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CHAOTIC OPERATORS ON HYPERGROUPS

CHUNG-CHUAN CHEN AND SEYYED MOHAMMAD TABATABAIE

(Communicated by N.-C. Wong)

Abstract. In this paper, we initiate a study of chaos, in the sense of Devaney, and topological
transitivity on the Lp space of hypergroups, and give some sufficient and necessary conditions
for weighted translation operators on hypergroups to be chaotic and transitive in terms of the
Haar measure, weight functions and center elements of hypergroups. A characterization of topo-
logically mixing weighted translations on hypergroups is also given.

1. Introduction

Recently, chaotic, topologically transitive and mixing weighted translation opera-
tors on locally compact groups are characterized in [4, 5], which subsumes some previ-
ous works on the discrete group Z in [6, 17]. We note that locally compact groups are
a special case of hypergroups which were introduced in [8, 12, 18]. Roughly speaking,
a hypergroup is a locally compact Hausdorff space with a convolution and involution
such that the corresponding space of regular Borel measures is an associative Banach
algebra. For instance, the double coset space G//H = {HgH : g ∈ G} , in which H
is a non-normal compact subgroup of the locally compact group G , does not inherit a
group structure from G . However, the space of regular Borel measures on G//H has
an algebra structure induced by that of G . Classical examples of hypergroups include
locally compact groups, the double coset spaces, the dual object of a compact group,
the polynomial hypergroups (see [3]). Hence, naturally we intend to consider linear
chaos and topological dynamics on a wider setting of hypergroups.

Let X be a separable Banach space. An operator T on X is called topologically
transitive if for each non-empty open sets U,V ⊆ X , there exists some n ∈ N such
that Tn(U)∩V �= /0 . If Tn(U)∩V �= /0 holds from some n onwards, then T is called
topologically mixing. Following Devaney [7], we call T chaotic if it is topologically
transitive and the set of periodic elements of T , denoted by P(T ) := {x ∈ X : ∃ n ∈
N s.t. Tnx = x} , is dense in X . In this setting, topological transitivity coincides with
hypercyclicity. An operator T on X is called hypercyclic if there exists a vector x ∈ X
such that the set {x,Tx,T 2x, · · ·,Tnx, · · ·} is dense in X . One of the criterions for
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topological transitivity (hypercyclicity) of T is the so called blow up/collapse property
[10, 11], that is, for any non-empty open sets U,V and W in X with 0 ∈ W , there
exists some n ∈ N such that Tn(U)∩W �= /0 and Tn(W )∩V �= /0 . In this paper, we
show that for the operators on Lp spaces related to hypergroups, the blow up/collapse
property and topological transitivity are equivalent.

In the investigation on linear dynamics, the weighted shifts on �p(N0) or �p(Z)
are concrete examples to demonstrate the theory of transitivity and linear chaos. For
unilateral shifts T on �p(N0) , S. Rolewicz [15] showed that αT is topologically tran-
sitive whenever |α| > 1. H. Salas characterized transitive bilateral weighted shifts on
�p(Z) in [17]. Also, K. Costakis and M. Sambarino in [6] gave a sufficient and neces-
sary condition for bilateral weighted shifts on �p(Z) to be mixing. Linear chaos and
topological dynamics have been studied intensively in the past three decades. For more
details, refer to [2, 11, 13].

In this paper, we investigate topologically transitive, mixing and chaotic weighted
translation operators on the Lp space of hypergroups, extending the results on Z and
locally compact groups. In Section 2, we give some preliminaries of hypergroups, and
introduce the center elements of hypergroups, and the corresponding operators. In Sec-
tion 3, we will give some sufficient and necessary conditions for weighted translation
operators on hypergroups to be chaotic, mixing and transitive in terms of weight func-
tions and center elements of hypergroups.

2. Center of hypergroups

In this section, we recall the definition of hypergroups and some related topics. We
refer to the classical papers and book [3, 8, 12, 18] for more details about hypergroups
(see also [14] and [20]). Let K be a locally compact Hausdorff space, and M(K) be
the Banach space of regular complex Borel measures on K . The predual of M(K) is
the Banach space C0(K) of complex-valued continuous functions on K vanishing at
infinity. The support of a measure μ ∈ M(K) and the Dirac measure at x ∈ K are
denoted by supp(μ) and δx , respectively.

DEFINITION 2.1. Suppose that K is a locally compact Hausdorff space, (μ ,ν) �→
μ ∗ν is a bilinear positive-continuous mapping from M(K)×M(K) into M(K) (called
convolution), and x �→ x− is an involutive homeomorphism on K (called involution)
such that:

1. (M(K),+,∗) is a complex associative algebra;

2. for all x,y ∈ K , δx ∗ δy is a probability measure with compact support;

3. there exists a (necessarily unique) element e ∈ K (called identity) such that for
all x ∈ K , δx ∗ δe = δe ∗ δx = δx ;

4. for all x,y ∈ K , e ∈ supp(δx ∗ δy) if and only if x = y− ;

5. for all x,y ∈ K , (δx ∗ δy)(ψ̌) = (δy− ∗ δx−)(ψ) , where ψ ∈ C0(K) and ψ̌(t) :=
ψ(t−) (t ∈ K );
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6. the mapping (x,y) �→ supp(δx ∗δy) from K×K into C(K) is continuous, where
C(X) is the space of all non-empty compact subsets of K equipped with the
Michael topology.

Then (K,∗,− ,e) is called a hypergroup.

Throughout this paper, K is a hypergroup with convolution ∗ , involution − and
identity e . For μ ,σ ∈ M(K) , the convolution μ ∗σ is given by∫

K
f d(μ ∗σ) =

∫
K

∫
K

∫
K

f d(δx ∗ δy)dμ(x)dσ(y) ( f ∈C0(K)).

If K is a locally compact group, then it is a hypergroup with the convolution δx ∗ δy =
δxy and the inverse mapping x �→ x−1 as involution.

Let f : K → C be a Borel measurable function. For each x1, . . . ,xn ∈ K , we put

f (x1 ∗ . . .∗ xn) :=
∫

K
f d(δx1 ∗ · · · ∗ δxn),

if the integral exists. So by [12, 3.1F], we have

fx1(x2 ∗ . . .∗ xn) = f (x1 ∗ . . .∗ xn) = f xn(x1 ∗ . . .∗ xn−1),

where for any x,y ∈ K , f y(x) = fx(y) := f (x ∗ y) . Given a measure μ ∈ M(K) and a
Borel function f on K , we define the convolution f ∗ μ by

f ∗ μ(x) =
∫

K
f (x∗ y−)dμ(y) (x,y ∈ K)

if the integral exists. In particular, f ∗δy(x) = f (x∗y−) = f y−(x) is viewed as the right
translation of f by y− .

In the sequel, we will study weighted translation operators on the Lp space of K
with respect to a right Haar measure. A non-zero non-negative regular Borel measure
λ of K is called a (right) Haar measure if for each x ∈ K , λ ∗ δx = λ . It is not known
whether every hypergroup has a Haar measure. However, it is known that compact hy-
pergroups, commutative hypergroups, discrete hypergroups, double coset hypergroups
and nilpotent hypergroups admit a Haar measure (see [1, 12, 19]). In what follows, we
assume that K is a hypergroup with a right Haar measure λ . For all 1 � p < ∞ , we
denote by Lp(K) the Lp space with respect to the Haar measure λ , where as usual, for

each f ∈ Lp(K) , ‖ f‖p := (
∫
K | f |pdλ )

1
p . We recall the definition of the center of K .

DEFINITION 2.2. The center of a hypergroup K is defined by

Ma(K) := {x ∈ K : δx ∗ δx− = δe = δx− ∗ δx}.

The study on the center of hypergroups was initiated by Dunkl [8, 1.6], and called
the maximum subgroup in an equivalent definition by Jewett [12, 10.4]. It should be
noted that if K is a locally compact group, then Ma(K) = K .
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EXAMPLE 2.3. Let G be a central group i.e. G/Z ≡ Inn(G) is compact, where
Z := {x ∈ G : for each y ∈ G,xy = yx} and Inn(G) is the inner automorphisms group
of G with the normalized right Haar measure σ . Then (x,s) �→ s(x) from G× Inn(G)
into G is a continuous action of the compact group Inn(G) on G . For each x ∈ G and
s ∈ Inn(G) , we put [x] := {s(x) : s ∈ Inn(G)} , and GI := {[x] : x ∈ G} . Then GI with
the operation

(δ[x] ∗ δ[y])(φ) :=
∫

Inn(G)
φ([s(x)y])dσ(s), (φ ∈C0(GI))

as convolution and [x]− := [x−1] as involution, is a hypergroup and admits a (right)
Haar measure (for more details, see [12, 8.3]). We have Ma(GI) = {[z] : z ∈ Z} [16]. In
particular, if G = SU(2) , then GI = [0,2π ] and Ma(GI) = {0,2π} . Also if G = SO(2) ,
then GI = [0,π ] and Ma(GI) = {0} .

EXAMPLE 2.4. Let Z∞
+ be the one-point compactification of Z+ := {0,1,2, . . .} .

Fix a prime number p . For all m,n ∈ Z+ , we define

δm ∗ δn :=

⎧⎨⎩
δmin{m,n}, m �= n

p−2
p−1δn + ∑∞

k=n+1
1

pk−n δk, m = n

and δm ∗δ∞ = δ∞ ∗δm := δm . Then Z∞
+ is a Hermitian hypergroup with the identity ∞ .

This important class of compact countable hypergroups was introduced by Dunkl and
Ramirez in [9]. The dual of Z∞

+ equals to {χn : n = 0,1,2, ..} , where the function χn

is defined on Z∞
+ by

χn(m) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, m � n or m = ∞

−1
p−1 , m = n−1

0, m � n−2.

Then we have the following convolution on Ẑ∞
+
∼= Z+ :

δχn ∗ δχm :=

⎧⎨⎩
δχmax{m,n} , n �= m

1
pn−1(p−1)δχ0 + ∑n−1

k=1 pk−nδχk + p−2
p−1δχn , n = m

with χ0 as the identity. If we identify χn and n , then Z+ is a Hermitian hypergroup
(see [9]). We have Ma(Z+) = {0} and Ma(Z∞

+) = {∞} .

The center elements of a hypergroup have many nice properties. For instance, for
each a ∈ Ma(K) and y ∈ K , the sets supp(δa ∗ δy) and supp(δy ∗ δa) are singletons
by [12, 10.4B]. However, in general, supp(δx ∗ δy) does not need to be a singleton for
x,y∈K . Hence if a∈Ma(K) and n∈N , we denote the unique element of the singleton

supp(

n−times︷ ︸︸ ︷
δa ∗ . . .∗ δa) by an . Also, if we write

f ∗ δ n
a = f ∗ (

n−times︷ ︸︸ ︷
δa ∗ · · · ∗ δa),
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then f ∗δ n
a = f ∗δan . Also we have the right invariance of the norm of a Borel function

after translation by a ∈ Ma(K) . In general, for x ∈ K and f ∈ Lp(K) , one only has
‖ f x‖p � ‖ f‖p .

LEMMA 2.5. Let a ∈ Ma(K) and f ∈ Lp(K) . Then ‖ f a‖p = ‖ f‖p .

Proof. Assume a ∈ Ma(K) and f ∈ Lp(K) . Then for g(x) := | f a(x)|p , supp(δx ∗
δa−) := {tx} ,

‖ f a‖p
p =

∫
K
| f a(x)|pdλ (x)

=
∫

K
g(x)dλ (x)

=
∫

K
ga−(x)dλ (x) (apply [12, 3.3F] for right Haar measure)

=
∫

K
g(x∗ a−)dλ (x)

=
∫

K
g(tx)dλ (x)

=
∫

K
| f a(tx)|pdλ (x)

=
∫

K
| f (tx ∗ a)|pdλ (x)

=
∫

K
| f (x)|pdλ (x) = ‖ f‖p

p

since

f (tx ∗ a) =
∫

K
f d(δtx ∗ δa) =

∫
K

f d(δx ∗ δa− ∗ δa) = f (x). �

In this paper, we investigate linear dynamics of weighted translation operators
induced by weight functions and center elements of hypergroups. Every bounded con-
tinuous function w : K → (0,∞) is called a weight on K . Let a ∈ Ma(K) and w be a
weight on K . Then a weighted translation operator Ta,w : Lp(K) −→ Lp(K) is defined
by

Ta,w( f ) := w · ( f ∗ δa) ( f ∈ Lp(K)).

In fact,

( f ∗ δa)(x) =
∫

K
f (x∗ y−)dδa(y) = f (x∗ a−) = f a−(x) (x ∈ K).

For f ∈ Lp(K) , one has Ta,w( f ) ∈ Lp(K) by [12, 3.3B]. It is clear that if w ≡ 1, then
by Lemma 2.5 we have ‖Ta,1‖ = 1 and so Ta,1 can not be hypercyclic.

Note that in general, for any x ∈ K , there is no relation between ( f g)x and f xgx .
However, we have the following lemma for center elements.
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LEMMA 2.6. Let a ∈ Ma(K) and f ,g : K → C be Borel measurable functions.
Then ( f g)a = f aga .

Proof. Let a ∈ Ma(K) and x ∈ K . Let {b} := supp(δx ∗ δa) . Since δx ∗ δa is a
probability measure, we have δx ∗ δa = δb . Hence

( f g)a(x) = ( f g)(x∗ a) =
∫

K
f (t)g(t)d(δx ∗ δa)(t)

= f (b)g(b)

=
∫

K
f d(δx ∗ δa)

∫
K

gd(δx ∗ δa)

= f a(x)ga(x). �

REMARK 2.7. By Lemma 2.6,

T 2
a,w f = Ta,w(Ta,w f ) = Ta,w(wf a−) = w(wf a−)a− = wwa− f (a−)2

thus
Tm
a,w f = wwa− . . .w(a−)m−1

f (a−)m

for all m ∈ N .

Throughout this paper, we assume that w,w−1 ∈ L∞(K) . Under this assumption,
the operator Ta,w has an inverse as follows.

LEMMA 2.8. Let w−1 ∈ L∞(K) and a ∈ Ma(K) . Then the operator Sa,w : Lp(K)
−→ Lp(K) defined by

Sa,w( f ) =
f
w
∗ δa− ( f ∈ Lp(K)),

is the inverse of Ta,w .

Proof. By Lemma 2.6, for each x ∈ K and a ∈ Ma(K)

Sa,w f (x) =
(

f
w
∗ δa−

)
(x) =

(
f
w

)
(x∗ a) =

1
w(x∗ a)

f (x∗ a).

Hence

Ta,w(Sa,w f )(x) = w(x)(Sa,w f )(x∗ a−) = w(x)
∫

K
Sa,w f (t)d(δx ∗ δa−)(t)

= w(x)
∫

K

( f
w

)
(t ∗ a)d(δx ∗ δa−)(t)

= w(x)
∫

K

( f
w

)a
(t)d(δx ∗ δa−)(t)

= w(x)
( f

w

)a
(x∗ a−)
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= w(x)
( f

w

)
x
(a− ∗ a) (by [12, 3.1F])

= w(x)
( f

w

)
(x) = f (x).

Similarly, one can show that Sa,w(Ta,w f ) = f . �

3. Chaotic operators on hypergroups

In this section, we will first give sufficient and necessary conditions for weighted
translations on hypergroups to be topologically transitive and mixing. By applying
the characterization of transitivity, the description of chaos follows. Let us define the
convolution of two subsets A and B of a hypergroup K by

A∗B :=
⋃
{supp(δx ∗ δy) : x ∈ A,y ∈ B}.

For each n ∈ N and x ∈ K , we put

A∗ {x}n = (· · ·(A∗
n−times︷ ︸︸ ︷

{x})∗ · · ·)∗{x}.

For a ∈ Ma(K) , x ∈ K and n ∈ N , we define

ϕn(x) := w(x∗ a)w(x∗ a2) · · ·w(x∗ an),

and

ϕ̃n(x) :=
1

w(x)w(x∗ a−) · · ·w(x∗ (a−)n−1)
.

Also, we put

νn(E) :=
∫

E
ϕ p

n (x)dλ (x) and ν̃n(E) :=
∫

E
ϕ̃ p

n (x)dλ (x),

where 1 � p < ∞ and E is a Borel subset of K .
Now we are ready to give a characterization for transitivity of Ta,w using a different

approach from that in [5] where the property of aperiodic elements (cf. Definition 3.3)
was applied in the proof of [5, Theorem 2.3]. Here we do not use aperiodicity to
obtain Theorem 3.1. In particular, if K is a locally compact group, then M(K) = K .
Hence Theorem 3.1 can be regarded as an extension of [5, Theorem 2.3] from aperiodic
elements of locally compact groups to center elements of hypergroups.

THEOREM 3.1. Let K be a hypergroup and a ∈ Ma(K) . Let 1 � p < ∞ and
w,w−1 ∈ L∞(K) . If Ta,w is a weighted translation operator on Lp(K) , then the follow-
ing are equivalent.

(i) Ta,w is topologically transitive.

(ii) Ta,w satisfies the blow up/collapse property.
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(iii) For each compact subset C⊆K with λ (C)> 0 , there are a sequence of Borel sets
(Ek) in C, and a sequence (nk) of positive numbers such that λ (C) = lim

k→∞
λ (Ek)

and lim
k→∞

νnk(Ek) = lim
k→∞

ν̃nk(Ek) = 0.

Proof. (iii) ⇒ (ii). Let U,V and W be non-empty open subsets of Lp(K) with
0 ∈W . Since the space Cc(K) of continuous functions on G with compact support is
dense in Lp(K) , we can pick f ,g ∈Cc(K) with f ∈U and g ∈V . Let C be the union
of the compact supports of f and g . Assume that Ek ⊆C , νnk(Ek) and ν̃nk(Ek) satisfy
condition (iii).

Choose ε > 0 such that B(0,ε) := {h∈ Lp(K) : ‖h−0‖p < ε}⊆W , B( f ,ε)⊆U ,
and B(g,ε) ⊆ V . By condition (iii), there exists N ∈ N such that νnk(Ek)‖ f‖p

∞ < ε p

and ‖ f‖p
∞λ (C \Ek) < ε p for all k > N . Using Lemma 2.5 and the right invariance of

the Haar measure λ , we have the following estimate:

‖Tnk
a,w( f χEk

)‖p
p

=
∫

K
|w(x)w(x∗ a−) · · ·w(x∗ (a−)nk−1)|p| f (x∗ (a−)nk)|p|χEk

(x∗ (a−)nk)|pdλ (x)

=
∫

K
|w(x∗ ank)w(x∗ ank−1) · · ·w(x∗ a)|p| f (x)|p|χEk

(x)|pdλ (x)

=
∫

Ek

|w(x∗ ank)w(x∗ ank−1) · · ·w(x∗ a)|p| f (x)|pdλ (x)

=
∫

Ek

ϕ p
nk

(x)| f (x)|pdλ (x) � νnk(Ek)‖ f‖p
∞ < ε p

implying Tnk
a,w( f χEk) ∈W . Moreover, f χEk ∈ B( f ,ε) ⊆U by

‖ f − f χEk‖p
p =

∫
G
| f (x)χC(x)− f (x)χEk(x)|pdλ (x)

� ‖ f‖p
∞λ (C \Ek) < ε p.

Hence, we attain
Tnk
a,w( f χEk) ∈ Tnk

a,w(U)∩W.

By applying a similar argument to Sa,w with ν̃nk (Ek) ,

lim
k→∞

‖g−gχEk‖p
p = 0 and lim

k→∞
‖Snk

a,w(gχEk)‖p
p = 0.

Therefore, gχEk ∈V and Snk
a,w(gχEk) ∈W , for some k . Hence,

Tnk
a,wSnk

a,w(gχEk) = gχEk ∈ Tnk
a,w(W )∩V.

Hence the operator Ta,w satisfies the blow up/collapse property, and Ta,w is topologi-
cally transitive.

(i) ⇒ (iii). Let Ta,w be transitive, and let C ⊆ K be a compact set with λ (C) > 0.
We denote by χC ∈ Lp(K) the characteristic function on C . Given ε ∈ (0,1) , by the
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assumption of topological transitivity of Ta,w , there exist a vector f ∈ Lp(K) and some
m ∈ N such that

‖ f − χC‖p < ε2 and ‖Tm
a,w f + χC‖p < ε2.

Without loss of generality, we may assume that f is real-valued by the continuity of
the mapping h ∈ Lp(K,C) �→ Re h ∈ Lp(K,R) and the fact that Ta,w commutes with
it. Also, the mapping h ∈ Lp(K,R) �→ h+ ∈ Lp(K,R) commutes with Ta,w where
h+ = max{0,h} . Therefore, for a Borel set F ⊆ K , we have

‖(Tm
a,w f +)χF ‖p � ‖(Tm

a,w f )+‖p = ‖(Tm
a,w f − (−χC)+ (−χC))+‖p

� ‖(Tm
a,w f − (−χC))+‖p +‖(−χC)+‖p

= ‖(Tm
a,w f − (−χC))+‖p � ‖Tm

a,w f + χC‖p < ε2,

and

‖ f−χF‖p � ‖ f−‖p = ‖( f − χC + χC)−‖p

� ‖( f − χC)−‖p +‖χ−
C ‖p

= ‖ f − χC‖p < ε2,

where f− = max{0,− f} . Let A := {x ∈C : | f (x)−1| � ε} . Then

ε2p > ‖ f − χC‖p
p �

∫
A
| f (x)−1|pdλ (x) � ε pλ (A).

Similarly, for B := {x ∈C : |Tm
a,w f (x)+1|� ε} ,

ε2p > ‖Tm
a,w f + χC‖p

p �
∫

B
|Tm

a,w f (x)+1|pdλ (x) � ε pλ (B).

Setting E = C \ (A∪B) , it follows that λ (C \E) < 2ε p ,

f (x) > 1− ε > 0 and Tm
a,w f (x) < ε −1 < 0 (x ∈ E).

Hence, by the right invariance of the Haar measure λ ,

ε2p > ‖(Tm
a,w f +)χ

E∗{a}m‖p
p

=
∫

K
|χ

E∗{a}m (x)|p|Tm
a,w f +(x)|pdλ (x)

=
∫

K
|χ

E∗{a}m (x)|p|w(x)w(x∗ a−) · · ·w(x∗ (a−)m−1)|p| f +(x∗ (a−)m)|pdλ (x)

�
∫

K
|χ

E∗{a}m (x∗ am)|p|w(x∗ am)w(x∗ am−1) · · ·w(x∗ a)|p| f +(x)|pdλ (x)

=
∫

E
|w(x∗ am)w(x∗ am−1) · · ·w(x∗ a)|p| f +(x)|pdλ (x)

> (1− ε)p
∫

E
ϕ p

m(x)dλ (x) = (1− ε)pνm(E),
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and

ε2p > ‖ f−χ
E∗{a−}m‖p

p =
∥∥∥(Sm

a,wTm
a,w f−

)
χ

E∗{a−}m

∥∥∥p

p

=
∫

K
|χ

E∗{a−}m (x)|p ∣∣Sm
a,w(Tm

a,w f−)(x)
∣∣p dλ (x)

=
∫

K
|χ

E∗{a−}m (x)|p 1
|w(x∗ a)w(x∗ a2) · · ·w(x∗ am)|p |T

m
a,w f−(x∗ am)|pdλ (x)

�
∫

K
|χ

E∗{a−}m (x∗ (a−)m)|p 1
|w(x∗ (a−)m−1)w(x∗ (a−)m−2) · · ·w(x)|p

×|Tm
a,w f−(x)|pdλ (x)

=
∫

E

1
|w(x∗ (a−)m−1)w(x∗ (a−)m−2) · · ·w(x)|p |(T

m
a,w f )−(x)|pdλ (x)

> (1− ε)p
∫

E
ϕ̃ p

m(x)dλ (x) = (1− ε)pν̃m(E),

which gives condition (iii). �

By strengthening the condition (iii) in Theorem 3.1, we give a sufficient and nec-
essary condition for weighted translation operators on hypergroups to be topologically
mixing.

COROLLARY 3.2. Let K be a hypergroup and a ∈ Ma(K) . Let 1 � p < ∞ and
w,w−1 ∈ L∞(K) . If Ta,w is a weighted translation operator on Lp(K) , then the follow-
ing are equivalent.

(i) Ta,w is topologically mixing.

(ii) For each compact subset C ⊆K with λ (C) > 0 , there is a sequence of Borel sets
(En) in C such that λ (C) = lim

n→∞
λ (En) and lim

n→∞
νn(En) = lim

n→∞
ν̃n(E) = 0.

Proof. (ii) ⇒ (i). Let U and V be nonempty open subsets of Lp(K) . We pick
f ,g ∈Cc(K) with f ∈U and g ∈V . Let C be the union of the compact supports of f
and g . Assume En ⊆C , νn(En) and ν̃n(En) satisfy condition (ii). As in the proof of
Theorem 3.1, we have

lim
k→∞

‖Tn
a,w( f χEn

)‖p = lim
k→∞

‖Sn
a,w(gχEn

)‖p = 0.

For each n ∈ N and
vn = f χEn

+Sn
a,w(gχEn

) ∈ Lp(K),

we have
‖vn− f‖p � ‖ f χ

C\En
‖p +‖Sn

a,w(gχEn
)‖p,

and
‖Tn

a,wvn−g‖p � ‖Tn
a,w( f χEn

)‖p +‖gχ
C\En

‖p.



CHAOTIC OPERATORS ON HYPERGROUPS 153

Therefore, limn→∞ vn = f and limn→∞ Tn
a,wvn = g , which imply Tn

a,w(U)∩V �= /0 from
some n onwards.

(i) ⇒ (ii). Let Ta,w be topologically mixing and C ⊆ K be a compact set with
λ (C) > 0. Given ε ∈ (0,1) , by the topological mixing of Ta,w , there exist a vector
f ∈ Lp(K) and N ∈ N such that

‖ f − χC‖p < ε2 and ‖Tn
a,w f + χC‖p < ε2,

for all n � N . By a similar argument as in the proof of Theorem 3.1, one can obtain
condition (ii). �

Based on the result in Theorem 3.1 and the property of aperiodicity of elements,
we characterize chaotic weighted translation operators on hypergroups. Inspired by
the study on aperiodic elements of a locally compact group in [5], the definition of
aperiodic elements for hypergroups is formulated as below.

DEFINITION 3.3. An element a ∈ Ma(K) is called aperiodic if for each compact
subset C ⊆ K with λ (C) > 0, there exists N ∈ N such that C∩ (C ∗ {a}n) = /0 for all
n � N .

If K is a locally compact group, then Ma(K) = K and we get another equivalent
condition for aperiodicity, that is, a ∈ K is aperiodic if and only if, given compact
subset C ⊆ K with λ (C) > 0, there exists N ∈ N such that Carn ∩Casn = /0 , for all
n � N and r,s∈Z with r �= s . Indeed, if a is aperiodic and Carn∩Casn �= /0 with r < s ,
then for some y∈C we have yarn ∈Casn , which says y∈C∩Ca(s−r)n , a contradiction.
We formulate this condition for hypergroups as follows.

LEMMA 3.4. An element a ∈ Ma(K) is aperiodic if and only if for each compact
subset C ⊆K with λ (C) > 0 , there exists N ∈N such that (C∗{a}rn)∩(C∗{a}sn) = /0
for all n � N and r,s ∈ Z with r �= s, where {a}−n := {a−}n .

Proof. Let a ∈ Ma(K) and C ⊆ K be a compact set with λ (C) > 0. Assume that
there exists N ∈ N such that (C ∗ {a}rn)∩ (C ∗ {a}sn) = /0 , for all n � N and r,s ∈ Z

with r �= s . Taking r = 0 and s = 1, it follows that a is aperiodic.
For the converse, given a compact subset C of K with λ (C) > 0, by the assump-

tion of aperiodicity of a , there exists N ∈N such that C∩(C∗{a}n) = /0 , for all n � N .
Now take x ∈ (C ∗{a}rn)∩ (C ∗{a}sn) , for some n � N and distinct elements r,s ∈ Z .
By [12, 4.1B], for each A,B,E ⊆ K , A∩ (B∗E) �= /0 , if and only if, (A∗E−)∩B �= /0 ,
where E− := {t− : t ∈ E} . Using this property, one can deduce that x ∈C ∗ {a}rn and
there exists an element z ∈C∩ ({x} ∗ {a}−sn) . These imply that

z ∈C∩ (C ∗ {a}rn ∗ {a}−sn) =C∩ (C ∗ {a}(r−s)n),

which contracts the aperiodicity of a . �
Here, applying a similar idea as in the proof of [4, Theorem 2.1], we obtain the

next result. We include the proof for the sake of completeness.
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THEOREM 3.5. Let K be a hypergroup, and a ∈ Ma(K) be an aperiodic. Let
1 � p < ∞ and w,w−1 ∈ L∞(K) . If Ta,w is a weighted translation on Lp(K) , and
P(Ta,w) is the set of periodic elements of Ta,w , then the following are equivalent.

(i) Ta,w is chaotic.

(ii) P(Ta,w) is dense in Lp(K) .

(iii) For each compact subset C⊆K with λ (C)> 0 , there are a sequence of Borel sets
(Ek) in C, and a sequence (nk) of positive numbers such that λ (C) = lim

k→∞
λ (Ek)

and

lim
k→∞

(
∞

∑
l=1

νlnk (Ek)+
∞

∑
l=1

ν̃lnk(Ek)

)
= 0.

Proof. We will show (ii) ⇒ (iii), and (iii) ⇒ (i).
(ii) ⇒ (iii). Let C ⊆ K be a compact set with λ (C) > 0. Since a is aperiodic,

there exists N ∈ N such that C∩ (C ∗ {a}m) = /0 for all m > N . Let χC ∈ Lp(K) be
the characteristic function of C . By the density of P(Ta,w) , we can find a sequence
( fk) of periodic points of Ta,w satisfying ‖ fk − χC‖p < 1

4k , and a sequence (nk) ⊂ N

such that Tnk
a,w fk = fk = Snk

a,w fk , where we may assume nk+1 > nk > N . Therefore,
(C∗{a}rnk)∩(C∗{a}snk )= /0 , for all r,s∈Z with r �= s . Let Ak = {x∈C : | fk(x)−1|�
1
2k } and let Ek = C \Ak . As in the proof of Theorem 3.1, we have

| fk(x)| > 1− 1
2k (x ∈C \Ak) and λ (C \Ak) <

1
2pk .

Moreover, by the right invariance of the Haar measure λ , and (C ∗ {a}rnk) ∩ (C ∗
{a}snk) = /0 , for r �= s ,

1
4pk > ‖ fk − χC‖p

p =
∫

G
| fk(x)− χC(x)|pdλ (x) �

∫
G\C

| fk(x)|pdλ (x)

�
∞

∑
l=1

∫
C∗{a}lnk

| fk(x)|pdλ (x)+
∞

∑
l=1

∫
C∗{a−}lnk

| fk(x)|pdλ (x)

=
∞

∑
l=1

∫
K
| fk(x)|pχC∗{a}lnk (x)dλ (x)+

∞

∑
l=1

∫
K
| fk(x)|pχC∗{a−}lnk (x)dλ (x)

=
∞

∑
l=1

∫
K
|T lnk

a,w fk(x)|pχC∗{a}lnk (x)dλ (x)+
∞

∑
l=1

∫
K
|Slnk

a,w fk(x)|pχC∗{a−}lnk (x)dλ (x)

=
∞

∑
l=1

∫
K
|T lnk

a,w fk(x∗ alnk)|pχC∗{a}lnk (x∗ alnk)dλ (x)

+
∞

∑
l=1

∫
K
|Slnk

a,w fk(x∗ (a−)lnk )|pχC∗{a−}lnk (x∗ (a−)lnk )dλ (x)

=
∞

∑
l=1

∫
C
|T lnk

a,w fk(x∗ alnk)|pdλ (x)+
∞

∑
l=1

∫
C
|Slnk

a,w fk(x∗ (a−)lnk )|pdλ (x)
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�
∞

∑
l=1

∫
Ek

|T lnk
a,w fk(x∗ alnk)|pdλ (x)+

∞

∑
l=1

∫
Ek

|Slnk
a,w fk(x∗ (a−)lnk )|pdλ (x)

=
∞

∑
l=1

∫
Ek

|ϕlnk(x) fk(x)|pdλ (x)+
∞

∑
l=1

∫
Ek

|ϕ̃lnk(x) fk(x)|pdλ (x)

>

(
1− 1

2k

)p ∞

∑
l=1

νlnk (Ek)+
(

1− 1
2k

)p ∞

∑
l=1

ν̃lnk(Ek)

which proves condition (iii).
(iii) ⇒ (i). It follows from Theorem 3.1 that Ta,w is topologically transitive.

Therefore, we only need to show that P(Ta,w) is dense in Lp(K) . Let f ∈ Cc(K)
with compact support C ⊆ K . Then there is a sequence of Borel sets (Ek) in C such
that λ (C) = lim

k→∞
λ (Ek) . As in the proof of Theorem 3.1, one has

‖T lnk
a,w( f χEk

)‖p
p � νlnk(Ek)‖ f‖p

∞ and ‖Slnk
a,w( f χEk

)‖p
p � ν̃lnk(Ek)‖ f‖p

∞.

Now let

vk := f χEk +
∞

∑
l=1

T lnk
a,w ( f χEk)+

∞

∑
l=1

Slnk
a,w( f χEk ) ∈ Lp(G).

Then, by (C ∗ {a}rnk)∩ (C ∗ {a}snk) = /0 , we have

‖vk − f‖p
p � ‖ f‖p

∞λ (K \Ek)+
∞

∑
l=1

‖T lnk
a,w ( f χEk)‖p

p +
∞

∑
l=1

‖Slnk
a,w( f χEk )‖p

p

� ‖ f‖p
∞λ (K \Ek)+‖ f‖p

∞

(
∞

∑
l=1

νlnk(Ek)+
∞

∑
l=1

ν̃lnk (Ek)

)

which implies that vk → f as k → ∞ . Moreover,

Tnk
a,wvk = Tnk

a,w( f χEk)+
∞

∑
l=1

Tnk
a,wT lnk

a,w ( f χEk)+
∞

∑
l=1

Tnk
a,wSlnk

a,w( f χEk)

=
∞

∑
l=1

T lnk
a,w ( f χEk)+ f χEk +

∞

∑
l=1

Slnk
a,w( f χEk) = vk.

Combing all these, P(Ta,w) is dense in Lp(K) . �
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