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Abstract. The purpose of this paper is to introduce a two-stage procedure that can be used to
decompose a discrete-time algebraic Riccati equation into a trivial part, a part that is entirely
arbitrary, and a part that can be obtained by computing the set of solutions of a reduced-order
Riccati equation whose associated symplectic pencil has no generalized eigenvalues on the unit
circle.

1. Introduction

In the past fifty years, Riccati equations have been found to emerge as fundamental
tools in several branches of engineering and applied mathematics, including network
analysis, optimal control and filtering, spectral factorization, stochastic realization to
name only a few. Several monographs have been entirely devoted to the study of Riccati
equations, [20, 21, 15, 14, 1].

In particular, many techniques have appeared in the literature on the issue of the re-
duction of the order of Riccati equations. These contributions include – but are far from
being limited to – [17, 11, 12, 13, 4, 9, 18]. The development of these techniques has
been even more intense for the case of discrete-time algebraic (and difference) Riccati
equations, because the structure of these equations is richer and more challenging than
the structure of their continuous-time counterpart. Two main theoretical/computational
difficulties arise in the determination of the set of solutions of a discrete-time algebraic
Riccati equation. The first is the case in which the symplectic pencil and/or the closed-
loop matrix is singular. The second is the one where some generalized eigenvalues of
the symplectic pencil lie on the unit circle.

Some results that have been published on this topic have focussed on reduction
techniques that are tailored to the task of computing the stabilizing solution of the Ric-
cati equation. Some others, which include [4, 9, 18], can be employed to reduce the
order of the Riccati equation to the end of obtaining the full set of Hermitian solutions
of the original Riccati equation.
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In particular, in [4] a method was presented which, differently from earlier con-
tributions presented on this topic, aimed at iteratively decomposing DARE(Σ) into a
trivial part and a reduced DARE whose associated closed-loop matrix is non-singular.
The subsequent contribution [9] achieves a similar goal by avoiding the need for an
iterative procedure. A further important advantage of [9] over [4] lies in the fact that
the technique in [9] can also be applied in the case of an indefinite Popov matrix. In
[18], the method of [4] was revisited and extended to the case of the so-called general-
ized discrete algebraic Riccati equation, which has been the object of intensive studies
in the past twenty years, because it provides an important generalization of the classic
Riccati equation and, as shown e.g. in [7] and [8], it represents the most natural tool to
use in the solution of indefinite/semidefinite, finite/infinite horizon discrete-time linear
quadratic optimal control problems, see also [1, 5, 6, 13, 14, 19]. For the dual version
in filtering problems we refer the reader to [23, 24, 25]. The framework associated with
the constrained generalized Riccati equation is the one that corresponds to the case in
which the symplectic pencil is singular. The procedure developed in [18] hinges on the
idea of decomposing the generalized Riccati equations into two parts, which correspond
to an additive decomposition X = X0 + Δ of each solution X of the Riccati equation.

The first part provides an explicit expression of the term X0 , which is fixed and
independent of the particular solution X . The second part can be either a reduced-order
discrete-time standard algebraic Riccati equation whose associated closed-loop matrix
is non-singular, or a symmetric Stein equation. However, regardless of the structure of
the original discrete-time algebraic Riccati equation, the reduced-order regular Riccati
equation obtained as a result of the application of any of the methods in [4, 9, 18] still
corresponds to a closed-loop matrix which may contain eigenvalues on the unit circle,
and this represents a major computational issue in the calculation of the set of solutions
to this equation, see for example the MATLAB R© routine dare.m for the computation
of the stabilizing solution of the discrete-time algebraic Riccati equation.1 The main
purpose of this paper is to address this issue, by proposing a reduction whose aim is
to decompose the Riccati equation that one obtains by applying one of the procedures
outlined in [4, 9, 18] (which is characterized by the fact that the closed-loop matrix is
non-singular) into a trivial part, a part which is arbitrary, a part that can be obtained by
solving a reduced-order discrete algebraic Riccati equation, and a part that can come
from the solution of a reduced-order continuous-time algebraic Riccati equation.

2. Preliminaries

This paper is concerned with the problem of computing the set of Hermitian solu-
tions of the so-called discrete-time algebraic Riccati equation DARE(Σ)

X = A∗XA− (A∗XB+S)(R+B∗XB)−1(B∗XA+S∗)+Q, (1)

where A , B , Q , R and S are given matrices of sizes n× n , n×m , n× n , m×m
and n×m , respectively, and are such that the Popov matrix, here denoted by Π , is

1When running the dare.m command in MATLAB R© , in such case one obtains an error message which
warns the user that “the symplectic spectrum is too close to the unit circle”.
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Hermitian and positive semidefinite, i.e., it satisfies

Π def=
[

Q S
S∗ R

]
= Π∗ � 0. (2)

The set of matrices Σ = (A,B;Π) is often referred to as Popov triple. For any matrix
X = X ∗ ∈ Cn×n , we define the gain matrix

KX
def= (R+B∗X B)−1 (S∗ +B∗X A) (3)

as well as the closed-loop matrix

AX
def= A−BKX . (4)

As recalled in Section 1, DARE(Σ) is generalized by the so-called constrained
generalized discrete-time algebraic Riccati equation, herein denoted by CGDARE(Σ),
given by

X = A∗XA− (A∗XB+S)(R+B∗XB)†(S∗ +B∗XA)+Q, (5)

ker(R+B∗X B) ⊆ ker(A∗ X B+S), (6)

where the symbol † in (5) denotes the Moore-Penrose pseudo-inverse operation.2

CGDARE(Σ) – rather than DARE(Σ) – represents the natural equation arising in
the solution of Linear Quadratic optimal control and filtering problems, [19, 8]. In fact,
it is only when the underlying linear system (obtained by the full-rank factorization

Π =
[

C∗
D∗

]
[C D ] and considering a system described by the quadruple (A,B,C,D)) is

left invertible that the standard DARE(Σ) admits solutions. The dynamic optimiza-
tion problem, however, may still admit solutions in the more general setting where the
underlying linear system is not left-invertible so that the corresponding Popov func-

tion Φ(z) def= [G(z−1)]∗Π G(z) , with G(z) def=
[

(zI−A)−1B

Im

]
, is singular. In these cases,

however, the standard DARE(Σ) does not admit solutions and the correct equation that
must be used to address the original optimization problem is CGDARE(Σ), see e.g.
[5]. As discussed in [1, Chapt. 6], these general situations are particularly relevant
in the context of stochastic control problems, see also [3, 10] and the references cited
therein. It was also observed in [7] that generalized Riccati equations appear to be a
more direct and natural way than the standard Riccati equations in the solution of in-
definite Linear Quadratic optimal control problems. On the other hand, whenever the
standard DARE(Σ) admits solutions, the set of its solutions coincides with the set of so-
lutions of CGDARE(Σ). This means that CGDARE(Σ) is a genuine generalization of
DARE(Σ). As already mentioned, in [18] two iterative procedures were presented that
reduce a general CGDARE(Σ) to a DARE(Σ) of smaller order featuring a non-singular
closed-loop matrix and a non-singular matrix R . Both these reduction procedures can

2We recall that given an arbitrary matrix M ∈Ch×k , there exists a unique matrix M† ∈Ck×h that satisfies
the following four properties: (1) MM† M = M ; (2) M† MM† = M† ; (3) (M† M)∗ = M† M ; (4) (MM†)∗ =
MM† . By definition, the matrix M† is the Moore-Penrose pseudo-inverse of the matrix M .
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be carried out only using the problem data A,B,Q,R,S . This means that these two
procedures can be performed without the need to compute a particular solution of the
Riccati equation. The fact that, when R is non-singular, CGDARE(Σ) reduces to a
DARE(Σ) is a consequence of the inclusion ker(R+B∗ X B) ⊆ kerR , see [18, Proposi-
tion 1] and [5, Lemma 4.1]. This paper presents an additional iterative procedure – to
be carried out after the two aforementioned procedures have been applied to a Riccati
equation to obtain a DARE(Σ) with non-singular matrices AX and R – that at each
step delivers a reduced order DARE where the eigenvalues on the unit circle of the
closed-loop matrix have been eliminated.

Since we are considering that at each iteration of the procedure presented here we
first perform the procedure in [18], we eliminate the closed-loop eigenvalues on the unit
circle assuming without loss of generality that DARE(Σ) under consideration is such
that AX and R are invertible.

The procedures in [4, 9, 18], together with the technique presented in this paper,
enable us to obtain the entire set of Hermitian solutions of any generalized discrete-
time algebraic Riccati equation by resorting to the computation of the set of solutions
of well-behaved reduced order Riccati equations or Stein equations.

We recall that the so-called symplectic pencil is defined as the matrix pencil NΣ −
zMΣ , where

MΣ
def=

⎡⎣ In 0 0
0 −A∗ 0
0 −B∗ 0

⎤⎦ and NΣ
def=

⎡⎣ A 0 B
Q −In S
S∗ 0 R

⎤⎦ .

When the matrix pencil NΣ − zMΣ is regular (i.e., when there exists z ∈ C such that
det(NΣ − zMΣ) �= 0), CGDARE(Σ) becomes indeed a DARE(Σ), whereas the case
where NΣ − zMΣ is singular (i.e., the determinant of NΣ − zMΣ is the zero polyno-
mial) corresponds to a case in which DARE(Σ) does not admit solutions. It is shown
in [4] for DARE(Σ) and in [6] for CGDARE(Σ) that if AX is singular, the Jordan
structure of AX associated with the eigenvalue λ = 0 is completely determined by the
matrix pencil NΣ − zMΣ (and therefore by the parameters of the problem), and is inde-
pendent of the particular solution X of DARE(Σ) or CGDARE(Σ). It is also shown
in [4] that in the case where the matrix pencil NΣ − zMΣ is regular (or, equivalently,
the CGDARE(Σ) and the standard DARE(Σ) have the same solutions) the following
statements are equivalent:

(1) NΣ is singular;

(2) NΣ − zMΣ has a generalized eigenvalue at zero;

(3) there exists a solution X of CGDARE(Σ) such that the closed-loop matrix AX is
singular;

(4) for any solution X of CGDARE(Σ), the corresponding closed-loop matrix AX is
singular;

(5) at least one of the two matrices R and A−BR†S∗ is singular.
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The following result [18] is a well-known result of the classic Riccati theory, which
shows how to eliminate the cross-penalty matrix S .

LEMMA 1. Let A0
def= A−BR−1 S∗ and Q0

def= Q− SR−1 S∗ . Moreover, let Π0
def=[

Q0 0

0 R

]
and Σ0

def= (A0,B,Π0) . Then, the following statements hold true:

(i) DARE(Σ) has the same set of Hermitian solutions as DARE(Σ0 )

X = A∗
0 X A0 −A∗

0 X B(R+B∗X B)−1B∗ X A0 +Q0; (7)

(ii) for any Hermitian solution X of DARE(Σ), we have

AX = A0X
def= A0 −B(R+B∗XB)−1 B∗ X A0;

(iii) Q0 � 0 .

Another useful result that can be established by direct computation is the following.

LEMMA 2. Let T ∈ Cn×n be unitary. Let Ã0
def= T ∗A0 T , B̃

def= T ∗B, and Q̃0
def=

T ∗Q0 T . Let also ΠT
def=

[
QT 0

0 R

]
and ΣT

def= (AT ,BT ,ΠT ) . Then, X is a Hermitian

solution of DARE(Σ) – and therefore also of DARE(Σ0 ) – if and only if X̃ = T ∗X T is
a Hermitian solution of DARE(ΣT )

X̃ = Ã∗
0 X̃ Ã0 − Ã∗

0 X̃ B̃(R+ B̃∗ X̃ B̃)−1B̃∗X̃ Ã0 + Q̃0. (8)

The following lemma presents a useful decomposition of the symplectic pencil,
see [6] for a proof.

LEMMA 3. Let X be a symmetric solution of DARE(Σ). Let RX = R + B∗ X B
and let KX be the associated gain and AX be the associated closed-loop matrix. Two
invertible matrices UX and VX of suitable sizes exist such that

UX (NΣ − zMΣ)VX =

⎡⎣AX − zIn 0 B
0 In − zA∗

X 0
0 −zB∗ RX

⎤⎦ . (9)

Since RX is non-singular, the dynamics represented by the symplectic matrix pencil
NΣ − zMΣ are decomposed into a part governed by the generalized eigenstructure of
AX −zIn , a part governed by the finite generalized eigenstructure of In−zA∗

X , and a part
which corresponds to the dynamics of the eigenvalue at infinity. Thus, the generalized
eigenvalues3 of NΣ − zMΣ are given by the eigenvalues of AX , the reciprocal of the
eigenvalues of AX , and a generalized eigenvalue at infinity whose algebraic multiplicity
is equal to m .

3Recall that a generalized eigenvalue of a matrix pencil N− zM is a value of z ∈ C for which the rank of
the matrix pencil N− zM is lower than its normal rank.
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3. Main results

Given a solution X of DARE(Σ), the spectrum corresponding to closed-loop ma-
trix AX may contain eigenvalues on the unit circle

D
def= {z ∈ C : |z| = 1}.

In this section, we show how DARE(Σ) can be decomposed into a part that has a solu-
tion which is completely arbitrary, and which is associated with the eigenvalues on the
unit circle of AX , and a part that can be computed by solving a reduced-order Riccati
equation.

In particular, from now on we will refer to DARE(Σ0 ), where we recall that
Σ0 = (A0,B,Π0) as defined in Lemma 1, since its set of solutions coincides with that of
DARE(Σ). The corresponding symplectic pencil is zNΣ0

−MΣ0
. First, if AX contains

eigenvalues on the unit circle, the symplectic pencil zNΣ0
−MΣ0

also contains general-
ized eigenvalues on the unit circle in view of Lemma 3. Let θ ∈ D be an eigenvalue of
AX on the unit circle. The matrix pencil

NΣ0
−θ MΣ0

=

⎡⎣A0 −θ In 0 B
Q0 θ A∗

0 − In 0
0 B∗ θ R

⎤⎦
loses rank with respect to the normal rank of NΣ0

− zMΣ0
. Since R is invertible, this

implies that its Schur complement

Wθ
def=

[
A0 −θ In −θ BR−1 B∗

Q0 θ A∗
0 − In

]
=

[
A−θ In 0

Q θ A∗ − In

]
−

[
B
S

]
R−1 [S∗ B∗ θ ]

loses rank. We now investigate a very important property of the null-space of Wθ .

LEMMA 4. Let v =
[

v1
v2

]
with v1,v2 ∈ Cn . Let θ ∈ D be such that rankWθ <

normrankW . Then, v ∈ kerWθ if and only if
[

v1

0

]
∈ kerWθ and

[
0
v2

]
∈ kerWθ .

Proof. Sufficiency is obvious. Let us prove necessity. Let v ∈ kerWθ . We can
write [−θ BR−1 B∗ A0 −θ In

θ A∗
0 − In Q0

][
v2

v1

]
= 0 (10)

In a suitable basis of the state space, Q0 and A0 can be written as

Q0 =
[

Λ 0
0 0

]
, A0 =

[
A11 A12

A21 A22

]
,
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where Λ is invertible. Let q denote its order. Let

Kθ
def=

[
A11 −θ Iq

A21

]
and

Hθ
def=

[
A12

A22 −θ In−q

]
,

so that, taking into account that θ θ ∗ = 1 because θ ∈ D , we can rewrite (10) as⎡⎣−θ BR−1 B∗ Kθ Hθ
θ K∗

θ Λ 0
θ H∗

θ 0 0

⎤⎦⎡⎣ v2

v11

v12

⎤⎦ = 0, (11)

where v1 =
[

v11
v12

]
has been partitioned conformably with Q0 . From the second we

find v11 = −θ Λ−1 K∗
θ v2 . Substituting this expression into the first equation obtained

by expanding (11) gives

−θ BR−1 B∗ v2 +Kθ v11 +Hθ v12 = 0. (12)

Premultiplying both sides of (12) by v∗2 , and taking into account that H∗
θ v2 = 0 using

the third equation obtained from (11), yields θ v∗2 Lθ v2 = 0, where Lθ
def= BR−1 B∗ +

Kθ Λ−1K∗
θ . Since both R and Λ are positive definite, then B∗ v2 = 0 and K∗

θ v2 = 0.
Since we have also H∗

θ v2 = 0, we can conclude that

v2 ∈ ker

[
B∗

θ A∗
0 − In

]
= ker

[
θ BR−1 B∗

θ A∗
0 − In

]
,

which also implies that
[

0
v2

]
∈ kerWθ . Moreover, from v11 =−θ Λ−1 K∗

θ v2 and K∗
θ v2 =

0 we obtain v11 = 0 which, together with Hθ v12 = 0, leads to (A0 − θ In)v1 = 0 and

Q0 v1 = 0, so that indeed
[

v1

0

]
∈ kerWθ . �

Thanks to Lemma 4, we can always consider as a basis matrix for the null-space

of Wθ a block matrix in the form
[

V1 0

0 V2

]
, where V1 is a basis matrix of the kernel of[

A0−θ In
Q0

]
and V2 is a basis of the kernel of

[
θ BR−1 B∗
θ A∗

0−In

]
. This enables us to introduce

two separate and independent reduction procedures for DARE(Σ0 ). The first aims at
eliminating vectors from the null-space of Wθ that are in the range of V2 . The second is
a reduction that eliminates vectors from kerWθ that are in the range of V1 . Differently
from the problem of eliminating the singularity from the closed-loop matrix, where the
Jordan structure of the zero eigenvalue of the closed-loop is completely determined by
the symplectic pencil NΣ − zMΣ (which in turn is an explicit function of the problem
data A,B,Q,R,S ), here we have no a priori information on the Jordan structure of
the eigenvalues of AX in D . The iterative nature cannot be avoided by adapting in a
straightforward manner the techniques such as the one discussed in [9].
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4. Reduction associated with V2

As already observed, we begin by examining the first reduction technique, which
can be carried out if V2 is non-zero. We need to distinguish between two cases.

4.1. Case 1: θ ∈ {−1,1}
We now consider a change of basis in the original DARE(Σ0 ), using the result of

Lemma 2, where the change of coordinate T is real-valued. In particular, we define
the change of coordinate matrix T = [T1 T2 ] , where T1 is an orthonormal basis for
imV2 and T is orthogonal (so that T−1 = T� = T ∗ ). Thus, the subspace imV2 , whose

dimension is denoted by ν , is written in the new basis as im
[

Iν
0

]
. We define the

matrices Ã0 , B̃ and Q̃0 as in Lemma 2.
Since (θ A∗

0− In)V2 = 0, we have also θ A∗
0V2 =V2 , which can be expressed in the

new basis as θ Ã∗
0T

∗V2 = T ∗V2 . Thus, in the new basis we can write

Ã∗
0 =

[
Iν θ A∗

21

0 A∗
22

]
, (13)

so that indeed θ
[

Iν θ A∗
21

0 A∗
22

][
Iν
0

]
=

[
Iν
0

]
. From B∗V2 = 0, we find B̃∗ = [0 B∗

2 ] . Consider

the decomposition of X̃ = T ∗X T and Q̃0 = T ∗Q0 T into block matrices whose sizes are
compatible with the decomposition in (13), i.e.,

X̃ =
[

X11 X12

X ∗
12 X22

]
, Q̃0 =

[
Q11 Q12

Q∗
12 Q22

]
.

One can verify by direct inspection that the following equalities hold:

Ã∗
0 X̃ Ã0 =

[
X11 +X12 A21 θ +A∗

21 X
∗
12 θ +A∗

21 X22 A21 X12 A22 θ +A∗
21 X22 A22

A∗
22 X ∗

12 θ +A∗
22 X22 A21 A∗

22X22 A22

]
,

Ã∗
0 X̃ B̃ =

[
θ ∗X12 B2 +A∗

21 X22 B2

A∗
22X22B2

]
,

R+ B̃∗ X̃ B̃ = R+[0 B∗
2 ]

[
X11 X12

X ∗
12 X22

][
0
B2

]
= R+B∗

2 X22 B2.

We define R2
def= R+B∗

2 X22 B2 to simplify the notation. Using these expressions, we can
write (8) as[

X11 X12

X ∗
12 X22

]
=

[
X11 +X12 A21 θ +A∗

21 X
∗
12 θ +A∗

21 X22 A21 X12 A22 θ +A∗
21 X22 A22

A∗
22 X ∗

12 θ +A∗
22 X22 A21 A∗

22 X22 A22

]
−

[
θX12 B2 +A∗

21 X22 B2

A∗
22 X22 B2

]
R−1

2 [θ B∗
2 X ∗

12 +B∗
2 X22A21 B∗

2X22 A22 ]

+
[

Q11 Q12

Q∗
12 Q22

]
,
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which leads to the three equations

0 = X12 A21 θ +A∗
21 X

∗
12 θ +A∗

21X22 A21

−(θ X12 B2 +A∗
21 X22 B2)R−1

2 (θ B∗
2 X ∗

12 +B∗
2 X22 A21)+Q11, (14)

X12 = X12 A22 θ +A∗
21 X22 A22 − (θ X12 B2 +A∗

21 X22 B2)R−1
2 B∗

2 X22 A22 +Q12, (15)

X22 = A∗
22 X22 A22 −A∗

22 X22 B2 R−1
2 B∗

2 X22 A22 +Q22. (16)

We notice the following facts:

• None of these equations depend on X11 . Thus, X11 is completely arbitrary.

• The third equation (16) is decoupled from the previous two (14–15), and is a
reduced-order DARE. This equation can be solved independently of X12 . If (16)
does not admit solutions, the original DARE has no solutions.

• Once X22 is computed using (16), it can be substituted into (15), which then
becomes a linear equation in X12 :

X12 = X12 θ (A22 −B2 R
−1
2 B∗

2 X22 A22)+ (A∗
21 X22 A22 −A∗

21 X22 B2 R−1
2 B∗

2X22 A22 +Q12)
= X12 θ AX22 +(A∗

21 X22 AX22 +Q12), (17)

where the matrix AX22

def= A22 −B2 (R + B∗
2 X22 B2)−1 B∗

2X22 A22 is the closed-loop
matrix relative to the subsystem 22. Thus, (17) can be written as

X12(I−θ AX22) = A∗
21 X22 AX22 +Q12.

This equation admits solutions if and only if 4

ker(I−θAX22) ⊆ ker(A∗
21 X22 AX22 +Q12). (18)

If this condition is not satisfied, then (15) does not admit solutions. Thus, also
the original DARE does not admit solutions. If (18) is satisfied and AX22 has no
eigenvalues at θ , matrix I−θAX22 is invertible, and (15) has only one solution

X◦
12 = (A∗

21 X22 AX22 +Q12)(I−θ AX22)
−1. (19)

It is sufficient to check whether this solution also satisfies (14). If it does not,
again, the original DARE does not admit solutions, while if the only solution X◦

12

of (15) also solves (14), we have parameterized the solutions of DARE into[
X11 X◦

12

(X◦
12)∗ X22

]
,

where X11 is arbitrary, X22 is the solution of a reduced-order DARE and X◦
12 is

the only solution that satisfies simultaneously (14) and (15).

4This condition can equivalently expressed by saying that for any matrix Ξ such that (I−θ AX22 )Ξ = 0 ,
we also have (A∗

21 X22 AX22 +Q12)Ξ = 0 , i.e., (A∗
21 X22 θ +Q12)Ξ = 0 .
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We may also have the case in which (15) has infinite solutions. The set of its
solutions is parameterized in terms of a matrix of suitable size K as

X12 = X̂12 +K Δ, where X̂12
def= (A∗

21 X22 AX22 +Q12)(I−θAX22)
†,

with the rows of Δ span the null-space of ker(I−θA∗
X22

) , i.e., Δ = θ ΔAX ,22 . By

substitution of X12 = X̂12 +K Δ into (14) we obtain a new equation in Δ , which
reads as

KΔθ [A21 −B2R
−1
2 B∗

2(θ X̂ ∗
12 +X22A21)]+ [A∗

21− (θ X̂21 +A∗
21X22)B2R

−1
2 B∗

2]θΔ∗K∗

−K ΔB2 R−1
2 B∗

2 Δ∗ K∗ + Ω = 0, (20)

where

Ω def= X̂12 A21 θ +A∗
21 X̂

∗
12θ +A∗

21 X22 A21

−(θ X̂12 +A∗
21 X22)B2 R−1

2 B∗
2 (θ X̂ ∗

12 +X22 A21)+Q11 � 0.

Interestingly, (20) is a reduced-order non-square continuous-time Riccati equa-
tion, for which a rich literature is available, see e.g. [16, 2] and the references
cited therein.

4.2. Case 2: θ ∈ D\ {1,−1}
We now consider a change of basis given by T = [T1 T2 T3 ] , where T1 is an or-

thonormal basis for imV2 , each entry in T2 is the complex conjugate of the correspond-
ing entry in T1 and T is unitary (so that T−1 = T ∗ ). Again, the subspace imV2 in

the new basis is written as im
[

Iν
0

]
. In this case, partitioning A0 conformably with this

basis, we find

Ã∗
0 = T ∗A∗

0T =

⎡⎣ θ ∗Iν 0 A∗
31

0 θ Iν A∗
32

0 0 A∗
33

⎤⎦ and B̃∗ = B∗T = [0 0 B∗
3 ].

Let us also partition the matrices X̃ = T ∗X T and Q̃0 = T ∗Q0 T accordingly as

X̃ = T ∗X T =

⎡⎣X11 X12 X13

X∗
12 X22 X23

X∗
13 X∗

23 X33

⎤⎦ and Q̃0 = T ∗Q0 T =

⎡⎣Q11 Q12 Q13

Q∗
12 Q22 Q23

Q∗
13 Q∗

23 Q33

⎤⎦ .

One can directly check that

Ã∗
0 X̃ Ã0 =[
X11+θ∗X13A31+θA∗

31X
∗
13+A∗

31X33A31 (θ∗)2X12+θ∗X13A32+θ∗A∗
31X

∗
23+A∗

31X33A32 θ∗X13A33+A∗
31X33A33

� X22+θX23A32+θ∗A∗
32X

∗
23+A∗

32X33A32 θX23A33+A∗
32X33A33

� � A∗
33X33A33

]
,
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where the submatrices indicated by � are obtained by taking the complex conjugate of
the block entries that are symmetric with respect to the main diagonal. Then,

Ã∗
0 X̃ B̃ =

⎡⎣θ ∗X13 B3 +A∗
31 X33 B3

θ X23 B3 +A∗
32 X33 B3

A∗
33 X33 B3

⎤⎦ and R3
def= R+ B̃∗ X̃ B̃ = R+B∗

3 X33 B3.

We obtain the following 6 matrix equations:

0 = θ ∗X13 A31 + θ A∗
31 X∗

13 +A∗
31 X33 A31

−(θ ∗X13 B3 +A∗
31 X33 B3)R−1

3 (θ B∗
3 X∗

13 +B∗
3 X∗

33 A31)+Q11, (21)

X12 = (θ ∗)2 X12 + θ ∗X13 A32 + θ ∗A∗
31 X∗

23 +A∗
31 X33 A32

−(θ ∗X13 B3 +A∗
31 X33 B3)R−1

3 (θ ∗B∗
3 X∗

23 +B∗
3 X33 A32)+Q12, (22)

X13 = θ ∗X13 A33 +A∗
31 X33 A33 − (θ ∗X13 B3 +A∗

31 X33 B3)R−1
3 B∗

3 X33 A33 +Q13, (23)

0 = θ X23 A32 + θ ∗A∗
32 X∗

23 +A∗
32 X33 A32

−(θ X23 B3 +A∗
32 X33 B3)R−1

3 (θ ∗B∗
3 X∗

23 +B∗
3 X33 A32)+Q22, (24)

X23 = θ X23 A33 +A∗
32 X33 A33 − (θ X23 B3 +A∗

32 X33 B3)R−1
3 B∗

3 X33 A33 +Q23 (25)

X33 = A∗
33 X33 A33 −A∗

33 X33 B3 R−1
3 B∗

3 X33 A33 +Q33. (26)

None of these equations depends on X11 and X22 , which are therefore completely
arbitrary. Moreover, the last equation (which is a reduced-order DARE with complex
coefficients) can be solved in X33 independently of the others. Denoting by

AX33

def= A33 −B3 R
−1
3 B∗

3 X33 A33

the closed-loop matrix that corresponds to the solution X33 of the reduced-order DARE
(26), equations (23) and (25) can respectively be written as

X13 (I−θ ∗AX33) = A∗
31 X33 AX33 +Q13 (27)

X23 (I−θ AX33) = A∗
32 X33 AX33 +Q23 (28)

which are linear in X13 and X23 , respectively. They admit solutions if and only if
ker(I−θ ∗AX33)⊆ ker(A∗

31 X33 AX33 +Q13) and ker(I−θ AX33)⊆ ker(A∗
32 X33 AX33 +Q23) ,

respectively. We can parameterize the set of solutions of (27) as X13 = X̂13 + K13 Δ13 ,
where X̂13

def= (A∗
31 X33 AX33 +Q13)(I−θ ∗AX33)

† and the rows of Δ13 span the null-space
of ker(I−θ ∗AX33) , so that imΔ∗

13 = ker(I−θ ∗AX33) . Similarly, the set of solutions of

(28) can be written as X23 = X̂23 +K23 Δ23 , where X̂23
def= (A∗

32 X33 AX33 +Q23)(I−θ AX33)
†

and imΔ∗
23 = ker(I−θ AX33) .

Substitution of X13 = X̂13 +K13 Δ13 and X23 = X̂23 +K23 Δ23 into (23) and (25) yields

K13Δ13θ ∗[A31−B3R
−1
3 B∗

3 (θ X̂∗
13+X33A31)]+[A∗

31−(θ ∗X̂31+A∗
31X33)B3R

−1
3 B∗

3 ]θΔ∗
13K

∗
13

−K13Δ13B3R
−1
3 B∗

3 Δ∗
13K

∗
13+Ω13 = 0, (29)

K23Δ23θ [A32−B3R
−1
3 B∗

3 (θ
∗X̂∗

23+X33A32)]+[A∗
32−(θ X̂32+A∗

32X33)B3R
−1
3 B∗

3 ]θ
∗Δ∗

23K
∗
23

−K23Δ23B3R
−1
3 B∗

3 Δ∗
23K

∗
23 + Ω23 = 0, (30)
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respectively, where

Ω13
def= X̂13 A31 θ ∗ +A∗

31 X̂
∗
13θ +A∗

31 X33 A31

−(θ ∗ X̂13 +A∗
31 X33)B3 R−1

3 B∗
3 (θ X̂∗

13 +X33 A31)+Q13,

Ω23
def= X̂23 A32 θ +A∗

32 X̂
∗
23θ

∗ +A∗
32 X33 A32

−(θ X̂23 +A∗
32 X33)B3 R−1

3 B∗
3 (θ ∗ X̂∗

23 +X33 A32)+Q23.

Once X13 and X23 have been computed, and one verifies that they also satisfy the
first and the fourth equation, X12 can be computed from the second equation, which is
linear in X12 , and always admits solutions if θ �= ±1.

EXAMPLE 4.1. Consider DARE(Σ) with

A =
[0 0 −1

2 −2 0
1 0 0

]
, B =

[
0
1
0

]
, Q =

[
4 0 0
0 0 0
0 0 0

]
, S =

[
12
0
0

]
, R = 36.

It is easily seen that A0 =

[
0 0 −1

5/3 −2 0

1 0 0

]
and Q0 = 0. It is also easy to see that Wθ loses

rank for θ = ±i . Consider θ = −i . Then

kerW−i = im

⎡⎢⎢⎢⎣
1 0
0 0
i 0
0 3
0 2+i
0 3 i

⎤⎥⎥⎥⎦
An orthonormal basis matrix for the upper block of the latter is given by V2 =

[ √
2/2

0

i
√

2/2

]
,

so that we have a unitary change of coordinates T =

[ √
2/2

√
2/2 0

0 0 −1

i
√

2/2 −i
√

2/2 0

]
. We easily

find

Ã∗
0 = T ∗A∗

0 T =

⎡⎢⎣ i 0 − 5
3
√

2
0 −i − 5

3
√

2
0 0 −2

⎤⎥⎦ ,

from which we find A31 = A32 = − 5
3
√

2
and A33 = −2. Let us also partition T ∗X T

accordingly as

T ∗X T =

⎡⎣ x11 x12 x13

x∗12 x22 x23

x∗13 x∗23 x33

⎤⎦ .

Equation (26) in this case reduces to

x33 = 4x33 − 4x2
33

36+ x33
,
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whose solutions are x33 = 0 and x33 = 108. Let us first consider the solution x33 = 0.
In this case, AX33 = A33 , and (23) reduces to x13 = −2 ix13 , whose unique solution is
x13 = 0. Similarly, equation (24) becomes (1−2 i)x23 = 0, whose solution is x23 = 0.
Notice that x13 = x23 = 0 satisfy the first and the fourth equations. We only need to
compute x12 using (22), which in this case becomes x12 = −x12 , so that x12 = 0. It
follows that the set of all solutions of the transformed DARE that arise from x33 = 0
can be written as diag{α,β ,0} , where α,β ∈ R are arbitrary. Thus, the corresponding
solution in the original basis is

X = T

[α 0 0
0 β 0

0 0 0

]
T ∗ =

[ 1
2 (α+β ) 0 i

2 (β−α)

0 0 0
i
2 (α−β ) 0 1

2 (α+β )

]
.

The first set of Hermitian solutions of DARE is therefore given by

Xx33=0 =

{[
p 0 iq

0 0 0
−iq 0 p

]
: p,q ∈ R

}
.

Let us now consider x33 = 108. In this case, AX33 = −1/2, and (23) reduces
to x13 = − 1

2 ix13 + 5
6
√

2
x33 , whose solution is x13 = 36

√
2− 18

√
2 i . Similarly, (25)

gives x23 = 36
√

2+ 18
√

2 i . It is easily seen that x13 satisfies the first equation, and
x23 satisfies the fourth equation. Finally, the second equation gives x12 = 18− 24 i . It
follows that

X̃ =

[
α 18−24 i 36

√
2−18

√
2 i

18+24 i β 36
√

2+18
√

2 i

36
√

2+18
√

2 i 36
√

2−18
√

2 i 108

]

is another solution of the transformed DARE for any α,β ∈ R . In the original basis we
have

X =

⎡⎣ 1
2 (α+β )+18 −72 24− i

2 (α−β )

−72 108 −36

24+ i
2 (α−β ) −36 −18+ 1

2 (α+β )

⎤⎦ .

The second set of Hermitian solutions of DARE is therefore given by

Xx33=108 =
{[ r+18 −72 24−i s

−72 108 −36
24+i s −36 −18+r

]
: r,s ∈ R

}
,

and the complete set of Hermitian solutions of the original DARE is given by Xx33=0 ∪
Xx33=108 .

4.3. Reduction associated with V1

In this section we examine the second procedure aimed at the elimination of V1 .
We assume that we have carried out the reduction procedure associated with the pres-
ence of V2 . As in the previous case, we need to distinguish between two cases.
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4.4. Case 1: θ ∈ {1,−1}
We now consider a change of basis in Rn given by T = [T1 T2 ] , where T1 is an

orthonormal basis for V1 and T is orthogonal. Thus, the subspace imV1 , whose dimen-

sion is denoted by μ , in the new basis is written as im
[

Iμ

0

]
. Since (A0−θ In)V1 = 0, we

have also θ A0V1 = V1 , which can be written in the new basis as θT ∗A0T T ∗V1 = T ∗V1 .
Thus, in the new basis

T ∗A0T =
[

Iμ θ A12

0 A22

]
,

so that indeed θ
[

Iν θ A12

0 A22

][
Iμ

0

]
=

[
Iμ

0

]
. From Q0V1 = 0, we find that in this basis

T ∗Q0 T = diag{0,Q22} . Let us consider the DARE in this new basis

T ∗ X T = (T ∗ A∗
0 T )(T ∗ X T )(T ∗ A0 T )− (T ∗ A∗

0 T )(T ∗ X T )(T ∗ B)

×(
R+(B∗T )(T ∗ X T )(T ∗ B)

)†(B∗ T )(T ∗ X T )(T ∗ A0 T )+ (T ∗ Q0 T ). (31)

Let us also introduce the partitioning

T ∗X T =
[

X11 X12

X ∗
12 X22

]
, T ∗B =

[
B1

B2

]
.

One can immediately verify that

(T ∗A∗
0T )(T ∗XT )(T ∗A0 T )

=
[

X11 θ (X11 A12 +X12 A22)
θ (A∗

12 X11 +A∗
22 X12) A∗

12 X11 A12 +A∗
22 X

∗
12 A12 +A∗

12 X12 A22 +A∗
22 X22 A22.

]
and

(BT )(T ∗ X T )(T ∗ A0 T )
= [θ (B∗

1 X11 +B∗
2 X

∗
12) B∗

1 X11 A12 +B∗
1 X12 A22 +B∗

2 X
∗
12 A12 +B∗

2 X22 A22 ].

Finally,

RX
def= R+(B∗T )(T ∗ X T )(T ∗ B) = R+B∗

1 X11 B1 +B∗
1 X12 B2 +B∗

2 X
∗
12 B1 +B∗

2 X22 B2.

In this case, the Riccati equation can be written as the three equations

0 = −(X11 B1 +X12 B2)R−1
X (B∗

1 X11 +B∗
2 X

∗
12),

X12 = θ X11 A12 + θ X12 A22

−θ (X11 B1 +X12 B2)R−1
X (B∗

1 X11 A12 +B∗
1 X12 A22 +B∗

2 X
∗
12 A12 +B∗

2 X22 A22),
X22 = A∗

12 X11 A12 +A∗
22 X

∗
12 A12 +A∗

12 X12 A22 +A∗
22 X22 A22

−(A∗
12 X11 B1 +A∗

22 X
∗
12 B1 +A∗

12 X12 B2 +A∗
22 X22 B2)R−1

X

×(B∗
1 X11 A12 +B∗

1 X12 A22 +B∗
2 X

∗
12 A12 +B∗

2 X22 A22)+Q22.
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The first yields X11 B1 +X12 B2 = 0, which once substituted into the second yields X12 =
θ X11 A12 + θ X12 A22 . These two equations can be written together as[

θ A∗
12 θ A22 − In−μ

B∗
1 B∗

2

][
X11

X ∗
12

]
= 0.

On the other hand, since the first elimination procedure has already been carried out,
the nullspace of the matrix[

θ A∗
0 − I
B∗

]
=

⎡⎣ 0 0
θ A∗

12 θ A22 − In−μ

B∗
1 B∗

2

⎤⎦
is the origin. This implies that the submatrices X11 and X12 are zero. Therefore, the
third equation can be written as

X22 = A∗
22 X22 A22 −A∗

22 X22 B2 (R+B∗
2 X22 B2)−1 B∗

2 X22 A22 +Q22,

which is a reduced-order Riccati equation.

4.5. Case 2: θ ∈ D\ {1,−1}
We now consider a change of basis given by T = [T1 T2 T3 ] , where T1 is an or-

thonormal basis for imV1 , T2 = T 1 and T is unitary. Thus, imV1 , whose dimension is

denoted by μ , in the new basis is written as im
[

Iμ

0

]
. In this case we find

T ∗A0 T =

⎡⎣ θ Iμ 0 A13

0 θ ∗ Iμ A23

0 0 A33

⎤⎦ and T ∗Q0 T =

⎡⎣ 0 0 0
0 0 0
0 0 Q33

⎤⎦ .

We partition T ∗B and T ∗X T conformably as

T ∗X T =

⎡⎣X11 X12 X13

X∗
12 X22 X23

X∗
13 X∗

23 X33

⎤⎦ and T ∗B =

⎡⎣B1

B2

B3

⎤⎦ .

One can easily verify that

(T ∗A∗
0T )(T ∗XT )(T ∗A0 T ) =

[
X11 X12 (θ∗)2 θ∗ (X11 A13+X12 A23+X13 A33)
� X22 θ (X∗

12 A13+X22 A23+X23 A33)
� � Ξ

]
,

where the submatrices indicated by � are obvious from the context and where

Ξ = A∗
13 X11 A13 +A∗

23 X12 A13 +A∗
33 X

∗
13 A13 +A∗

13 X12 A23

+A∗
23 X22 A23 +A∗

33 X
∗
23 A23 +A∗

13 X13 A33 +A∗
23 X23 A33 +A∗

33 X
∗
33 A33.

Moreover,

(BT )(T ∗ X T )(T ∗A0 T ) = [θ (B∗
1 X11 +B∗

2 X12 +B∗
3 X13) θ ∗ (B∗

1 X12 +B∗
2 X22 +B∗

3 X23) Φ ],
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where

Φ def= B∗
1 X11 A13 +B∗

1 X12 A23 +B∗
1 X13 A33

+B∗
2 X12 A13 +B∗

2 X22 A23 +B∗
2 X23 A33

+B∗
3 X13 A13 +B∗

3 X23 A23 +B∗
3 X33 A33.

Again, RX
def= R+(B∗ T )(T ∗ X T )(T ∗ B) . Writing the block submatrix in position (1,1)

of DARE written in this basis, we find

X11 = X11 − (X11 B1 +X12 B2 +X13 B3)R−1
X (B∗

1 X11 +B∗
2 X12 +B∗

3 X13),

which yields X11 B1 +X12 B2 +X13 B3 = 0. Writing the block submatrix in position (1,1)
of DARE written in this basis, we find

X12 = (θ ∗)2 (
X12 − (X11 B1 +X12 B2 +X13 B3)R−1

X (B∗
1 X12 +B∗

2 X22 +B∗
3 X23)

)
Using the identity X11 B1 + X12 B2 + X13 B3 = 0 found above in the block submatrix in
position (1,2) of DARE gives the equation X12 = X12 (θ ∗)2 . Since θ /∈ {1,−1} , the
only solution is X12 = 0. The block submatrix in position (1,3) of DARE with respect
to this basis is

X13 = θ ∗X11 A13 + θ ∗X12 A23 + θ ∗X13 A33 − (X11 B1 +X12 B2 +X13 B3)R−1
X Φ.

Using X11 B1 + X12 B2 + X13 B3 = X11 B1 +X13 B3 = 0 and X12 = 0 into the latter gives
X13 = θ ∗X11 A13 + θ ∗X13 A33 . This equation and X11 B1 + X12 B2 + X13 B3 = 0 can be
written together as [

θ A∗
13 θ A33 − I

B∗
1 B∗

3

][
X11

X∗
13

]
= 0.

Since the first elimination procedure has already been carried out, the null-space of the

matrix
[

θ A∗
0−I

B∗

]
is the origin. Thus, X11 and X13 are zero. In a similar way, the block

submatrix in position (2,2) is

X22 = X22 − (X∗
12 B1 +X22 B2 +X23 B3)R−1

X (B∗
1 X12 +B∗

2 X22 +B∗
3 X23),

from which we find X∗
12 B1 +X22 B2 +X23 B3 = 0. It follows that the submatrix in position

(2,3) is
X23 = θ X22 A23 + θ X23 A33.

With the same argument used above, we find that X23 and X22 are zero. As a result of
this discussion, we can write the submatrix in position (3,3) as

X33 = A∗
33 X33 A33 −A∗

33 X33 B3 (R+B∗
3 X33 B3)−1 B∗

3 X33 A33 +Q33,

which is again a reduced-order Riccati equation.



REDUCTION OF DISCRETE ALGEBRAIC RICCATI EQUATIONS 185

5. Numerical examples

EXAMPLE 5.1. Consider the DARE with

A =
[

0 0 0
−2 −1 0
0 0 0

]
, B =

[
0
9
0

]
, Q =

[
1 0 0
0 0 0
0 0 1

]
, S =

[
0
0
0

]
, R = 16.

Matrix Wθ loses rank at θ = −1. Then kerW−1 = span[0 0 0 0 1 0 ]� . Let V1 =
[

0
1
0

]
.

Consider the change of coordinate matrix

T =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦ ,

which gives T ∗A0 T =
[−1 −2 0

0 0 0
0 0 0

]
. Then, A12 = [−2 0 ] and A22 = 0. Moreover T ∗B =[

9
0
0

]
, which implies B1 = 9 and B2 = 0. It follows that X11 and X12 are zero, and the

reduced-order Riccati equation is simply

X22 = Q22 =
[

1 0
0 1

]
.

Thus, the only solution of the original Riccati equation is

X = T

⎡⎣ 0 0 0
0 1 0
0 0 1

⎤⎦ T ∗ =

⎡⎣ 1 0 0
0 0 0
0 0 1

⎤⎦ .

EXAMPLE 5.2. Consider the DARE with

A =

⎡⎣ 0 0 0 0
−2 0 1 0
0 −1 0 2
0 0 0 0

⎤⎦ , B =

⎡⎣ 0
0
−7
0

⎤⎦ , Q =

⎡⎣67 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

⎤⎦ , S =

⎡⎣−72
0
0
0

⎤⎦ , R = 81.

It is easily seen that Q0 = diag{3,0,0,2} and

A0 =

⎡⎢⎢⎣
0 0 0 0
i√
2

− i√
2

−2 0

− 1√
2

− 1√
2

− 56
9 0

0 0 0 0

⎤⎥⎥⎦ .

Matrix Wθ loses rank at θ = 0 and θ =±i . Let θ = i . Then kerWi = [0 0 0 0 0 1 i 0 ]� .

Let V1 =

⎡⎢⎣
0

1/
√

2

i/
√

2

0

⎤⎥⎦ . The null-space of
[

iBR−1 B∗
iA∗

0−I

]
is {0} . Therefore, only the reduction
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relative to V1 needs to be carried out. Consider the change of coordinates

T =

⎡⎢⎢⎢⎢⎣
0

∣∣∣ 0

∣∣∣ 1 0

1√
2

∣∣∣ 1√
2

∣∣∣ 0 0

i√
2

∣∣∣ − i√
2

∣∣∣ 0 0

0

∣∣∣ 0

∣∣∣ 0 1

⎤⎥⎥⎥⎥⎦ ,

which leads to

T ∗A0 T =

⎡⎢⎢⎢⎣
i

∣∣∣ 0

∣∣∣ −√
2+ 28

9

√
2 i −√

2 i

0

∣∣∣ −i

∣∣∣ −√
2− 28

9

√
2 i

√
2 i

0

∣∣∣ 0

∣∣∣ 0 0

0

∣∣∣ 0

∣∣∣ 0 0

⎤⎥⎥⎥⎦ , T ∗B =

⎡⎢⎢⎢⎢⎣
7√
2

i

− 7√
2

i

0
0

⎤⎥⎥⎥⎥⎦
and

T ∗Q0 T = diag{0,0,3,2}.
It follows that A33 is the zero matrix, so that X33 = Q33 = diag{3,2} . Thus, the only
solution of the original DARE is X = T diag{0,0,3,2}T∗ = diag{3,0,0,2} .

Concluding remarks

In this paper we have presented a reduction technique aimed at decomposing a
discrete algebraic Riccati equation into a part that is arbitrary, and a part that can be
obtained by computing the set of solutions of a reduced-order Riccati equation whose
associated symplectic pencil has no generalized eigenvalues on the unit circle. A del-
icate computational issue, which was not discussed in this paper, is the following. In
practice, the generalized eigenvalues of the symplectic pencil must be computed numer-
ically. Thus, it will very rarely occur that their modulus is exactly one. Therefore, it is
necessary to select a threshold that can be used to discriminate between the generalized
eigenvalues that can be numerically considered to be on the unit circle from those that
are structurally outside it.
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