ are also eigenvalues.
If ψ is the eigenfunction for the eigenvalue ξ of H0 +Q, then JUψ, JUψ , and ψ ,
are the eigenfunctions corresponding to ξ , −ξ , −ξ respectively. Here

U =
(

0 1
1 0

)
. (1.5)

Our main concern in this paper are potentials that are not integrable at infinity and decay
like |t|−γ with 0 < γ � 1 as |t| → ∞ (or at least have such decay towards either +∞
or −∞). More precise conditions will be placed on q(t) below. For such potentials
it is typical that the spectrum may contain an infinite number of eigenvalues on the
imaginary axis. For imaginary eigenvalues, we write

ξ = is, s > 0 (1.6)

and let
N(s) = #{eigenvalues of (1.1) with Im ξ > s}. (1.7)

The main goal of this paper is to discuss the asymptotic behavior of N(s) as s→ 0. We
were motivated by the desire to generalize previous results on the number of eigenvalues
obtained in [12] to classes of potentials that are not in L1(R). Furthermore, on perusing
the literature, we came across reference [18] where the existence of solitons for slowly
decreasing potentials is discussed, assuming that there is an infinite set of complex
eigenvalues including nonimaginary ones. Another reason for looking at nonintegrable
potentials is that in applications to optical fibers the integral

∫
q(t)2 dt is related to the

total energy in a pulse [21, p. 41]. Unfortunately, under this condition the number of
eigenvalues of (1.1) will typically be infinite. In this paper, we will show that under
suitable conditions

N(s) ∼ 1
π

∫
{t:q(t)>s}

(q(t)2− s2)1/2 dt, s ↓ 0. (1.8)

This reminds us of the well known counting formula from quantum mechanics (see,
e.g., [20, Theorem XIII.82]) in terms of the phase volume for a Schrödinger oper-
ator with potential −q(t)2 and eigenvalues below −s2. It is natural to ask: Why
q(t)2 ? We do not have a simple answer but wish to point out the following connec-
tion. The system (1.1) can be converted to a direct sum of the two Schrödinger oper-
ators (−d2/dt2 − q(t)2 ± iq′(t))ψ± = −s2ψ± (cf. [16, Section 1.5]). If q(t) ∼ t−γ ,
then q(t)2 ∼ t−2γ and q′(t) = O(t−1−γ). If 0 < γ < 1, the quadratic term dominates
so one could use this as a heuristic argument for why (1.8) might be true. Since the
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perturbation ±iq′(t) is not real, it is not immediately clear why there even have to exist
infinitely many real eigenvalues. The case γ = 1 also remains inconclusive. We will
use two main tools to obtain our results: The Prüfer transformation and a version of
Dirichlet-Neumann decoupling (or bracketing), a technique that is familiar from the
spectral theory of Schrödinger operators. The Prüfer transformation will be sufficient
to give us the asymptotics of N(s) when γ = 1. When 0 < γ < 1, the Prüfer transfor-
mation runs into difficulties and so we use a decoupling method based on the Birman-
Schwinger kernel, which turns out to be selfadjoint. In the ZS case, eigenvalues may
have algebraic multiplicity greater than one. In fact, this happens when eigenvalues
collide, for example, as a coupling constant varies (see [10], [11], [14]). This means
that we will have to pay special attention to the multiplicity of eigenvalues.

The case γ = 1 deserves special mention because it lies on the borderline between
integrable and nonintegrable potentials. To be specific, consider a family of potentials
of the form qc(t) = c(1+ |t|)−1 (c > 0). The ZS system with such a potential always
has infinitely many imginary eigenvalues and no nonimaginary complex eigenvalues
(Theorems 8.3 and 6.2). The equivalent Schrödinger operator with potential −qc(t)2±
iq′c(t) therefore also has an infinite negative spectrum. On the other hand, if we ignore
the term ±iq′c(t) and just consider the Schrödinger operator with potential −qc(t)2,
then it has exactly one eigenvalue if c � 1/2 but infinitely many eigenvalues when
c > 1/2. The location of eigenvalues, if there are infinitely many, is discussed in [7]
and the asymptotics of the number of eigenvalues is studied in [9]. Initially, we were
uncertain if a similar situation might also arise in the ZS system. However, as it turns
out, at least among the potentials considered in this paper, there is no case where the
strength of the potential would determine whether the imaginary spectrum is finite or
infinite.

The paper is organized as follows. In Section 2, we introduce the Prüfer transfor-
mation as a tool to obtain bounds and detailed asymptotic information on the solutions
of (1.1) for ξ on the imaginary axis. It will be useful to have these results available
when we turn to the study of the eigenvalue asymptotics. Since our potentials are not in
in L1, some of the results that were known from prior work, for example [12], have to
be treated differently. In particular, we do not make use of Jost functions in this paper.
Instead, we employ estimates for the solutions among which a topological method due
to Ważewski [24] (see also [6, Chap. X]) has proved very useful. In Section 3, we
prove bounds for the eigenfunctions for (1.1) for arbitrary ξ ∈ C+. In Section 4, we
discuss the dependence of the Prüfer angle on s and in Section 5, we summarize some
results on the dependence of the Prüfer angle on a coupling constant. These results
are needed to discuss the behavior of eigenvalues as a coupling constant changes (part
of this discussion takes place in Section 7). In Section 6, we address the question of
multiple eigenvalues and prove that, under certain conditions, such eigenvalues do not
occur at all (Theorem 6.2) or at least do not occur when s is sufficiently small. We
felt that the proof of Theorem 6.6 is not suitable to be included in the main body of
the paper in its entirety. So we decided to split the proof into two parts and to consign
the second part to Appendix A. Section 7 introduces the Birman-Schwinger kernel as
a device to estimate the number of eigenvalues above a given point on the imaginary
axis. A somewhat surprising feature is that it lends itself nicely to another technique
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– Dirichlet-Neumann decoupling (or bracketing). This concludes our preparations for
Section 8 where we will prove (1.8) for power-law potentials. First we establish a result
that says that if a potential is positive at least for large t and not in L1 , then there is
always an infinite number of purely imaginary eigenvalues. Then we turn to a class
of Coulomb-type potentials and determine the eigenvalue asymptotics by means of the
Prüfer transformation alone. The main result of Section 8 is Theorem 8.7, which we
prove by means of Dirichlet-Neumann decoupling. The proof of Theorem 8.7 rests
on Lemma 8.6 whose proof is given in Appendix B. An extension of Theorem 8.7 to
more general potentials is obtained in Corollary 8.8 by combining Dirichlet-Neumann
decoupling with the Prüfer transformation.

2. The Prüfer angle

The main concern in this paper are the purely imaginary eigenvalues of (1.1)
which, as indicated in (1.6), we write as ξ = is, with s > 0. The corresponding eigen-
functions may be taken to be real-valued. This allows us to write v in the form(

v1

v2

)
=
(

ρ cosθ
ρ sinθ

)
. (2.1)

Then ρ = ρ(t,s) and θ = θ (t,s) satisfy the first-order differential equations

θ ′ = −q(t)− ssin(2θ ), (2.2a)

ρ ′ = sρ cos(2θ ). (2.2b)

The transformation from (1.1) to the polar coordinate representation (2.1) is re-
ferred to as a Prüfer transformation. In the context of the ZS system (1.1), the Prüfer
transformation was used previously in [12] and [13], and more recently in [5],

There are two main hypotheses that play a role in this paper. The first one is:

HYPOTHESIS 1. Suppose that q(t) is continuous, not identically zero, and
lim|t|→∞ q(t) = 0.

The second hypothesis will be introduced in Section 8. We consider Hypothesis 1
as a core requirement under which many of the theorems are true. However, in some
instances conditions can be relaxed while in others they need to be made more strin-
gent. We will comment on such modifications throughout the paper. In particular, it is
possible to accomodate local integrable singularities in many places.

We first consider solutions of (2.2a) on an interval (−∞,t0] which satisfy an initial
condition at t0. Following the approach in [12], we write (2.2a) in the form

θ ′ +2sθ = −q(t)+ s f (θ ), f (θ ) = 2θ − sin(2θ ), (2.3)

and then convert (2.3) into the integral equation

θ (t,s) = θ (t0,s)e−2s(t−t0) + e−2st
∫ t0

t
e2sτq(τ)dτ − se−2st

∫ t0

t
e2sτ f (θ (τ,s))dτ.
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We remark that to some extent (2.3) falls under the class of differential equations
considered in [3, p. 327], since f (θ ) = o(θ ) as θ → 0. For example, it follows that if
the intial value θ (t0,s) is sufficiently small, then θ (t,s) → 0 as t → +∞ ([3, Theorem
3.1, p. 327]. However, for our purpose we need much more detailed information,
especially for arbitrary initial conditions and as t →−∞. In the latter case, the problem
becomes one of constructing a separatrix in solution space. This will be accomplished
by taking into account the special form of the function f (θ ).

Suppose that θ (t,s) is bounded on (−∞,t0]. Then the improper integrals in the
next expression converge and we may write

θ (t,s) = e−2st
[

θ (t0,s)e2sts +
∫ t0

−∞
e2sτq(τ)dτ − s

∫ t0

−∞
e2sτ f (θ (τ,s))dτ

]
(2.4a)

− e−2st
∫ t

−∞
e2sτq(τ)dτ + se−2st

∫ t

−∞
e2sτ f (θ (τ,s))dτ. (2.4b)

Since the first term in (2.4b) vanishes as t →−∞ and the second term is bounded,
the bracketed term in (2.4a) must vanish. Thus (2.4a,b) can be viewed as a fixed point
problem for the operator Tα defined by

(Tα θ )(t,s) def= −e−2st
∫ t

−∞
e2sτq(τ)dτ + se−2st

∫ t

−∞
e2sτ f (θ (τ,s))dτ. (2.5)

So the equation to be solved is Tα θ = θ , that is

θ (t,s) = −e−2st
∫ t

−∞
e2sτq(τ)dτ + se−2st

∫ t

−∞
e2sτ f (θ (τ,s))dτ. (2.6)

A suitable function space for this fixed point problem is C(Iα), the Banach space
of the bounded continuous functions on Iα = (−∞,α] equipped with the sup norm
denoted by ‖ ‖Iα . Here α is any real number but appropriate choices will be made
later. We will now construct a fixed point, called ϕ0(t,s) , of (2.6), that converges to 0
as t → −∞ and which is also a solution of (2.2a). This then justifies the assumption
made before (2.4a,b) that θ (t,s) be bounded. Using the positivity of f (θ ) for θ � 0
and its monotonicity for all θ , we obtain from (2.5) the estimate

‖(Tαθ )(·,s)‖Iα � ‖q‖Iα

2s
+

1
2

f (‖θ (·,s)‖Iα ). (2.7)

For any a � 0, define the function ga(z) by

ga(z) = a+
f (z)
2

, 0 � z � π
2

. (2.8)

So the right-hand side of (2.7) is equal to ga(‖θ (·,s)‖Iα ), with

a = a(α,s) =
‖q‖Iα

2s
. (2.9)



60 M. KLAUS

REMARKS.
1. When q ∈ Lp(R), Hölder’s inequality (with p′ = p/(p−1), p � 1) gives us

e−2st
∫ t

−∞
e2sτ |q(τ)|dτ � (2sp′)−1/p′

(∫ t

−∞
|q(τ)|p dτ

)1/p
def= ap, ,

so that we can use (2.8), (2.9) with a replaced by ap.
2. Instead of the constant a we could take

ã =
∥∥∥∥e−2st

∫ t

−∞
e2sτq(τ)dτ

∥∥∥∥
Iα

.

Then ã < a provided ‖q‖Iα �= 0 because

e−2sα
∫ t

−∞
e2sτ(‖q‖Iα −q(τ))dτ > 0, t � α,

since q(t) → 0 as t →−∞.
We will make use of Remark 2 in the proof of Lemma 2.1 below.
When 0 � a � 1

2 , let

z1 =
1
2

arcsin(2a), z2 =
π
2
− 1

2
arcsin(2a). (2.10)

These are the fixed points of the function ga(z). They are distinct, with z1 < π
4 < z2, if

0 � a < 1
2 , and they coincide, z1 = z2 = π

4 , if a = 1
2 . If z1 �= z2, the fixed point z1 is

attractive and z2 is repelling.
The next lemma is the key to the construction of θ and some of the later results.

For r > 0, define the ball

Bα(r) = {θ ∈C(Iα) : ‖θ‖Iα � r}.

LEMMA 2.1. Fix s > 0 and choose α such that the constant a in (2.9) satisfies
0 < a � 1

2 . Then the mapping Tα leaves Bα(z2) invariant and has a unique fixed point,
ϕ0, in Bα(z2) so that ϕ0 ∈ Bα(z1). Moreover, for every θ0 ∈ Bα(z2) , the sequence
{θn} defined by θn = Tα θn−1 (n = 1,2, . . .) converges to ϕ0.

Proof. We suppress the argument s and sometimes also t in this proof. Let θ0 ∈
Bα(z2). Since a > 0, ‖q‖Iα > 0, and hence ã < a, where ã is defined in Remark 2
above. Thus 0 < ã < 1

2 . Hence

‖θ1‖Iα = ‖Tα θ0‖Iα � gã(‖θ0‖Iα ) < ga(z2) = z2.

Now define a sequence {ηn} , n = 1,2, . . . , by η1 = ‖θ1‖Iα and ηn = ga(ηn−1). Since
η1 < z2, ηn → z1 monotonically as n → ∞ and, by (2.7), ‖θn‖Iα � g(ηn−1) � ηn.
Fix r0 ∈ (z1,

π
4 ). Then there is an N such that ‖θn‖Iα < r0 for n > N. But Tα is a

contraction on Bα(r0) in view of the estimate

| f (θ1(t))− f (θ2(t))| � 2(1− cos(2r))|θ1(t)−θ2(t)|.
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Therefore

‖Tαθ1 −Tαθ2‖Iα � 1
2
‖ f (θ1)− f (θ2)‖Iα � (1− cos(2r))‖θ1 −θ2‖Iα .

This establishes the existence and uniqueness of a fixed point, called ϕ0, in Bα(r0).
Since r0 may be arbitrarily close to z1, ϕ0 ∈ Bα(r0). �

REMARKS.
1. In Lemma 2.1, the assumption a > 0 is required because if a = 0, then q(t)≡ 0

on Iα , in which case θ (t,s) ≡ 0 and θ (t,s) ≡ π/2 are two fixed points. Remember
that z is restricted to [0,π/2] .

2. The condition a � 1
2 can be achieved by choosing α sufficiently small.

3. Any solution of (2.2a) satisfying limsup
t→−∞

|θ (t,s)|< π
2 must coincide with ϕ0(t,s)

because θ (t,s) will be in some Bα(r) with r < z2 < π
2 , provided α is sufficiently neg-

ative. Note that, by (2.10), z2 → π/2 as α →−∞ (a → 0).
We recall a comparison theorem ([23, Theorem IX and its Corollary, p. 96]) that

will be useful in the sequel.
For a given differential equation y′ = f (t,y) where f satisfies a local Lipschitz

condition in y and an absolutely continuous function h , let Ph denote its defect, that
is, Ph = h′ − f (t,h).

LEMMA 2.2. Under the above assumptions the following are true.
(i) Let φ ,ψ be absolutely continuous in J+ = [t0,t0 + c] (c > 0) and suppose that

φ(t0) � ψ(t0) and Pφ � Pψ a.e. in J+. Then φ < ψ in J+ or there is a t1 ∈ J+ such
that φ = ψ in [t0, t1], φ < ψ in (t1,t0 + c].

(ii) Let J− = [t0−c,t0] (c > 0 ) and suppose that φ(t0) � ψ(t0) and Pφ � Pψ a.e.
in J−. Then φ < ψ in J− or there is a t2 ∈ J− such that φ = ψ in [t2, t0], φ < ψ in
[t0− c, t2].

Define
q+(t) = max{q(t),0}, q−(t) = max{−q(t),0},

so that q = q+−q−.

LEMMA 2.3. Suppose q satisfies Hypothesis 1. Let 0 < δ < π
2 and fix s > 0.

Then every solution θ (t,s) of (2.2a) with the property that δ < θ (tn,s) < π −δ for an
infinite sequence t0 > t1 > .. . tending to −∞ must converge to π

2 as t →−∞.

Proof. Set χ(t,s) = θ (t,s)− π
2 . Then χ(t,s) satisfies the differential equation

χ ′ = −q(t)+ ssin(2χ). (2.11)

Fix δ ∈ (0, π
2 ) and let

ηδ =
2sin(δ )
π − δ

.
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Then

|sin(2χ)| � ηδ |χ | if |χ | � π
2
− δ

2
. (2.12)

In addition to (2.11) we consider the two initial value problems

χ± ′ = ∓q±(t)+ sηδ χ±, χ±(T,s) = ±π
2
∓ δ , (2.13)

on (−∞,T ], where T will be chosen later. The solutions to (2.13) are

χ±(t,s) = χ±(T,s)eηδ s(t−T ) ± eηδ st
∫ T

t
e−ηδ sτq±(τ)dτ, t � T. (2.14)

Clearly, χ+(t,s) is positive, χ−(t,s) is negative, and both solutions approach 0 as
t →−∞. Now we pick T so that

sup
t�T

(
eηδ st

∫ T

t
e−ηδ sτq±(τ)dτ

)
<

δ
2

(2.15)

(for both q+ and q− ). This can certainly be achieved, since the term in parentheses is
bounded by (ηδ s)−1 sup

t�T
[q±(t)]. In view of the initial conditions for χ±(t,s) at t = T

in (2.13), it follows from (2.14), (2.15), and the triangle inequality, that

χ+(t,s) <
π
2
− δ

2
, t � T,

χ−(t,s) > −π
2

+
δ
2

, t � T.

(2.16)

Thus both χ+ and χ− satisfy the inequalities in (2.12) for t � T. Now let Ph be the
defect of a function h with respect to the differential equation (2.13). Then

Pχ = 0 = Pχ+ + s(sin(2χ+)−ηδ χ+)+q−(t) � Pχ+.

Similarly, Pχ � Pχ−. Hence, by Lemma 2.2(ii), if χ(t,s) is a solution of (2.11) with
|χ(T,s)| � π

2 − δ , then χ−(t,s) � χ(t,s) � χ+(t,s) for t � T and χ±(t,s) → 0 by
(2.14). Hence χ(t,s) → 0. Finally, let θ (t,s) be a solution of (2.2a) satisfying the
assumptions of the lemma. Then there is an n such that (2.15) holds with T = tn and
|χ(tn,s) = |θ (tn,s)− π

2 | < π
2 − δ . So the inequalities in (2.12) are satisfied at tn and

thus χ(t,s) → 0. Hence θ (t,s) → π
2 , proving the lemma. �

REMARK. If q ∈ Lp(R), p � 1, then (2.15) can be replaced by

(p′ηδ s)−1/p′
(∫ T

−∞
|q±(t)|p dt

)1/p

<
δ
2

and Lemma 2.3 still holds.
For every β ∈ R, let Jβ = [β ,∞), and let the sup norm on C(Jβ ) be denoted by

‖ ‖Jβ .
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THEOREM 2.4. Suppose q satisfies Hypothesis 1. Then
(i) For each k ∈ Z, there is a unique solution ϕk(t,s) converging to kπ as t →

−∞, and ϕk(t,s) = ϕ0(t,s)+ kπ . The solution ϕ0(t,s) obeys

− 1
2

arcsin

(‖q+‖It

s

)
� ϕ0(t,s) � 1

2
arcsin

(‖q−‖It

s

)
, (2.17)

provided ‖q‖It � s. Both inequalities are strict unless ‖q+‖It = ‖q−‖It = 0.
(ii) Suppose ϕ(t,s) is a solution not identical to one of the solutions ϕk(t,s).

Then, as t →−∞, ϕ(t,s) converges to mπ/2 for some odd integer m; more precisely,
if ϕk(t0,s) < ϕ(t0,s) < ϕk+1(t0,s) for some t0, then m = 2k+1.

(iii) For each k ∈ Z, there is a unique solution ψk(t,s) converging to (2k−1)π/2
as t → +∞ and ψk(t,s) = ψ0(t,s)+ kπ . The solution ψ0(t,s) obeys

− 1
2

arcsin

(‖q−‖Jt

s

)
� ψ0(t,s)+

π
2

� 1
2

arcsin

(‖q+‖Jt

s

)
, (2.18)

provided ‖q‖Jt � s. The inequalities are strict unless ‖q+‖Jt = ‖q−‖Jt = 0.
(iv) Any solution not identical to one of the solutions ψk(t,s) converges to mπ for

some m ∈ Z. If ψk(t0,s) < ψ(t0,s) < ψk+1(t0,s) for some t0, then m = k.

REMARKS.
1. Note that these solutions exist with the required asymptotic properties only

when s > 0. At s = 0, the solution of (2.2a) is θ (t,0) = θ (t0,0)− ∫ t
t0

q(τ)dτ, which
in general is not bounded at either ±∞, unless q is conditionally integrable there.

2. The solution ψ0(t,s) satisfies an integral equation similar to that for ϕ0(t,s)
(see (2.5)). Let θ0(t,s) = π

2 + ψ0(t,s). Then

θ0(t,s) = e2st
∫ ∞

t
e−2sτq(τ)dτ + e2st

∫ ∞

t
e−2sτ f (θ0(τ,s))dτ. (2.19)

This is also a fixed point problem. By reasoning as in the case of ϕ0(t,s), we obtain
the bound

|θ0(t,s)| � 1
2

arcsin

(‖q‖Jt

s

)
, t � ω(s), (2.20)

in agreement with (2.18).
3. From Theorem 2.4, it follows that every solution of (2.2a) is bounded on the

whole line and has limits as t±∞.

Proof of Theorem 2.4. In (2.5), (2.6) replace q by q+ (resp. q− ) and denote
the corresponding operators and solutions by T±

α , θ+ (resp. θ− ) and the iterates by
θn(t,s), θ±

n (t,s). Since f (θ ) is monotone and maps positive (negative) functions to
positive (negative) functions, we have that θ+

n (t,s) � θn(t,s) � θ−
n (t,s). Taking n→ ∞

and denoting the limits by ϕ0(t,s), ϕ±
0 (t,s) gives ϕ+

0 (t,s) � ϕ0(t,s) � ϕ−
0 (t,s). The

inequalities in (2.17) follow from Lemma 2.2 applied to q±(t), since the solutions ϕ±
0

correspond to the fixed points of the mappings T±
α associated with q±.

That ϕk(t,s) = ϕ0(t,s) + kπ is a consequence of the π -periodicity of the term
sin(2θ ) in (2.2a). That the inequalities in (2.17) are strict follows from the fact that
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ã < a (see Remark 2 below (2.9)); note that ã < a implies z1(ã) < z1(a). If ‖q−‖It = 0
but ‖q+‖It �= 0 (or vice versa), then ϕ0(t,s) < 0 (or ϕ0(t,s) > 0), so both inequalities
are strict.

In (ii) it suffices to consider the case m = 1. If

ϕ0(t0,s) < ϕ(t0,s) < ϕ1(t0,s) = ϕ0(t0,s)+ π ,

then ϕ(t,s) does not converge to 0 or π as t →−∞ by the uniqueness of ϕ0(t,s) and
ϕ1(t,s). Hence there is a δ > 0 and a sequence {tn} as required by Lemma 2.3. Thus
ϕ(t,s) must converge to π/2 as t →−∞.

The proofs of (iii) and (iv) are immediate if we define χ(t,s) = θ (−t,s)− π
2 . Then

χ ′ = q(−t)− ssin(2χ).

Set y0(t,s) = ϕ̂0(−t,s)− π
2 , where ϕ̂0(t,s) is the solution constructed in Lemma 2.1,

but with q(t) replaced by q̂(t) = −q(−t) . Thus (2.18), together with the remaining
assertion follow as in (i) and (ii). �

We have included the next result because we believe it is nontrivial and gives the
best possible answer for the asymptotics of ϕ0(t,s) as t →−∞ (or ψ0(t,s) as t →+∞)
that we could think of under the given assumptions.

THEOREM 2.5. Suppose that Hypothesis 1 holds and that q(t) � 0. Then

ϕ0(t,s) = −p(t,s)(1+o(1)), t →−∞, (2.21)

where

p(t,s) = e−2st
∫ t

−∞
e2sτq(τ)dτ.

Similarly,

ψ0(t,s) = −π
2

+ p̃(t,s)(1+o(1)), t → +∞, (2.22)

where
p̃(t,s) = e2st

∫ ∞

t
e−2sτq(τ)dτ.

Proof. First, if q(t) ≡ 0 on some interval (−∞,t0) , then (2.21) is obviously true.
If the restriction of q(t) to (−∞,0] does not have compact support, then p(t,s) > 0 for
all t. From (2.6) and by iteration, it is clear that

ϕ0(t,s) < −p(t,s).

We only need this inequality for large negative t but it actually holds for all t ∈ R by
a comparison argument, since p(t,s) obeys the differential equation p′ = −2sp+q(t).
It now suffices to show that for every ε > 0, we can find a tε such that

ϕ0(t,s) � −(1+ ε) p(t,s), t � tε .
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This does not seem to follow easily from the integral equation unless one makes the
stronger assumption that q(t) is monotone. The method we use is due to Ważewski
[24] and a lucid account can be found in [6, Chap. X]. The idea is to delimit a region
Ωε in the (t,θ ) plane of the form Ωε = {(t,θ ) : t � tε ;g1(t) � θ � g2(t)} so that the
curves g1(t) and g2(t) consist of strict egress points for (2.2a). Then we can conclude
that there exists a solution θ (t) such that g1(t) < θ (t,s) < g2(t) for t < tε . In our
application, we will have g1(t) = −arctan(κ p(t,s)) and g2(t) = δ , where δ > 0 may
be chosen arbitrarily small. Let

u(t,θ ) = sinθ + κ p(t,s)cosθ ,

where θ = θ (t,s) is any solution of (2.2a). So u(t,θ ) = 0 when θ (t) = g1(t). Com-
puting the derivative of u(t,θ (t)) when u(t,θ ) = 0 (so sinθ = −κ p(t,s)cosθ ) we
obtain

d
dt

u(t,θ (t)) = q(t)(κ −1−κ2p(t,s)2)cosθ . (2.23)

Now we pick any κ > 1 and notice that by choosing t sufficiently negative, we can
make the term in parentheses positive. Thus we set κ = 1+ ε and define tε such that

‖q‖Itε

2s
=

√
ε

1+ ε
. (2.24)

Since p(t,s) <
‖q‖It
2s , tε has the property that for t � tε the term in parentheses in

(2.23) is positive. Since u(t,θ ) > 0 inside Ωε , a positive t -derivative of u(t,θ (t))
on θ = g1(t) means that for some ε > 0 and t − ε < τ < t, (τ,θ (τ,s)) /∈ Ωε . Thus
(t,g1(t)) is a strict egress point. The points on the line θ = g2(t) = δ are also strict
egress points, since the right-hand side of (2.2a) is negative. By a variant of Theorem
2.1 (see also Theorem 3.1 and Corollary 3.1 in [6, Chap. X]), there exists a solution that
is contained in Ωε for all t < tε and which therefore must coincide with the solution
ϕ0(t,s). The inequality u(t,θ ) > 0 translates into tanθ � −(1+ ε) p(t,s), hence

ϕ0(t,s) � −(1+ ε) p(t,s). (2.25)

In view of (2.25), the first part of the theorem (eq.(2.21)) is proved. The proof of (2.22)
is similar. �

3. Exponentially decaying solutions

An immediate consequence of Theorem 2.4 is the existence of a unique solution
(up to constant multiples) of (1.1) for ξ = is on the positive imaginary axis that decays
exponentially as t →−∞. This becomes immediately clear if we integrate (2.2b) with
θ = ϕ0 and an initial value ρ(t0,s) at t = t0. We obtain

ρ(t,s) = ρ(t0,s)e−s
∫ t0
t cos(2ϕ0(τ,s))dτ . (3.1)
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The right-hand side goes to zero exponentially as t → −∞, since ϕ0(t,s) → 0. Simi-
larly, there is a unique solution of (1.1) for ξ on the positive imaginary axis that decays
as t → +∞. We only need to choose ψ0(t,s) instead of ϕ0(t,s). Then

ρ(t,s) = ρ(t0,s)e
s
∫ t
t0

cos(2ψ0(τ,s))dτ
. (3.2)

The right-hand side goes to zero since ψ0(t,s) →− π
2 as t → +∞.

By using the bounds (2.17) and (2.18), we can estimate the exponents in (3.1) and
(3.2). Let v+(t, is) (v−(t, is)) denote a solution that decays as t → +∞ (t →−∞).

THEOREM 3.1. Under Hypothesis 1, the exponentially decaying solutions obey
(i) ‖v+(t, is)‖� ‖v+(t0, is)‖exp(−∫ t

t0
(s2−‖q‖2

Jτ )
1/2 dτ for t � t0 where t0 is such

that ‖q‖Jt0
� s,

(ii) ‖v−(t, is)‖ � ‖v−(t0, is)‖exp(−∫ t0
t (s2 −‖q‖2

Iτ )
1/2 dτ for t � t0 where t0 is

such that ‖q‖It0
� s.

The following bounds are also elementary (but nevertheless useful). They apply
when ξ ∈ C+ to any solution v(t,ξ ) of (1.1).

THEOREM 3.2. Suppose that Hypothesis 1 holds and let ξ = α + iβ , with α ∈R,
β > 0. Then, for any t0 ∈ R,

(i) ‖v(t,ξ )‖ � ‖v(t0,ξ )‖e−β (t−t0) , t � t0,
(ii) ‖v(t,ξ )‖ � ‖v(t0,ξ )‖eβ (t0−t) , t � t0.

Proof. If A(ξ ) is the matrix in (1.1), then A(ξ )+ A(ξ )∗ has eigenvalues ±2β .
From this the inequalities follow by integration (see [6, Chap. IV, Lemma 4.2]. Al-
ternatively, we can use the identity (|v1|2 + |v2|2)′ = 2β (|v1|2 − |v2|2), estimate the
right-hand side in an obvious way, and then integrate. �

We briefly discuss the construction of exponentially decaying solutions for arbi-
trary complex ξ with Imξ = β > 0. A solution having initial values v1(t0,ξ ) and
v2(t0,ξ ) at t = t0 satisfies the following system of integral equations (we temporarily
drop the argument ξ from the notation)

v1(t) = eβ (t−t0)v1(t0)− eβ t ∫ t0
t e−β τq(τ)v2(τ)dτ,

v2(t) = v2(t0)e−β (t−t0) + e−β t ∫ t0
t eβ τq(τ)v1(τ)dτ.

(3.3)

Suppose that v(t) is bounded on It0 . Then we may write the equation for v2 as

v2(t) = e−β t
(

v2(t0)eβ t0 +
∫ t0

−∞
eβ τq(τ)v1(τ)dτ

)
− e−β t

∫ t

−∞
eβ τq(τ)v1(τ)dτ.

Since the second term on the right is bounded (and actually converges to zero as t →
−∞), the term in parentheses must be zero. Therefore, v2 satisfies

v2(t) = −e−β t
∫ t

−∞
eβ τq(τ)v1(τ)dτ.
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Choose 0 � δ < β and set w1(t) = e−δ tv1(t), w2(t) = e−δ t v2(t).
Then, for suitable t0 , the mapping Tt0 : C(It0)

2 →C(It0)
2 defined by

(Tt0w)(t) =
(

(Tt0w)1(t)
(Tt0w)2(t)

)
=

(
e(β−δ )tv1(t0)− e(β−δ )t ∫ t0

t e−(β−δ )τq(τ)w2(τ)dτ

−e−(β+δ )t ∫ t
−∞ e(β+δ )τq(τ)w1(τ)dτ

)

is a contraction. Here the norm is ‖(w1,w2)‖It0
= ‖w1‖It0

+‖w2‖It0
. To see this, write

Tt0w
(1) −Tt0w

(2) =

⎛⎝−e(β−δ )t ∫ t0
t e−(β−δ )τq(τ)[w(1)

2 (τ)−w(2)
2 (τ)]dτ

−e−(β+δ )t ∫ t
−∞ e(β+δ )τq(τ)[w(1)

1 (τ)−w(2)
1 (τ)]dτ

⎞⎠ .

Therefore

‖Tt0w
(1)−Tt0w

(2)‖It0
� ‖q‖It0

⎛⎝‖w(1)
2 −w(2)

2 ‖It0

s−β
+

‖w(1)
1 −w(2)

1 ‖It0

β + δ

⎞⎠
�

‖q‖It0

β − δ
‖w(1)−w(2)‖It0

.

This is a contraction provided
‖q‖It0

β − δ
< 1, that is, if t0 is negative and large in absolute

value. The fixed point defines a unique solution of (3.3) (and thus (1.1)) which satisfies
‖v(t,ξ )‖ = O(eδ t) as t → −∞. This method also shows that w(t,ξ ) is analytic for
ξ ∈ C+ because all the iterates are. Solutions decaying as t →−∞ are constructed in
a similar way.

We provide the next theorem to show that the method of Wasżewski [24] can also
be applied here and yields a nontrivial bound for the decaying solutions.

THEOREM 3.3. Suppose q satisfies Hypothesis 1. Let ξ be any complex number
with Imξ = β > 0. Then (1.1) has solutions v±(t,ξ ) that are unique up to constant
multiples and satisfy the following inequalities:

(i) For every ε ∈ (0,1), there is a tε such that for t � tε ,

|v−1 (t,ξ )| � |v−1 (tε ,ξ )|e(1−ε)β (t−tε ), (3.4a)

|v−2 (t,ξ )| � (1+ ε)p(t,β )|v−1 (t,ξ )|, (3.4b)

where

p(t,β ) = e−2β t
∫ t

−∞
e2β τ |q(τ)|dτ.

Furthermore, ‖q‖Itε /β → 1 as ε → 1.
(ii) For every ε > 0, there is a tε such that for t � tε ,

|v+
1 (t,ξ )| � (1+ ε)p̃(t,β )|v+

2 (t,ξ )|, (3.5a)

|v+
2 (t,ξ )| � |v+

2 (tε ,ξ )|e−(1−ε)β (t−tε), (3.5b)
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where

p̃(t,β ) = e2β t
∫ ∞

t
e−2β τ |q(τ)|dτ.

Furthermore, ‖q‖Jtε /β → 1 as ε → 1.

Proof. Consider (3.4a,b). We suppress the superscript (− ) on v1 and v2 and the
arguments t and ξ . We already have established the existence of a solution that goes
to zero towards −∞ by the fixed point method. So we need only consider the bounds
in (3.4a) and (3.4b). In [6], the limit t → +∞ is considered. Instead of making the
substitution t →−t , we have written the proof so that it applies directly to our situation.
For any κ > 0, define

u = |v2|2 −κ2p2|v1|2. (3.6)

We need to show that u′ < 0 when u = 0. This will imply that u < 0, which in turn
leads to (3.4b). Note that p′ = −2β p+ |q|. Using this, together with (3.6) and (1.1),
we obtain

u′ = −2β |v2|2 +2β κ2p2|v1|2−2κ2p|q||v1|2 −2κ2p2qRe(v1v2)−2qRe(v1v2)

� −2β |v2|2 +2β κ2p2|v1|2−2κ2p|q||v1|2 +2κ2p2|q||v1||v2|+2|q||v1||v2|
= 2κ p|q|(1−κ + κ2p2)|v1|2, (3.7)

where (3.6) when u = 0 was used in the last step. The right-hand side of (3.7) can be
made negative for sufficiently large (negative) t by choosing κ > 1. The argument is
now similar to that in the proof of Theorem 2.5. We again set κ = 1+ ε. Then (3.4b)
follows from (3.6) since u < 0 in the region of interest. We choose tε so that

‖q‖Itε

2β
=

√
ε√

2
√

1+ ε
. (3.8)

This ensures that the term in parentheses in (3.7) is negative when t � tε . The reason
why this is different from the choice in (2.24) is that we have to go one more step and
estimate v1. Using (3.8), we obtain

κ p|q|�
κ‖q‖2

Itε

2β
= β ε.

Therefore, for t � tε ,

(|v1|2)′ = 2Re(−iξ |v1|2 +qv1v2) � 2(β −κ p|q|)|v1|2 � 2β (1− ε) |v1|2.

Now an integration leads to (3.4b). As ε → 1, the right-hand side of (3.8) goes to 1/2.
Part (i) is now proved. The proof of (3.5a,b) is similar. �
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4. The Prüfer angle as a function of s

We also need to know how the solutions ϕk(t,s) and ψk(t,s) behave as s → ∞.
More generally, we can ask this question about any solution θ (t,s) satisfying an ar-
bitrary s-independent initial condition at some point t0. This will be applied to ZS
systems on a finite interval with suitable boundary conditions at the endpoints.

THEOREM 4.1. Suppose q satisfies Hypothesis 1. Then the following are true.
(i) For every k ∈ Z, ϕk(t,s) → kπ as s → ∞ uniformly on (−∞,∞).
(ii) For every k ∈ Z, ψk(t,s) → (2k−1)π/2 as s → ∞ uniformly on (−∞,∞).
(iii) Given t0 ∈ R, suppose θ (t0,s) = θ0 ∈ (0,π) \ { π

2} is independent of s. Let
T < t0. Then θ (t,s)→ π

2 as s→ ∞ uniformly on (−∞,T ]. If θ0 = π
2 , then θ (t,s)→ π

2
uniformly on (−∞, t0].

If θ0 ∈ (0, π
2 ) and T > t0, then θ (t,s) → 0 as s → ∞ uniformly on [T,∞). If

θ0 ∈ (π
2 ,π) and T > t0, then θ (t,s) → π as s → ∞ uniformly on [T,∞).

(iv) Special cases: (a) Suppose θ0 = π
2 , q(t0) > 0 (resp. q(t0) < 0), or q(t0) =

0 and q(t) > 0 (resp. q(t) < 0) on some interval (t0,t1]. Let T > t0. Then θ (t,s)
converges to 0 (resp. π ) uniformly on [T,∞).

(b) Suppose θ0 = 0. Then θ (t,s) converges to 0 uniformly on [t0,∞). Suppose
θ0 = 0 and q(t0) > 0 (resp. q(t0) < 0), or that q(t0) = 0 and q(t) > 0 (resp. q(t) < 0)
on some interval [t1, t0). Let T < t0. Then θ (t,s) converges to π

2 (resp. − π
2 ) uniformly

on (−∞,T ].

The above results do not cover every imaginable case. For example, potentials
behaving like q(t) = t sin(1/t) near t0 = 0 are not included.

Proof. (i) and (ii). It suffices to consider ϕ0(t,s). Assume that s is so large that
‖q‖R � s (here ‖q‖R = supt∈R |q(t)|). Then the assertion follows from (2.17). The
proof for ψk(t,s) is similar.

Now consider an arbitrary solution θ (t,s) satisfying θ (t0,s) = θ0 ∈ (0,π)\ { π
2}.

For large s, by part (i), we have that ϕ0(t0,s) < θ0 < ϕ1(t0,s). Thus θ (t,s) converges
to π

2 as t → −∞ by Theorem 2.4 (ii). As in the proof of Lemma 2.3, let χ(t,s) =
θ (t,s)− π

2 → 0 and set δ = min{θ0,π −θ0}. Then, for large enough s , the inequalities
in (2.15) and (2.16) are satisfied for this δ and for all t � t0 (with T = t0 ). Thus the
upper and lower solutions corresponding to those in (2.14) can be constructed. Since
the right-hand side of (2.14) tends to zero as s → ∞, lims→∞ χ(t,s) = 0. Convergence
is uniform on every interval (−∞,T ], with T < t0, but not uniform on (−∞, t0]. This
can be seen from the first term on the right-hand side of (2.14). An exception occurs
when θ (t0,s) = π

2 . Then we can choose the initial values for χ±(t0,s) in (2.13) to be
arbitrarily small. Choosing s sufficiently large thus makes the right-hand side of (2.14)
as small as we please, uniformly in t for t � t0. This proves the first assertion in (iii).

For the remaining assertions in (iii), similar upper/lower solution arguments can
be found; the details are omitted. It remains to consider the special cases in (iv).

Consider the case θ0 = π/2, q(t0) = 0, and q(t) > 0 on (t0,t1]; the case with
q(t0) > 0 is included in the proof. Since we may always take a smaller T , we may
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assume without loss that T is so close to t0 that

t0 < T < t1 and δ def=
∫ T

t0
q(τ)dτ <

π
2

.

Now consider θ (t,s) as long as it is between π/2− δ and π/2. Clearly π/2 >
θ (t,0) � π/2− δ for t0 < t � T and θ (T,0) = π/2− δ . Since

sin(2θ ) >
2sinδ

δ

(π
2
−θ

)
, θ ∈

(
π
2
− δ

2
,

π
2

)
,

a simple comparison argument shows that for every s > 0 there is a unique t = tδ (s)
such that θ (tδ (s),s) = π/2− δ . Moreover, tδ (s) → t0 monotonically as s → ∞. At
s = 0, tδ (0) = T. Now we pick s = sδ so large that

sup
t�t0

(
e−ηδ sδ t

∫ t

t0
eηδ sδ τq±(τ)dτ

)
<

δ
2

.

On the interval [tδ (sδ ),∞), we can now argue as in part (iii) by relying on upper/lower
solutions constructed similarly to those in the proof of Lemma 2.3. For s � sδ and
t � tδ (sδ ), the upper/lower solutions will stay in the strip |θ |� π/2−δ/2 and converge
to 0 as s → ∞, uniformly on [T,∞) because T > tδ (sδ ). Hence θ (t,s) also converges
to 0 uniformly on [T,∞). Part (iv)(a) is proved.

In similar fashion one proves the case when θ0 = π
2 at a point t0 where q(t0) < 0

(or q(t0) = 0 and q(t) < 0 for t slightly larger than t0 ).
If θ0 = 0 and t � t0, then θ (t,s) → 0 as s → ∞ uniformly in t, because this is

the case for the solution ϕ0(t,s) for a potential q that is truncated and replaced by 0
on (−∞, t0). This proves the first assertion of (iv), part (b).

If θ0 = 0, q(t0) = 0 and q(t) > 0 on [t1,t0), the solution will be positive on [t1,t0)
and shoot up towards π/2 when s is large because the term −ssin2θ will determine
the slope for t < t1. It is clear that the proof is similar to that of (iv), part (a), so we
omit the details. �

Let the derivative with respect to s be denoted by an overdot.

THEOREM 4.2. The function ϕ0(s,t) is real analytic in s for every s and ϕ̇0(t,s)
→ 0 as t →−∞.

Proof. This follows from (2.6) and iteration. Every iterate θn(t,s) is analytic
because the integrals appearing in them are absolutely convergent. It remains to prove
the second part. The s-derivative of ϕ0(t,s) satisfies

ϕ̇0(t,s) = 2
∫ t

−∞
(t − τ)e−2s(t−τ)q(τ)dτ

+
∫ t

−∞
(1+2s(τ − t))e−2s(t−τ) f (ϕ0(τ,s))dτ (4.1)

+ s
∫ t

−∞
e−2s(t−τ) f ′(ϕ0(τ,s)) ϕ̇0(τ,s)dτ.
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Fix s > 0. We can view (4.1) as a fixed point problem for ϕ̇0(t,s). It follows
that ϕ̇0(t,s) is bounded as t → −∞. For t negative ( |t| large) the bounds in (2.17)
hold and therefore |ϕ0(t,s)| = O(‖q‖It ) as t →−∞. Then f (ϕ0(t,s)) = O(‖q‖3

It ) and
f ′(ϕ0(t,s)) = O(‖q‖2

It ). It follows that

|ϕ̇0(t,s)| � C1(s)‖q‖It +C2(s)‖q‖2
It‖ϕ̇0(τ,s)‖It

with suitable constants C1(s) and C2(s). Upon taking the norm also on the left side we
obtain, for t sufficiently negative,

‖ϕ̇0(t,s)‖It � C̃1(s)‖q‖It

1−C3(s)‖q‖2
It

,

which goes to 0 as t →−∞. �

We draw some consequences from Theorem 4.2. From (2.2a,b), by differentiating
the first equation with respect to s and then integrating both equations over an interal
[t0,t] with given s-dependent, differentiable, initial conditions ρ(t0,s) and θ (t0,s), we
obtain

θ̇ (t,s) = θ̇ (t0,s)− 1
ρ(t,s)2

∫ t

t0
ρ(τ,s)2 sin(2θ (τ,s))dτ.

When θ (t,s) = ϕ0(t,s), Theorem 4.2 allows us to take t0 →−∞, so

ϕ̇0(t,s) = − 1
ρ(t,s)2

∫ t

−∞
ρ(τ,s)2 sin(2ϕ0(τ,s))dτ. (4.2)

Analogously we obtain (k ∈ Z)

ψ̇k(t,s) =
1

ρ(t,s)2

∫ ∞

t
ρ(τ,s)2 sin(2ψk(τ,s))dτ. (4.3)

(Note that the rhos in (4.2) and (4.3) are not the same.)
The functions

χk(t,s) = ϕ0(t,s)−ψk(t,s) (4.4)

will play an important role in subsequent sections. If χk(t0,s) = 0 for some t0 (s is
fixed), we can conclude that ϕ0(t,s) = ψk(t,s) for all t. Then combining (4.2) and (4.3)
gives

χ̇k(t,s) = − 1
ρ(t,s)2

∫ ∞

−∞
ρ(τ,s)2 sin(2ϕ0(τ,s))dτ.

The solution v(t, is) corresponding to ρ(t,s) and ϕ0(t,s) is then an eigenfunction and
we can write, by using (2.1),

χ̇k(t,s) =
−1

v1(t, is)2 + v2(t, is)2

∫ ∞

−∞
v1(τ,s)v2(τ,s)dτ. (4.5)
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THEOREM 4.3.
(i) Suppose that q(τ)� 0 for τ � t, ‖q‖It > 0, and ϕ0(t,s)�− π

2 . Then ϕ̇0(t,s) >
0.

(ii) If q(τ) � 0 for τ � t, ‖q‖Jt > 0, and ψ0(t,s) � 0, then ψ̇0(t,s) < 0.

(iii) Suppose that q(t) � 0 for all t. Then for any fixed t ∈ R, the equation
χ0(t,s) = 0 has at most one root (in the variable s) and this root is independent of
t.

Proof. We know from (2.17) that ϕ0(τ,s) � 0 for τ � t and ϕ0(t,s) < 0. If there
exists a τ0 < t such that ϕ0(τ0,s) = − π

2 , then ϕ0(τ,s) � − π
2 for τ � τ0 by compar-

ison with the differential equation ψ ′ = −ssin(2ψ) which has the constant solution
ψ(t,s) = − π

2 . This also shows that on (τ0,t] either ϕ0(τ,s) < − π
2 or ϕ0(τ,s) = − π

2 .
The former contradicts the assumption, the latter is only possible if q(τ) = 0 on [τ0,t].
Thus ϕ0(τ,s) � − π

2 for all τ � t. It follows that the integral in (4.5) is strictly negative
and the assertion is proved.

In the case of ψ0 , by (2.18), we have that ψ0(τ,s) � − π
2 for τ � t and ψ0(t,s) >

− π
2 . The remaining steps are analogous to those in (i), using a comparison with the

differential equation ψ ′ = −ssin(2ψ) and its constant solution ψ(t,s) = 0 to conclude
that the integral in (4.5) is negative.

Turning to (iii), suppose that s1 > 0 is a root of the equation χ0(t,s) = 0 at a fixed
value t. It is clear that both ϕ0(t,s1),ψ0(t,s1) ∈ [− π

2 ,0], for otherwise χ0(t,s) could
not be zero. Hence the conditions of (i) and (ii) are fulfilled and we can conclude that
χ̇0(t,s1) = ϕ̇0(t,s1)− ψ̇0(t,s1) > 0. This implies that there cannot be a second root. Of
course, the root is independent of s by uniqueness of solutions. �

5. Dependence of the Prüfer angle on a coupling constant

In addition to the dependence on s, we need to have some basic formulas that
allow us to determine the behavior of an eigenvalue as a coupling constant changes.
We consider the family of potentials μq(t) with μ � 0 and are concerned with the
dependence of an imaginary eigenvalue on μ , so ξ (μ) = is(μ). Recall the function
χk(t,s) from (4.4). We now write χk(t,s,μ) and fix t. From χk(t,s(μ),μ) = 0, we
obtain

ds
dμ

= −χk,μ(t,s(μ),μ)
χ̇k(t,s(μ),μ)

. (5.1)

(The subscript μ denotes the partial derivative with respect to μ .) We need to evaluate
the numerator. From (2.2a) with potential μq(t) in place of q(t), we deduce that for
any solution θ (t,s,μ) having a μ -dependent initial value θ (t0,s,μ) at t0, we have

θμ(t,s,μ) = θμ(t0,s,μ)
ρ(t0,s,μ)2

ρ(t,s,μ)2 −
∫ t
t0

q(τ)ρ(τ,s,μ)2 dτ
ρ(t,s,μ)2 . (5.2)

Applying this to ϕ0(t,s,μ) (ψ0(t,s,μ)) we get on letting t0 →−∞ (t0 → +∞),
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ϕ0,μ(t,s,μ) = −
∫ t
−∞ q(τ)ρ(τ,s,μ)2 dτ

ρ(t,s,μ)2 ,

ψk,μ(t,s,μ) =
∫ ∞
t q(τ)ρ(τ,s,μ)2 dτ

ρ(t,s,μ)2

(5.3)

for every k ∈ Z. Here we have used the fact that ϕ0,μ(t,s,μ) → 0 as t → −∞ and
ψ0,μ(t,s,μ)→ 0 as t →+∞. These facts are proved by employing an integral equation
similar to that in the proof of Theorem 4.2; details are omitted. Putting (4.5), (5.2),
(5.3), and (5.1) together yields

ds
dμ

= −
∫ ∞
−∞ q(t)(v1(t, is,μ)2 + v2(t, is,μ)2)dt

2
∫ ∞
−∞ v1(t, is,μ)v2(t, is,μ)dt

. (5.4)

The numerator could be simplified using∫ ∞

−∞
q(t)v1(t, is,μ)2 dt =

∫ ∞

−∞
q(t)v2(t, is,μ)2 dt

which follows from (1.1).

6. The eigenvalue equations and multiplicity

We have already seen that a purely imaginary eigenvalue occurs if the solution
ϕ0(t,s) coincides with one of the branches ψk(t,s). Equivalently, we could say that
an imaginary eigenvalue occurs precisely when Lϕ0(s) = limt→+∞ ϕ0(t,s) = mπ

2 for an
odd integer m (as in [12]). However, as a function of s , Lϕ0(s) is a piecewise constant
function and so not differentiable in s. In addition, the nonintegrability of q causes
difficulties if we want to control the polar angle as t → ∞ . For these reasons, we prefer
to work on a finite interval, namely

α(s) � t � ω(s),

where

α(s) = sup{t : |q(τ)| � s if τ � t}, (6.1)

ω(s) = inf{t : |q(τ)| � s if τ � t}. (6.2)

Outside the interval [α(s),ω(s)] we have estimates that give us control over the Prüfer
angle. Since we are interested in the number of imaginary eigenvalues with imaginary
part greater than some s0 > 0, we will match up the solution ϕ0(t,s) with one of
the solutions ψk(t,s) at the point ω(s0). If such a match happens, ξ = is is a purely
imaginary eigenvalue. Thus the eigenvalue equations are

χk(ω(s0),s) = 0, s > s0, k = 0,−1,−2, . . . . (6.3)
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Note that if s > s0 , then [α(s),ω(s)] ⊂ [α(s0),ω(s0)] , so that if t > ω(s0) , then
‖q‖Jt < s and if t < α(s0) , then ‖q‖It < s. Since in this paper the relevant poten-
tials are nonnegative (and not identically zero), we know that ϕ(ω(s0),s0) < 0. If there
is a smallest (negative) integer k such that

0 > ψ j(ω(s0),s0) > ϕ0(ω(s0),s0) j = k,k+1, . . . ,−1,0, (6.4)

then, as s increases from s0 toward ∞, the values of ϕ0(ω(s0),s) must coincide with
one of the values ψ j(ω(s0),s) at least once for each given j. Thus there are at least
|k|+ 1 purely imaginary eigenvalues. We can visualize what’s going on by drawing
graphs for the functions ϕ0(ω(s0),s) and ψk(ω(s0),s) in the (s,θ ) plane. Then eigen-
values correspond to the points of intersection, or possibly touchpoints (points of os-
culation) of the curve of ϕ0(ω(s0),s) with the “branches” ψk(ω(s0),s) for s > s0.
We sometimes refer to the functions ψk(t,s) as branches because taken together they
comprise a multivalued function.

The question of whether or not a crossing of ϕ0(ω(s0),s) with one of the branches
ψk is proper (strict) is very important for the later results in this paper. Clearly if,
χ̇k(ω(s0),s) �= 0, then the crossing is proper. In light of (4.5), this happens if and only
if

∫
v1v2 dt is nonzero. If this integral is negative, then χ̇k(ω(s0),s) > 0, meaning

the curve of ϕ0(ω(s0),s) crosses the branch ψk(ω(s0),s) exactly once in the upward
direction. Since we are interested in the eigenvalue asymptotics as s → 0, the best way
to ensure that the integral is nonzero is to show that

∫
v1v2 dt < 0 for all s sufficiently

small. If all crossings are proper, then the number of imaginary eigenvalues with Imξ >
s0 is equal to the number of branches ψk for which the inequalities in (6.4) hold.

An eigenvalue associated with a proper crossing has algebraic multiplicity 1. This
follows from the the fact that the s-derivative of the Wronskian of linearly independent
exponentially decaying solutions is nonzero (cf. (4.5) and (6.5) below). Nonproper
crossings correspond to multiple eigenvalues of the ZS system and are typically asso-
ciated with eigenvalue collisions that occur when a parameter built into the ZS system
varies. Examples can be found in [10], [11] and a detailed study of eigenvalue collisions
was made in [14].

We summarize the relevant formulas for the partial derivatives of the Wronskian
with respect to the parameters s and μ . These results will be used in a discussion at the
end of Section 7.

We denote by v+(t,ξ ) (v−(t,ξ )) any nontrivial solution of (1.1) that tends to 0
as t → +∞ (t →−∞).

Let
W (ξ ) = W [v−,v+] = v−1 v+

2 − v−2 v+
1 , ξ ∈ C

denote the (constant) Wronskian of v− and v+.

THEOREM 6.1. Suppose that ξ ∈ C+ is an eigenvalue for (1.1). Let C be the
constant such that v+(t,ξ ) = Cv−(t,ξ ) for all t ∈ R . Then

dW (ξ )
dξ

= −2iC
∫ ∞

−∞
v−1 (t,ξ )v−2 (t,ξ )dt. (6.5)
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Furthermore, if we consider the dependence of the Wronskian on a coupling con-
stant μ , the derivative of W (s,μ) with respect to μ is given by

Wμ(ξ ,μ) = C
∫ ∞

−∞
q(t)(v−1 (t,ξ ,μ)2 + v−2 (t,ξ ,μ)2)dt. (6.6)

Proof. Both (6.5) and (6.6) are well known (for (6.5), see [11, Appendix]). We
omit a detailed proof and only mention that in case of (6.5) one starts with

Wξ (ξ ,μ) = W [v−ξ ,v+]+W [v−,v+
ξ ] = CW [v−ξ ,v−]+ (1/C)W [v+,v+

ξ ]

and then uses the fact that

(v1,ξ
−v−2 − v2,ξ

−v−1 )′ = −2iv−1 v−2 .

Integration leads to the desired equality. In case of (6.6), one proceeds in similar fashion
starting from

(v−1,μv−2 − v−2,μv−1 )′ = q(t)((v−1 )2 +(v−2 )2). �

For a special but physically relevant class of potentials, the so-called single-lobe
potentials, it is known that nonimaginary and nonsimple eigenvalues cannot occur.

We say that a potential q(t) is a single-lobe potential, if q is real-valued, of one
sign, piecewise smooth, decaying to 0 at ±∞ and nondecreasing to the left of a point
t = t0 and nonincreasing to the right of t = t0.

THEOREM 6.2. If q is single-lobe, then all eigenvalues are purely imaginary and
simple.

In [11], the absence of nonimaginary eigenvalues for single-lobe potentials was
proved. The tacit assumption that q ∈ L1(R) was also made because the focus was on
potentials that only support a finite number of eigenvalues and properties of eigenfunc-
tions pertinent to the L1 case were used. It was also mentioned that the restriction of
compact support can be removed by a perturbation argument based on an approxima-
tion of q by potentials of compact support. The algebraic simplicity of the imaginary
eigenvalues was only proved under the assumption of compact support, however this
could also be remedied by a perturbation argument. In [15, Theorem 9.4], an exten-
sion of Theorem 6.2 to certain multi-humped potentials was proved. We present here
a variant of this theorem that is specifically tailored to the applications in this paper.
It includes the single-lobe case. A more comprehensive review of these results may
appear elsewhere.

THEOREM 6.3. Suppose that q obeys Hypothesis 1, is positive, continuously dif-
ferentiable, and that its local extrema are comprised of strict local maxima at a1, . . . ,aN

and strict local minima at b1, . . . ,bN−1 where

−∞ < a1 < b1 < a2 < · · · < bN−1 < aN < +∞.
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Suppose that
N−1

∑
k=1

1
q(bk)

<
N

∑
k=1

1
q(ak)

.

Then all eigenvalues with sufficiently small imaginary parts are purely imaginary and
simple.

The assumptions imply that q′(t) � 0 on (−∞,a1] and q′(t) � 0 on [aN ,∞). The
maxima/minima do not have to be strict. If the graph of q has a flat spot, there is some
ambiguity in the choice of the ak or bk. One only has to make sure that q decreases
between ak and bk−1 and increases between bk and ak+1, but the increase or decrease
does not have to be strict.

As preparation for the proof we recall a few facts from [11]. The crucial observa-
tion is that whenever ξ = α + iβ is a nonimaginary eigenvalue (so α �= 0) and v(t, is)
is an eigenfunction, then ∫ ∞

−∞
(v1v2 + v1v2)dt = 0. (6.7)

This either follows by manipulating the system (1.1) or, shorter, by noticing that −ξ is
an eigenvalue of (H0 +Q)∗ with eigenfunction Uv where U is given in (1.5). Since
α �= 0, v and Uv are orthogonal (as vector functions), (6.7) holds. Multiplying the first
of (1.1) by v1 we obtain

v1v2 + v1v2 =
1

q(t)
[(v1v1)′ −2β |v1|2]. (6.8)

Assuming t lies in a finite interval [a,b] , an integration by parts leads to

∫ b

a
(v1v2 + v1v2)dt =

|v1(b)|2
q(b)

− |v1(a)|2
q(a)

+
∫ b

a

|v1|2q′(t)
q(t)2 dt−2β

∫ b

a

|v1|2
q(t)

dt. (6.9)

Alternatively, using the second equation of (1.1), we obtain∫ b

a
(v1v2+v1v2)dt =−|v2(b)|2

q(b)
+
|v2(a)|2

q(a)
−
∫ b

a

|v2|2q′(t)
q(t)2 dt−2β

∫ b

a

|v2|2
q(t)

dt. (6.10)

Now we would like to take the limits b→+∞ in (6.9) and a→−∞ in (6.9) in view
of the sign of q′(t) . In the case of power-law potentials, it is clear that these limits exist
because the eigenfunctions decay exponentially and 1/q(t) only grows algebraically.
But we can actually argue without making this assumption. Recall the bounds from
(3.5a,b). We conclude that due to the monotone decay of q(t) ,

p̃(t,β ) � q(t)
2β

.

So (with v+
1 = v1 )

|v1(t,ξ )| � cβ e−(1−ε)β tq(t).
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Now it is easy to see that the integrals in (6.9) converge at +∞. Similarly, using (3.4a,b),
we conclude that we can take a →−∞ in (6.10).

Proof of Theorem 6.3. Using (6.10) on (−∞,a1] and [bk,ak+1], and (6.9) on
[ak,bk] and [aN ,∞), we get

∫ ∞

−∞
(v1v2 + v1v2)dt � −|v2(a1,ξ )|2

q(a1)
+

N−1

∑
k=1

( |v1(bk,ξ )|2
q(bk)

− |v1(ak,ξ )|2
q(ak)

)
+

N−1

∑
k=1

(
−|v2(ak+1,ξ )|2

q(ak+1)
+

|v2(bk,ξ )|2
q(bk)

)
− |v1(aN ,ξ )|2

q(aN)

=
N−1

∑
k=1

‖v(bk,ξ )‖2

q(bk)
−

N

∑
k=1

‖v(ak,ξ )‖2

q(ak)
. (6.11)

This is as in [15] but now we follow a different path. We use the bounds from
Theorem 3.2 in the form

‖v(bk,ξ )‖ � ‖v(a1,ξ )‖eβ (bk−a1), ‖v(ak,ξ )‖ � ‖v(a1,ξ )‖e−β (ak−a1).

Inserting these in (6.11), we obtain

r.h.s. of (6.11) � ‖v(a1,ξ )‖2

(
N−1

∑
k=1

e2β (bk−a1)

q(bk)
−

N

∑
k=1

e−2β (ak−a1)

q(ak)

)
.

Taking β → 0, we see that this expression is negative for small enough β precisely if

N−1

∑
k=1

1
q(bk)

<
N

∑
k=1

1
q(ak)

. �

The proof of the single-lobe theorem is immediate. Use (6.10) on (−∞,t0] and
(6.9) on [t0,∞), where t0 is a point where q(t) attains its maximum.

LEMMA 6.4. Suppose that q satisfies Hypothesis 1 and, more specifically, that
q(t) ∼ q0tγ as t → +∞ (q0 > 0, 0 < γ � 1). Let v+(t, is) be the decaying solution of
(1.1). Then ∫ ∞

ω(s)

v+
1 (t, is)2

q(t)
dt � cγ s−2 (6.12)

for some cγ > 0.

Note that the power of s is independent of γ. The integral shows up as a negative
contribution in (6.9) and (6.10) but multiplied by a factor s . We will take this factor
into account at the end of the proof.

Proof. We normalize v+(t, is) such that ‖v+(ω(s), is)‖ = 1. The proof uses a
lower bound for |v+

1 (t, is)|. The Prüfer angle associated with v+(t, is) is given by one
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of the branches ψk(t,s) with k = 0,−1,−2, . . . . From Theorem 2.4(ii) (or (2.19) and
(2.20)), we see that

e2st
∫ ∞

t
e−2sτq(τ)dτ � ψk(t,s)− (2k−1)π

2
� π

4
t � ω(s).

Therefore

|v+
1 (t, is)| = ρ(t,s)|cos(ψk(t,s))| � 2

√
2

π
ρ(t,s)

(
ψk(t,s)− (2k−1)π

2

)
� 2

√
2

π
esω(s)est

∫ ∞

t
e−2sτq(τ)dτ.

Here we have used the estimate sinx � 2
√

2π−1x for 0 � x � π
4 and Theorem 3.2(i) in

the form ρ(t,s) � e−s(t−ω(s)) (because of the normalization). Therefore, in view of the
asymptotic form of q(t), we can estimate (q0 is absorbed in the constants)

∫ ∞

ω(s)

v+
1 (t, is)2

q(t)
dt � c1e

2sω(s)
∫ ∞

ω(s)
e2sttγ

(∫ ∞

t
e−2sττ−γ dτ

)2

dt

= c1(2s)−3+γe2sω(s)
∫ ∞

2sω(s)
euuγ

(∫ ∞

u
e−ww−γ dw

)2

du

� c2(2s)−3+γ(2sω(s))−γ � c3s
−2.

In the last step we have used that ω(s) ∼ (q0/s)1/γ as s → 0. �
We remark that if we consider the integral in (6.9) involving q′(t)/q(t)2 , we can

show that ∫ ∞

ω(s)

v+
1 (t, is)2q′(t)

q(t)2 dt = o(s−2+ 1
γ ). (6.13)

This integral is also negative (assuming q(t) is decreasing) but the integral in (6.12)
(even when multiplied by s) is dominant as s → 0 if 0 < γ � 1. One can also show
that (6.12) cannot in general be improved to s−β with β > 2. We use the upper bound
(3.5a) to do that.

The following transformation will also prove useful. We sometimes omit the ar-
gument t (and s) for brevity. Define

w = S−1v, S =

⎛⎜⎝−s+ iσ
q

−s− iσ
q

1 1

⎞⎟⎠ , σ = (q2− s2)1/2, (6.14)

with

S−1 =

⎛⎜⎜⎝
−iq
2σ

σ − is
2σ

iq
2σ

σ + is
2σ

⎞⎟⎟⎠ , detS =
2iσ
q

. (6.15)
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Then the ZS system (1.1) is transformed into the new system

w′ =
(−iσ +a0 −b0

−a0 iσ +b0

)
w

def= C w, (6.16)

where

a0(t) =
is(is+ σ)q′(t)

2q(t)σ2 , b0(t) =
is(is−σ)q′(t)

2q(t)σ2 .

The eigenvalues of C +C ∗ are

λ1(t) =
sq′(t)

q(t)(s−q(t))
, λ2(t) =

sq′(t)
q(t)(s+q(t))

.

Note that λ1(t) is in general not integrable at t = ω(s) or t = α(s) and that λ1(t) is
positive and λ2(t) is negative in the typical situation when t < ω(s) and s < q(t).

LEMMA 6.5. Fix s > 0. Suppose that w(t0,s) is given and w(t,s) is a solution of
(6.16) for t � t0 < ω(s). Suppose that q′(τ) � 0 on [t,t0] and that q(t0) � s. Then

‖w(t,s)‖2 � q(t)
q(t)+ s

q(t0)+ s
q(t0)

‖w(t0,s)‖2 � 2‖w(t0,s)‖2, t � t0.

Proof. This follows by integrating the inequality

(‖w‖2)′ = w∗(C +C ∗)w � λ2(t)‖w‖2

from t to t0, which gives

‖w(t,s)‖2 � exp

(
−
∫ t0

t
λ2(τ)dτ

)
‖w(t0,s)‖2.

Computing the integral gives the first inequality. Since q(t0) � s, the second inequality
follows. �

For the next theorem, which is new, we need more detailed assumptions. It was
motivated by the idea that it should be true that eigenvalues with small enough imagi-
nary part are simple, if the potential is essentially arbitrary on a finite interval and falls
off monotonically outside it. The assumptions are:

Let 0 < γ± < 1, q0,± > 0. Suppose that as t → ±∞ the following asymptotics
hold:

q(t) = q0,± |t|−γ± [1+ ε0,±(t)], q′(t) = ∓q0,± γ± |t|−1−γ± [1+ ε1,±(t)], (6.17)

where
ε0,±(t) = o(1), ε ′0,±(t) = o(|t|−1), ε1,±(t) = o(1). (6.18)

q′′(t) = O(|t|−2−γ±), q′′′(t) = O(|t|−3−γ±). (6.19)
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Since ε1,±(t) = ε0,±(t)− γ−1
± tε ′0,±(t), the last relation in (6.18) follows from the first

two.
Now there is a complication caused by the fact that we only need a subset of these

properties depending on the value of γ. We therefore refine the assumptions to reflect
this situation so that we can refer to them later.

(a± ) 1
2 < γ± � 1, together with (6.17) and (6.18) for t →±∞ .

(b± ) 0 < γ± � 1
2 , together with all three, (6.17)–(6.19), for t →±∞.

Hence we have four possibilities: (a−,a+), (a−,b+), (b−,a+), (b−,b+).

THEOREM 6.6. Suppose q is continuously differentiable and satisfies one of the
four conditions listed above. Then, if v(t, is) is an eigenfunction, we have∫ ∞

−∞
v1(t, is)v2(t, is)dt < 0

if s is small enough. Hence, imaginary eigenvalues with small enough imaginary part
are simple.

Proof. The assumptions imply that q(t) is positive and strictly monotone outside
some interval [−T,T ]. It suffices to prove the theorem for the interval [0,∞) and to
show that ∫ ∞

0
v1(t, is)v2(t, is)dt < 0 (6.20)

for sufficiently small s. We give the proof for 1
2 < γ+ � 1. The proof for 0 < γ+ � 1

2 is
more involved and is given in Appendix A. So suppose that 1

2 < γ+ � 1. The strategy
is to use (6.12) on [ω(s),∞) and to divide up the interval [0,ω(s)] into three intervals:
[0,t], [T, tη(s)], and [tη (s),ω(s)]. Here tη(s) is defined as

tη(s) = ω(s)− η
s
,

where η > 0 is arbitrary. However, when γ = 1, in which case ω(s) = O(s−1), we
can simply replace tη (s) by T. On [tη(s),ω(s)] and [0,T ], we will use Theorem 3.2
(ii) while to bridge the gap from T to tη(s) we will use Lemma 6.5. We now drop the
super/subscript + on v+ and γ+.

First step: [tη ,ω(s)]. From Theorem 3.2(ii), we infer that ‖v(t, is)‖ � es(ω(s)−t)

on this interval. Thus
‖v(tη(s), is)‖ � eη . (6.21)

Incidentally, this is the same bound as one gets from pertubation theory if the unper-
turbed problem is H0 +Q and the perturbation is s times the identity.

Second step: [T,tη(s)]. We use the transformation S defined in (6.14). Since we
need to go from v(tη (s), is) to w(tη (s),s), we need to estimate the matrix elements of
S−1 in (6.15). We have, for some c1 > 0,

q(tη(s))− s = s

{(
1− η

sω(s)

)−γ 1+ ε0(tη (s))
1+ ε0(ω(s))

−1

}
� c1ηs

1
γ ,
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since ω(s) ∼ (q0/s)
1
γ , and

1+ ε0(tη(s))
1+ ε0(ω(s))

= 1+o

(
1

sω(s)

)
.

The latter follows on using Taylor’s theorem with remainder, which gives

ε0(ω(s))− ε0(tη(s)) =
c
s

ε ′0(ω̂(s)), tη (s) < ω̂(s) < ω(s),

together with the second relation in (6.18). Since q(tη(s))+ s � 2s , it follows that

q(tη(s))2 − s2 � 2c1ηs
1
γ +1.

Also q(tη(s)) � c2s for small s, hence

q(tη(s))
σ(tη (s))

� c3η−1/2s
1
2− 1

2γ .

The right-hand side (maybe with a different constant in place of c3 ) is an upper bound
for the norm of S−1. In conjunction with (6.21), this tells us that

‖w(tη(s),s)‖ � c4η−1/2eη s
1
2− 1

2γ .

Now, from Lemma 6.5, we get

‖w(t,s)‖ � 2c4η−1/2eηs
1
2− 1

2γ , T � t � tη (s).

Note that on [T, tη (s)] , q(t) is decreasing. At t = T, the transformation S is bounded.
Hence

‖v(t, is)‖ � c5η−1/2eηs
1
2− 1

2γ . (6.22)

Third step: [0,T ]. First, from Theorem 3.2(ii), we obtain (since es(T−t) � esT )

‖v(t, is)‖ � c5η−1/2eηs
1
2− 1

2γ esT , 0 � t � T. (6.23)

We now simply use the bound |v1v2| � (1/2)(v2
1 + v2

2) and immediately get that∫ T

0
|v1||v2|dt � c6η−1e2ηs1− 1

γ esT . (6.24)

Now we return to the integral in (6.20) and take a look at (6.9). We write∫ ∞

0
v1v2 dt =

∫ T

0
v1v2 dt− v1(T )2

q(T )
+
∫ ∞

T

|v1|2q′(t)
q(t)2 dt

−2β
∫ ω(s)

T

|v1|2
q(t)

dt−2s
∫ ∞

ω(s)

|v1|2
q(t)

dt. (6.25)
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Of the five terms on the right, all but the first one are negative. The first one is O(s1− 1
γ )

by (6.24), and the last one, by Lemma 6.5, is bounded above by −cγs−1. Hence the
right-hand side of (6.25) is negative if 1− 1

γ > −1, which is the case if 1/2 < γ � 1.

As mentioned above, the case γ = 1 is included by simply taking tη (s) = T. This
proves that the integral in (6.20) is negative. The integral from −∞ to 0 can be handled
in a similar way, completing the first part of the proof. The proof when 0 < γ � 1/2 is
given in Appendix A. �

We have carried the constant η along through to the end to see if the case γ = 1/2
could also be included by making a suitable choice for η . That does not seem to be
obvious. That’s why the case γ = 1/2 has also been relegated to Appendix A.

7. Dirichlet-Neumann decoupling

In this section, we introduce methods that will allow us to obtain the eigenvalue
asymptotics when 0 < γ < 1. The case γ = 1 is special, in fact simpler, and it will
be handled with the Prüfer transformation alone. The decoupling method, as we will
set it up for 0 < γ < 1, forces us to exclude γ = 1. The tools we will be using in-
clude the Birman-Schwinger principle and an anolog of Dirichlet-Neumann decou-
pling (or Dirichlet-Neumann bracketing), the latter being well known in the context
of Schrödinger operators. However, in contrast to the Schrödinger case, the operator
whose eigenvalues we will estimate is the Birman-Schwinger kernel, not the operator
H0 +Q.

In this section we only consider nonnegative q . The first step is to factor the matrix
Q from (1.4) as

Q = −Q1Q2 (7.1)

where

Q1 = q1/2I2, Q2 = iq1/2
(

0 1
1 0

)
. (7.2)

With the help of the substitution z = Q2v, we can convert (1.2) to the eigenvalue prob-
lem

K(is)z = z, (7.3)

where
K(is) = Q2(H0− is)−1Q1. (7.4)

Conversely, from an eigenvector z, we can recover v by setting v = (H0 − is)−1Qz.
The matrix kernel of (H0− is)−1 is given by

R(is;t,τ) =
(

iθ (τ − t)e−s(τ−t) 0
0 iθ (t − τ)e−s(t−τ)

)
, (7.5)

where θ denotes the Heaviside step function. Hence the kernel of K(is) is given by

K(is; t,τ) =
(

0 −q(t)1/2e−s(t−τ)θ (t− τ)q(τ)1/2

−q(t)1/2e−s(τ−t)θ (τ − t)q(τ)1/2 0

)
.

(7.6)
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and is called the Birman-Schwinger kernel. We see that K(is; t,τ) is a selfadjoint ker-
nel. Since JK(is)J =−K(is), the spectrum of K(is) is symmetric about the origin. For
s > 0 the operator K(is) is compact. For potentials satisfying Hypothesis 1, this fol-
lows by approximating q by a sequence qn of potentials of compact support contained
in [−n,n]. For potentials in Lp, the Birman-Schwinger kernel lies in a suitable trace
ideal ([22], [4]). If q ∈ L1(R), then it is Hilbert-Schmidt. As mentioned above, we will
employ Dirichlet-Neumann decoupling. This leads us to take a look at ZS systems on a
finite interval with appropriate boundary conditions. Consider (1.1) on a finite interval
[a,b] under the boundary conditions:

Neumann b.c.: v1(a) = −v2(a) and v1(b) = −v2(b).
Dirichlet b.c.: v1(a) = v2(a) and v1(b) = v2(b).
Our terminology is in agreement with that introduced in [8]. We denote the corre-

sponding ZS operators by HN
[a,b], resp. HD

[a,b].

The domain of these operators is the Sobolev space H 1([a,b],C2) whose ele-
ments satisfy the corresponding boundary conditions. The corresponding resolvents
(HN

[a,b] − ξ )−1, resp. (HD
[a,b] − ξ )−1 , will be denoted by RN

[a,b](ξ ) , resp. RD
[a,b](ξ ), and

their integral kernels by RN
[a,b](ξ ;t,τ) , resp. RD

[a,b](ξ ; t,τ). For the associated Birman-

Schwinger kernels, we write KN,D
[a,b](is), or KN,D

[a,b](is,q), if it is important to stress the
dependence on q. If we pick a point d ∈ R and insert a boundary condition at d , then
we write R\{d} in place of [a,b]. The boundary conditions, say the Neumann type, are
then understood to be of the form v1(d−,s) =−v2(d−,s) and v1(d+,s) =−v2(d+,s).
So, the functions v1(t, is) and v2(t, is) need not be continuous across t = d. General-
izing this to n insertion points t1 < .. . < tn inside an interval [a,b], we use the no-
tation KN,D

[a,b]\{t1,t2,...,tn}(is) to designate the Birman-Schwinger kernel associated with
Neumann (resp. Dirichlet) boundary conditions at a,b and the points t1 . . .tn.

The crucial observation about the operators with boundary conditions is that cer-
tain resolvent differences are finite rank operators. We describe the scenarios that are
relevant to us in detail and prefer an explicit approach over a more abstract one (using
extension theory).

(a) One single Neumann b.c. at a point b. Then

RN
R\{b}(is; t,τ) =

(
ie−s(τ−t)θ (τ − t) −ie−2sbes(t+τ)

0 ie−s(t−τ)θ (t − τ)

)
t,τ � b,

RN
R\{b}(is; t,τ) =

(
ie−s(τ−t)θ (τ − t) 0

−ie2sbe−s(t+τ) ie−s(t−τ)θ (t − τ)

)
t,τ � b,

RN
R\{b}(is;t,τ) = 0 t < b,τ > b and t > b,τ < b.

Thus, by using (7.5), we obtain

R(is;t,τ)−RN
R\{b}(is;t,τ) = χ(t,s)ψ(τ,s)T , (7.7)

where

χ(t,s) =

(
iestθ (b− t)

ie2sbe−stθ (t−b)

)
,
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ψ(τ,s) =

(
e−sτθ (τ −b)

e−2sbesτ θ (b− τ)

)
.

So this resolvent difference is rank one and selfadjoint. For the difference of the asso-
ciated Birman-Schwinger kernels we get

K(is; t,τ)−KN
R\{b}(is;t,τ) = iq1/2(t)Uχ(t,s)ψT (τ,s)q1/2(τ),

where U is the matrix defined in (1.5). The eigenvalue of this difference is

i
∫ ∞

−∞
ψ(t,s)TUχ(t,s)q(t)dt = −e2sb

∫ ∞

b
e−2sτq(τ)dτ − e−2sb

∫ b

−∞
e2sτq(τ)dτ,

and is thus negative.
(b) Suppose we have a Neumann b.c. at b and we add, at some point d < b, an

additional Neumann b.c.
Then a calculation shows that, for t,τ � b (only this range is relevant)

RN
(−∞,b](is;t,τ)−RN

(−∞,b]\{d}(is;t,τ) = χ(t,s)ψ(τ,s)T (7.8)

where

χ(t,s) =
(

iest

0

)
θ (d− t)+

i
e−2sd − e−2sb

(−e−2bsest

e−st

)
θ (t−d),

ψ(τ,s) =

(
e−sτθ (τ −d)

(e−2sd − e−2sb)esτ θ (d− τ)− e−2sbesτ θ (τ −d)

)
.

Again, this is a selfadjoint kernel of rank one. The eigenvalue of the difference of
the associated Birman-Schwinger kernels is

−(e−2ds− e−2bs)
∫ d

−∞
e2stq(t)dt− e−s(b−d)

sinh[(b−d)s]

∫ b

d
cosh[2(b− t)s]q(t)dt,

and is thus negative (since d < b ).
(c) This is case (a) but for a Dirichlet b.c. at b. We have

R(is;t,τ)−RD
R\{b}(is;t,τ) = χ(t,s)ψ(τ,s)T , (7.9)

where

χ(t,s) =

(
iestθ (b− t)

−ie2sbe−stθ (t−b)

)
,

ψ(t,s) =

(
e−stθ (t−b)

−e−2sbestθ (b− t)

)
.

The eigenvalue of the difference in the Birman-Schwinger kernels is

e2sb
∫ ∞

b
q(t)e−2st dt + e−2sb

∫ b

−∞
q(t)e2st dt;
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it is positive.
(d) We insert an additional Dirichlet b.c. at d < b. Then

RD
(−∞,b](is;t,τ)−RD

(−∞,b]\{d}(is;t,τ) = ψ(t,s)φT (τ,s), (7.10)

where

ψ(t,s) =
(

iest

0

)
θ (d− t)− i

e−2sd − e−2sb

(
este−2bs

e−st

)
θ (t−d),

φ(τ,s) =
(

e−sτθ (τ −d)
−(e−2sd − e−2sb)esτ θ (d− τ)+ e−2sbesτ θ (τ −d)

)
.

Again we have a rank one difference. The eigenvalue of the associated Birman-Schwin-
ger kernel is

(e−2ds− e−2bs)
∫ d

−∞
e2stq(t)dt +

e−s(b−d)

sinh[(b−d)s]

∫ b

d
cosh[2(b− t)s]q(t)dt.

This eigenvalue is positive.
For a selfadjoint compact operator A and a positive number α, we let Nα [A]

denote the number of eigenvalues of A larger than α. Relevant for us is the case α = 1.

LEMMA 7.1. For any α > 0, we have

Nα [KN
R\{b}(is)]−1 � Nα [K(is)] � Nα [KN

R\{b}(is)], (7.11)

Nα [KD
R\{b}(is)] � Nα [K(is)] � Nα [KD

R\{b}(is)]+1, (7.12)

Nα [KN
(−∞,b]\{d}(is)]−1 � Nα [KN

(−∞,b](is)] � Nα [KN
(−∞,b]\{d}(is)], (7.13)

Nα [KD
(−∞,b]\{d}(is)] � Nα [KD

(−∞,b](is)] � Nα [KD
(−∞,b]\{d}(is)]+1. (7.14)

Proof. The inequalities follow immediately from the fact that the resolvent dif-
ferences in (7.7)–(7.10) are rank one and either positive or negative, together with the
min-max principle (cf. [20, p. 274]). �

For this paper we need to generalize the lemma to a finite number of points where
a boundary condition is inserted.

THEOREM 7.2. Given a partition of the real line of the form −∞ < t1 < · · ·< tn <
∞, we have

Nα [KN
R\{t1,...,tn}(is)]−n � Nα [K(is)] � Nα [KN

R\{t1,...,tn}(is)], (7.15)

Nα [KD
R\{t1,...,tn}(is)] � Nα [K(is)] � Nα [KD

R\{t1,...,tn}(is)]+n. (7.16)
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Proof. We consider the first inequality in (7.15). The proof proceeds inductively
by successively placing Neumann b.c. at tn, tn−1, etc., down to t1. The base case
with one boundary condition is established in Lemma 7.1. Suppose tk, . . . ,tn have been
chosen and assume that

Nα [K(is)] � Nα [KN
R\{tk,...,tn}(is)]− (n− k+1)

holds. Then, by the direct sum decomposition induced by the boundary conditions, we
have

Nα [KN
R\{tk−1,...,tn}(is)] = Nα [K(−∞,tk]\{tk−1}N(is)]+Nα [K[tk ,∞)\{tk+1,...,tn}]N(is)].

Now using (7.13) we obtain

� Nα [KN
(−∞,tk]

(is)]+1+Nα [KN
[tk ,∞)\{tk+1,...,tn}(is)]

= Nα [KN
R\{tk,...,tn}(is)]+1 � Nα [K(is)]+ (n− k+2).

Thus
Nα [K(is)] � Nα [KN

R\{tk−1,...,tn}(is)]− (n− (k−1)+1),

proving the first inequality in (7.15). The other inequality in (7.15) and those in (7.16)
are proved similarly. �

Thus we can draw the conclusion that adding n Dirichlet boundary conditions
decreases the number of eigenvalues of the Birman-Schwinger kernel above 1 by at
most n. Adding n Neumann boundary conditions increases the number of eigenvalues
above 1 by at most n.

Note that if we want to count eigenvalues with Imξ > s, we can ignore the po-
tential for t < α(s) and t > ω(s). If we place, say, Neumann b.c. at α(s) and ω(s),
then KN

(−∞,α(s)](is) and KN
[ω(s),∞)(is) have no eigenvalues above 1, since the norms of

RN
(−∞,α(s)](is) and RN

[ω(s),∞)(is) are equal to s (the unperturbed differential operator is
selfadjoint). In the next section we will insert Neumann or Dirichlet conditions at suit-
able points inside the interval [α(s),ω(s)]. To simplify matters further, we may just
consider the interval [0,ω(s)].

THEOREM 7.3. Suppose q satisfies Hypothesis 1 and is nonnegative. Fix s0 >
0. Let k0 (k0 � 0) be the unique integer such that ψk0(ω(s0),s0) � ϕ0(ω(s0),s0) <
ψk0+1(ω(s0),s0). Then N1[K(is0)] = |k0|.

Proof. Since q− = 0, we know that ϕ0(ω(s0),s0) < 0. Hence k0 � 0. Now re-
place q(t) by μq(t) for 0 � μ � 1. Then the corresponding solution ϕ0(t,s;μ) of
(2.2a) approaches ϕ0(t,s;0) = 0 as μ → 0, for any s > 0, t ∈ R, and it does so mono-
tonically by (5.3). Thus there are exactly |k0| distinct values μk ∈ (0,1) for which
ϕ0(ω(s0),s0;μk) = ψk(ω(s0),s0,μk). These are precisely the coupling constants for
which ξ = is0 is an eigenvalue of (1.1) with potential μkq(t). Hence μkK(is0) has
eigenvalue 1 or, equivalently, K(is0) has eigenvalue 1/μk > 1. Thus 1/μk is an eigen-
value of K(is0) that is counted in N1[K(is0)], so N1[K(is0)] = |k0|. �
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A similar result holds for Neumann and Dirichlet problems on a finite interval
[a,b]. Let θN(t,s) (θD(t,s)) denote the solution of (2.2a) corresponding to a Neumann
b.c. (Dirichlet b.c.) at t = a normalized such that θN(a,s) = − π

4 (θD(a,s) = π
4 ).

COROLLARY 7.4. Suppose q is absolutely integrable on [a,b]. Fix s0 > 0. Let
m0 (m0 � 1) denote the smallest integer such that θN(b,s0) < −(4m0 − 3)π

4 . Then
N1[KN

[a,b](is0)] = m0.

Let n0 (n0 � 1) denote the smallest integer such that θD(b,s0) < −(4n0− 1)π
4 .

Then N1[KD
[a,b](is0)] = n0.

Proof. The argument follows that of the previous proof. Use (5.2) and the fact
that as μ → 0, θN(b,s0,μ) → −arccot[exp(2s0(b − a))] and θD(b,s0,μ) →
arccot[exp(2s0(b−a))]. A look at the graph of these limits finishes the proof. �

In the next lemma, we consider two potentials q1 and q2. We indicate the depen-
dence on q by an additional argument.

LEMMA 7.5. Let α > 0. If 0 � q1(t) � q2(t) for all t, then

Nα [K(is,q1)] � Nα [K(is,q2)]

and for any interval Δ ( including semi-infinite intervals) ,

Nα [KN,D
Δ (is,q1)] � Nα [KN,D

Δ (is,q2)].

Proof. This follows immediately from Corollary 7.4 and the fact that the solution
of (2.2a), either ϕ0(t,s) or θN,D(t,s), obey

ϕ0(t,s,q2) � ϕ0(t,s,q1) or θN,D(t,s,q2) � θN,D(t,s,q1)

for any t in the appropriate interval and any s > 0. �
With these results at hand we can now briefly describe how we will go about ob-

taining the asymptotics of N(s) (see (1.7)). First, as already mentioned above, the
Coulomb case is special because it can be handled by the Prüfer transformation alone.
For potentials behaving like |t|−γ for large |t|, with 0 < γ < 1, the Prüfer transforma-
tion does not seem to be the right tool to give us the leading asymptotics of N(s). Thus
we use the Birman-Schwinger kernel. Suppose for some s0 the Birman-Schwinger ker-
nel has a few eigenvalues above 1, say λ1(s0) > λ2(s0) > .. . > 1, As s increases from
s0 , these eigenvalues are given by analytic functions λk(s). Their order is preserved,
since as eigenvalue branches of a selfadjoint operator, K(is) , they cannot become de-
generate, since the geometric multiplicity of an eigenvalue of (1.1) is always 1. We
already know that the eigenvalues of the ZS system do not have to be algebraically
simple. However, the eigenvalue of the ZS system with the largest imaginary part, that
is, the eigenvalue associated with λ1(s), is always simple. This is a consequence of
Theorem 4.3, which implies that χ̇0(t,s) > 0 if ξ = is is the eigenvalue in question,
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together with (4.5) and (6.5). For the other eigenvalue branches of K(is) , say λ2(s) , it
may happen that it touches the level line λ = 1 without crossing it, or that it crosses
it but with zero slope. Then we have an eigenvalue of the ZS system with algebraic
multiplicity greater than 1. We can actually make this connection more explicit as fol-
lows. Replace q(t) by μq(t) and let the eigenvalue of (1.1) be is(μ) . Let λ (s) be an
eigenvalue branch of K(is). Suppose that λ (ŝ) = 1, so s(1) = ŝ. Then μλ (s(μ)) = 1
for the eigenvalue branch of μK(is) emanating from ŝ for μ near 1. On differentiating
this relation with respect to μ and using Ws = iWξ , (6.5), and (5.4), we find that (at
μ = 1)

λ̇(s) = − 1
sμ(1)

=
Ws(ŝ,1)
Wμ(ŝ,1)

.

This shows that λ̇ (s) = 0 if and only if the s-derivative of the Wronskian is zero. More
details on the connection between the multiplicity of an eigenvalue and the length of the
associated Jordan chain can be found in [13, e.g., Theorem 4.10]. Since ‖K(is)‖ → 0
as s → ∞ , which is true under the hypotheses in this paper (and also for q ∈ Lp , p �
1), the eigenvalue branches will converge to zero as s → ∞, but they need not do so
monotonically (except for λ1(s)). If an eigenvalue branch undergoesmultiple crossings
at level λ = 1 for s � s0, then it will count as 1 in N1[K(is0)] but it produces several
eigenvalues (as many as there are crossings) of the ZS system with imaginary part
greater than s0. Our strategy is to estimate the number of eigenvalues of the Birman-
Schwinger kernel above 1. Then, if we also know that the eigenvalues of the ZS system
are simple, at least for s sufficiently small, we can determine the eigenvalue asymptotics
as given in (1.8).

We conclude this section with some remarks about a connection between the work
in [5] and ours. Fix s > 0. Then, in [5], the behavior of N1[K(is,μq)] as μ → ∞ for
q∈ L1(R) is studied by means of the Prüfer transformation (in [5], μ is called 1/γ and
s is called k ). It seems to us that Dirichlet-Neumann decoupling would also be a viable
approach to this problem, as in the Schrödinger case for the large coupling problem
(see e.g., [17]).

8. Eigenvalue asymptotics for long-range potentials

We begin with two general results.

THEOREM 8.1. Suppose q satisfies Hypothesis 1 and is nonnegative. Fix s > 0.
Let N be the largest nonnegative integer such that∫ ω(s)

α(s)
(q(t)− s)dt >

(2N−1)π
2

. (8.1)

Then there are at least N purely imaginary eigenvalues with imaginary parts greater
than s.

We emphasize that in (8.1) it is not required that q(t) � s for all t ∈ [α(s),ω(s)].
If q ∈ L1(R) and s = 0, the result is known from [12].
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Proof. From (2.2a), we conclude that

ϕ0(ω(s),s)−ϕ0(α(s),s) � −
∫ ω(s)

α(s)
(q(t)− s)dt.

By (2.17), ϕ0(α(s),s) ∈ (− π
4 ,0). Thus, by (8.1),

ϕ0(ω(s),s) < −
∫ ω(s)

α(s)
(q(t)− s)dt < − (2N−1)π

2
.

Therefore the values of ψk(ω(s),s) for k = 0,−1, . . . ,−(N−1) all lie above ϕ0(ω(s),s).
The assertion follows. �

THEOREM 8.2. Suppose q is locally absolutely integrable on some interval
[−T,T ] , continuous and nonnegative outside [−T,T ], and converging to zero as t →
±∞. Suppose that q /∈ L1([T,∞)) (or q /∈ L1((−∞,−T ]) . Then there exist infinitely
many purely imaginary eigenvalues.

If q is not of one sign, then the number of eigenvalues need not be infinite. In the
special case when q is odd, there are no eigenvalues (see [12]).

Proof. Let M � 0 be a given integer. We will show that there exists an s0 > 0
such that N(s0) > M , where N(s) is defined in (1.7). We consider the solution ϕ0(t,s).
Since q(t) is nonnegative on (−∞,−T ), we know that for every s > 0, ϕ0(−T,s) � 0.
Choose tN � T and s0 such that∫ tN

−T
(q(t)− s0)dt >

(2M−1)π
2

and ω(s0) > tN . By the assumptions, this is certainly possible by first choosing tN large
enough and then choosing s0 small enough. Then

ϕ0(tN ,s0) � ϕ0(−T,s0)−
∫ tN

−T
(q(τ)− s0)dτ

� −
∫ tN

−T
(q(τ)− s0)dτ < − (2M−1)π

2
.

Then, since q(t) � 0 for t � T, ϕ0(t,s0) < −(2N−1)π/2 for all t � tN . This means
that ϕ0(t,s0) < ψk(t,s0) for k = 0,−1, . . . ,−(N − 1). In particular, this is the case at
t = ω(s0) (just to be consistent with our set-up of the eigenvalue equations in (6.3)).
Hence there are at least M eigenvalues. Since M may be arbitrarily large, the theorem
is proved. �

We are now able to determine the asymptotic behavior of N(s) for a class of
potentials with t−1 decay.
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THEOREM 8.3. Suppose that 0 � q(t) � c|t|−1, with c > 0, for |t| � T , and
some T > 0. Let q(t) be continuous and such that q /∈ L1(R). Also, suppose that all
imaginary eigenvalues with sufficiently small imaginary part are simple. Then

N(s) ∼ 1
π

∫ ω(s)

α(s)
q(t)dt, s → 0. (8.2)

Proof. Either
∫ ∞
T q(t)dt or

∫ −T
−∞ q(t)dt does not exist as an improper integral.

Thus q(t) cannot have compact support and so either α(s) →−∞ or ω(s) → +∞ as
s→ 0. From the upper bound on q(t), it follows that ω(s) � c1s−1 and α(s) �−c1s−1.
Hence ∫ ω(s)

α(s)
(q(t)− s)dt =

∫ ω(s)

α(s)
q(t)dt +O(1).

A similar conclusion holds for the integral over q(t)+ s. Thus, by (2.2a),

−
∫ ω(s)

α(s)
(q(t)+ s)dt � ϕ0(ω(s),s)−ϕ0(α(s),s) � −

∫ ω(s)

α(s)
(q(t)− s)dt, (8.3)

which implies that

ϕ0(ω(s),s)−ϕ0(α(s),s) ∼−
∫ ω(s)

α(s)
q(t)dt, s → 0.

Since ϕ0(α(s),s) ∈ (− π
4 ,0], we have that

ϕ0(ω(s),s) ∼−
∫ ω(s)

α(s)
q(t)dt.

Thus, for any ε ∈ (0,1) and s sufficiently small,

−(1+ ε)
∫ ω(s)

α(s)
q(t)dt � ϕ0(ω(s),s) � −(1− ε)

∫ ω(s)

α(s)
q(t)dt.

Hence
N−(s) � N(s) � N+(s), (8.4)

where

N±(s) =
⌊

1
2

+(1± ε)
1
π

∫ ω(s)

α(s)
q(t)dt

⌋
. (8.5)

Now (8.2) follows from (8.4)–(8.5). �
The next corollary immediately follows from the theorem.

COROLLARY 8.4. Suppose that q(t) ∼ b+t−1 as t → +∞ and q(t) ∼ b−|t|−1 as
t →−∞, with b+ > 0 and b− > 0. In addition, assume that all imaginary eigenvalues
with small enough imaginary part are simple. Then

N(s) ∼ b+ +b−
π

ln(s−1), s → 0. (8.6)
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We note that the proof of Theorem 8.3 works because the lower and upper bounds
in (8.3) have the same leading asymptotic behavior. For power-law potentials of the
form q(t) ∼ t−γ (0 < γ < 1), this is not the case. Evaluating the lower and upper
bounds in (8.3) gives

∫ ω(s)

α(s)
(q(t)− s)dt =

γ
1− γ

s1− 1
γ (1+o(1)),∫ ω(s)

α(s)
(q(t)+ s)dt =

2− γ
1− γ

s1− 1
γ (1+o(1)).

This gave us the hint that the true behavior might be somewhere between. In
fact, as (1.8) shows, the integrand in the correct formula is the geometric mean of the
integrands above.

We now come to the second major hypothesis in this paper.

HYPOTHESIS 2. Suppose that q(t) has the following properties:

For some γ ∈ (0,1), suitable constants c1, c2, c3 > 0, and T > 0,

(i) c1|t|−γ � q(t) � c2|t|−γ , |t| � T,

(ii) |q(t1)−q(t2)| � c3[min{|t1|, |t2|}]−γ−1|t1 − t2| |t1|, |t2| � T.

These conditions are essentially the same as those in [20, Theorem XIII.82]. ex-
cept that here q(t) is also required to be positive. The point of the restriction |t| � T
is that we want to give ourselves some freedom to choose the potential on the interval
[−T,T ]. Of course, in order to determine the asymptotics of N(s) , we also must be sure
that the imaginary eigenvalues with small imaginary parts are simple and the best result
we have in this regard is Theorem 6.6. Note that its assumptions are only marginally
stronger than those of Hypothesis 2. The difference is that in Theorem 6.6 we require a
somewhat more specific asymptotic behavior of q (cf. (6.17)–(6.19)). Under Hypothe-
sis 2 alone, the potential would be allowed to have up and down swings (limited by the
upper and lower bounds in (i)) even for large |t|. We think of Hypothesis 2 as a bench-
mark against which theorems like Theorem 6.6 can be measured, and it seems to us that
there is still room for improvement in the results of Section 6. It is also clear that, as
with Theorem 6.6, we can allow potentials with different γ on t � T and t � −T, or
potentials which are 0 on one side. Also, note that (ii) is a Lipschitz condition and im-
plies that q is absolutely continuous. Hence q is differentiable a.e. and has a derivative
of order O(|t|−γ−1) as |t| → ∞. In order to continue with the discussion of power-law
potentials and to implement the decoupling method, we need to know the imaginary
eigenvalues for the Dirichlet and Neumann problems on a finite interval [0,d] for a
constant potential q. The infinite discrete spectrum on the real axis does not concern
us here. The eigenvalues ξ j = is j in C

+ are the same for both problems, except for a
minor difference:

Eigenvalues in C
+ : s j =

(
q2− π2 j2

d2

)1/2

,
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where

j = 1,2, . . . ,

⌊
qd
π

⌋
Dirichlet b.c.,

j = 0,1,2, . . . ,

⌊
qd
π

⌋
Neumann b.c..

Since q is constant, eigenvalues of the Neumann or Dirichlet problem are simple,
so N1[K

N,D
[0,d](is,q)] gives us the number of eigenvalues with imaginary part greater than

s. Then
d
π

(q2− s2)1/2−1 � N1[K
N,D
[0,d](is,q)] � d

π
(q2− s2)1/2 +1. (8.7)

For proving the main result, Theorem 8.9, we have found it convenient to replace s by
a suitable sequence {sn} that converges to zero. Specifically, the sequence will have
the properties

sn > sn+1 > 0, lim
n→∞

sn = 0, lim
n→∞

sn

sn+1
= 1. (8.8)

It will suffice to consider the eigenvalue problem on [1,∞) with Neumann or
Dirichlet b.c. at 1. So we need to state the next lemma only for this interval. The
reason for choosing the left endpoint at t = 1 is that the proof of Lemma 8.6 (see
Appendix B), is set up on the interval [1,∞) because this makes it notationally more
convenient.

LEMMA 8.5. Suppose q satisfies Hypothesis 2 and let sn be a sequence as in
(8.8). Let

h(s) =
∫
{t:t�1,q(t)>s}

(q(t)2− s2)1/2 dt. (8.9)

Then h(sn)/h(sn+1) → 1.

Proof. We write
h(sn+1)−h(sn) = A1 +A2,

where

A1 =
∫
{t:t�1,q(t)>sn}

[
(q(t)2− s2

n+1)
1/2− (q(t)2− s2

n)
1/2

]
dt, (8.10)

A2 =
∫
{t:t�1,sn�q(t)>sn+1}

(q(t)2− s2
n+1)

1/2 dt. (8.11)

Using the fact that the measure of the set {t : t � 1,q(t) > sn} is not greater than(
c2

sn

)1/γ
, together with the inequality

(q(t)2− s2
n+1)

1/2− (q(t)2− s2
n)

1/2 � (s2
n − s2

n+1)
1/2, q(t) > sn > sn+1,



EIGENVALUE ASYMPTOTICS FOR ZS SYSTEMS 93

we conclude from (8.10) that

|A1| � c1/γ
2 s1−1/γ

n

(
1− s2

n+1

s2
n

)1/2

= o(s1−1/γ
n ).

Considering A2 in (8.11), we see that the set {t : t � 1,sn � q(t) > sn+1} has
measure bounded by (

c2

sn+1

)1/γ
−
(

c1

sn

)1/γ
.

Therefore, since the integrand is bounded by (s2
n − s2

n+1)
1/2, we obtain

|A2| � c1/γ
1 s1−1/γ

n

(
1− s2

n+1

s2
n

)1/2[(
c2sn

c1sn+1

)1/γ
−1

]
= o(s1−1/γ

n ).

We conclude that
h(sn+1)−h(sn) = o(s1−1/γ

n ).

Since h(s) is bounded below by cs1− 1
γ , the conclusion of the lemma follows. �

In the next step we will estimate both sides of (8.9) and approximate them by
integrals. We must be careful to keep the number of partition intervals under control,
since each interval introduces an error of ±1 in the eigenvalue count. So, we must

make sure that the number of partition points is o(s1− 1
γ ).

The sequence sn we are going to use is defined as follows. We lie down a chain of
knots given by

tn = nδ (8.12)

where δ is restricted by the following inequalities

1
1− γ

< δ <
1

1−2γ
if 0 < γ <

1
2
, (8.13)

δ >
1

1− γ
if

1
2

� γ < 1. (8.14)

Then we define
sn = c1t

−γ
n = c1n

−δγ . (8.15)

Here c1 is the constant in Hypothesis 2 (i), so q(tn) = sn.
Let

q+(t) = maxq(t), tk � t � tk+1,

q−(t) = minq(t), tk � t � tk+1.

Let h±(s) be given by (8.9) but with q(t) replaced by q±(t).
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LEMMA 8.6. Suppose q(t) satisfies Hypothesis 2. Let sn be as in (8.15). Then

lim
n→∞

h(sn)/h±(sn) = 1.

Proof. The proof is given in Appendix B. �
REMARK. For the proof of Theorem 8.7 below it would suffice to only know that

h+(sn)/h−(sn) → 1. It turns out that the simplifications in the proof of Lemma 8.6
would be minimal, so we decided to prove the lemma as stated.

THEOREM 8.7. Assume Hypothesis 2 and let q be positive and continuous. Then

N1[K(is,q)] ∼ π−1H(s), s → 0, (8.16)

where
H(s) =

∫
{t:q(t)>s}

(q(t)2− s2)1/2 dt.

If, in addition, there is an s0 > 0 such that all imaginary eigenvalues with Imξ < s0

are simple, then
N(s) ∼ π−1H(s), s → 0. (8.17)

Proof. First we observe that, by (7.15),

N1[KD
R\{−T,T}(is,q)] � N1[K(is,q)] � N1[KN

R\{−T,T}(is,q)]. (8.18)

Clearly,
N1[KN

R\{−T,T}(is,q)]

= N1[KN
(−∞,−T ](is,q)]+N1[KN

[−T,T ](is,q)]+N1[KN
[T,∞)(is,q)]. (8.19)

There is a similar relation for the Dirichlet case. We now only discuss the Neumann
b.c. and, when needed, state the results for Dirichlet b.c.

First, we note that the middle term on the right is bounded as s → 0. To get an
explicit bound, replace q by zero outside [−T,T ] and denote the truncated potential by
q̃. Then, by (7.15),

N1[KN
[−T,T ](is,q)] = N1[KN

R\{−T,T}(is, q̃)] � N1[K(is, q̃)]+2.

The number N1[K(is, q̃)] can be estimated in terms of the Hilbert-Schmidt norm of the
Birman-Schwinger kernel, namely (cf. [13, Eq.(4.6)])

N1[K(is, q̃)] � ‖K(is, q̃)‖2
H.S. �

(∫ T

−T
q(t)dt

)2

.

Hence this term will not affect the asymptotics. We now focus on N1[KN
[T,∞)(is,q)]

but, for the analysis, replace it by N1[KN
[1,∞)(is,q)]. This can be done without loss and

the reason for doing so was already mentioned in connection with Lemma 8.5. We
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now use the partition in terms of the points tn and the sequence sn defined in (8.12)
and (8.15). Given sn, the partition points are 1,2δ , . . . , t̃n , where t̃n = (n + kn)δ =
(sn/c2)−1/γ . Set Δ j = [t j,t j+1], j = 1, . . . ,n+ kn −1. The interval [tn+kn ,∞) does not
contribute to the eigenvalue count because the potential on this interval is less than s.
Note that ω(sn) � t̃n. By using (7.13) and successively inserting the points t j ( j =
2, . . . ,n+ kn ) in [1,∞), together with Lemma 7.5, we have (with s = sn )

N1[KN
[1,∞)(isn,q)] �

n+kn−1

∑
j=1

N1[KN
Δ j

(isn,q
+)]. (8.20)

Note that there are �(sn/c2)
−1/(δγ)� partition points. Since δ > (1− γ)−1 by

(8.13), (8.14), this number is o(s1−1/γ
n ). Thus for Neumann b.c., the right-hand side of

(8.20) is equal to

n+kn−1

∑
j=1

N1[KN
Δ j

(isn,q
+)] = π−1h+(sn)+o(s−1/γ

n ). (8.21)

The error term comes from the ±1 summands in (8.7). Dividing (8.21) by π−1h(sn) ,
taking n → ∞ , and using (8.20) together with Lemma 8.6 leads to

limsup
n→∞

{
πh(sn)−1N1[KN

[1,∞)(isn,q)]
}

� 1.

Now we need to show that this also holds if s → 0 continuously and not through a
special sequence. Given s > 0 (small enough) choose sn such that sn+1 � s < sn. Then

πh(s)−1N1[KN
[1,∞)(is,q)] � πh(sn)−1N1[KN

[1,∞)(is,q)]

� πh(sn)−1
n+kn−1

∑
j=1

N1[KN
Δ j

(is,q+)]

� πh(sn)−1
n+kn−1

∑
j=1

N1[KN
Δ j

(isn+1,q
+)]

� πh(sn)−1[π−1h+(sn+1)+o(s−1/γ
n+1 )].

Here we have used, in order, that h(s) is decreasing, eq. (8.20), that for a constant
potential with Neumann b.c. the number of imaginary eigenvalues with imaginary part
greater than s increases as s decreases, and (8.21). Taking n → ∞, we get, with the
help of Lemmas 8.5 and 8.6,

limsup
s→0

{
πh(s)−1N1[KN

[1,∞)(is,q)]
}

� 1. (8.22)

Similarly, we argue that

liminf
s→0

{
πh(s)−1N1[KD

[1,∞)(is,q)]
}

� 1. (8.23)
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We can do a similar analysis on the interval (−∞,0]. Then, referring back to (8.19) and
using (8.22), (8.23), we have shown that

limsup
s→0

{
πH(s)−1N1[KN

R\{−T,T}(is,q)]
}

� 1. (8.24)

and

liminf
s→0

{
πH(s)−1N1[KD

R\{−T,T}(is,q)]
}

� 1. (8.25)

Using (8.24) and (8.25) in (8.18), we obtain

lim
s→0

{
πH(s)−1N1[K(is,q)]

}
= 1.

Thus (8.16) is proved. The second assertion, (8.17), is a consequence of the additional
assumptions. �

COROLLARY 8.8. Suppose q satisfies Hypothesis 2 outside some interval [−T,T ].
On [−T,T ], let q ∈ L1. Then (8.16) holds true provided we restrict the integration to
|t| > T. Also, (8.17) is true under the stated assumptions.

Proof. We cannot use the Birman-Schwinger kernel, since q need not be positive
on [−T,T ] . So we must bridge the gap from −T to T by using a Prüfer argument. We
can also truncate the potential at −T and replace it by zero on [−T,∞). Then, for the
truncated problem, we can use the Birman-Schwinger kernel and make use of (8.16).
We can then deduce that the Prüfer angle ϕ0(t,s) obeys

ϕ0(−T,s) ∼−
∫
{t:t<−T,q(t)>s}

(q(t)2− s2)1/2 dt, s → 0. (8.26)

Similarly, for ψk(t,s), we have

ψk(T,s)− (2k−1)π
2

∼
∫
{t:t>T,q(t)>s}

(q(t)2− s2)1/2 dt, s → 0.

In fact any solution θ (t,s) has the property that (with θ (∞,s) = limt→∞ θ (t,s))

θ (T,s)−θ (∞,s) ∼
∫
{t:t>T,q(t)>s}

(q(t)2− s2)1/2 dt, s → 0. (8.27)

Note that q(t) > 0 for t > T, so that θ (T,s) is bigger than θ (∞,s) for small s. In
going from −T to T the change in ϕ0(t,s), that is, ϕ0(T,s)−ϕ0(−T,s), is bounded
for small s as is easily seen from (2.2a) (actually it is bounded for all s by Lemma 4.3
in [5]). Combining this with (8.26) and (8.27), we conclude that (8.16) holds and that
(8.17) follows as before. �
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Appendix A: Proof of Theorem 6.6 (0 < γ � 1/2 )

When t is near ω(s) , we will transform (1.1) into a perturbed Airy equation. The
motivation for this approach is the following. At the point t = ω(s) , q(t) = s, and the
matrix in (1.1) has the form (

s s
−s −s

)
.

This matrix has eigenvalue 0 and is similar to a Jordan block. Thus, the phase curves
are straight lines parallel to the eigenvector (1,−1)T . Now, for t < ω(s), assuming q(t)
is larger than s , the eigenvalues of the matrix are ±i(q(t)2− s2)1/2 and thus imaginary.
This means oscillatory behavior. So we have the picture that, as t decreases from ω(s) ,
the system has to transition out of the degenerate state at t = ω(s) into the oscillatory
state. This will require a “short” adjustment period. It turns out that the oscillatory
behavior really starts at t = ω(s)− 1/(2s) so that the transition interval is of order
1/s. Hence this interval expands as s → 0 but at a slower rate than ω(s), which grows
like s−1/γ . The analysis will show that the transition is of a type typically described by
Airy functions whose behavior changes from exponential to oscillatory as the argument
passes through zero from positive to negative values.

Proof. We start by converting the problem into a form that is suited for this anal-
ysis. For 0 � t � ω(s), set

u =
t

ω(s)
, 0 � u � 1, (A.1)

and
f (u,s) = v(t, is). (A.2)

f ′ = λ (s)
(

1 s−1q(uω(s))
s−1q(uω(s)) −1

)
f , λ (s) = sω(s).

Now set

z = 1−u, g(z,s) = f (u,s), g =
(

g1

g2

)
, (A.3)

so that

g′(z,s) = −λ (s)
(

1 s−1q((1− z)ω(s))
−s−1q((1− z)ω(s)) −1

)
g.

(Here the prime denotes differentiation with respect to z.)
Define

h(z,s) = s−1q((1− z)ω(s)) (A.4)

and make the substitution

ξ (z,s) = g1(z,s)h(z,s)−1/2 (A.5)

for the first component of g(z,s). Then ξ (z,s) obeys the second-order differential equa-
tion

ξ ′′ + λ (s)2p(z,s)ξ +g(z,s)ξ = 0, (A.6)
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where

p(z,s) = h(z,s)2 −1− h′(z,s)
λ (s)h(z,s)

, (A.7)

g(z,s) = −3h′(z,s)2

4 h(z,s)2 +
h′′(z,s)
2h(z,s)

. (A.8)

In order to extract information about the behavior of p(z,s) for small s we write it out
explicitly using (6.17):

p(z,s) = −1+ s−2q((1− z)ω(s))2 +
q′((1− z)ω(s))
sq((1− z)ω(s))

= −1+
(1+ ε0((1− z)ω(s)))2

(1− z)2γ(1+ ε0(ω(s)))2 − γ
λ (s)(1− z)

1+ ε1((1− z)ω(s))
1+ ε0((1− z)ω(s))

= −1+
1

(1− z)2γ (1+o(1))− γ
λ (s)(1− z)

(1+o(1)). (A.9)

Since λ (s) ∼ q1/γ
0 s1−1/γ → ∞, we deduce that

lim
s→0

p(z,s) = −1+
1

(1− z)2γ
def= p0(z)

for every z ∈ [0,1), uniformly in z on any compact subinterval of [0,1). Similarly one
shows that pz(z,s) converges uniformly on such intervals to the derivative of p0(z).
More precisely,

pz(z,s) =
2γ

(1− z)2γ+1 (1+o(1)), s → 0. (A.10)

First, substituting z = 0 in (A.9), gives

p(0,s) = − γ
λ (s)

(1+o(1)), (A.11)

which is negative. From the properties of p(z,s), in particular (A.10) and (A.11), we
deduce that p(z,s) (in the variable z) has a unique root, called p1(s), located at

p1(s) =
1

2λ (s)
(1+o(1)). (A.12)

The point z = p1(s) is a turning point for (A.6). In the t variable it is approxi-
mately located at ω(s)− 1/(2s). It represents the point mentioned at the start of the
proof where the behavior of the solutions changes from exponential to oscillatory. This
will become clear shortly.

We introduce a new independent variable, called ζ , by

ζ (z,s) =
(

3
2

∫ z

p1(s)

√
p(η ,s)dη

)2/3

, p1(s) � z � 1. (A.13)
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ζ (z,s) = −
(

3
2

∫ p1(s)

z

√
−p(η ,s)dη

)2/3

, 0 � z � p1(s). (A.14)

Let

p̂(z,s) =
p(z,s)
ζ (z,s)

, (A.15)

ξ (z,s) = p̂(z,s)−1/4 Ξ(ζ ,s),

and transform (A.6) into

Ξζζ (ζ ,s) =
[−λ (s)2ζ + ψ(ζ ,s)

]
Ξ(ζ ,s),

with

ψ(ζ ,s) = −ζ g(z,s)
p(z,s)

+
5

16ζ 2 +
{
4p(z,s)pzz(z,s)−5pz(z,s)2} ζ

16p(z,s)3 ,

where the relations
ζ ′(z,s) = p̂(z,s)1/2 (A.16)

and (A.4)–(A.8) were used. The differential equation (A.6) has solutions of the form

ξ (1)(z,s) = p̂(z,s)−1/4{Bi(−λ 2/3ζ )+ ε(1)(z,s)} (A.17)

ξ (2)(z,s) = p̂(z,s)−1/4{Ai(−λ 2/3ζ )+ ε(2)(z,s)} (A.18)

where λ = λ (s), ζ = ζ (z,s).
Accompanying (A.17), (A.18) is the error-control function [19, Ch.11, Sec.3, p.

399]

H(z,s) =
∫ z

p1(s)

{
1

|p(z,s)|1/4

d2

dz2

(
1

|p(z,s)|1/4

)
+

g(z,s)
|p(z,s)|1/2

− 5|p(z,s)|1/2

16|ζ |3
}

dz.

(A.19)
It enters into the error bounds through its total variation over [p1(s),z], resp.,

[0, p1(s)]. Let V denote the variational operator, which, for [p1(s),z], is given by
V[p1(z),z](H) =

∫ z
p1(s)

|Hη(η ,s)|dη . Then

|ε(1)(z,s)|
M(−λ 2/3ζ )

,
|∂ε(1)(z,s)/∂ z|

λ 2/3 p̂(z,s)1/2N(−λ 2/3ζ )

� E(−λ 2/3ζ )
κ

[
exp

{κV[p1(s),z](H(z,s))
λ

}
−1

]
. (A.20)

For the definitions and properties of the functions M, N , E, and the constant κ we
refer to [19, Chap. 11, Sec. 2, p. 394–397]. There is a similar error bound for ε(2)(z,s)
associated with ξ (2). The only difference is that the factor E(−λ 2/3ζ ) has to be re-
placed by E(−λ 2/3ζ )−1. One small difference between the solutions in (A.17), (A.18)
and those in [19] is that the latter have error terms that vanish at different endpoints of an
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interval. In our case, we have both error terms vanishing at the same point (z = p1(s)).
Carrying out the analysis on p. 400 in [19], we have verified that the error bounds in (8)
are also valid in our case.

From (A.19), we see that the second derivative of p(z,s) with respect to z enters.
This means we need up to three derivatives of q(t), but it also turns out that we do not
need the precise asymptotic forms of the second and third derivatives. That’s the reason
for the conditions in (6.17)–(6.19) as they are stated.

It now seems that we have to determine the coefficients c1 and c2 by matching up
the function v(t, is) with the general solution to (A.6),

ξ (z,s) = c1 ξ (1)(z,s)+ c2 ξ (2)(z,s) (A.21)

at t = ω(s). So we thought, until we realized that this is not necessary. It turns out that
the coefficients are not needed in explicit form. They will enter into our analysis only
through the norm ‖c‖ = (c2

1 + c2
2)

1/2.

To proceed with the analysis, we restrict z to an interval [1−β ,1−α] with 0 <
α < β < 1. The corresponding t -interval is [αω(s),β ω(s)] and thus expands as s
decreases. As we will show now, it gives the dominant negative contribution to the
integral in (6.20). We let

I(s;α,β ) =
∫ β ω(s)

αω(s)

|v1(t, is)|2
q(t)

dt. (A.22)

The factor s multiplying the integral will be taken into account later. We first transform
the integral in (A.22) into an integral with respect to the z-variable using

v1(t, is) = s−1/2q(t)1/2ξ (1− tω(s)−1,s). (A.23)

This gives

I(s;α,β ) =
ω(s)

s

∫ 1−α

1−β
ξ (z,s)2 dz. (A.24)

Now we insert (A.21) with ξ (1)(z,s), ξ (2)(z,s) as in (A.17) and (A.18) into (A.24).
After a tedious calculation and estimating the error terms, we arrive at

I(s;α,β ) = 2−1π−1(λ−1/3ω(s)s−1)
(∫ 1−β

1−α
p0(z)−1/2 dz+o(1)

)
‖c‖2, (A.25)

where ‖c‖2 = c2
1 + c2

2. In the derivation of (A.25), we used the asymptotics of the Airy
functions together with (A.13)–(A.15). The integrand p0(z)−1/2 arises through a com-
bination of the factor p̂(z,s)−1/4 and a factor (λ 3/2ζ (z,s))−1/4 from the asymptotics of
the Airy functions, and the use of (A.15). By an application of the Riemann-Lebesgue
lemma, one sees that the products of the sine and cosine terms from the asymptotics
give a contribution that is of lower order than the leading term. This and the other
lower order terms are subsumed under the o(1) term in (A.25).
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Now we construct the solution v(t, is) at t = αω(s) . We need to do this for both
components. From (A.23), we have

v1(αω(s), is) = s−1/2q(αω(s))1/2ξ (1−α,s)

= s−1/2q(αω(s))1/2{c1ξ (1)(1−α,s)+ c2ξ (2)(1−α,s)}. (A.26)

The following relations will be used (as s → 0)

q(αω(s)) ∼ q0α−γ ω(s)−γ ,

s−1q(αω(s)) ∼ α−γ

p(1−α,s) ∼ p0(1−α) = −1+ α−2γ,

which lead to

ξ (1)(1−α,s) = π−1/2(−1+ α−2γ)−1/4λ−1/6 cos(ψ(s))+o(λ−1/6)

where

ψ(s) =
π
4

+
2λ
3

ζ (1−α,s)3/2 =
π
4

+
∫ 1−α

p1(s)

√
p(η ,s)dη .

ξ (2)(1−α,s) has the same form except that the cosine must be replaced by a sine.
Therefore, by using (A.26), we obtain

v1(αω(s), is)= π−1/2(1−α2γ)−1/4λ−1/6{c1(cos(ψ(s))+o(1))+c2(sin(ψ(s))+o(1))}.
Thus

|v1(αω(s), is)| = O(λ−1/6)‖c‖. (A.27)

The calculation for the second component uses v2 = q(t)−1v′1− sq(t)−1v1 and involves
(A.23) and (A.13)–(A.16). The result is

v2(αω(s), is) =−π−1/2(1−α2γ )−1/4λ−1/6
{
(c1αγ+c2(1−α2γ)1/2)(cos(ψ(s))+o(1))

+(c2αγ−c1(1−α2γ)1/2)(sin(ψ(s))+o(1))
}

. (A.28)

Therefore, combining (A.27) and (A.28) gives

‖v(αω(s), is)‖ = O(λ−1/6)‖c‖. (A.29)

At the point tα = αω(s) the entries of the matrix S−1 in (6.15) are bounded in s . In
fact,

q(tα(s))
(q(tα(s))2 − s2)1/2

→ (1−α2γ)−1/2,

s

(q(tα(s))2 − s2)1/2
→ αγ (1−α2γ)−1/2.

Hence

S →
(

b b
1 1

)
,
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where
b = −αγ + i(1−α2γ)1/2,

S−1 → i2−1(1−α2γ)−1/2
(−1 b

1 −b

)
.

It is therefore clear that

‖w(αω(s),s)‖ = ‖S−1v(αω(s), is)‖ = O(λ−1/6)‖c‖.

Recall the meaning of T from the beginning of the proof of Theorem 6.6. Hence, by
(A.29) and Lemma 6.5,

‖w(T,s)‖ �
√

2‖w(αω(s),s)‖,

and thus
‖w(t,s)‖ = O(λ−1/6)‖c‖, T � t � αω(s).

At T the transformation of w(t,s) back to v(t, is) is bounded, in fact

S →
(

i −i
1 1

)
, s → 0.

Hence ‖v(t, is)‖ = O(λ−1/6)‖c‖ . As in the first part of the proof in the main body of
the paper, we can use Theorem 3.2(ii). Consequently,∫ T

0
|v1||v2|dt = O(λ−1/3)‖c‖2 (A.30)

We already know from (A.25) that sI(s;α,β ) = O(λ−1/3ω(s)). In (6.25) this latter
term is part of a negative term, so it overwhelms the contribution from (A.30). The
theorem is proved. �

Appendix B: Proof of Lemma 8.6

We prove Lemma 8.6 for h+(s) and comment on the changes needed for h−(s) at
the end of the proof.

Proof. Since δ > 1, the distance between consecutive knots tn increases. It is
straightforward to show that

δkδ−1 � tk+1− tk � δ2δ−1kδ−1,

tk+1− tk = δkδ−1 +O(kδ−2), k → ∞. (B.1)

In view of Hypothesis 2(i) we know that q(t) > sn for 1 � t < tn. Thus the domain of
integration in (8.9) for both h(s) and h+(s) includes the interval [1,tn]. Since the points
tn are the places where we will insert Neumann or Dirichlet conditions, we want n to
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be o(s1−1/γ
n ). Since n = c1/(δγ)

1 s−1/(δγ)
n , this requires δ > (1− γ)−1, which, according

to (8.13), (8.14), is satisfied for all γ ∈ (0,1). In addition to tn , we introduce the points

t̃n = c1/γ
2 s−1/γ

n =
(

c2

c1

)1/γ
tn.

Then q(t) < c2t̃n−γ = sn for t > t̃n and thus

[1,tn] ⊂ {t : q(t) � sn} ⊂ [1, t̃n].

On [tn, t̃n], the difference q(t)− sn may change sign. So it is natural to split the proof
into two parts: First we consider the interval [1,tn] and then the interval [tn, t̃n]. The
latter will be subdivided further depending on the sign of q(t)− sn .

Step 1: Since the function q+(t) is constant on each interval [tk,tk+1], we also use
the notation q+

k for the value of q+(t) on [tk,tk+1].
On the interval [tk,tk+1], we have

((q+
k )2− s2

n)
1/2− (q(t)2− s2

n)
1/2 � (q+

k )2−q(t)2

[(q+
k )2 − s2

n]1/2 +(q(t)2− s2
n)1/2

� (q+
k )2 −q(t)2

[(q+
k )2 − s2

n]1/2
� 2c2c3t

−2γ−1
k (tk+1 − tk)

c1(t
−2γ
k − t−2γ

n )1/2
� 2c2c3t

−γ−1
k tγ

n(tk+1 − tk)

c1(t
2γ
n − t2γ

n−1)1/2
. (B.2)

Here we have used (i) and (ii), and in particular the fact that q+
k � q(tk) � c1t

−γ
k , to

obtain the third inequality. In the last step, we have used that tk < tn for k = 1,2, . . . ,n−
1. Now

tγ
n

(t2γ
n − t2γ

n−1)1/2
=

√
n√

2γδ
+O(n−1/2) (B.3)

and from (B.1), we obtain

t−γ−1
k (tk+1 − tk) = δk−δγ−1 +O(k−δγ−2). (B.4)

Combining (B.2) through (B.4) and adding up the contributions for n−1 intervals, we
get ∫ tn

1

[
(q+(t)2− s2

n)
1/2 − (q(t)2− s2

n)
1/2
]

dt � c4
√

n
n−1

∑
k=1

k−δγ+δ−2. (B.5)

Note that an additional factor kδ−1 comes from the length of the interval [tk,tk+1] (see
(B.1)). By (8.13), (8.14), since −δγ +δ −2 > −1, the series in (B.5) is not summable
if the summation were extended to infinity. This implies that

r.h.s. of (B.5) = O(n−δγ+δ− 1
2 ) = O(s

1− 1
γ + 1

2δ γ
n ) = o(s

1− 1
γ

n ),

as desired.
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Step 2: Consider the interval [tn, t̃n]. Since the point t̃n may not be equal to one of
the tk, we choose kn to be the smallest nonnegative integer such that t̃n � tn+kn . Thus
tn+kn−1 < t̃n and

t̃
1
δ

n −n � kn < t̃
1
δ

n −n+1.

Then the interval (̃tn,tn+kn ] (if nonempty) is a small overshoot on which q(t) < sn. We
keep this interval for notational convenience even though it makes no contribution to
the integral in (8.9). Let

In,k = [tn+k,tn+k+1], k = 0, . . . ,kn−1.

Then

[tn, t̃n] ⊂
kn−1⋃
k=0

[tn+k,tn+k+1].

Choose a number ρ > 0. It will be restricted further later. Then the index set J =
{0, . . . ,kn−1} contains two disjoint subsets B1 and B2 defined by

B1 = {k ∈ J : 0 < ((q+
n+k)

2 − s2
n)

1/2 < ρ},

B2 = {k ∈ J : ((q+
n+k)

2 − s2
n)

1/2 � ρ}.
For k /∈ B1 ∪B2, we have that q(t) � sn on the entire interval In,k. To eliminate these
intervals from further consideration we define

S+,n = {t ∈ [tn, t̃n] : q(t) > sn}.

Thus the intervals In,k relevant to us are those which have a nonempty intersection
with S+,n. The reason for choosing the sets B1 and B2 is that on B1 the estimates are
very simple and on B2 the same estimates as in Step 1 can be used. For k ∈ B1 and
t ∈ In,k ∩S+,n, we have that

(q+
n+k)

2 − s2
n)

1/2− (q(t)2− s2
n)

1/2 < ρ .

The estimate also holds (trivially) when t ∈ In,k \ S+,n and the term (q(t)2 − s2
n)

1/2 is
absent, so we have∫

In,k

((q+
n+k)

2 − s2
n)

1/2 dt−
∫
In,k∩S+,n

(q(t)2− s2
n)

1/2 dt < ρ(tn+k+1− tn+k).

Therefore, adding up the contributions for k ∈ B1, we obtain

∑
k∈B1

(∫
In,k

(q+(t)2 − s2
n)

1/2 dt−
∫
In,k∩S+,n

(q(t)2− s2
n)

1/2 dt

)
< ρ(t̃n − tn) = ρ(c

1
γ
2 − c

1
γ
1 )s

− 1
γ

n . (B.6)
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We want to make this o(s
1− 1

γ
n ) and therefore choose ρ = s1+σ

n for some σ > 0
yet to be determined. For k ∈ B2 and t ∈ In,k ∩S+,n, the estimates are similar to those
in Step 1:

((q+
n+k)

2− s2
n)

1/2− (q(t)2− s2
n)

1/2 �
(q+

n+k)
2−q(t)2

((q+
n+k)

2− s2
n)1/2

� ρ−1(q+
n+k −q(t))(q+

n+k +q(t))

� 2ρ−1c2c3t
−2γ−1
n+k (tn+k+1− tn+k)

� c5ρ−1(n+ k)−δ (2γ+1)(n+ k)δ−1

= c5ρ−1(n+ k)−2δγ−1.

Thus for k ∈ B2 , we obtain∫
In,k

((q+
n+k)

2− s2
n)

1/2 dt−
∫

In,k∩S+,n

(q(t)2− s2
n)

1/2 dt � c6ρ−1(n+ k)−2δγ+δ−2. (B.7)

Here again, a factor (n + k)δ−1 has been included to account for the length of the
integration interval. Again, the estimate also holds when t ∈ In,k \ S+,n and the second
integral is absent. Under the assumptions in (8.13), (8.14), −2δγ + δ −2 < −1 for all
γ ∈ (0,1). Thus

∑
k∈B2

(n+ k)−2δγ+δ−2 = O(n−2δγ+δ−1),

which, together with (B.4), gives

∑
k∈B2

(∫
In,k

(q+(t)2 − s2
n)

1/2 dt−
∫
In,k∩S+,n

(q(t)2− s2
n)

1/2 dt

)
� c7ρ−1n−2δγ+δ−1 = O

(
s
1− 1

γ + 1
δ γ −σ

n

)
. (B.8)

This is o(s
1− 1

γ
n ) provided we choose

0 < σ <
1

δγ
. (B.9)

Combining (B.5), (B.6), and (B.8) gives

h+(s)−h(s) = o(s
1− 1

γ
n ).

This proves that h(sn)/h+(sn) → 1 as sn → 0.
The proof for h−(s) is similar and essentially contained in the above proof. We

replace q+(t) by q(t) and q(t) by q−(t). Then, in the first step we consider the interval
[1,tn−1] so that q−(tn−1) > sn. On the interval [tn−1, t̃n] we consider, in place of B1, the
set where 0 < (q(t)2−s2

n)
1/2 < ρ and, in place of B2, the set where (q(t)2−s2

n)
1/2 � ρ .

The estimates are then similar to those above. �
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[3] E. A. CODDINGTON AND N. LEVINSON,Theory of ordinary differential equations, Robert E. Krieger
Publishing Company, Malabar, Florida, 1984.
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[6] P. HARTMAN, Ordinary Differential Equations, John Wiley & Sons, New York, 1964.
[7] H. VAN HAERINGEN, Bound states for r−2 -like potentials in one and three dimensions, J. Math Phys.

19 (1978), 2171–2179.
[8] T. KAPPELER, P. LOHRMANN, AND P. TOPALOV, Generic non-selfadjoint Zakharov-Shabat opera-

tors, Math. Ann. 359 (2014), 427–470.
[9] W. KIRSCH AND B. SIMON, Corrections to the classical behavior of the number of bound states of

Schrödinger operators, Annals of Physiscs 183 (1988), 122–130.
[10] M. KLAUS AND K. SHAW, Influence of pulse shape and frequency chirp on stability of optical soli-

tons, Opt. Comm. 197 (2001), 491–500.
[11] M. KLAUS AND K. SHAW, Purely imaginary eigenvalues of Zakharov-Shabat systems, Phys. Rev. E

(3) 65 (2002), article 036607, 1–8.
[12] M. KLAUS AND K. SHAW, On the eigenvalues of Zakharov-Shabat systems, SIAM J. Math. Anal. 34,

no. 4 (2003), 759–773.
[13] M. KLAUS, On the Zakharov-Shabat eigenvalue problem, in Mathematical Studies in Nonlinear Wave

Propagation, Contemporary Mathematics 379, 21–45, Amer. Math. Soc., Providence, RI, 2005.
[14] M. KLAUS AND B. MITYAGIN, Coupling constant behavior of eigenvalues of Zakharov-Shabat sys-

tems, Journ. Math. Phys. 48 (2007), article 123503.
[15] M. KLAUS, On the eigenvalues of the Lax operator for the matrix-valued AKNS system, in Operator

Theory: Advances and Applications 203 (2010), 289–323.
[16] G. L. LAMB, JR., Elements of Soliton Theory, John Wiley & Sons, New York, 1980.
[17] A. MARTIN, Bound states in the strong coupling limit, Helv. Phys. Acta 45 (1972), 140–148.
[18] V. YU. NOVOKSHENOV, Reflectionless potentials and soliton series of the nonlinear Schrödinger

equation, Physica D 87 (1995), 109–114.
[19] F. W. J. OLVER, Asymptotics and special functions, Academic Press, New York, 1974.
[20] M. REED AND B. SIMON, Methods of Modern Mathematical Physics, IV. Analysis of Operators,

Academic Press, New York, 1978.
[21] J. K. SHAW, Mathematical Principles of Optical Fiber Communications, in CBMS-NSF Regional

Conference Series 76, SIAM, Philadelphia, 2004.
[22] B. SIMON, Trace Ideals and Their Applications, second edition, in Mathematical Surveys and Mono-

graphs 120, Amer. Math. Soc., Providence, RI, 2005.
[23] W. WALTER, Ordinary Differential Equations, Graduate Texts in Mathematics 182, Springer-Verlag,

New York, 1998.
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