REDUCTION OF DISCRETE ALGEBRAIC RICCATI EQUATIONS: ELIMINATION OF GENERALIZED EIGENVALUES ON THE UNIT CIRCLE

Augusto Ferrante and Lorenzo Ntogramatzidis

(Communicated by C.-K. Li)

Abstract

The purpose of this paper is to introduce a two-stage procedure that can be used to decompose a discrete-time algebraic Riccati equation into a trivial part, a part that is entirely arbitrary, and a part that can be obtained by computing the set of solutions of a reduced-order Riccati equation whose associated symplectic pencil has no generalized eigenvalues on the unit circle.

1. Introduction

In the past fifty years, Riccati equations have been found to emerge as fundamental tools in several branches of engineering and applied mathematics, including network analysis, optimal control and filtering, spectral factorization, stochastic realization to name only a few. Several monographs have been entirely devoted to the study of Riccati equations, $[20,21,15,14,1]$.

In particular, many techniques have appeared in the literature on the issue of the reduction of the order of Riccati equations. These contributions include - but are far from being limited to $-[17,11,12,13,4,9,18]$. The development of these techniques has been even more intense for the case of discrete-time algebraic (and difference) Riccati equations, because the structure of these equations is richer and more challenging than the structure of their continuous-time counterpart. Two main theoretical/computational difficulties arise in the determination of the set of solutions of a discrete-time algebraic Riccati equation. The first is the case in which the symplectic pencil and/or the closedloop matrix is singular. The second is the one where some generalized eigenvalues of the symplectic pencil lie on the unit circle.

Some results that have been published on this topic have focussed on reduction techniques that are tailored to the task of computing the stabilizing solution of the Riccati equation. Some others, which include [4, 9, 18], can be employed to reduce the order of the Riccati equation to the end of obtaining the full set of Hermitian solutions of the original Riccati equation.

[^0]In particular, in [4] a method was presented which, differently from earlier contributions presented on this topic, aimed at iteratively decomposing $\operatorname{DARE}(\Sigma)$ into a trivial part and a reduced DARE whose associated closed-loop matrix is non-singular. The subsequent contribution [9] achieves a similar goal by avoiding the need for an iterative procedure. A further important advantage of [9] over [4] lies in the fact that the technique in [9] can also be applied in the case of an indefinite Popov matrix. In [18], the method of [4] was revisited and extended to the case of the so-called generalized discrete algebraic Riccati equation, which has been the object of intensive studies in the past twenty years, because it provides an important generalization of the classic Riccati equation and, as shown e.g. in [7] and [8], it represents the most natural tool to use in the solution of indefinite/semidefinite, finite/infinite horizon discrete-time linear quadratic optimal control problems, see also [1, 5, 6, 13, 14, 19]. For the dual version in filtering problems we refer the reader to [23, 24, 25]. The framework associated with the constrained generalized Riccati equation is the one that corresponds to the case in which the symplectic pencil is singular. The procedure developed in [18] hinges on the idea of decomposing the generalized Riccati equations into two parts, which correspond to an additive decomposition $X=X_{0}+\Delta$ of each solution X of the Riccati equation.

The first part provides an explicit expression of the term X_{0}, which is fixed and independent of the particular solution X. The second part can be either a reduced-order discrete-time standard algebraic Riccati equation whose associated closed-loop matrix is non-singular, or a symmetric Stein equation. However, regardless of the structure of the original discrete-time algebraic Riccati equation, the reduced-order regular Riccati equation obtained as a result of the application of any of the methods in [4, 9, 18] still corresponds to a closed-loop matrix which may contain eigenvalues on the unit circle, and this represents a major computational issue in the calculation of the set of solutions to this equation, see for example the MATLAB ${ }^{\circledR}$ routine dare.m for the computation of the stabilizing solution of the discrete-time algebraic Riccati equation. ${ }^{1}$ The main purpose of this paper is to address this issue, by proposing a reduction whose aim is to decompose the Riccati equation that one obtains by applying one of the procedures outlined in $[4,9,18]$ (which is characterized by the fact that the closed-loop matrix is non-singular) into a trivial part, a part which is arbitrary, a part that can be obtained by solving a reduced-order discrete algebraic Riccati equation, and a part that can come from the solution of a reduced-order continuous-time algebraic Riccati equation.

2. Preliminaries

This paper is concerned with the problem of computing the set of Hermitian solutions of the so-called discrete-time algebraic Riccati equation $\operatorname{DARE}(\Sigma)$

$$
\begin{equation*}
X=A^{*} X A-\left(A^{*} X B+S\right)\left(R+B^{*} X B\right)^{-1}\left(B^{*} X A+S^{*}\right)+Q \tag{1}
\end{equation*}
$$

where A, B, Q, R and S are given matrices of sizes $n \times n, n \times m, n \times n, m \times m$ and $n \times m$, respectively, and are such that the Popov matrix, here denoted by Π, is

[^1]Hermitian and positive semidefinite, i.e., it satisfies

$$
\begin{equation*}
\Pi \stackrel{\text { def }}{=}\left[\underset{S^{*}}{O} S\right]=\Pi^{*} \geqslant 0 . \tag{2}
\end{equation*}
$$

The set of matrices $\Sigma=(A, B ; \Pi)$ is often referred to as Popov triple. For any matrix $X=X^{*} \in \mathbb{C}^{n \times n}$, we define the gain matrix

$$
\begin{equation*}
K_{X} \xlongequal{\text { def }}\left(R+B^{*} X B\right)^{-1}\left(S^{*}+B^{*} X A\right) \tag{3}
\end{equation*}
$$

as well as the closed-loop matrix

$$
\begin{equation*}
A_{X} \stackrel{\text { def }}{=} A-B K_{X} . \tag{4}
\end{equation*}
$$

As recalled in Section 1, $\operatorname{DARE}(\Sigma)$ is generalized by the so-called constrained generalized discrete-time algebraic Riccati equation, herein denoted by $\operatorname{CGDARE}(\Sigma)$, given by

$$
\begin{gather*}
X=A^{*} X A-\left(A^{*} X B+S\right)\left(R+B^{*} X B\right)^{\dagger}\left(S^{*}+B^{*} X A\right)+Q, \tag{5}\\
\operatorname{ker}\left(R+B^{*} X B\right) \subseteq \operatorname{ker}\left(A^{*} X B+S\right), \tag{6}
\end{gather*}
$$

where the symbol \dagger in (5) denotes the Moore-Penrose pseudo-inverse operation. ${ }^{2}$
$\operatorname{CGDARE}(\Sigma)$ - rather than $\operatorname{DARE}(\Sigma)-$ represents the natural equation arising in the solution of Linear Quadratic optimal control and filtering problems, [19, 8]. In fact, it is only when the underlying linear system (obtained by the full-rank factorization $\Pi=\left[\begin{array}{l}C^{*} \\ D^{*}\end{array}\right]\left[\begin{array}{ll}C & D\end{array}\right]$ and considering a system described by the quadruple (A, B, C, D)) is left invertible that the standard $\operatorname{DARE}(\Sigma)$ admits solutions. The dynamic optimization problem, however, may still admit solutions in the more general setting where the underlying linear system is not left-invertible so that the corresponding Popov function $\Phi(z) \stackrel{\text { def }}{=}\left[G\left(z^{-1}\right)\right]^{*} \Pi G(z)$, with $G(z) \stackrel{\text { def }}{=}\left[\begin{array}{c}(z-A)^{-1} B \\ I_{m}\end{array}\right]$, is singular. In these cases, however, the standard $\operatorname{DARE}(\Sigma)$ does not admit solutions and the correct equation that must be used to address the original optimization problem is $\operatorname{CGDARE}(\Sigma)$, see e.g. [5]. As discussed in [1, Chapt. 6], these general situations are particularly relevant in the context of stochastic control problems, see also $[3,10]$ and the references cited therein. It was also observed in [7] that generalized Riccati equations appear to be a more direct and natural way than the standard Riccati equations in the solution of indefinite Linear Quadratic optimal control problems. On the other hand, whenever the standard $\operatorname{DARE}(\Sigma)$ admits solutions, the set of its solutions coincides with the set of solutions of $\operatorname{CGDARE}(\Sigma)$. This means that $\operatorname{CGDARE}(\Sigma)$ is a genuine generalization of $\operatorname{DARE}(\Sigma)$. As already mentioned, in [18] two iterative procedures were presented that reduce a general $\operatorname{CGDARE}(\Sigma)$ to a $\operatorname{DARE}(\Sigma)$ of smaller order featuring a non-singular closed-loop matrix and a non-singular matrix R. Both these reduction procedures can

[^2]be carried out only using the problem data A, B, Q, R, S. This means that these two procedures can be performed without the need to compute a particular solution of the Riccati equation. The fact that, when R is non-singular, $\operatorname{CGDARE}(\Sigma)$ reduces to a $\operatorname{DARE}(\Sigma)$ is a consequence of the inclusion $\operatorname{ker}\left(R+B^{*} X B\right) \subseteq \operatorname{ker} R$, see [18, Proposition 1] and [5, Lemma 4.1]. This paper presents an additional iterative procedure - to be carried out after the two aforementioned procedures have been applied to a Riccati equation to obtain a $\operatorname{DARE}(\Sigma)$ with non-singular matrices A_{X} and R - that at each step delivers a reduced order DARE where the eigenvalues on the unit circle of the closed-loop matrix have been eliminated.

Since we are considering that at each iteration of the procedure presented here we first perform the procedure in [18], we eliminate the closed-loop eigenvalues on the unit circle assuming without loss of generality that $\operatorname{DARE}(\Sigma)$ under consideration is such that A_{X} and R are invertible.

The procedures in $[4,9,18]$, together with the technique presented in this paper, enable us to obtain the entire set of Hermitian solutions of any generalized discretetime algebraic Riccati equation by resorting to the computation of the set of solutions of well-behaved reduced order Riccati equations or Stein equations.

We recall that the so-called symplectic pencil is defined as the matrix pencil $N_{\Sigma}-$ $z M_{\Sigma}$, where

$$
M_{\Sigma} \stackrel{\text { def }}{=}\left[\begin{array}{ccc}
I_{n} & 0 & 0 \\
0 & -A^{*} & 0 \\
0 & -B^{*} & 0
\end{array}\right] \quad \text { and } \quad N_{\Sigma} \stackrel{\text { def }}{=}\left[\begin{array}{ccc}
A & 0 & B \\
Q & -I_{n} & S \\
S^{*} & 0 & R
\end{array}\right] .
$$

When the matrix pencil $N_{\Sigma}-z M_{\Sigma}$ is regular (i.e., when there exists $z \in \mathbb{C}$ such that $\left.\operatorname{det}\left(N_{\Sigma}-z M_{\Sigma}\right) \neq 0\right), \operatorname{CGDARE}(\Sigma)$ becomes indeed a $\operatorname{DARE}(\Sigma)$, whereas the case where $N_{\Sigma}-z M_{\Sigma}$ is singular (i.e., the determinant of $N_{\Sigma}-z M_{\Sigma}$ is the zero polynomial) corresponds to a case in which $\operatorname{DARE}(\Sigma)$ does not admit solutions. It is shown in [4] for $\operatorname{DARE}(\Sigma)$ and in [6] for $\operatorname{CGDARE}(\Sigma)$ that if A_{X} is singular, the Jordan structure of A_{X} associated with the eigenvalue $\lambda=0$ is completely determined by the matrix pencil $N_{\Sigma}-z M_{\Sigma}$ (and therefore by the parameters of the problem), and is independent of the particular solution X of $\operatorname{DARE}(\Sigma)$ or $\operatorname{CGDARE}(\Sigma)$. It is also shown in [4] that in the case where the matrix pencil $N_{\Sigma}-z M_{\Sigma}$ is regular (or, equivalently, the $\operatorname{CGDARE}(\Sigma)$ and the standard $\operatorname{DARE}(\Sigma)$ have the same solutions) the following statements are equivalent:
(1) N_{Σ} is singular;
(2) $N_{\Sigma}-z M_{\Sigma}$ has a generalized eigenvalue at zero;
(3) there exists a solution X of $\operatorname{CGDARE}(\Sigma)$ such that the closed-loop matrix A_{X} is singular;
(4) for any solution X of $\operatorname{CGDARE}(\Sigma)$, the corresponding closed-loop matrix A_{X} is singular;
(5) at least one of the two matrices R and $A-B R^{\dagger} S^{*}$ is singular.

The following result [18] is a well-known result of the classic Riccati theory, which shows how to eliminate the cross-penalty matrix S.

LEMMA 1. Let $A_{0} \stackrel{\text { def }}{=} A-B R^{-1} S^{*}$ and $Q_{0} \stackrel{\text { def }}{=} Q-S R^{-1} S^{*}$. Moreover, let $\Pi_{0} \stackrel{\text { def }}{=}$ $\left[\begin{array}{cc}Q_{0} & 0 \\ 0 & R\end{array}\right]$ and $\Sigma_{0} \stackrel{\text { def }}{=}\left(A_{0}, B, \Pi_{0}\right)$. Then, the following statements hold true:
(i) $\operatorname{DARE}(\Sigma)$ has the same set of Hermitian solutions as $\operatorname{DARE}\left(\Sigma_{0}\right)$

$$
\begin{equation*}
X=A_{0}^{*} X A_{0}-A_{0}^{*} X B\left(R+B^{*} X B\right)^{-1} B^{*} X A_{0}+Q_{0} \tag{7}
\end{equation*}
$$

(ii) for any Hermitian solution X of $\operatorname{DARE}(\Sigma)$, we have

$$
A_{X}=A_{0 X} \stackrel{\text { def }}{=} A_{0}-B\left(R+B^{*} X B\right)^{-1} B^{*} X A_{0}
$$

(iii) $Q_{0} \geqslant 0$.

Another useful result that can be established by direct computation is the following.
LEMMA 2. Let $T \in \mathbb{C}^{n \times n}$ be unitary. Let $\tilde{A}_{0} \stackrel{\text { def }}{=} T^{*} A_{0} T, \tilde{B} \xlongequal{\text { def }} T^{*} B$, and $\tilde{Q}_{0} \xlongequal{\text { def }}$ $T^{*} Q_{0} T$. Let also $\Pi_{T} \stackrel{\text { def }}{=}\left[\begin{array}{cc}Q_{T} & 0 \\ 0 & R\end{array}\right]$ and $\Sigma_{T} \stackrel{\text { def }}{=}\left(A_{T}, B_{T}, \Pi_{T}\right)$. Then, X is a Hermitian solution of $\operatorname{DARE}(\Sigma)$ - and therefore also of $\operatorname{DARE}\left(\Sigma_{0}\right)$ - if and only if $\tilde{X}=T^{*} X T$ is a Hermitian solution of $\operatorname{DARE}\left(\Sigma_{T}\right)$

$$
\begin{equation*}
\tilde{X}=\tilde{A}_{0}^{*} \tilde{X} \tilde{A}_{0}-\tilde{A}_{0}^{*} \tilde{X} \tilde{B}\left(R+\tilde{B}^{*} \tilde{X} \tilde{B}\right)^{-1} \tilde{B}^{*} \tilde{X} \tilde{A}_{0}+\tilde{Q}_{0} \tag{8}
\end{equation*}
$$

The following lemma presents a useful decomposition of the symplectic pencil, see [6] for a proof.

Lemma 3. Let X be a symmetric solution of $\operatorname{DARE}(\Sigma)$. Let $R_{X}=R+B^{*} X B$ and let K_{X} be the associated gain and A_{X} be the associated closed-loop matrix. Two invertible matrices U_{X} and V_{X} of suitable sizes exist such that

$$
U_{X}\left(N_{\Sigma}-z M_{\Sigma}\right) V_{X}=\left[\begin{array}{ccc}
A_{X}-z I_{n} & 0 & B \tag{9}\\
0 & I_{n}-z A_{X}^{*} & 0 \\
0 & -z B^{*} & R_{X}
\end{array}\right]
$$

Since R_{X} is non-singular, the dynamics represented by the symplectic matrix pencil $N_{\Sigma}-z M_{\Sigma}$ are decomposed into a part governed by the generalized eigenstructure of $A_{X}-z I_{n}$, a part governed by the finite generalized eigenstructure of $I_{n}-z A_{X}^{*}$, and a part which corresponds to the dynamics of the eigenvalue at infinity. Thus, the generalized eigenvalues ${ }^{3}$ of $N_{\Sigma}-z M_{\Sigma}$ are given by the eigenvalues of A_{X}, the reciprocal of the eigenvalues of A_{X}, and a generalized eigenvalue at infinity whose algebraic multiplicity is equal to m.

[^3]
3. Main results

Given a solution X of $\operatorname{DARE}(\Sigma)$, the spectrum corresponding to closed-loop matrix A_{X} may contain eigenvalues on the unit circle

$$
\mathfrak{D} \stackrel{\text { def }}{=}\{z \in \mathbb{C}:|z|=1\} .
$$

In this section, we show how $\operatorname{DARE}(\Sigma)$ can be decomposed into a part that has a solution which is completely arbitrary, and which is associated with the eigenvalues on the unit circle of A_{X}, and a part that can be computed by solving a reduced-order Riccati equation.

In particular, from now on we will refer to $\operatorname{DARE}\left(\Sigma_{0}\right)$, where we recall that $\Sigma_{0}=\left(A_{0}, B, \Pi_{0}\right)$ as defined in Lemma 1, since its set of solutions coincides with that of $\operatorname{DARE}(\Sigma)$. The corresponding symplectic pencil is $z N_{\Sigma_{0}}-M_{\Sigma_{0}}$. First, if A_{X} contains eigenvalues on the unit circle, the symplectic pencil $z N_{\Sigma_{0}}-M_{\Sigma_{0}}$ also contains generalized eigenvalues on the unit circle in view of Lemma 3. Let $\theta \in \mathfrak{D}$ be an eigenvalue of A_{X} on the unit circle. The matrix pencil

$$
N_{\Sigma_{0}}-\theta M_{\Sigma_{0}}=\left[\begin{array}{ccc}
A_{0}-\theta I_{n} & 0 & B \\
Q_{0} & \theta A_{0}^{*}-I_{n} & 0 \\
0 & B^{*} \theta & R
\end{array}\right]
$$

loses rank with respect to the normal rank of $N_{\Sigma_{0}}-z M_{\Sigma_{0}}$. Since R is invertible, this implies that its Schur complement

$$
\begin{aligned}
W_{\theta} & \stackrel{\text { def }}{=}\left[\begin{array}{cc}
A_{0}-\theta I_{n}-\theta B R^{-1} B^{*} \\
Q_{0} & \theta A_{0}^{*}-I_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A-\theta I_{n} & 0 \\
Q & \theta A^{*}-I_{n}
\end{array}\right]-\left[\begin{array}{c}
B \\
S
\end{array}\right] R^{-1}\left[S^{*} B^{*} \theta\right]
\end{aligned}
$$

loses rank. We now investigate a very important property of the null-space of W_{θ}.

LEMMA 4. Let $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ with $v_{1}, v_{2} \in \mathbb{C}^{n}$. Let $\theta \in \mathfrak{D}$ be such that $\operatorname{rank} W_{\theta}<$ normrank W. Then, $v \in \operatorname{ker} W_{\theta}$ if and only if $\left[\begin{array}{c}v_{1} \\ 0\end{array}\right] \in \operatorname{ker} W_{\theta}$ and $\left[\begin{array}{c}0 \\ v_{2}\end{array}\right] \in \operatorname{ker} W_{\theta}$.

Proof. Sufficiency is obvious. Let us prove necessity. Let $v \in \operatorname{ker} W_{\theta}$. We can write

$$
\left[\begin{array}{cc}
-\theta B R^{-1} B^{*} & A_{0}-\theta I_{n} \tag{10}\\
\theta A_{0}^{*}-I_{n} & Q_{0}
\end{array}\right]\left[\begin{array}{l}
v_{2} \\
v_{1}
\end{array}\right]=0
$$

In a suitable basis of the state space, Q_{0} and A_{0} can be written as

$$
Q_{0}=\left[\begin{array}{cc}
\Lambda & 0 \\
0 & 0
\end{array}\right], \quad A_{0}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where Λ is invertible. Let q denote its order. Let

$$
K_{\theta} \stackrel{\text { def }}{=}\left[\begin{array}{c}
A_{11}-\theta I_{q} \\
A_{21}
\end{array}\right]
$$

and

$$
H_{\theta} \stackrel{\text { def }}{=}\left[\begin{array}{c}
A_{12} \\
A_{22}-\theta I_{n-q}
\end{array}\right]
$$

so that, taking into account that $\theta \theta^{*}=1$ because $\theta \in \mathfrak{D}$, we can rewrite (10) as

$$
\left[\begin{array}{c|cc}
-\theta B R^{-1} B^{*} & K_{\theta} H_{\theta} \tag{11}\\
\hline \theta K_{\theta}^{*} & \Lambda & 0 \\
\theta H_{\theta}^{*} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{2} \\
\hline v_{11} \\
v_{12}
\end{array}\right]=0
$$

where $v_{1}=\left[\begin{array}{l}v_{11} \\ v_{12}\end{array}\right]$ has been partitioned conformably with Q_{0}. From the second we find $v_{11}=-\theta \Lambda^{-1} K_{\theta}^{*} v_{2}$. Substituting this expression into the first equation obtained by expanding (11) gives

$$
\begin{equation*}
-\theta B R^{-1} B^{*} v_{2}+K_{\theta} v_{11}+H_{\theta} v_{12}=0 . \tag{12}
\end{equation*}
$$

Premultiplying both sides of (12) by v_{2}^{*}, and taking into account that $H_{\theta}^{*} v_{2}=0$ using the third equation obtained from (11), yields $\theta v_{2}^{*} L_{\theta} v_{2}=0$, where $L_{\theta} \stackrel{\text { def }}{=} B R^{-1} B^{*}+$ $K_{\theta} \Lambda^{-1} K_{\theta}^{*}$. Since both R and Λ are positive definite, then $B^{*} v_{2}=0$ and $K_{\theta}^{*} v_{2}=0$. Since we have also $H_{\theta}^{*} \nu_{2}=0$, we can conclude that

$$
v_{2} \in \operatorname{ker}\left[\begin{array}{c}
B^{*} \\
\theta A_{0}^{*}-I_{n}
\end{array}\right]=\operatorname{ker}\left[\begin{array}{c}
\theta B R^{-1} B^{*} \\
\theta A_{0}^{*}-I_{n}
\end{array}\right],
$$

which also implies that $\left[\begin{array}{c}0 \\ v_{2}\end{array}\right] \in \operatorname{ker} W_{\theta}$. Moreover, from $v_{11}=-\theta \Lambda^{-1} K_{\theta}^{*} v_{2}$ and $K_{\theta}^{*} v_{2}=$ 0 we obtain $v_{11}=0$ which, together with $H_{\theta} v_{12}=0$, leads to $\left(A_{0}-\theta I_{n}\right) v_{1}=0$ and $Q_{0} v_{1}=0$, so that indeed $\left[\begin{array}{c}v_{1} \\ 0\end{array}\right] \in \operatorname{ker} W_{\theta}$.

Thanks to Lemma 4, we can always consider as a basis matrix for the null-space of W_{θ} a block matrix in the form $\left[\begin{array}{cc}V_{1} & 0 \\ 0 & V_{2}\end{array}\right]$, where V_{1} is a basis matrix of the kernel of $\left[\begin{array}{c}A_{0}-\theta I_{n} \\ Q_{0}\end{array}\right]$ and V_{2} is a basis of the kernel of $\left[\begin{array}{c}\theta B R^{-1} B^{*} \\ \theta A_{0}^{*}-I_{n}\end{array}\right]$. This enables us to introduce two separate and independent reduction procedures for $\operatorname{DARE}\left(\Sigma_{0}\right)$. The first aims at eliminating vectors from the null-space of W_{θ} that are in the range of V_{2}. The second is a reduction that eliminates vectors from $\operatorname{ker} W_{\theta}$ that are in the range of V_{1}. Differently from the problem of eliminating the singularity from the closed-loop matrix, where the Jordan structure of the zero eigenvalue of the closed-loop is completely determined by the symplectic pencil $N_{\Sigma}-z M_{\Sigma}$ (which in turn is an explicit function of the problem data $A, B, Q, R, S)$, here we have no a priori information on the Jordan structure of the eigenvalues of A_{X} in \mathfrak{D}. The iterative nature cannot be avoided by adapting in a straightforward manner the techniques such as the one discussed in [9].

4. Reduction associated with V_{2}

As already observed, we begin by examining the first reduction technique, which can be carried out if V_{2} is non-zero. We need to distinguish between two cases.

4.1. Case 1: $\theta \in\{-1,1\}$

We now consider a change of basis in the original $\operatorname{DARE}\left(\Sigma_{0}\right)$, using the result of Lemma 2, where the change of coordinate T is real-valued. In particular, we define the change of coordinate matrix $T=\left[T_{1} T_{2}\right]$, where T_{1} is an orthonormal basis for $\operatorname{im} V_{2}$ and T is orthogonal (so that $T^{-1}=T^{\top}=T^{*}$). Thus, the subspace $\operatorname{im} V_{2}$, whose dimension is denoted by v, is written in the new basis as im $\left[\begin{array}{c}I_{v} \\ 0\end{array}\right]$. We define the matrices \tilde{A}_{0}, \tilde{B} and \tilde{Q}_{0} as in Lemma 2.

Since $\left(\theta A_{0}^{*}-I_{n}\right) V_{2}=0$, we have also $\theta A_{0}^{*} V_{2}=V_{2}$, which can be expressed in the new basis as $\theta \widetilde{A}_{0}^{*} T^{*} V_{2}=T^{*} V_{2}$. Thus, in the new basis we can write

$$
\tilde{A}_{0}^{*}=\left[\begin{array}{cc}
I_{v} \theta & A_{21}^{*} \tag{13}\\
0 & A_{22}^{*}
\end{array}\right]
$$

so that indeed $\theta\left[\begin{array}{cc}I_{v} & \theta\end{array} A_{21}^{*},\left[\begin{array}{c}I_{v} \\ 0\end{array} A_{22}^{*}\right]=\left[\begin{array}{c}I_{v} \\ 0\end{array}\right]\right.$. From $B^{*} V_{2}=0$, we find $\tilde{B}^{*}=\left[\begin{array}{ll}0 & B_{2}^{*}\end{array}\right]$. Consider the decomposition of $\tilde{X}=T^{*} X T$ and $\tilde{Q}_{0}=T^{*} Q_{0} T$ into block matrices whose sizes are compatible with the decomposition in (13), i.e.,

$$
\tilde{X}=\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{12}^{*} & X_{22}
\end{array}\right], \quad \tilde{Q}_{0}=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{12}^{*} & Q_{22}
\end{array}\right] .
$$

One can verify by direct inspection that the following equalities hold:

$$
\begin{aligned}
\tilde{A}_{0}^{*} \tilde{X} \tilde{A}_{0} & =\left[\begin{array}{c}
X_{11}+X_{12} A_{21} \theta+A_{21}^{*} X_{12}^{*} \theta+A_{21}^{*} X_{22} A_{21} X_{12} A_{22} \theta+A_{21}^{*} X_{22} A_{22} \\
A_{22}^{*} X_{12}^{*} \theta+A_{22}^{*} X_{22} A_{21}
\end{array}\right], \\
\tilde{A}_{22}^{*} X_{22} A_{22} \tilde{X} \tilde{B} & =\left[\begin{array}{c}
\theta^{*} X_{12} B_{2}+A_{21}^{*} X_{22} B_{2} \\
A_{22}^{*} X_{22} B_{2}
\end{array}\right], \\
R+\tilde{B}^{*} \tilde{X} \tilde{B} & =R+\left[\begin{array}{ll}
0 & B_{2}^{*}
\end{array}\right]\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{12}^{*} & X_{22}
\end{array}\right]\left[\begin{array}{c}
0 \\
B_{2}
\end{array}\right]=R+B_{2}^{*} X_{22} B_{2} .
\end{aligned}
$$

We define $R_{2} \stackrel{\text { def }}{=} R+B_{2}^{*} X_{22} B_{2}$ to simplify the notation. Using these expressions, we can write (8) as

$$
\begin{aligned}
{\left[\begin{array}{c}
X_{11} X_{12} \\
X_{12}^{*} X_{22}
\end{array}\right]=} & {\left[\begin{array}{c}
X_{11}+X_{12} A_{21} \theta+A_{21}^{*} X_{12}^{*} \theta+A_{21}^{*} X_{22} A_{21} X_{12} A_{22} \theta+A_{21}^{*} X_{22} A_{22} \\
A_{22}^{*} X_{12}^{*} \theta+A_{22}^{*} X_{22} A_{21} \\
A_{22}^{*} X_{22} A_{22}
\end{array}\right] } \\
& -\left[\begin{array}{c}
\theta X_{12} B_{2}+A_{21}^{*} X_{22} B_{2} \\
A_{22}^{*} X_{22} B_{2}
\end{array}\right] R_{2}^{-1}\left[\theta B_{2}^{*} X_{12}^{*}+B_{2}^{*} X_{22} A_{21} B_{2}^{*} X_{22} A_{22}\right] \\
& +\left[\begin{array}{cc}
Q_{11} Q_{12} \\
Q_{12}^{*} Q_{22}
\end{array}\right]
\end{aligned}
$$

which leads to the three equations

$$
\begin{align*}
& 0= X_{12} A_{21} \theta+ \\
& \quad A_{21}^{*} X_{12}^{*} \theta+A_{21}^{*} X_{22} A_{21} \tag{14}\\
& \quad-\left(\theta X_{12} B_{2}+A_{21}^{*} X_{22} B_{2}\right) R_{2}^{-1}\left(\theta B_{2}^{*} X_{12}^{*}+B_{2}^{*} X_{22} A_{21}\right)+Q_{11}, \tag{15}\\
& X_{12}= X_{12} A_{22} \theta+A_{21}^{*} X_{22} A_{22}-\left(\theta X_{12} B_{2}+A_{21}^{*} X_{22} B_{2}\right) R_{2}^{-1} B_{2}^{*} X_{22} A_{22}+Q_{12}, \tag{16}\\
& X_{22}=A_{22}^{*} X_{22} A_{22}-A_{22}^{*} X_{22} B_{2} R_{2}^{-1} B_{2}^{*} X_{22} A_{22}+Q_{22} .
\end{align*}
$$

We notice the following facts:

- None of these equations depend on X_{11}. Thus, X_{11} is completely arbitrary.
- The third equation (16) is decoupled from the previous two (14-15), and is a reduced-order DARE. This equation can be solved independently of X_{12}. If (16) does not admit solutions, the original DARE has no solutions.
- Once X_{22} is computed using (16), it can be substituted into (15), which then becomes a linear equation in X_{12} :

$$
\begin{align*}
X_{12} & =X_{12} \theta\left(A_{22}-B_{2} R_{2}^{-1} B_{2}^{*} X_{22} A_{22}\right)+\left(A_{21}^{*} X_{22} A_{22}-A_{21}^{*} X_{22} B_{2} R_{2}^{-1} B_{2}^{*} X_{22} A_{22}+Q_{12}\right) \\
& =X_{12} \theta A_{X_{22}}+\left(A_{21}^{*} X_{22} A_{X_{22}}+Q_{12}\right), \tag{17}
\end{align*}
$$

where the matrix $A_{X_{22}} \stackrel{\text { def }}{=} A_{22}-B_{2}\left(R+B_{2}^{*} X_{22} B_{2}\right)^{-1} B_{2}^{*} X_{22} A_{22}$ is the closed-loop matrix relative to the subsystem 22. Thus, (17) can be written as

$$
X_{12}\left(I-\theta A_{X_{22}}\right)=A_{21}^{*} X_{22} A_{X_{22}}+Q_{12} .
$$

This equation admits solutions if and only if ${ }^{4}$

$$
\begin{equation*}
\operatorname{ker}\left(I-\theta A_{X_{22}}\right) \subseteq \operatorname{ker}\left(A_{21}^{*} X_{22} A_{X_{22}}+Q_{12}\right) \tag{18}
\end{equation*}
$$

If this condition is not satisfied, then (15) does not admit solutions. Thus, also the original DARE does not admit solutions. If (18) is satisfied and $A_{X_{22}}$ has no eigenvalues at θ, matrix $I-\theta A_{X_{22}}$ is invertible, and (15) has only one solution

$$
\begin{equation*}
X_{12}^{\circ}=\left(A_{21}^{*} X_{22} A_{X_{22}}+Q_{12}\right)\left(I-\theta A_{X_{22}}\right)^{-1} \tag{19}
\end{equation*}
$$

It is sufficient to check whether this solution also satisfies (14). If it does not, again, the original DARE does not admit solutions, while if the only solution X_{12}° of (15) also solves (14), we have parameterized the solutions of DARE into

$$
\left[\begin{array}{cc}
X_{11} & X_{12}^{\circ} \\
\left(X_{12}^{\circ}\right)^{*} & X_{22}
\end{array}\right],
$$

where X_{11} is arbitrary, X_{22} is the solution of a reduced-order DARE and X_{12}° is the only solution that satisfies simultaneously (14) and (15).

[^4]We may also have the case in which (15) has infinite solutions. The set of its solutions is parameterized in terms of a matrix of suitable size K as

$$
X_{12}=\widehat{X}_{12}+K \Delta, \quad \text { where } \quad \widehat{X}_{12} \stackrel{\text { def }}{=}\left(A_{21}^{*} X_{22} A_{X_{22}}+Q_{12}\right)\left(I-\theta A_{X_{22}}\right)^{\dagger}
$$

with the rows of Δ span the null-space of $\operatorname{ker}\left(I-\theta A_{X_{22}}^{*}\right)$, i.e., $\Delta=\theta \Delta A_{X, 22}$. By substitution of $X_{12}=\widehat{X}_{12}+K \Delta$ into (14) we obtain a new equation in Δ, which reads as

$$
\begin{align*}
K \Delta \theta\left[A_{21}-B_{2} R_{2}^{-1} B_{2}^{*}\left(\theta \widehat{X}_{12}^{*}+\right.\right. & \left.\left.X_{22} A_{21}\right)\right]+\left[A_{21}^{*}-\left(\theta \widehat{X}_{21}+A_{21}^{*} X_{22}\right) B_{2} R_{2}^{-1} B_{2}^{*}\right] \theta \Delta^{*} K^{*} \\
& -K \Delta B_{2} R_{2}^{-1} B_{2}^{*} \Delta^{*} K^{*}+\Omega=0 \tag{20}
\end{align*}
$$

where

$$
\begin{aligned}
\Omega \stackrel{\text { def }}{=} \widehat{X}_{12} A_{21} \theta & +A_{21}^{*} \widehat{X}_{12}^{*} \theta+A_{21}^{*} X_{22} A_{21} \\
& -\left(\theta \widehat{X}_{12}+A_{21}^{*} X_{22}\right) B_{2} R_{2}^{-1} B_{2}^{*}\left(\theta \widehat{X}_{12}^{*}+X_{22} A_{21}\right)+Q_{11} \geqslant 0
\end{aligned}
$$

Interestingly, (20) is a reduced-order non-square continuous-time Riccati equation, for which a rich literature is available, see e.g. [16, 2] and the references cited therein.

4.2. Case 2: $\theta \in \mathfrak{D} \backslash\{1,-1\}$

We now consider a change of basis given by $T=\left[T_{1} T_{2} T_{3}\right]$, where T_{1} is an orthonormal basis for im V_{2}, each entry in T_{2} is the complex conjugate of the corresponding entry in T_{1} and T is unitary (so that $T^{-1}=T^{*}$). Again, the subspace im V_{2} in the new basis is written as im $\left[\begin{array}{c}I_{V} \\ 0\end{array}\right]$. In this case, partitioning A_{0} conformably with this basis, we find

$$
\tilde{A}_{0}^{*}=T^{*} A_{0}^{*} T=\left[\begin{array}{ccc}
\theta^{*} I_{v} & 0 & A_{31}^{*} \\
0 & \theta I_{v} & A_{32}^{*} \\
0 & 0 & A_{33}^{*}
\end{array}\right] \quad \text { and } \quad \tilde{B}^{*}=B^{*} T=\left[\begin{array}{lll}
0 & 0 & B_{3}^{*}
\end{array}\right] .
$$

Let us also partition the matrices $\tilde{X}=T^{*} X T$ and $\tilde{Q}_{0}=T^{*} Q_{0} T$ accordingly as

$$
\tilde{X}=T^{*} X T=\left[\begin{array}{lll}
X_{11} & X_{12} & X_{13} \\
X_{12}^{*} & X_{22} & X_{23} \\
X_{13}^{*} & X_{23}^{*} & X_{33}
\end{array}\right] \quad \text { and } \quad \tilde{Q}_{0}=T^{*} Q_{0} T=\left[\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \\
Q_{12}^{*} & Q_{22} & Q_{23} \\
Q_{13}^{*} & Q_{23}^{*} & Q_{33}
\end{array}\right]
$$

One can directly check that

$$
\begin{aligned}
& \tilde{A}_{0}^{*} \tilde{X} \tilde{A}_{0}= \\
& {\left[\begin{array}{ccc}
X_{11}+\theta^{*} X_{13} A_{31}+\theta A_{31}^{*} X_{13}^{*}+A_{31}^{*} X_{33} A_{31} & \left(\theta^{*}\right)^{2} X_{12}+\theta^{*} X_{13} A_{32}+\theta^{*} A_{31}^{*} X_{23}^{*}+A_{31}^{*} X_{33} A_{32} & \theta^{*} X_{13} A_{33}+A_{31}^{*} X_{33} A_{33} \\
\star & X_{22}+\theta X_{23} A_{32}+\theta^{*} A_{32}^{*} X_{23}^{*}+A_{32}^{*} X_{33} A_{32} & \theta X_{23} A_{33}^{*}+A_{32}^{*} X_{33} A_{33} \\
\star & \star & A_{33}
\end{array}\right],}
\end{aligned}
$$

where the submatrices indicated by \star are obtained by taking the complex conjugate of the block entries that are symmetric with respect to the main diagonal. Then,

$$
\tilde{A}_{0}^{*} \tilde{X} \tilde{B}=\left[\begin{array}{c}
\theta^{*} X_{13} B_{3}+A_{31}^{*} X_{33} B_{3} \\
\theta X_{23} B_{3}+A_{32}^{*} X_{33} B_{3} \\
A_{33}^{*} X_{33} B_{3}
\end{array}\right] \quad \text { and } \quad R_{3} \stackrel{\text { def }}{=} R+\tilde{B}^{*} \tilde{X} \tilde{B}=R+B_{3}^{*} X_{33} B_{3}
$$

We obtain the following 6 matrix equations:

$$
\begin{align*}
0= & \theta^{*} X_{13} A_{31}+\theta A_{31}^{*} X_{13}^{*}+A_{31}^{*} X_{33} A_{31} \\
& -\left(\theta^{*} X_{13} B_{3}+A_{31}^{*} X_{33} B_{3}\right) R_{3}^{-1}\left(\theta B_{3}^{*} X_{13}^{*}+B_{3}^{*} X_{33}^{*} A_{31}\right)+Q_{11}, \tag{21}\\
X_{12}= & \left(\theta^{*}\right)^{2} X_{12}+\theta^{*} X_{13} A_{32}+\theta^{*} A_{31}^{*} X_{23}^{*}+A_{31}^{*} X_{33} A_{32} \\
& -\left(\theta^{*} X_{13} B_{3}+A_{31}^{*} X_{33} B_{3}\right) R_{3}^{-1}\left(\theta^{*} B_{3}^{*} X_{23}^{*}+B_{3}^{*} X_{33} A_{32}\right)+Q_{12}, \tag{22}\\
X_{13}= & \theta^{*} X_{13} A_{33}+A_{31}^{*} X_{33} A_{33}-\left(\theta^{*} X_{13} B_{3}+A_{31}^{*} X_{33} B_{3}\right) R_{3}^{-1} B_{3}^{*} X_{33} A_{33}+Q_{13}, \tag{23}\\
0= & \theta X_{23} A_{32}+\theta^{*} A_{32}^{*} X_{23}^{*}+A_{32}^{*} X_{33} A_{32} \\
& -\left(\theta X_{23} B_{3}+A_{32}^{*} X_{33} B_{3}\right) R_{3}^{-1}\left(\theta^{*} B_{3}^{*} X_{23}^{*}+B_{3}^{*} X_{33} A_{32}\right)+Q_{22}, \tag{24}\\
X_{23}= & \theta X_{23} A_{33}+A_{32}^{*} X_{33} A_{33}-\left(\theta X_{23} B_{3}+A_{32}^{*} X_{33} B_{3}\right) R_{3}^{-1} B_{3}^{*} X_{33} A_{33}+Q_{23} \tag{25}\\
X_{33}= & A_{33}^{*} X_{33} A_{33}-A_{33}^{*} X_{33} B_{3} R_{3}^{-1} B_{3}^{*} X_{33} A_{33}+Q_{33} . \tag{26}
\end{align*}
$$

None of these equations depends on X_{11} and X_{22}, which are therefore completely arbitrary. Moreover, the last equation (which is a reduced-order DARE with complex coefficients) can be solved in X_{33} independently of the others. Denoting by

$$
A_{X_{33}} \stackrel{\text { def }}{=} A_{33}-B_{3} R_{3}^{-1} B_{3}^{*} X_{33} A_{33}
$$

the closed-loop matrix that corresponds to the solution X_{33} of the reduced-order DARE (26), equations (23) and (25) can respectively be written as

$$
\begin{align*}
X_{13}\left(I-\theta^{*} A_{X_{33}}\right) & =A_{31}^{*} X_{33} A_{X_{33}}+Q_{13} \tag{27}\\
X_{23}\left(I-\theta A_{X_{33}}\right) & =A_{32}^{*} X_{33} A_{X_{33}}+Q_{23} \tag{28}
\end{align*}
$$

which are linear in X_{13} and X_{23}, respectively. They admit solutions if and only if $\operatorname{ker}\left(I-\theta^{*} A_{X_{33}}\right) \subseteq \operatorname{ker}\left(A_{31}^{*} X_{33} A_{X_{33}}+Q_{13}\right)$ and $\operatorname{ker}\left(I-\theta A_{X_{33}}\right) \subseteq \operatorname{ker}\left(A_{32}^{*} X_{33} A_{X_{33}}+Q_{23}\right)$, respectively. We can parameterize the set of solutions of (27) as $X_{13}=\widehat{X}_{13}+K_{13} \Delta_{13}$, where $\widehat{X}_{13} \stackrel{\text { def }}{=}\left(A_{31}^{*} X_{33} A_{X_{33}}+Q_{13}\right)\left(I-\theta^{*} A_{X_{33}}\right)^{\dagger}$ and the rows of Δ_{13} span the null-space of $\operatorname{ker}\left(I-\theta^{*} A_{X_{33}}\right)$, so that $\operatorname{im} \Delta_{13}^{*}=\operatorname{ker}\left(I-\theta^{*} A_{X_{33}}\right)$. Similarly, the set of solutions of (28) can be written as $X_{23}=\widehat{X}_{23}+K_{23} \Delta_{23}$, where $\widehat{X}_{23} \xlongequal{\text { def }}\left(A_{32}^{*} X_{33} A_{X_{33}}+Q_{23}\right)\left(I-\theta A_{X_{33}}\right)^{\dagger}$ and $\operatorname{im} \Delta_{23}^{*}=\operatorname{ker}\left(I-\theta A_{X_{33}}\right)$.

Substitution of $X_{13}=\widehat{X}_{13}+K_{13} \Delta_{13}$ and $X_{23}=\widehat{X}_{23}+K_{23} \Delta_{23}$ into (23) and (25) yields

$$
\begin{gather*}
K_{13} \Delta_{13} \theta^{*}\left[A_{31}-B_{3} R_{3}^{-1} B_{3}^{*}\left(\theta \widehat{X}_{13}^{*}+X_{33} A_{31}\right)\right]+\left[A_{31}^{*}-\left(\theta^{*} \widehat{X}_{31}+A_{31}^{*} X_{33}\right) B_{3} R_{3}^{-1} B_{3}^{*}\right] \theta \Delta_{13}^{*} K_{13}^{*} \\
-K_{13} \Delta_{13} B_{3} R_{3}^{-1} B_{3}^{*} \Delta_{13}^{*} K_{13}^{*}+\Omega_{13}=0 \tag{29}\\
K_{23} \Delta_{23} \theta\left[A_{32}-B_{3} R_{3}^{-1} B_{3}^{*}\left(\theta^{*} \widehat{X}_{23}^{*}+X_{33} A_{32}\right)\right]+\left[A_{32}^{*}-\left(\theta \widehat{X}_{32}+A_{32}^{*} X_{33}\right) B_{3} R_{3}^{-1} B_{3}^{*}\right] \theta^{*} \Delta_{23}^{*} K_{23}^{*} \\
-K_{23} \Delta_{23} B_{3} R_{3}^{-1} B_{3}^{*} \Delta_{23}^{*} K_{23}^{*}+\Omega_{23}=0 \tag{30}
\end{gather*}
$$

respectively, where

$$
\begin{aligned}
& \Omega_{13} \stackrel{\text { def }}{=} \widehat{X}_{13} A_{31} \theta^{*}+A_{31}^{*} \widehat{X}_{13}^{*} \theta+A_{31}^{*} X_{33} A_{31} \\
&-\left(\theta^{*} \widehat{X}_{13}+A_{31}^{*} X_{33}\right) B_{3} R_{3}^{-1} B_{3}^{*}\left(\theta \widehat{X}_{13}^{*}+X_{33} A_{31}\right)+Q_{13}, \\
& \Omega_{23} \stackrel{\text { def }}{=} \widehat{X}_{23} A_{32} \theta+A_{32}^{*} \widehat{X}_{23}^{*} \theta^{*}+A_{32}^{*} X_{33} A_{32} \\
&-\left(\theta \widehat{X}_{23}+A_{32}^{*} X_{33}\right) B_{3} R_{3}^{-1} B_{3}^{*}\left(\theta^{*} \widehat{X}_{23}^{*}+X_{33} A_{32}\right)+Q_{23} .
\end{aligned}
$$

Once X_{13} and X_{23} have been computed, and one verifies that they also satisfy the first and the fourth equation, X_{12} can be computed from the second equation, which is linear in X_{12}, and always admits solutions if $\theta \neq \pm 1$.

Example 4.1. Consider $\operatorname{DARE}(\Sigma)$ with

$$
A=\left[\begin{array}{ccc}
0 & 0 & -1 \\
2 & -2 & 0 \\
1 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad Q=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad S=\left[\begin{array}{c}
12 \\
0 \\
0
\end{array}\right], \quad R=36 .
$$

It is easily seen that $A_{0}=\left[\begin{array}{ccc}0 & 0 & -1 \\ 5 / 3 & -2 & 0 \\ 1 & 0 & 0\end{array}\right]$ and $Q_{0}=0$. It is also easy to see that W_{θ} loses rank for $\theta= \pm i$. Consider $\theta=-i$. Then

$$
\operatorname{ker} W_{-i}=\operatorname{im}\left[\begin{array}{cc}
1 & 0 \\
0 & 0 \\
i & 0 \\
\hline 0 & 3 \\
0 & 2+i \\
0 & 3 i
\end{array}\right]
$$

An orthonormal basis matrix for the upper block of the latter is given by $V_{2}=\left[\begin{array}{c}\sqrt{2} / 2 \\ 0 \\ i \sqrt{2} / 2\end{array}\right]$, so that we have a unitary change of coordinates $T=\left[\begin{array}{ccc}\sqrt{2} / 2 & \sqrt{2} / 2 & 0 \\ 0 & 0 & -1 \\ i \sqrt{2} / 2 & -i \sqrt{2} / 2 & 0\end{array}\right]$. We easily find

$$
\tilde{A}_{0}^{*}=T^{*} A_{0}^{*} T=\left[\begin{array}{ccc}
i & 0 & -\frac{5}{3 \sqrt{2}} \\
0 & -i & -\frac{5}{3 \sqrt{2}} \\
0 & 0 & -2
\end{array}\right]
$$

from which we find $A_{31}=A_{32}=-\frac{5}{3 \sqrt{2}}$ and $A_{33}=-2$. Let us also partition $T^{*} X T$ accordingly as

$$
T^{*} X T=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{12}^{*} & x_{22} & x_{23} \\
x_{13}^{*} & x_{23}^{*} & x_{33}
\end{array}\right]
$$

Equation (26) in this case reduces to

$$
x_{33}=4 x_{33}-\frac{4 x_{33}^{2}}{36+x_{33}}
$$

whose solutions are $x_{33}=0$ and $x_{33}=108$. Let us first consider the solution $x_{33}=0$. In this case, $A_{X_{33}}=A_{33}$, and (23) reduces to $x_{13}=-2 i x_{13}$, whose unique solution is $x_{13}=0$. Similarly, equation (24) becomes $(1-2 i) x_{23}=0$, whose solution is $x_{23}=0$. Notice that $x_{13}=x_{23}=0$ satisfy the first and the fourth equations. We only need to compute x_{12} using (22), which in this case becomes $x_{12}=-x_{12}$, so that $x_{12}=0$. It follows that the set of all solutions of the transformed DARE that arise from $x_{33}=0$ can be written as $\operatorname{diag}\{\alpha, \beta, 0\}$, where $\alpha, \beta \in \mathbb{R}$ are arbitrary. Thus, the corresponding solution in the original basis is

$$
X=T\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & 0
\end{array}\right] T^{*}=\left[\begin{array}{ccc}
\frac{1}{2}(\alpha+\beta) & 0 & \frac{i}{2}(\beta-\alpha) \\
0 & 0 & 0 \\
\frac{i}{2}(\alpha-\beta) & 0 & \frac{1}{2}(\alpha+\beta)
\end{array}\right]
$$

The first set of Hermitian solutions of DARE is therefore given by

$$
\mathscr{X}_{x_{33}=0}=\left\{\left[\begin{array}{ccc}
p & 0 & i q \\
0 & 0 & 0 \\
-i q & 0 & p
\end{array}\right]: p, q \in \mathbb{R}\right\} .
$$

Let us now consider $x_{33}=108$. In this case, $A_{X_{33}}=-1 / 2$, and (23) reduces to $x_{13}=-\frac{1}{2} i x_{13}+\frac{5}{6 \sqrt{2}} x_{33}$, whose solution is $x_{13}=36 \sqrt{2}-18 \sqrt{2} i$. Similarly, (25) gives $x_{23}=36 \sqrt{2}+18 \sqrt{2} i$. It is easily seen that x_{13} satisfies the first equation, and x_{23} satisfies the fourth equation. Finally, the second equation gives $x_{12}=18-24 i$. It follows that

$$
\tilde{X}=\left[\begin{array}{ccc}
\alpha & 18-24 i & 36 \sqrt{2}-18 \sqrt{2} i \\
18+24 i & \beta & 36 \sqrt{2}+18 \sqrt{2} i \\
36 \sqrt{2}+18 \sqrt{2} i & 36 \sqrt{2}-18 \sqrt{2} i & 108
\end{array}\right]
$$

is another solution of the transformed DARE for any $\alpha, \beta \in \mathbb{R}$. In the original basis we have

$$
X=\left[\begin{array}{ccc}
\frac{1}{2}(\alpha+\beta)+18 & -72 & 24-\frac{i}{2}(\alpha-\beta) \\
-72 & 108 & -36 \\
24+\frac{i}{2}(\alpha-\beta) & -36 & -18+\frac{1}{2}(\alpha+\beta)
\end{array}\right]
$$

The second set of Hermitian solutions of DARE is therefore given by

$$
\mathscr{X}_{x_{33}=108}=\left\{\left[\begin{array}{ccc}
r+18 & -72 & 24-i s \\
-72 & 108 & -36 \\
24+i s & -36 & -18+r
\end{array}\right]: r, s \in \mathbb{R}\right\},
$$

and the complete set of Hermitian solutions of the original DARE is given by $\mathscr{X}_{x_{33}=0} \cup$ $\mathscr{X}_{x_{33}=108}$ 。

4.3. Reduction associated with V_{1}

In this section we examine the second procedure aimed at the elimination of V_{1}. We assume that we have carried out the reduction procedure associated with the presence of V_{2}. As in the previous case, we need to distinguish between two cases.

4.4. Case 1: $\theta \in\{1,-1\}$

We now consider a change of basis in \mathbb{R}^{n} given by $T=\left[T_{1} T_{2}\right]$, where T_{1} is an orthonormal basis for V_{1} and T is orthogonal. Thus, the subspace $\operatorname{im} V_{1}$, whose dimension is denoted by μ, in the new basis is written as im $\left[\begin{array}{c}I_{\mu} \\ 0\end{array}\right]$. Since $\left(A_{0}-\theta I_{n}\right) V_{1}=0$, we have also $\theta A_{0} V_{1}=V_{1}$, which can be written in the new basis as $\theta T^{*} A_{0} T T^{*} V_{1}=T^{*} V_{1}$. Thus, in the new basis

$$
T^{*} A_{0} T=\left[\begin{array}{cc}
I_{\mu} \theta & A_{12} \\
0 & A_{22}
\end{array}\right]
$$

so that indeed $\theta\left[\begin{array}{cc}I_{v} \theta & A_{12} \\ 0 & A_{22}\end{array}\right]\left[\begin{array}{c}I_{\mu} \\ 0\end{array}\right]=\left[\begin{array}{c}I_{\mu} \\ 0\end{array}\right]$. From $Q_{0} V_{1}=0$, we find that in this basis $T^{*} Q_{0} T=\operatorname{diag}\left\{0, Q_{22}\right\}$. Let us consider the DARE in this new basis

$$
\begin{align*}
& T^{*} X T=\left(T^{*} A_{0}^{*} T\right)\left(T^{*} X T\right)\left(T^{*} A_{0} T\right)-\left(T^{*} A_{0}^{*} T\right)\left(T^{*} X T\right)\left(T^{*} B\right) \\
& \quad \times\left(R+\left(B^{*} T\right)\left(T^{*} X T\right)\left(T^{*} B\right)\right)^{\dagger}\left(B^{*} T\right)\left(T^{*} X T\right)\left(T^{*} A_{0} T\right)+\left(T^{*} Q_{0} T\right) \tag{31}
\end{align*}
$$

Let us also introduce the partitioning

$$
T^{*} X T=\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{12}^{*} & X_{22}
\end{array}\right], \quad T^{*} B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]
$$

One can immediately verify that

$$
\begin{aligned}
& \left(T^{*} A_{0}^{*} T\right)\left(T^{*} X T\right)\left(T^{*} A_{0} T\right) \\
& \quad=\left[\begin{array}{cc}
X_{11} & \theta\left(X_{11} A_{12}+X_{12} A_{22}\right) \\
\theta\left(A_{12}^{*} X_{11}+A_{22}^{*} X_{12}\right) A_{12}^{*} X_{11} A_{12}+A_{22}^{*} X_{12}^{*} A_{12}+A_{12}^{*} X_{12} A_{22}+A_{22}^{*} X_{22} A_{22} .
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& (B T)\left(T^{*} X T\right)\left(T^{*} A_{0} T\right) \\
& \quad=\left[\theta\left(B_{1}^{*} X_{11}+B_{2}^{*} X_{12}^{*}\right) B_{1}^{*} X_{11} A_{12}+B_{1}^{*} X_{12} A_{22}+B_{2}^{*} X_{12}^{*} A_{12}+B_{2}^{*} X_{22} A_{22}\right]
\end{aligned}
$$

Finally,

$$
R_{X} \xlongequal{\text { def }} R+\left(B^{*} T\right)\left(T^{*} X T\right)\left(T^{*} B\right)=R+B_{1}^{*} X_{11} B_{1}+B_{1}^{*} X_{12} B_{2}+B_{2}^{*} X_{12}^{*} B_{1}+B_{2}^{*} X_{22} B_{2}
$$

In this case, the Riccati equation can be written as the three equations

$$
\begin{aligned}
0= & -\left(X_{11} B_{1}+X_{12} B_{2}\right) R_{X}^{-1}\left(B_{1}^{*} X_{11}+B_{2}^{*} X_{12}^{*}\right) \\
X_{12}= & \theta X_{11} A_{12}+\theta X_{12} A_{22} \\
& -\theta\left(X_{11} B_{1}+X_{12} B_{2}\right) R_{X}^{-1}\left(B_{1}^{*} X_{11} A_{12}+B_{1}^{*} X_{12} A_{22}+B_{2}^{*} X_{12}^{*} A_{12}+B_{2}^{*} X_{22} A_{22}\right), \\
X_{22}= & A_{12}^{*} X_{11} A_{12}+A_{22}^{*} X_{12}^{*} A_{12}+A_{12}^{*} X_{12} A_{22}+A_{22}^{*} X_{22} A_{22} \\
& -\left(A_{12}^{*} X_{11} B_{1}+A_{22}^{*} X_{12}^{*} B_{1}+A_{12}^{*} X_{12} B_{2}+A_{22}^{*} X_{22} B_{2}\right) R_{X}^{-1} \\
& \times\left(B_{1}^{*} X_{11} A_{12}+B_{1}^{*} X_{12} A_{22}+B_{2}^{*} X_{12}^{*} A_{12}+B_{2}^{*} X_{22} A_{22}\right)+Q_{22} .
\end{aligned}
$$

The first yields $X_{11} B_{1}+X_{12} B_{2}=0$, which once substituted into the second yields $X_{12}=$ $\theta X_{11} A_{12}+\theta X_{12} A_{22}$. These two equations can be written together as

$$
\left[\begin{array}{cc}
\theta A_{12}^{*} & \theta A_{22}-I_{n-\mu} \\
B_{1}^{*} & B_{2}^{*}
\end{array}\right]\left[\begin{array}{l}
X_{11} \\
X_{12}^{*}
\end{array}\right]=0 .
$$

On the other hand, since the first elimination procedure has already been carried out, the nullspace of the matrix

$$
\left[\begin{array}{c}
\theta A_{0}^{*}-I \\
B^{*}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
\theta A_{12}^{*} & \theta A_{22}-I_{n-\mu} \\
B_{1}^{*} & B_{2}^{*}
\end{array}\right]
$$

is the origin. This implies that the submatrices X_{11} and X_{12} are zero. Therefore, the third equation can be written as

$$
X_{22}=A_{22}^{*} X_{22} A_{22}-A_{22}^{*} X_{22} B_{2}\left(R+B_{2}^{*} X_{22} B_{2}\right)^{-1} B_{2}^{*} X_{22} A_{22}+Q_{22},
$$

which is a reduced-order Riccati equation.

4.5. Case 2: $\theta \in \mathfrak{D} \backslash\{1,-1\}$

We now consider a change of basis given by $T=\left[T_{1} T_{2} T_{3}\right]$, where T_{1} is an orthonormal basis for im $V_{1}, T_{2}=\bar{T}_{1}$ and T is unitary. Thus, im V_{1}, whose dimension is denoted by μ, in the new basis is written as im $\left[\begin{array}{c}I_{\mu} \\ 0\end{array}\right]$. In this case we find

$$
T^{*} A_{0} T=\left[\begin{array}{ccc}
\theta I_{\mu} & 0 & A_{13} \\
0 & \theta^{*} I_{\mu} & A_{23} \\
0 & 0 & A_{33}
\end{array}\right] \quad \text { and } \quad T^{*} Q_{0} T=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & Q_{33}
\end{array}\right]
$$

We partition $T^{*} B$ and $T^{*} X T$ conformably as

$$
T^{*} X T=\left[\begin{array}{lll}
X_{11} & X_{12} & X_{13} \\
X_{12}^{*} & X_{22} & X_{23} \\
X_{13}^{*} & X_{23}^{*} & X_{33}
\end{array}\right] \quad \text { and } \quad T^{*} B=\left[\begin{array}{c}
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right] .
$$

One can easily verify that

$$
\left(T^{*} A_{0}^{*} T\right)\left(T^{*} X T\right)\left(T^{*} A_{0} T\right)=\left[\begin{array}{ccc}
X_{11} & X_{12}\left(\theta^{*}\right)^{2} & \theta^{*}\left(X_{11} A_{13}+X_{12} A_{23}+X_{13} A_{33}\right) \\
\star & X_{22} & \theta\left(X_{12}^{*} A_{13}+X_{22} A_{23}+X_{23} A_{33}\right) \\
\star & \star & \Xi
\end{array}\right],
$$

where the submatrices indicated by \star are obvious from the context and where

$$
\begin{aligned}
\Xi= & A_{13}^{*} X_{11} A_{13}+A_{23}^{*} X_{12} A_{13}+A_{33}^{*} X_{13}^{*} A_{13}+A_{13}^{*} X_{12} A_{23} \\
& +A_{23}^{*} X_{22} A_{23}+A_{33}^{*} X_{23}^{*} A_{23}+A_{13}^{*} X_{13} A_{33}+A_{23}^{*} X_{23} A_{33}+A_{33}^{*} X_{33}^{*} A_{33} .
\end{aligned}
$$

Moreover,
$(B T)\left(T^{*} X T\right)\left(T^{*} A_{0} T\right)=\left[\theta\left(B_{1}^{*} X_{11}+B_{2}^{*} X_{12}+B_{3}^{*} X_{13}\right) \theta^{*}\left(B_{1}^{*} X_{12}+B_{2}^{*} X_{22}+B_{3}^{*} X_{23}\right) \Phi\right]$,
where

$$
\begin{aligned}
\Phi \stackrel{\text { def }}{=} & B_{1}^{*} X_{11} A_{13}+B_{1}^{*} X_{12} A_{23}+B_{1}^{*} X_{13} A_{33} \\
& +B_{2}^{*} X_{12} A_{13}+B_{2}^{*} X_{22} A_{23}+B_{2}^{*} X_{23} A_{33} \\
& +B_{3}^{*} X_{13} A_{13}+B_{3}^{*} X_{23} A_{23}+B_{3}^{*} X_{33} A_{33}
\end{aligned}
$$

Again, $R_{X} \xlongequal{\text { def }} R+\left(B^{*} T\right)\left(T^{*} X T\right)\left(T^{*} B\right)$. Writing the block submatrix in position $(1,1)$ of DARE written in this basis, we find

$$
X_{11}=X_{11}-\left(X_{11} B_{1}+X_{12} B_{2}+X_{13} B_{3}\right) R_{X}^{-1}\left(B_{1}^{*} X_{11}+B_{2}^{*} X_{12}+B_{3}^{*} X_{13}\right),
$$

which yields $X_{11} B_{1}+X_{12} B_{2}+X_{13} B_{3}=0$. Writing the block submatrix in position (1,1) of DARE written in this basis, we find

$$
X_{12}=\left(\theta^{*}\right)^{2}\left(X_{12}-\left(X_{11} B_{1}+X_{12} B_{2}+X_{13} B_{3}\right) R_{X}^{-1}\left(B_{1}^{*} X_{12}+B_{2}^{*} X_{22}+B_{3}^{*} X_{23}\right)\right)
$$

Using the identity $X_{11} B_{1}+X_{12} B_{2}+X_{13} B_{3}=0$ found above in the block submatrix in position $(1,2)$ of DARE gives the equation $X_{12}=X_{12}\left(\theta^{*}\right)^{2}$. Since $\theta \notin\{1,-1\}$, the only solution is $X_{12}=0$. The block submatrix in position $(1,3)$ of DARE with respect to this basis is

$$
X_{13}=\theta^{*} X_{11} A_{13}+\theta^{*} X_{12} A_{23}+\theta^{*} X_{13} A_{33}-\left(X_{11} B_{1}+X_{12} B_{2}+X_{13} B_{3}\right) R_{X}^{-1} \Phi .
$$

Using $X_{11} B_{1}+X_{12} B_{2}+X_{13} B_{3}=X_{11} B_{1}+X_{13} B_{3}=0$ and $X_{12}=0$ into the latter gives $X_{13}=\theta^{*} X_{11} A_{13}+\theta^{*} X_{13} A_{33}$. This equation and $X_{11} B_{1}+X_{12} B_{2}+X_{13} B_{3}=0$ can be written together as

$$
\left[\begin{array}{cc}
\theta A_{13}^{*} & \theta A_{33}-I \\
B_{1}^{*} & B_{3}^{*}
\end{array}\right]\left[\begin{array}{l}
X_{11} \\
X_{13}^{*}
\end{array}\right]=0
$$

Since the first elimination procedure has already been carried out, the null-space of the matrix $\left[\begin{array}{c}\theta A_{0}^{*}-I \\ B^{*}\end{array}\right]$ is the origin. Thus, X_{11} and X_{13} are zero. In a similar way, the block submatrix in position $(2,2)$ is

$$
X_{22}=X_{22}-\left(X_{12}^{*} B_{1}+X_{22} B_{2}+X_{23} B_{3}\right) R_{X}^{-1}\left(B_{1}^{*} X_{12}+B_{2}^{*} X_{22}+B_{3}^{*} X_{23}\right)
$$

from which we find $X_{12}^{*} B_{1}+X_{22} B_{2}+X_{23} B_{3}=0$. It follows that the submatrix in position $(2,3)$ is

$$
X_{23}=\theta X_{22} A_{23}+\theta X_{23} A_{33}
$$

With the same argument used above, we find that X_{23} and X_{22} are zero. As a result of this discussion, we can write the submatrix in position $(3,3)$ as

$$
X_{33}=A_{33}^{*} X_{33} A_{33}-A_{33}^{*} X_{33} B_{3}\left(R+B_{3}^{*} X_{33} B_{3}\right)^{-1} B_{3}^{*} X_{33} A_{33}+Q_{33}
$$

which is again a reduced-order Riccati equation.

5. Numerical examples

Example 5.1. Consider the DARE with

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
9 \\
0
\end{array}\right], \quad Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad S=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad R=16
$$

Matrix W_{θ} loses rank at $\theta=-1$. Then $\operatorname{ker} W_{-1}=\operatorname{span}\left[\begin{array}{lllll}0 & 0 & 0 \mid 0 & 1 & 0\end{array}\right]^{\top}$. Let $V_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Consider the change of coordinate matrix

$$
T=\left[\begin{array}{l|ll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

which gives $T^{*} A_{0} T=\left[\begin{array}{ccc}-1 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Then, $A_{12}=\left[\begin{array}{ll}-2 & 0\end{array}\right]$ and $A_{22}=0$. Moreover $T^{*} B=$ $\left[\begin{array}{l}9 \\ 0 \\ 0\end{array}\right]$, which implies $B_{1}=9$ and $B_{2}=0$. It follows that X_{11} and X_{12} are zero, and the reduced-order Riccati equation is simply

$$
X_{22}=Q_{22}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Thus, the only solution of the original Riccati equation is

$$
X=T\left[\begin{array}{c|ll}
0 & 0 & 0 \\
0 & 1 & 0 \\
\hline 0 & 0 & 1
\end{array}\right] T^{*}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Example 5.2. Consider the DARE with

$$
A=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
0 & -1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
0 \\
-7 \\
0
\end{array}\right], \quad Q=\left[\begin{array}{cccc}
67 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2
\end{array}\right], \quad S=\left[\begin{array}{c}
-72 \\
0 \\
0 \\
0
\end{array}\right], \quad R=81 .
$$

It is easily seen that $Q_{0}=\operatorname{diag}\{3,0,0,2\}$ and

$$
A_{0}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & -2 & 0 \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{56}{9} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Matrix W_{θ} loses rank at $\theta=0$ and $\theta= \pm i$. Let $\theta=i$. Then $\operatorname{ker} W_{i}=\left[\left.\begin{array}{llllll}0 & 0 & 0 & 0\end{array} \right\rvert\, \begin{array}{lll}0 & 1 & i\end{array}\right]^{\top}$. Let $V_{1}=\left[\begin{array}{c}0 \\ 1 / \sqrt{2} \\ i / \sqrt{2} \\ 0\end{array}\right]$. The null-space of $\left[\begin{array}{c}i B R^{-1} B^{*} \\ i A_{0}^{*}-I\end{array}\right]$ is $\{0\}$. Therefore, only the reduction
relative to V_{1} needs to be carried out. Consider the change of coordinates

$$
T=\left[\begin{array}{c|c|cc}
0 & 0 & 1 & 0 \\
\hline \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
\hline \frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],
$$

which leads to

$$
T^{*} A_{0} T=\left[\begin{array}{c|c|cc}
i & 0 & -\sqrt{2}+\frac{28}{9} \sqrt{2} i & -\sqrt{2} i \\
\hline 0 & -i & -\sqrt{2}-\frac{28}{9} \sqrt{2} i & \sqrt{2} i \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad T^{*} B=\left[\begin{array}{c}
\frac{7}{\sqrt{2}} i \\
\hline-\frac{7}{\sqrt{2}} i \\
\hline 0 \\
0
\end{array}\right]
$$

and

$$
T^{*} Q_{0} T=\operatorname{diag}\{0,0,3,2\}
$$

It follows that A_{33} is the zero matrix, so that $X_{33}=Q_{33}=\operatorname{diag}\{3,2\}$. Thus, the only solution of the original DARE is $X=T \operatorname{diag}\{0,0,3,2\} T^{*}=\operatorname{diag}\{3,0,0,2\}$.

Concluding remarks

In this paper we have presented a reduction technique aimed at decomposing a discrete algebraic Riccati equation into a part that is arbitrary, and a part that can be obtained by computing the set of solutions of a reduced-order Riccati equation whose associated symplectic pencil has no generalized eigenvalues on the unit circle. A delicate computational issue, which was not discussed in this paper, is the following. In practice, the generalized eigenvalues of the symplectic pencil must be computed numerically. Thus, it will very rarely occur that their modulus is exactly one. Therefore, it is necessary to select a threshold that can be used to discriminate between the generalized eigenvalues that can be numerically considered to be on the unit circle from those that are structurally outside it.

REFERENCES

[1] H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, it Matrix Riccati Equations in Control and Systems Theory, Birkhäuser, Basel, 2003.
[2] D. J. CLEMENTS AND B .D. O. Anderson, Polynomial factorization via the Riccati equation, SIAM Journal on Applied Mathematics, 31 (2004), 179-205.
[3] T. Damm and D. Hinrichsen, Newton's method for a rational matrix equation occurring in stochastic control, Linear Algebra and its Applications, 332-334 (2001), 81-109.
[4] A. Ferrante, On the structure of the solution of discrete-time algebraic Riccati equation with singular closed-loop matrix, IEEE Transactions on Automatic Control, 49 (2004), 2049-2054.
[5] A. Ferrante and L. Ntogramatzidis, The generalized discrete algebraic Riccati equation in Linear-Quadratic optimal control, Automatica, 49 (2013), 471-478.
[6] A. Ferrante and L. Ntogramatzidis, The extended symplectic pencil and the finite-horizon LQ problem with two-sided boundary conditions, IEEE Transactions on Automatic Control, 58 (2013), 2102-2107.
[7] A. Ferrante and L. Ntogramatzidis, A note on finite-horizon LQ problems with indefinite cost, Automatica, 52 (2015), 290-293.
[8] A. Ferrante and L. Ntogramatzidis, Generalized finite-horizon linear-quadratic optimal control, Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5102-9_202-1, SpringerVerlag, London, 2014.
[9] A. Ferrante and H. K. Wimmer, Order reduction of discrete-time algebraic Riccati equations with singular closed-loop matrix, Operators and Matrices, 1 (2007), 61-70.
[10] G. Freiling and A. Hochhaus, On a class of rational matrix differential equations arising in stochastic control, Linear Algebra and its Applications, 379 (2004), 43-68.
[11] T. Fujinaka and M. Araki, Discrete-time optimal control of systems with unilateral time-delays, Automatica, 23 (1987), 763-765.
[12] T. Fujinaka, G. Chen and H. Shibata, Discrete algebraic Riccati equation with singular coefficient matrix, In Proc. Systems and Networks: Mathematical Theory and Application (MTNS 98), Padova, Italy, 1999.
[13] A. Hansson and P. Hagander, How to decompose semi-definite discrete-time algebraic Riccati equations, European Journal of Control, 5 (1999), 245-258.
[14] V. Ionescu, C. Oarǎ and M. Weiss, Generalized Riccati theory and robust control, a Popov function approach, Wiley, 1999.
[15] P. Lancaster and L. Rodman, Algebraic Riccati equations, Clarendon Press, Oxford, 1995.
[16] J. MEDANIC, Geometric properties and invariant manifolds of the Riccati equation, IEEE Transactions on Automatic Control, 27 (1985), 670-677.
[17] T. Mita, Optimal digital feedback control systems counting computation time of control laws, IEEE Transactions on Automatic Control, 30 (1985), 542-548.
[18] L. Ntogramatzidis and A. Ferrante, The discrete-time generalized algebraic Riccati Equation: order reduction and solutions's structure, Systems \& Control Letters, 75 (2015), 84-93.
[19] D. Rappaport and L. M. Silverman, Structure and stability of discrete-time optimal systems, IEEE Transactions on Automatic Control, 16 (1971), 227-233.
[20] W. T. Reid, Riccati differential equations, Academic Press, 1972.
[21] J. C Willems, S. Bittanti and A. Laub, editors, The Riccati Equation, Springer Verlag, New York, 1991.
[22] H. K. WIMMER, Normal forms of symplectic pencils and the discrete-time algebraic Riccati equation, Linear Algebra and its Applications, 147 (1991), 411-440.
[23] M. ZorZi, Robust Kalman filtering under model perturbations, IEEE Transactions on Automatic Control, 62, 6 (2017), 2902-2907.
[24] B. C. LEvy, M. Zorzi, A contraction analysis of the convergence of risk-sensitive filters, SIAM Journal on Control and Optimization, 54, 4 (2016), 2154-2173.
[25] M. ZORZI, Convergence analysis of a family of robust Kalman filters based on the contraction principle, SIAM Journal on Control and Optimization, 55, 5 (2017), 3116-3131.
(Received December 9, 2015)

> Augusto Ferrante
> Dipartimento di Ingegneria dell'Informazione
> Università di Padova via Gradenigo, 6/B - 35131 Padova, Italy e-mail: augusto@dei. unipd. it
> Lorenzo Ntogramatzidis Department of Mathematics and Statistics
> Curtin University
> Perth (WA), Australia
> e-mail: L.Ntogramatzidis@curtin. edu.au

[^0]: Mathematics subject classification (2010): 93C05, 93B27, 93B52.
 Keywords and phrases: Discrete-time algebraic Riccati equations, symplectic pencil.
 Partially supported by the Australian Research Council under the grant DP160104994 and by the Italian Ministry for Education and Research (MIUR) under PRIN grant n. 20085FFJ2Z.

[^1]: ${ }^{1}$ When running the dare.m command in MATLAB ${ }^{\circledR}$, in such case one obtains an error message which warns the user that "the symplectic spectrum is too close to the unit circle".

[^2]: ${ }^{2}$ We recall that given an arbitrary matrix $M \in \mathbb{C}^{h \times k}$, there exists a unique matrix $M^{\dagger} \in \mathbb{C}^{k \times h}$ that satisfies the following four properties: (1) $M M^{\dagger} M=M$; (2) $M^{\dagger} M M^{\dagger}=M^{\dagger}$; (3) $\left(M^{\dagger} M\right)^{*}=M^{\dagger} M$; (4) $\left(M M^{\dagger}\right)^{*}=$ $M M^{\dagger}$. By definition, the matrix M^{\dagger} is the Moore-Penrose pseudo-inverse of the matrix M.

[^3]: ${ }^{3}$ Recall that a generalized eigenvalue of a matrix pencil $N-z M$ is a value of $z \in \mathbb{C}$ for which the rank of the matrix pencil $N-z M$ is lower than its normal rank.

[^4]: ${ }^{4}$ This condition can equivalently expressed by saying that for any matrix Ξ such that $\left(I-\theta A_{X_{22}}\right) \Xi=0$, we also have $\left(A_{21}^{*} X_{22} A_{X_{22}}+Q_{12}\right) \Xi=0$, i.e., $\left(A_{21}^{*} X_{22} \theta+Q_{12}\right) \Xi=0$.

