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A NOTE ON COMMUTATIVITY PRESERVING MAPS ON Mn(R)

GREGOR DOLINAR, BOJAN KUZMA AND JANKO MAROVT

(Communicated by N.-C. Wong)

Abstract. Let Mn(F) be the set of all n× n matrices over a field F . Surjective maps which
preserve the commutativity relation on Mn(F) only in one direction have been recently classified
for the case when F is an algebraically closed field. We show that the same result holds also
when F = R is the field of real numbers and n � 7 is odd.

1. Introduction and statement of the result

Let Mn(F) be the set of all n× n matrices over a field F . A map Φ : Mn(F) →
Mn(F) preserves commutativity if Φ(A)Φ(B) = Φ(B)Φ(A) whenever AB = BA , A,B∈
Mn(F) . If Φ is bijective and both Φ and Φ−1 preserve commutativity, then we say
that Φ preserves commutativity in both directions. In recent decades commutativity
preserving linear maps were extensively studied (see for example [3] and references
therein). Motivated by applications in quantum mechanic some authors found interest
to study a more difficult problem of characterizing non-linear commutativity preserving
maps. In [12], Šemrl characterized continuous, bijective maps on the set of all n× n
complex matrices Mn(C) , where n � 3, which preserve commutativity in both direc-
tions. He also studied such maps without the continuity assumption and showed that
essentially the same result as for linear bijections is true on the set of rank-one complex
matrices and that outside this set a map can be very nonlinear. The same author consid-
ered in [13] injective, continuous maps on Mn(C), n > 3, that preserve commutativity.
Fošner [7] proved, using the real Jordan canonical form, that an analogous result holds
true for the set of real matrices Mn(R), n > 3.

Dolinar and Kuzma further relaxed in [4] the assumptions on a map. Namely, they
assumed Φ preserves commutativity only in one direction, is surjective, and leaves
invariant the set of non-central elements. They showed that the last assumption is in-
dispensable. Their result, which was proved by techniques that combine graph theory,
linear algebra, and projective geometry, follows.

THEOREM 1. Let F be an algebraically closed field and n � 5 . Assume a sur-
jective map Φ : Mn(F) → Mn(F) preserves commutativity and suppose further that
Φ(X) ∈ FI , where I is the identity matrix, implies X ∈ FI . Then there exist func-
tions α,γ : Mn(F) → F\{0} , a field isomorphism σ : F → F , and an invertible matrix
S ∈ Mn(F) such that one of the following holds true:
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(i) Φ(X) = α(X)SXσS−1 + γ(X)I, rkX = 1;

(ii) Φ(X) = α(X)S(Xσ )t S−1 + γ(X)I, rkX = 1.

Here rkX denotes the rank of the matrix X ∈ Mn(F) . The question is whether the
same result holds also when F = R is the field of real numbers (recall that the only
field isomorphism of real numbers is the identity, so in this case σ is automatically
identity). We will show that at least when n is an odd number greater then 5, the answer
is positive. It turned out that some partial results from [4] can be directly applied in the
real case however some techniques which were developed in [4] for the case of complex
matrices using the Jordan canonical form had to be altered. Thus we will give at the
beginning of the next section a brief description of the real Jordan canonical form and
then the proof of our main result will follow. Let us state our main result.

THEOREM 2. Let n � 7 be an odd number. Assume a surjective map Φ : Mn(R)→
Mn(R) preserves commutativity and suppose further that Φ(X) ∈ RI , where I is the
identity matrix, implies X ∈RI . Then there exist functions α,γ : Mn(R)→R\{0} and
an invertible matrix S ∈ Mn(R) such that one of the following holds true:

(i) Φ(X) = α(X)SXS−1 + γ(X)I, rkX = 1;

(ii) Φ(X) = α(X)SXtS−1 + γ(X)I, rkX = 1.

2. Proofs

Let us start with briefly recalling some properties of the real Jordan canonical
form, see also [9]. Suppose A ∈ Mn(R) and let λ ∈ C be a non-real eigenvalue of
A . The structure of Jordan blocks in the Jordan canonical form corresponding to λ is
the same as the structure of Jordan blocks corresponding to the conjugate eigenvalue
λ . Thus, all Jordan blocks of all sizes corresponding to non-real eigenvalues occur in
conjugate pairs of equal sizes. Suppose J2(λ ) , the 2×2 Jordan block corresponding to
λ , appears in the Jordan canonical form of A . Then J2(λ ) also appears in the Jordan
canonical form of A with the same multiplicity as J2(λ ) . The block matrix

[
J2(λ ) 0

0 J2(λ )

]
=

⎡
⎢⎢⎣

λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ

⎤
⎥⎥⎦ (1)

is permutation-similar to the matrix

[
D(λ ) I

0 D(λ )

]
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where D(λ ) ≡
[

λ 0
0 λ

]
∈ M2(C) and I is the 2× 2 identity matrix. Suppose now

λ = a+ ib , where a,b ∈ R , and let S =
[−i −i

1 −1

]
. Then

SD(λ )S−1 =
[

a b
−b a

]
.

Let C(a,b) ≡
[

a b
−b a

]
. Then (1) is similar via

[
S 0
0 S

]
to a real 4×4 block

⎡
⎢⎢⎣

a b 1 0
−b a 0 1
0 0 a b
0 0 −b a

⎤
⎥⎥⎦ =

[
C(a,b) I

0 C(a,b)

]
.

It turns out (see [9]) that in general, each matrix

[
Jk(λ ) 0

0 Jk(λ )

]
∈ M2k(C) , where

Jk(λ ) is a k× k Jordan block corresponding to a non-real eigenvalue λ , is similar to a
2k×2k real block

Ck(a,b) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C(a,b) I 0 . . . 0

0 C(a,b) I
. . .

...

0 0
. . .

. . . 0
...

...
. . .

. . . I
0 0 . . . 0 C(a,b)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

This observation leads us to the real Jordan canonical form.

PROPOSITION 1. (see [9]) Each matrix A ∈Mn(R) is similar to a block diagonal
real matrix of the form

Cn1(a1,b1)⊕Cn2(a2,b2)⊕ . . .⊕Cnp(ap,bp)⊕ Jnq(λq)⊕ . . .⊕ Jnr(λr) (3)

where λk = ak + ibk , ak,bk ∈ R , 1 � k � p, are non-real eigenvalues of A, and
λq, . . . ,λr are real eigenvalues of A. Each real block triangular matrix Cnk(ak,bk) ∈
M2nk is of the form (2) and corresponds to a pair of Jordan blocks Jnk(λk), Jnk(λk) ∈
Mnk with non-real λk from the Jordan canonical form of A. The real Jordan blocks
Jnq(λq), . . . ,Jnr(λr) in (3) are exactly the Jordan blocks from the Jordan canonical form
of A corresponding to real eigenvalues of A.

REMARK 1. It is not evident from the above approach that the similarity matrix
that transforms A into (3) can be chosen to be real. It turns out (see [9]) that if A ∈
Mn(R) , there is always a real nonsingularmatrix S such that S−1AS is in the real Jordan
canonical form (3).
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We continue by proving the main result. Throughout the proof we will assume
that n � 7. Let us remark that some lemmas, which we will present and prove in the
continuation, are true also for smaller n . Let F be a field. Given a subset Δ ⊆ Mn(F) ,
its centralizer is the vector space

CF(Δ) = {X ∈ Mn(F) : AX = XA for all A ∈ Δ}.

If Δ = {A} is a singleton, we will shortly write CF(A) = CF({A}) . If CF(A) = CF(B)
for some A,B ∈ Mn(F) , then we say that A and B are C -equivalent.

We say that A ∈ Mn(F) is a predecessor of B ∈ Mn(F) or B is a successor of A if
CF(A) ⊆ CF(B) . If for every X ∈ Mn(F) , CF(A) ⊆ CF(X) ⊆ CF(B) implies CF(X) ∈
{CF(A),CF(B)} , then we say that A is an immediate predecessor of B .

A non-scalar M ∈ Mn(F) is maximal if for every non-scalar X ∈ Mn(F) with
CF(M) ⊆ CF(X) , it follows CF(M) = CF(X) . We will denote by F [A] the unital F-
subalgebra of Mn(F) generated by the matrix A∈Mn(F) . Let M ∈Mn(F) be a maximal
matrix. Then, by [5, Theorem 3.2] M belongs to one of the following classes: (1) M
is C -equivalent to an idempotent, or (2) M is C -equivalent to a square-zero matrix, or
(3) M is similar to C⊕C⊕ . . .⊕C where C is a companion matrix of an irreducible
polynomial such that there is no proper intermediate field between F and F [C] .

Since we will study matrices as elements of Mn(R) , we will from now on shortly
write C (Δ) = CR(Δ) . We know (see [10, Corrolary 1, page 113]) that

C (C (A)) = R [A] (4)

for any A∈Mn(R) . Also, by Theorem 2.8 in [5], A∈Mn(R) , n � 2, is non-derogatory
(its minimal polynomial equals its characteristic polynomial) if and only if

C (A) = R [A] . (5)

Authors divided in [4] the proof of Theorem 1 into two parts. In the first part,
authors characterized rank-one matrices in terms of commutativity of a certain n− 2
tuple of matrices. In the second part, authors first used this key lemma (Lemma 2.8) to
prove some new lemmas. For example, they showed that Φ(A) is C -equivalent to a
matrix of rank-one whenever A is a rank-one matrix. By such auxiliary results and with
tools of projective geometry, authors then concluded the proof of Theorem 1. It turns
out that the proof of Theorem 2 may be structured in a similar way. Moreover, if every
matrix A ∈ Mn(F) has an eigenvalue λA ∈ F , the second part of the proof of Theorem
1 works for any (not necessarily algebraically closed) field F with sufficiently many
elements. Note that when n is odd, every matrix A ∈ Mn(R) has a real eigenvalue. So,
in order to prove Theorem 2, we will prove a result similar to Lemma 2.8 from [4].

We begin with an auxiliary result.

LEMMA 1. Let a non-scalar matrix A∈Mn(R) be non-maximal. Then there exist
a maximal matrix M and a matrix B, which is an immediate predecessor of M , such
that

C (A) ⊆ C (B) � C (M).
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Proof. Since A is not maximal, there exists a non-scalar matrix X1 with C (A) �

C (X1) ⊆ Mn(R) . If X1 is also not maximal, we can continue the chain with C (X2)
for some non-scalar matrix X2 . By comparing the dimensions of these vector spaces,
such chain must terminate in finite steps, and clearly ends with a maximal matrix. By
comparing the dimensions one more time, we can also assume that in this chain Xi−1

is always an immediate predecessor of Xi with C (Xi−1) � C (Xi) . �

Note that the size of any block Cni(ai,bi) in the real Jordan canonical form (3) of
A ∈ Mn(R) that corresponds to a conjugate pair of (non-real) eigenvalues of A must
be even. We define the signature of a matrix A ∈ Mn(R) to be a tuple, consisting
of the sizes of its blocks from the real Jordan canonical form (3) of A , ordered non-
increasingly. Thus, the diagonalizable matrix has the signature (1,1, . . . ,1) which we
shortly write (1n) while the nilpotent matrix with maximal nilindex has the signature
(n) . If the signature of A is for example (4,33,22,1n−17) , then the real Jordan canoni-
cal form of A consists of one block (a Jordan block that corresponds to a real eigenvalue
or a block that corresponds to a pair of non-real eigenvalues of A) of size 4, three Jor-
dan blocks of size 3, two blocks (each of them may be a Jordan block that corresponds
to a real eigenvalue or a block that corresponds to a pair of non-real eigenvalues of A)
of size 2, and other n−17 Jordan blocks are of size 1.

LEMMA 2. Let A ∈ Mn(R) be non-maximal and an immediate predecessor of a
maximal matrix. The following two statements are equivalent.

(i) Each maximal matrix M with C (M) ⊇ C (A) is C -equivalent to a rank-one
matrix.

(ii) The signature of A is either

(a) (3,2s,1t) for some s,t � 0 with 3 + 2s + t = n and all eigenvalues of A
must be the same.

(b) (2,1n−2) and A is similar to
[

a 1
0 a

]⊕a⊕·· ·⊕a⊕c , for some a,c∈ R with
a �= c .

(c) (2(n−1)/2,1) , where n is odd, and A is similar to
[

a b
−b a

]⊕·· ·⊕[
a b
−b a

]⊕c ,
for some a,b,c ∈ R with b �= 0.

Proof. Let A ∈ Mn(R) be non-maximal and an immediate predecessor of a maxi-
mal matrix. Suppose first that statement (ii) holds. If (a) holds, then all eigenvalues of A
are real and hence the real Jordan canonical form of A is the same as the Jordan canon-
ical form of A . Similarly if (b) holds. So, by applying a similarity and by subtracting a
suitable scalar matrix we may conclude that in case (a), A = J3(0)⊕ (

⊕s
i=1J2(0))⊕0t

and in case (b), A = J2(0)⊕0n−3⊕ (c−a) . Recall (see (4)) that every matrix M with
C (A)⊆C (M) is a polynomial in A . So, every maximal matrix M with C (A)⊆C (M)
is C -equivalent in the former case to J3(0)2 ⊕ 02s+t which is of rank-one, and in the
latter case to J2(0)⊕0n−2 or to 0n−1⊕1 which are again both of rank-one.
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If (c) holds, then up to similarity and by [2, Proposition 4.1],

R [A] = R
[[

a b
−b a

]⊕·· ·⊕ [
a b
−b a

]]⊕R.

It is easy to see that every maximal matrix in R [A] is C -equivalent to Enn where Ei j

is the matrix with all entries equal to zero except the (i, j)-entry which is equal to one.
Suppose now that statement (ii) does not hold. We will prove that then also state-

ment (i) does not hold. Without loss of generality we may assume that A is already in
the real Jordan canonical form and let r be the size of a maximal block. Let us write

A = A1⊕A2, (6)

where A1 contains at least one block of size r and the eigenvalues of A1 coincide with
the eigenvalues of this block, while the intersection of spectrums, Sp(A1)∩Sp(A2) , is
empty. By [2, Proposition 4.1] we have

R [A] = R [A1]⊕R [A2] .

Note that if A1 corresponds to a real eigenvalue, then we may (and will) without loss
of generality assume that A1 =

⊕k
i=1Jni(0) with n1 = r .

Suppose first that r � 4. If A1 corresponds to a real eigenvalue, then M = Ar−2
1 ⊕

0 ∈ R [A] is a square-zero matrix, hence maximal, and of rank at least two. By (4),
C (A) ⊆ C (M) so (i) does not hold. If Sp(A1) = {a± ib} for some a,b ∈ R , b �= 0,
then there exists an integer t � 1 such that

M = ((A1 −aI)2 +b2I)t ⊕0 ∈ R [A]

is a square-zero matrix of rank greater then 1 and is thus not C -equivalent to a matrix
of rank-one, so again (i) does not hold.

Let r = 3. Then the size of the largest block is odd and therefore Sp(A1)⊆ R . By
subtracting a suitable scalar matrix we can assume that Sp(A1) = {0} . Suppose first
that the signature of A is not (3,2s,1t) . Then there are at least two Jordan blocks of
size 3. It follows that A has only one eigenvalue for otherwise B = A1 ⊕ 0 is a non-
maximal matrix with C (A) � C (B) . So, A = A1 =

⊕k
i=1Jri(0) is a nilpotent. Since

there is more then one Jordan block of size 3 in this direct sum, we may conclude that
M = A2

1 is a square-zero matrix of rank greater then 1 and (i) does not hold.
Now suppose the signature of A is (3,2s,1t) and A has at least two eigenvalues.

Then M = Im1 ⊕0, where m1 � 3 is the size of A1 , is a maximal matrix with C (A) ⊆
C (M) . Since C (M) = C (I −M) = C (0⊕ 1n−m1) , such M is not C -equivalent to a
matrix of rank-one unless n−m1 = 1. This is possible only if A2 is of size 1. Then,
however, A has exactly two eigenvalues and one of them is simple. In this case A is
C -equivalent to J3(0)⊕ (

⊕s
i=1J2(0))⊕ 1. All the immediate successors B of A are

polynomials in A and (assuming C (A) �= C (B)) it is easily seen to be C -equivalent
to J3(0)⊕ (

⊕s
i=1J2(0))⊕ 0, or to J3(0)2 ⊕ (

⊕s
i=1J2(0)2)⊕ 1. But neither of them is

maximal, a contradiction to the hypothesis that A is an immediate predecessor of a
maximal matrix.
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Let now r = 2. The signature of A is then (2s,1n−2s) , s � 1. If A has only
one eigenvalue, then A is C -equivalent to a square-zero matrix and hence maximal, a
contradiction. Therefore A has at least two eigenvalues.

Suppose first s = 1. Then in decomposition (6), the block A1 contains a cell of
size 2. If A has at least three eigenvalues, then clearly A2 contains at least two cells
of size 1. If A has exactly two eigenvalues, then the block A2 contains at least two
cells of size 1 because we have assumed (ii) does not hold and therefore neither of the
two eigenvalues of A is of algebraic multiplicity one. Hence, there exists a maximal
matrix M = 0m1 ⊕ In−m1 ∈ R [A1]⊕R [A2] = R [A] where m1 � 2 is the size of A1 and
n−m1 � 2 is the size of A2 . Such M is not C -equivalent to a matrix of rank-one, so
(i) does not hold.

Let s � 2. First, assume that that a 2× 2 block in A1 corresponds to a pair of
conjugate eigenvalues of A , λ = a+ ib and λ = a− ib , b �= 0. Let m1 be the size of
A1 . Then

M = (A1 −aIm1)
2 ⊕0n−m1 = −b2Im1 ⊕0n−m1 ∈ R [A]

is a maximal matrix which is C -equivalent to a matrix of rank-one only if n−m1 = 1.
Since we assumed that (ii) does not hold, this last option is not possible. So again, (i)
does not hold. Still assuming s � 2, suppose now that every 2×2 block is induced by
a real eigenvalue, i.e. all the eigenvalues of A are real. Then there exists a polynomial
p where N = p(A) is square-zero matrix which is of rank at least 2 and thus not C -
equivalent to a matrix of rank-one.

Finally, let r = 1. Every block in the real Jordan canonical form of A is of the
size 1 and thus corresponds to a real eigenvalue of A . Also, A has at least three (real)
eigenvalues for otherwise A is scalar or maximal. Therefore there exists a polynomial
p such that p(A) = 0k1 ⊕ Ik2 ⊕ (αIk3) where α ∈ R , ki � 1 for every i ∈ {1,2,3} , and
k1 +k2 +k3 = n . If k2 = k3 = 1, then M = 0k1 ⊕1⊕1∈ R [A] is a maximal matrix that
is not C -equivalent to a matrix of rank-one. If k2 � 2 or k3 � 2, then the same holds
for M = 0k1 ⊕ Ik2 ⊕0k3 or M = 0k1+k2 ⊕ Ik3 , respectively. �

Recall that Hilbert matrix H ∈ Mn(F) is of the following form H =
(

1
i+ j−1

)
i j

.

Note that all the minors of H are nonzero. By e1,e2, . . . ,en we will denote the standard
basis vectors. For a field F , the graph Γ = Γ(Mn(F)) with the vertex set V (Γ) =
Mn(F)\FI and the edge set

E(Γ) = {(X ,Y ) ∈V (Γ)×V(Γ) : XY = YX and X �= Y}

is called a commuting graph. It is known (see [8, 11]) that for F = R and n � 3, Γ is
connected with diameter four. We will denote by d(A,B) the distance between vertices
A,B ∈ Γ , i.e. the minimal number k for which there exist (k + 1)-tuple of non-scalar
matrices A = X0, X1, . . . , Xk = B such that Xi commutes with Xi+1 . Such tuple forms
a path which we will denote by A = X0−X1− . . .−Xk = B .

The first lemma below may be proved in the same way as the corresponding lemma

in [4] by noting that Hilbert matrix is a special case of Cauchy matrix
(

1
xi−y j

)
i j

, where

xi,y j ∈ R with xi �= y j for all i and j . We omit the proof.
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LEMMA 3. Define matrices Bi by Biek = ek+1 for k = 1,2, . . . ,n−2 , Bien−1 = hi

and Bihi = 0, where hi is the i-th column of the Hilbert matrix H . Then d(Bi,Bj) = 4
for i �= j .

The next lemma is new.

LEMMA 4. Let hi be the i-th column of the Hilbert matrix and let B1, B2, . . . ,
Bn−2 be nilpotent matrices defined in Lemma 3. If Xi ∈ C (Bi) are non-scalar matrices
and A ∈ Mn(R) is an arbitrary matrix, then for every T ∈ C ({A,X1, . . . ,Xn−2}) there
exists λ ∈ R such that Thi = λhi for every i = 1,2, . . . ,(n−2) .

Proof. It suffices to prove the lemma for Xi maximal since we can find, by Lemma
1, maximal matrices X̂i with Bi ∈ C (Xi) ⊆ C (X̂i) for which clearly

C ({A,X1, . . . ,Xn−2}) ⊆ C ({A, X̂1, . . . , X̂n−2}).
So, assume Xi are maximal. Observe first that Bi , i = 1,2, . . . ,(n − 2) , are non-
derogatory matrices. So, since Xi ∈ C (Bi) , we may conclude by (5) that Xi is a poly-
nomial in Bi . Also, Xi is C -equivalent to a square-zero matrix since it is maximal and
since Bi is nilpotent. Then, after subtracting a suitable scalar and multiplying it with a
suitable scalar we may assume that for every i = 1,2, . . . ,(n−2) ,

Xi = Bki
i +

n−1

∑
k=ki+1

λi,kB
k
i for some ki � n

2 and some λi,k ∈ R .

As T commutes with Xi , the space KerXi = Lin{en−ki+1, . . . ,en−1,hi} is invariant for
T , i.e. T (KerXi)⊆KerXi . Recall that hi are columns of the Hilbert matrix and the 2×
2 minor at positions (1, i),(1, j),(n, i),(n, j) of the Hilbert matrix is nonzero. Hence,
the projections of hi and h j , where i, j ∈ {1,2, . . . ,n− 2} , onto their 1-st and n -th
components are linearly independent. From here we deduce easily that

W = KerX1∩KerX2∩ . . .∩KerXn−2 = Lin{ep, . . . ,en−1}
for a suitable p , with 2 � p � n

2 +1. Clearly, W is invariant for T . Since n � 7, we
have that dimW � 3. Now,

Thi = TXien−ki = XiTen−ki ∈ ImXi = Lin{eki+1, . . . ,en−1,hi}
⊆ Lin{ep, . . . ,en−1,hi} = W +Rhi.

Hence, considering the quotient space Rn/W , there exist λi ∈ R , where i = 1,2, . . . ,
(n−2) , such that

Thi = λihi (mod W ).

Denote ḣi = hi +W ∈ Rn/W , the projection of hi in the quotient space. Since r =
dim(Rn/W ) = n− dimW � n− 3 the n− 2 vectors ḣ1, . . . , ḣn−2 must be linearly de-
pendent. Recall that every r× r minor of the Hilbert matrix is nonzero. In particular,
the vectors ḣ1, . . . , ḣr form a basis for Rn/W . Also, ḣr+1 = ∑r

i=1 αiḣi for some αi ∈ R ,
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which are all nonzero because otherwise the appropriate r × r minor of the Hilbert
matrix would be zero.

Hence also hr+1 = ∑r
i=1 αihi (mod W ) and after applying T , for which W is

invariant, we have λr+1hr+1 = Thr+1 = ∑r
i=1 αiλihi (mod W ) . Since αi �= 0, we

deduce that λr+1 = λ1 = λ2 = . . . = λr . Likewise we see that λr+k = λ1 for k =
2,3, . . . ,n−2− r . Therefore,

(T −λ1I)hi ∈W, i = 1,2, . . . ,n−2.

Observe that {h1, . . . ,hn−2,en−2,en−1} is a basis for Rn and that en−2,en−1 ∈W .
We deduce that

Im(T −λ1I) ⊆W.

Hence, (T−λ1I)hi = (T−λ1I)Xien−ki = Xi(T −λ1I)en−ki ∈Xi(Im(T −λ1I))⊆Xi(W )=
{0} for i = 1,2, . . . ,n−2. �

With the next five lemmas we will show that when A ∈ Mn(R) is of a certain
form, we may find n− 2 nilpotent matrices B1,B2, . . . ,Bn−2 pairwise at distance 4
such that whatever the choice of non-scalar Xi ∈ C (Bi) , the centralizer of the set
{A,X1, . . . ,Xn−2} is trivial, i.e. C ({A,X1, . . . ,Xn−2}) = RI .

LEMMA 5. Let A = 0⊕[
0 1
−1 0

]⊕·· ·⊕[
0 1
−1 0

]
and let B1, B2, . . . , Bn−2 be nilpo-

tent matrices defined in Lemma 3. If Xi ∈ C (Bi) are non-scalar matrices, then we have
C ({A,X1, . . . ,Xn−2}) = RI .

Proof. Observe first that n is an odd number. Suppose that there exists a non-
scalar T ∈ C ({A,X1, . . . ,Xn−2}) . By Lemma 4, we may subtract from T a suitable
scalar matrix to achieve that Thi = 0 for i = 1,2, . . . ,n− 2, where, yet again, hi is
the i-th column of the Hilbert matrix. This already implies that rkT � 2, and since
{h1, . . . ,hn−2,en−1,en} is a basis for Rn , we only need to show that Ten−1 = Ten = 0.

Since T = (ti j)i j ∈ C (A) , it follows that T = t11⊕ Ṫ where t11 ∈ R and

Ṫ =
([

αi j βi j

−βi j αi j

])
1�i, j� n−1

2

∈ Mn−1(R).

Observe that the rank of Ṫ is even. From rkT � 2, either Ṫ = 0 or t11 = 0. In the
latter case, we may conclude that the rank of T is even. Also, Te1 = 0 and therefore
KerT contains the n− 1 dimensional space {e1,h1, . . . ,hn−2}. So rkT � 1 and thus
T = 0. In the former case, T = t11⊕0 and therefore Ten−1 = 0 = Ten . �

The next four lemmas may be proved in the same way as corresponding lemmas
in [4]. Nevertheless, for the sake of completeness and since Lemma 4 holds for an
arbitrary matrix A ∈ Mn(R) , we will present new and shorter proofs.

LEMMA 6. Let A = Ir ⊕ 0n−r ∈ Mn(R) be an idempotent with 2 � r = rkA � n
2

and let B1, B2, . . . , Bn−2 be nilpotent matrices defined in Lemma 3. If Xi ∈ C (Bi) are
non-scalar matrices, then we have C ({A,X1, . . . ,Xn−2}) = RI .
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Proof. Suppose that there exists a non-scalar T ∈ C ({A,X1, . . . ,Xn−2}) . Without
loss of generality we may by Lemma 4 assume that Thi = 0 for i = 1,2, . . . ,n− 2,
where hi is the i-th column of the Hilbert matrix. Also, since T = (ti j)i j ∈ C (A) ,
it follows that T = Ṫ ⊕ T̈ where Ṫ ∈ Mr(R) and T̈ ∈ Mn−r(R) . We have Thi =
(Ṫ ḣi)⊕ (T̈ ḧi) and hence Ṫ ḣi = 0 and T̈ ḧi = 0 for every i = 1,2, . . . ,n−2. Recall that
n � 7. So, n−2 > n

2 . Since 2 � r � n
2 and since each r×r and (n−r)×(n−r) minor

of the Hilbert matrix is nonzero, the n− 2 vectors ḣ1, . . . , ḣn−2 span the whole space
Rr , and the n− 2 vectors ḧ1, . . . , ḧn−2 span the whole space Rn−r . Thus, Ṫ = 0 and
T̈ = 0 and therefore T = 0, a contradiction. �

LEMMA 7. Let

A =

⎡
⎣ 0r 0 0

0 0n−2r 0
Ir 0 0r

⎤
⎦ ∈ Mn(R)

be a square-zero matrix with 2 � r = rkA � n
2 and let B1, B2, . . . , Bn−2 be nilpotent

matrices defined in Lemma 3. If Xi ∈ C (Bi) are non-scalar matrices, then we have
C ({A,X1, . . . ,Xn−2}) = RI .

Proof. Suppose that there exists a non-scalar T ∈ C ({A,X1, . . . ,Xn−2}) . By
Lemma 4 we may assume that Thi = 0 for i = 1,2, . . . ,n−2. Since T = (ti j)i j ∈C (A) ,
it follows that

T =

⎛
⎝ Ṫ 0 0

∗ ∗ 0
∗ ∗ Ṫ

⎞
⎠

where Ṫ ∈ Mr(R) . We have Ṫ ḣi = 0 for i = 1,2, . . . ,n−2 which yields Ṫ = 0 since
n−2 > n

2 � r . By r � 2, we have Ten = 0 = Ten−1 . Since {h1, . . . ,hn−2,en−1,en } is
a basis for the space Rn , we may conclude that T = 0, a contradiction. �

LEMMA 8. Let s � 0, let A = J3(0)⊕ ⊕s
i=1J2(0)⊕ 0n−3−2s where the middle

term is omitted if s = 0 , and let B1, B2, . . . , Bn−2 be nilpotent matrices defined in
Lemma 3. If Xi ∈C (Bi) are non-scalar matrices, then we have C ({A,X1, . . . ,Xn−2}) =
RI .

Proof. Suppose that there exists a non-scalar T ∈ C ({A,X1, . . . ,Xn−2}) . By
Lemma 4, we may assume that Thi = 0 for i = 1,2, . . . ,n− 2 which yields rkT � 2.
Since T = (ti j)i j ∈ C (A) , we have t11 = t22 = t33 and t12 = t23 . Also, the third row
of T can have a nonzero entry only at position (3,3) and the first column can have a
nonzero entry only at position (1,1) . Further,

t(2i)2 = t(2i+1)3, t(2i+1)2 = 0, t j2 = 0 for i = 2, . . . ,s+1, j � 2s+4. (7)

It follows that t11 = t22 = t33 = 0 for otherwise rkT � 3. Thus, Te1 = 0. There-
fore, T (Lin{h1, . . . ,hn−2,e1})= {0} and thus rkT � 1. Note that {e1,e3,h1, . . . ,hn−2}
forms a basis for the space Rn . So, if Te3 = 0, then T = 0, a contradiction. If Te2 �= 0,
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then there exists a nonzero α ∈ R , such that Te2 = αTe3 . Since t22 = 0, t12 = t23 , and
since (7) holds, this is possible only if Te2 = 0 = Te3 , a contradiction. So, Te2 = 0.
Since {e1,e2,h1, . . . ,hn−2} is a basis for the space Rn , we may again conclude that
T = 0, a contradiction. �

LEMMA 9. Let A = 1⊕ J2(0)⊕ 0n−3 and let B1, B2, . . . , Bn−2 be nilpotent
matrices defined in Lemma 3. If Xi ∈ C (Bi) are non-scalar matrices, then we have
C ({A,X1, . . . ,Xn−2}) = RI .

Proof. Suppose that there exists a non-scalar T ∈ C ({A,X1, . . . ,Xn−2}) . By
Lemma 4 we may assume that Thi = 0 for i = 1,2, . . . ,n− 2. So, rkT � 2. Since
T = (ti j)i j ∈ C (A) , it follows that T = t11⊕ Ṫ where the second column and the third
row of T can have a nonzero entry t22 = t33 only at positions (2,2) and (3,3) , respec-
tively. Suppose first t11 = 0. Then Te1 = 0 and thus rkT � 1. Let Te2 �= 0. Then there
exists a nonzero α ∈ R such that Te2 = αTe3 . This implies, t33 = 0. Since t22 = t33 ,
we may conclude that the second column of T vanishes, i.e. Te2 = 0, a contradiction.
It follows that T (Lin{e1,e2,h1, . . . ,hn−2}) = {0} which yields T = 0, a contradiction.

Suppose now t11 �= 0. Since rkT � 2, it follows that rk Ṫ � 1. So, Ṫ ė2 = αṪ ė3

for some α ∈R and thus also Te2 = αTe3 . Suppose Te2 �= 0. So, α �= 0 and therefore
t33 = 0 which yields Te2 = 0, a contradiction. So, Te2 = 0 and thus rkT � 1. If Te1 �=
0, there exits β ∈R , β �= 0, such that Te1 = βTe3 . But then t11 = 0, since t13 = 0, and
thus Te1 = 0, a contradiction. Again, it follows that T (Lin{e1,e2,h1, . . . ,hn−2}) = {0}
and therefore T = 0, a contradiction. �

The following key lemma corresponds to Lemma 2.8 in [4].

LEMMA 10. Let n be an odd number. The following two statements are equiva-
lent for a non-scalar A ∈ Mn(R) .

(i) A is C -equivalent to a rank-one matrix.

(ii) For every n− 2 tuple of matrices B1, B2, . . . , Bn−2 which are pairwise at dis-
tance 4 , there exist a non-scalar matrix Y ∈C (A) and paths Bi−Xi j−Y −Zi j −
Bj of length 4 connecting Bi to B j , i �= j , with Y in the middle.

Proof. Observe first that every real n× n matrix has a real eigenvalue since we
assumed that n is odd. Hence, we may prove that (i) implies (ii) in the same way as in
the proof of Lemma 2.8 in [4].

Conversely, let us assume that (i) does not hold. We will distinguish different
cases. Let us first list all of them.

Suppose first A = M is a maximal matrix.
(a) By assumption A = M is not C -equivalent to a rank-one matrix.
Suppose now A is not maximal. Then by Lemma 1 there exists A1 ∈ Mn(R) , an

immediate predecessor of some maximal matrix M , with C (A) ⊆ C (A1) . This gives
us four more cases.
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(b) There exists a maximal matrix M , which is not C -equivalent to a matrix of
rank-one, with C (A1) ⊆ C (M) .

If (b) is not true, that is each maximal matrix M with C (A1) ⊆ C (M) is C -
equivalent to a matrix of rank-one, then by Lemma 2 we obtain the last three cases.

(c) The signature of A1 equals (3,2s,1t) with s,t � 0 and 3+2s+ t = n and all
the eigenvalues of A1 are the same.

(d) The signature of A1 equals (2,1n−2) and A1 has two distinct eigenvalues, one
with algebraic multiplicity 1.

(e) The signature of A1 equals (2(n−1)/2,1) , where A1 has two conjugate complex
eigenvalues and a real eigenvalue with algebraic multiplicity 1.

Let us now show that for all cases (a)–(e), statement (ii) does not hold. In cases
(a) and (b), M belongs by [5, Theorem 3.2] to one of the following classes:

(1) M is C -equivalent to an idempotent, or (2) M is C -equivalent to a square-
zero matrix, or (3) M is similar to C⊕C⊕ . . .⊕C where C is a companion matrix
of an irreducible polynomial such that there is no proper intermediate field between R

and R [C] . In case (1) we may assume that M is an idempotent with rank between
2 and n

2 , and in case (2) we may assume that M is a square-zero matrix with rank
between 2 and n

2 . In case (3) we may without loss of generality assume that matrix M
is of the following form M = C⊕C⊕ . . .⊕C where C =

[
0 1
−1 0

]
. So, in the last case,

the dimension of M is even and therefore, by assumption, this case can not occur. By
Lemmas 6 and 7, we may conclude that in cases (1) and (2) there exist n−2 nilpotent
matrices B1,B2, . . . ,Bn−2 pairwise at distance 4 such that whatever the choice of non-
scalar Xi ∈ C (Bi) , we always have C ({M,X1, . . . ,Xn−2}) = RI . Since C (A)⊆C (M) ,
we also have C ({A,X1, . . . ,Xn−2}) = RI . Hence, no matter the choice of Xi j ∈ C (Bi)\
RI there does not exist a non-scalar Y which would commute with A and with all Xi j ,
i = 1,2, . . . ,n−2. To summarize, for cases (1) and (2), (ii) does not hold, and case (3)
can not occur. We may conclude that for cases (a) and (b), statement (ii) does not hold.

If (c), or (d), or (e) holds, then we use Lemmas 8, 9, 5, respectively, and repeat the
arguments above to see that (ii) does not hold. �

Let us now show that Φ preserves the set of rank-one matrices modulo C -equiv-
alence. To do this we will apply Lemma 10 while taking into account that map Φ
preserves scalar matrices in both directions (see Lemma 3.1 in [4]).

LEMMA 11. Let n be an odd number. If rkA = 1 , A ∈ Mn(R) , then Φ(A) is
C -equivalent to a matrix of rank-one.

Proof. Let A ∈ Mn(R) be of rank one and let B = Φ(A) . Choose any tuple of
n− 2 matrices Bi ∈ Mn(R) , i = 1,2, . . . ,n− 2, which are pairwise at distance four
(recall that such matrices exist by Lemma 3). By surjectivity of Φ , there exist n− 2
matrices Ai ∈Mn(R) , with Φ(Ai) = Bi for each i . Recall that if n � 3, Γ = Γ(Mn(R))
is a connected graph with diameter four (see [8, 11]). So, since Φ does not increase
the distance, we have d(Ai,Aj) = 4 for i �= j . Since rkA = 1, Lemma 10 implies that
there exist a non-scalar matrix Y ∈ C (A) and paths Ai −Xi j −Y −Zi j −Aj . It follows
that Bi = Φ(Ai)−Φ(Xi j)−Φ(Y )−Φ(Zi j)−Φ(Aj) = Bj are paths of length at most



COMMUTATIVITY PRESERVING MAPS 129

four and hence of length four since d(Bi,Bj) = 4. These paths that connect Bi and Bj

have the same matrix Φ(Y ) in the middle, and this matrix Φ(Y ) also commutes with
Φ(A) = B . By applying again Lemma 10, we may conclude that B is C -equivalent to
a matrix of rank-one. �

Since we assumed that n is odd, every real n×n matrix has a real eigenvalue and
thus a real eigenvector. So, all lemmas from the third section of [4] can be used for the
set of real n×n matrices with n odd. For example, in the proof of [4, Lemma 3.3] it is
required that every matrix C commutes with a rank-one matrix and this is equivalent to
the fact that C has an eigenvector. Therefore, from now on we will only briefly sketch
the lengthy arguments from the third section of [4].

Following [4], let us now modify Φ to Φ̂ , which maps rank-one matrices to rank-
one matrices and annihilates the zero matrix as follows. Let m(λX) be the algebraic
multiplicity of an eigenvalue λX ∈ Sp(Φ(X)) . We then define the map Φ̂ : Mn(R) →
Mn(R) with

Φ̂(X) =

⎧⎨
⎩

Φ(X)−λXI, rkX = 1, λX ∈ Sp(Φ(X)) with m(λX) > 1
0, X = 0

Φ(X), otherwise
.

Observe that C (Φ̂(X)) = C (Φ(X)) for every X ∈ Mn(R) . So, Φ̂ also preserves
commutativity but it is surjective only modulo C -equivalence, i.e. for every matrix
Y ∈ Mn(R) there exists a matrix X ∈ Mn(R) such that C (Φ̂(X)) = C (Y ) .

If R∈Mn(R) is a rank-one nilpotent, then we may show as in the proof of Lemma
3.7 in [4] that Φ̂(R) is also a rank-one nilpotent. Recall that A ∈ Mn(R) is of rank-
one if and only if A = x f t for some nonzero vectors x, f ∈ Rn where f t denotes the
transpose. As in [4] we may replace, if necessary, Φ̂ with the map X �→ Φ̂(X)t and
then prove the following lemma in the same way as [4, Lemma 3.12].

LEMMA 12. There exist maps φ ,ψ : Rn → Rn with the following properties:

(i) φ(Rx) ⊆ Rφ(x) and ψ(R f ) ⊆ Rψ( f ) for every x, f ∈ R\ {0};
(ii) Both φ and ψ annihilate only the zero vector;

(iii) Rφ(Rn) = Rψ(Rn)= Rn;

(iv) For every rank-one nilpotent x f t we have

Φ̂(x f
t) ∈ Rφ(x)ψ( f )t and ψ( f )tφ(x) = 0.

By Lemma 12 it follows that maps φ and ψ induce a well-defined surjections
on the projective space PRn = {[x] = Rx : x ∈ Rn \ {0}} which we again denote by φ
and ψ , respectively. As in the proof of Lemma 3.15 in [4] we may prove that φ ,ψ :
PRn → PRn are also injective maps.

Recall that a map χ : PRn →PRn is a projectivemorphism if for every [x] , [y] , [z]∈
PRn where [x] ∈ [y]+ [z] , we have χ([x]) ∈ χ([y])+ χ([z]) . As in the proof of Lemma
3.16 in [4], we observe that maps φ and ψ are projective morphisms.
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We are now in position to conclude the proof of Theorem 2.

Proof of Theorem 2. Since the map φ is a projective morphism, it follows by the
fundamental theorem of projective geometry (see for example [6]) that φ([x]) = [A(xσ )]
for some field homomorphism σ : R → R and some linear map A : Rn → Rn . Recall
that the map φ is bijective, and therefore A is invertible. Also, σ = idR because the
identity is the only nonzero homomorphism of R (see [1]). Likewise ψ([ f ]) = [B f ] for
some invertible linear B .

We replace Φ̂ by X �→ A−1Φ̂(X)A and denote the new map again by Φ̂ . The new
map satisfies Φ̂(x f t )∈ x(B̃ f )t where B̃ = AtB . Note that B̃ is invertible. Since Φ̂ maps
rank-one nilpotents to rank-one nilpotents, we have that f t x = 0 implies (B̃ f )t x = 0
for every vector x ∈ Rn . Therefore B̃ f ∈ R f for every vector f ∈ Rn . If we take f
equal to ei , i = 1,2, . . . ,n , and then equal to ei + ei+1 , i = 1,2, . . . ,n− 1, we deduce
that B̃ is a scalar matrix. Thus

Φ̂(x f t ) ∈ Rx f t \ {0} (8)

for every rank-one nilpotent x f t .
It is easy to see that the only rank-one matrices which commute with each of

the rank-one nilpotents E2i,Ei2 , i = 3,4, . . . ,n , are in the set RE11 . Hence by (8),
Φ̂(RE11 \{0})⊆ RE11 \{0} . Since every rank-one idempotent P is similar to E11 , we
likewise deduce that Φ̂(RP \ {0}) ⊆ RP \ {0} . Hence, for every rank-one matrix X ,
we have Φ̂(X) = α(X)X where α : Mn(R)→R\{0} is a suitable function. From here
the main result follows easily. �
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[12] P. ŠEMRL, Non-linear commutativity preserving maps, Acta. Sci. Math. (Szeged) 71 (2005), 781–819.
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