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Abstract. In this paper we investigate some clasees of weighted composition operators on the
Hilbert space of complex valued functions on the natural numbers. Next we introduce a new
model of a block matrix operator M(α ,β) induced by two sequences α and β and characterize
its p -paranormality. Then we give examples of these operators to show that the p -paranormal
classes are distinct.

1. Introduction and preliminaries

Let (X ,Σ,μ) be a complete σ -finite measure space and let A be a sub-σ -finite
algebra of Σ . We use the notation L2(A ) for L2(X ,A ,μ|A ) and henceforthwe write μ
in place of μ|A . All comparisons between two functions or two sets are to be interpreted
as holding up to a μ -null set. We denote the linear space of all complex-valued Σ-
measurable functions on X by L0(Σ) . The support of f ∈ L0(Σ) is defined by σ( f ) =
{x ∈ X : f (x) �= 0} . Let T : X → X be a transformation such that T−1(Σ) ⊆ Σ and
μ ◦T−1 � μ . It is assumed that the Radon-Nikodym derivative h = dμ ◦T−1/dμ is
finite-valued or equivalently (X ,T−1(Σ),μ) is σ -finite.

The associated conditional expectation with respect to A is denoted by EA
μ , or

when no confusion will arise, simply EA . We recall that EA : L2(Σ) → L2(A ) is a
surjective, positive, contractive orthogonal projection which satisfies EA (EA ( f )g) =
EA ( f )EA (g) for f ,g ∈ L2(Σ) . For more details see [13]. For a non-negative finite
valued measurable function u∈ L0(Σ) , the weighted composition operator W on L2(Σ)
induced by T and u is given by W = Mu ◦CT where Mu is a multiplication operator
and CT is a composition operator on L2(Σ) defined by Mu f = u f and CT f = f ◦T ,
respectively. The assumption of non-negativity for u guarantees the existence of E(u) .
The interested reader will see how generalizations for complex-valued u may be made.
Put A = T−1(Σ) and ET−1(Σ) = E . It is a classical fact that W is a bounded linear
operator on L2(Σ) if and only if J := hE(u2)◦T−1 ∈ L∞(Σ) (see [7]). Throughout this
paper we assume that J ∈ L∞(Σ) . Let H be the infinite dimensional complex Hilbert
space and L (H ) be the algebra of all bounded linear operators on H . Let A =U |A|
be the canonical polar decomposition for A ∈ L (H ).
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• A is hyponormal if A∗A−AA∗ � 0.
• A is quasinormal if AA∗A = A∗AA.
• A is quasihyponormal if A∗(A∗A)A � A∗(AA∗)A.
• A is p -paranormal if ‖|A|pU |A|px‖ � ‖|A|px‖2 , for all unit vectors x ∈ H .
• A is defined to be of class (M;k) if (A∗)kAk � (A∗A)k , for all integer k � 2.
• A is M -paranormal operator if for unit vectors x ∈ H , ‖Ax‖2 � M‖A2x‖
Put p = 1, then it is clear that A is paranormal if ‖|A|U |A|x‖ � ‖|A|x‖2 , for all

unit vectors x ∈H , moreover by using the property of read quadratic forms A is para-
normal operator if and only if for all integer k � 0, |A|U∗|A|2U |A|−2k|A|2 + k2 � 0,
see [9]. The hierarchical relationship between the classes is as follows: quasinormal
=⇒ hyponormal =⇒ (M;2) class =⇒ paranormal; quasihyponormal =⇒ paranor-
mal, (see[5]).

The fundamental properties of weighted composition operators on measurable
function spaces are studied by many mathematicians see [1, 3, 6, 7, 8, 10, 14, 15].

In this article we will restrict ourselves to the Hilbert space �2(N) of complex-
valued functions on the natural numbers. The space of �2(N) can also be denoted by
L2(N,2N,μ) , where 2N is the power set of natural numbers and μ is a measure on 2N

define by μ({n}) = mn where {mn}∞
n=1 be a sequance of positive real numbers.

This paper consists of three sections. In section 2 we discuss measure theo-
retic characterizations for weighted composition operators in some operator classes on
�2(N) such as cohyponormal, coquasinormal, quasihyponormal, paranormal and M -
paranormal. A key tool in this case is the notion of conditional expectation. In [4]
Exner, Jung and Lee introduced an interesting block matrix operator and characterized
its p -hyponrmality. In section 3 we define a new block shift matrix such that in the
special case its corresponding operator on �2(N) is a shift operator. We obtain the p -
paranormality criteria of these type block matrices. Finally, we give examples to show
that block shift matrix operators can separate these classes.

2. Some Characterizations

Let {en}n∈N is an orthornormal basis for �2(N) , and f = ∑n∈N fnen be in �2(N) .
Put J = hE(u2)◦T−1 . Then some direct computations show that for each k ∈ N :

h(k) =
1
mk

∑
j∈T−1(k)

mj; (2.1)

E( f )(k) =

∑
j∈T−1(T (k))

f jm j

∑
j∈T−1(T(k))

mj
; (2.2)

J(k) =
1
mk

∑
j∈T−1(k)

(u( j))2mj. (2.3)

We shall make use of the following general properties of E and W see [2, 7, 11]. For
each f ∈ L2(Σ) ,
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• W ∗ f = hE(u f )◦T−1 .

• W ∗W f = hE(u2)◦T−1 f .

• WW ∗ f = u(h ◦T)E(u f ) .

Let U |W | be the polar decomposition of W . It is easy to check that U( f ) = u. f◦T√
h◦TE(u2)

,

(see [9]).

LEMMA 2.1. Let T : N → N , u : N → [0,∞) , and W ∈ L (�2(N)) . Then we have

(1) W f =
∞

∑
n=1

u(n) fT (n)en.

(2) Wek = ∑
n∈T−1(k)

u(n)en.

(3) W ∗ f =
∞

∑
n=1

1
mn

∑
j∈T−1(n)

u( j) f jm jen.

(4) W ∗ek = mk
mT (k)

u(k)eT (k).

(5) WW ∗en = mn
mT (n) ∑

k∈T−1(T (n))

u(k)u(n)ek.

(6) W ∗Wen = 1
mn ∑

j∈T−1(n)

(u( j))2mjen.

(7) WW ∗Wen = χ
T−1(n) ∑

k∈T−1(n)

1
mT (k)

∑
j∈T−1(n)

(u( j))2u(k)mjek.

(8) W ∗WWen = χ
T−1(n) ∑

k∈T−1(n)

1
mk

∑
j∈T−1(k)

(u( j))2u(k)mjek.

Proof.
(1) Since for each n ∈ N , W f (n) = u(n) fT (n) , so W f = ∑∞

n=1 u(n) fT (n)en . Put

f = ek . Then Wek =
∞

∑
n=1

u(n)〈ek,eT (n)〉en , and so Wek = ∑
n∈T−1(k)

u(n)en.

(3) For each n ∈ N , by using (2.3) we get that

W ∗ f (n) = (hE(u f )◦T−1)(n) =
1
mn

∑
j∈T−1(n)

u( j) f jm j.

It follows that,

W ∗ f =
∞

∑
n=1

1
mn

∑
j∈T−1(n)

u( j) f jm jen.
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In particular,

W ∗ek =
∞

∑
n=1

1
mn

∑
j∈T−1(n)

mj〈ek,e j〉u( j)en =
mk

mT (k)
u(k)eT (k).

(5) By (2.1) and (2.2), for each n,k ∈ N , we have

(WW ∗en)(k) = u(k)(h ◦T)(k)E(uen)(k)

= u(k)
1

mT (k)
∑

j∈T−1(T (k))

mj

∑
j∈T−1(T (k))

u( j)en( j)mj

∑
j∈T−1(T (k))

mj

=
u(k)
mT (k)

∑
j∈T−1(T (k))

u( j)en( j)mj
.

Hence
WW ∗en =

mn

mT (n)
∑

k∈T−1(T (n))

u(k)u(n)ek.

(6) Since W ∗W f = J f , then it follows by (2.3).
(7) Let T−1(n) �= /0 . It is easy to see that

WW ∗Wen = WW ∗(uen ◦T ) = u(h ◦T)E(u2(en ◦T )).

Hence

WW ∗Wen(k) =
u(k)
mT (k)

∑
j∈T−1(T (k))

mj

∑
j∈T−1(T (k))

(u( j))2mjen(T ( j))

∑
j∈T−1(T (k))

mj

=
u(k)
mT (k)

∑
j∈T−1(n)

(u( j))2mj,

and so

WW ∗Wen = ∑
k∈T−1(n)

∑
j∈T−1(n)

1
mT(k)

u(k)(u( j))2mjek.

(8) By (2.3), for each n,k ∈ N with T−1(n) �= /0 , we have

W ∗WWen(k) = h(k)E(uu2(en ◦T2))◦T−1(k)

=
1
mk

∑
j∈T−1(k)

(u( j))2u(T ( j))en(T 2( j))mj,

and hence W ∗WWen = ∑
k∈T−1(n)

1
mk

∑
j∈T−1(k)

(u( j))2u(k)mjek . �
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THEOREM 2.2. ([11]) Let W be a weighted composition operator on L2(Σ) .
Then W is hyponormal if and only if

(i) σ(u) ⊆ σ(J) and

(ii) (h ◦T)E( u2

J ) � χσ(E(u)) (the fraction is interpreted as 0 off σ(J)).

By definition of J , we have N\σ(J) = { j∈N : T−1( j) = /0 or u(T−1( j)) = {0}} .
Hence σ(J) = {n ∈ N : T−1({n})∩σ(u) �= /0} = T (σ(u)) . Also, by (2.1), (2.2), (2.3)
and σ(u) ⊆ σ(E(u)) for each k ∈ N , we have

h ◦T(k) =
1

mT(k)
∑

j∈T−1(T (k))

mj,

E
(u2

J

)
(k) =

∑ j∈T−1(T (k))
u2( j)
J( j) mj

∑ j∈T−1(T(k)) mj
.

These observations establish the following theorem.

THEOREM 2.3. Let W is boundedweighted composition operator on �2(N) . Then
W is hyponormal if and only if σ(u) ⊆ T (σ(u)) and for each k ∈ σ(u) ,

1
mT (k)

∑
j∈T−1(T(k))

(u( j))2m2
j

∑
s∈T−1( j)

(u(s))2ms
� 1.

THEOREM 2.4. W ∗ is hyponormal if and only if the restriction T to σ(J) is
injective and for each k ∈ σ(J) ,

1
mk

∑
j∈T−1(k)

(u( j))2mj � 1
mT(k)

(u(k))2mk.

Proof. From [2, Theorem 4.2], W ∗ is hyponormal on L2(Σ) if and only if
(i) J � J ◦T
(ii) Σ∩σ(J) ⊆ T−1(Σ)∩σ(u).
From equation (2.3), (i) is equivalent to σ(J) ⊆ σ(E(u)) and

1
mk

∑
j∈T−1(k)

(u( j))2mj � 1
mT (k)

∑
j∈T−1(T(k))

(u( j))2mj (2.4)

for each k ∈ σ(J) . On �2(N) , condition (ii) is equivalent to: if k ∈ σ(J) , then {k} =
T−1(A)∩σ(u) for some A ⊆ N . Since k ∈ T−1(T (k)) and k /∈ T−1(n) for any n �=
T (k) , so that condition (ii) is equivalent to: if k ∈ σ(J) , then {k}= T−1(T (k))∩σ(u) .
This is clearly equivalent to the injectivity of the restriction T to σ(J) ⊆ σ(u) . Thus
the right-hand side of (2.4) is equal to 1

mT (k)
(u(k))2mk , which completes the proof. �
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THEOREM 2.5. For W ∈ L (�2(N)) , the following assertions hold.
(i) W is quasinormal if and only if for each k ∈ σ(u) ,

1
mk

∑
j∈T−1(k)

(u( j))2mj =
1

mT (k)
∑

j∈T−1(T (k))

(u( j))2mj.

(ii) W ∗ is quasinormal if and only if the restriction T to σ(J) is injective and for
each k ∈ σ(J) ,

1
mk

∑
j∈T−1(k)

(u( j))2mj =
mk

mT(k)
(u(k))2mk.

Proof. (i) From [11], W is quasinormal on L2(Σ) if and only if J = J◦T on σ(u) .
Now, the desired conclusion follows from (2.3). Note that

σ(h) ⊇ σ(J) ⊇ σ(J)∩σ(u) = σ(J ◦T )∩σ(u) = σ(E(u))∩σ(u) = σ(u),

and so for each k ∈ σ(u) , T−1(k) �= /0 .
(ii) By [2, Theorem 4.4 Simplified], W ∗ is quasinormal on L2(Σ) if and only if

J ◦T = J on σ(J) and Σ∩σ(J) ⊆ T−1Σ∩σ(u) . The result follows immediately from
Theorem 2.4. �

THEOREM 2.6. Let W be a weighted composition operator on �2(N) . Then the
following statements are equivalent

(i) W is quasihyponormal.

(ii) W is paranormal.

(iii) 1
mn

⎛
⎝ ∑

s∈T−1(n)

(u(s))2ms

⎞
⎠

2

� ∑
s∈T−1(n)

(u(s))2 ∑
j∈T−1(s)

(u( j))2mj, for each n ∈ N .

Proof. (i) ⇔ (iii) By Lemma 2.1, we get that

W ∗(W ∗W )Wen = W ∗
⎛
⎝ ∑

k∈T−1(n)

1
mk

∑
j∈T−1(k)

(u( j))2u(k)mjek

⎞
⎠

=
∞

∑
n=1

1
mn

∑
s∈T−1(n)

u(s)

⎛
⎝ ∑

j∈T−1(s)

1
ms

u(s)(u( j))2mj

⎞
⎠msen

=
∞

∑
n=1

∑
s∈T−1(n)

∑
j∈T−1(s)

1
mn

(u(s))2(u( j))2mjen,
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and

W ∗(WW ∗)Wen = W ∗
⎛
⎝ ∑

k∈T−1(n)
∑

j∈T−1(n)

(u( j))2 u(k)
mT (k)

mjek

⎞
⎠

=
∞

∑
n=1

1
mn

∑
s∈T−1(n)

∑
j∈T−1(n)

ms

mT (s)
(u(s))2(u( j))2mjen,

for each n ∈ N . Now, (iii) follows from the inequality W ∗(W ∗W )W � W ∗(WW ∗)W .
(ii) ⇔ (iii) It is easy to see that for each n ∈ N , |W |2(en) = Jen and

|W |U∗|W |2U |W |(en) = W ∗(W ∗WW (en))

=
∞

∑
n=1

∑
s∈T−1(n)

∑
j∈T−1(s)

1
mn

(u(s))2(u( j))2mjen.

Thus W is paranormal if and only if (iii) holds. �
For each n ∈ N , let T−n(Σ) is a σ -finite algebra of Σ . Put Jn = hnEn(u2

n)◦T−n ,
where un = u(u ◦T )(u ◦T 2) · · · (u ◦Tn−1) , ET−n(Σ) = En and hn = dμ ◦T−n/dμ . Set
J1 = J , h1 = h , E1 = E . Also by relations (2.1) and (2.3) for each k ∈ N , we obtain

hn(k) =
1
mk

∑
j∈T−n(k)

mj;

and

Jn(k) =
1
mk

∑
j∈T−n(k)

(un( j))2mj.

THEOREM 2.7. Let W ∈ L (�2(N)) . Then
(i) W is of class (M,k) with k � 2 if and only if

( 1
mn

)k

⎛
⎝ ∑

j∈T−1(n)

(u( j))2mj

⎞
⎠

k

� 1
mn

∑
j∈T−k(n)

uk( j)2mj.

(ii) W is M-paranormal if and only if

( 1
mn

)2

⎛
⎝ ∑

j∈T−1(n)

(u( j))2mj

⎞
⎠

2

� M2 1
mn

∑
j∈T−2(n)

u2( j)2mj.

Proof. According to [12, Theorem2.1], W is of class (M,k) if and only if Jk � Jk .
Also by [12, Theorem 2.3], W is M -paranormal if and only J2 � M2J2 . Now, (i) and
(ii) follows from (2.3) �
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3. Block shift matrix operators

Let α := {an
i } 1�i�r

0�n<∞
and β := {bn

j} 1� j�s
0�n<∞

be bounded sequences of positive real

numbers. Let M(α,β ) := [Ai j]0�i, j<∞ be a block matrix operator whose blocks are
(r+ s)× (r+2) matrices such that Ai j = 0, i �= j , and

An := Ann =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a(n)
1 O

. . .

a(n)
r

b(n)
1

O
...

b(n)
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.1)

where other entries are 0 except an∗ and bn∗ in (3.1)

DEFINITION 3.1. For two bounded sequences α:={an
i } 1�i�r

0�n<∞
and β :={bn

j} 1� j�s
0�n<∞

,

the block matrix operator M := M(α,β ) satisfying in (3.1) is called a block shift matrix
operator with weight sequence (α,β ) .

Let M be a block shift matrix operator with weight sequence (α,β ) and let Wα ,β
be its corresponding operator on �2 relative to some orthornormal basis. Then Wα ,β

may provide a repetitive form; for example r = 2, s = 3 and a(n)
i = b(n)

j = 1 for all
i, j,n ∈ N , then the block matrix operator with (α,β ) is unitarily equivalent to the
following operator Wα ,β on �2 defined by

Wα ,β (x1,x2,x3,x4.x5, . . .) = (x2,x3,x4,x4,x4,x5, . . .).

Now we put X = N0 and the power set P(X) of X for the σ -algebra Σ . Define a
non-singular measurable transformation T on N0 such that

T−1(k(r+1)+ r+1) = {k(r+ s)+ i+ r−1 : 1 � i � s}, k = 0,1,2, . . . , (3.2)

T−1(k(r+1)+ i) = k(r+ s)+ i−1, 1 � i � r, k = 0,1,2, . . .

We write m({i}) := mi, i ∈ N0 , for the underlying point mass measure on X , and we
assume throughout that each mi is strictly positive.

PROPOSITION 3.2. The composition operator CT on �2 defined by CT f = f ◦
T is unitarily equivalent to the block shift matrix operator M(α,β ) , where α :=
{an

i } 1�i�r
0�n<∞

and β := {bn
j} 1� j�s

0�n<∞
and for each n ∈ N0

a(n)
i =

√
mn(r+s)+i−1

mn(r+1)+i
(1 � i � r),
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b(n)
j =

√
mn(r+s)+ j+r−1

mn(r+1)+r+1
(1 � j � s).

Proof. Let ei = 1√
mi

χi (i ∈ N0) . Then {ei}i∈N0 is an orthornormal basis for �2 .
We have

CT e j = e j ◦T =
1√
mj

χT−1{ j} =
1√
mj

∑
i∈T−1( j)

ei
√

mi.

Hence, we obtain that

CT e j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
1�i�s

√
mk(r+s)+i+r−1

mk(r+1)+r+1
ek(r+s)+i+r−1 j = k(r+1)+ r+1, k ∈ N0,

√mk(r+s)+i−1
mk(r+1)+i

ek(r+s)+i−1 j = k(r+1)+ i, 1 � i � r, k ∈ N0.

Now, we set weight sequences α := {an
i } 1�i�r

0�n<∞
and β := {bn

j} 1� j�s
0�n<∞

, where

a(n)
i =

√
mn(r+s)+i−1

mn(r+1)+i
1 � i � r, 0 � n < ∞,

b(n)
j =

√
mn(r+s)+ j+r−1

mn(r+1)+r+1
1 � j � s, 0 � n < ∞.

Therefore it is easy to check that CT is unitarily equivalent to the block shift matrix
operator M(α,β ) with weight sequence (α,β ) . �

PROPOSITION 3.3. [4] Let M(α,β ) be a block matrix operator with weight se-
quence (α,β ) , where α := {an

i } 1�i�r
0�n<∞

and β := {bn
j} 1� j�s

0�n<∞
. Then there exists a

measurable transformation T on a σ -finite measure space (N0,P(N0),m) such that
M(α,β ) is unitarily equivalent to the composition operator CT on �2 .

REMARK 3.4. Let m := {mn}∞
n=1 be a sequence of positive real numbers. Put the

space �2(m) = L2(N,2N,μ) , where 2N is the power set of natural numbers and μ is a
measure on 2N defined by μ({n}) = mn . Let f = { fn}∞

n=1 . Also assume T : N → N

be a measurable transformation. Then for each k ∈ N we have

h(k) =
1
mk

∑
j∈T−1(k)

mj; E( f )(k) =
∑ j∈T−1(T (k)) f jm j

∑ j∈T−1(T (k)) mj
;

THEOREM 3.5. Let T be a non-singular measurable transformation on �2 as in
(3.2) and let p ∈ (0,∞) . Then the following assertions are equivalent

(i) CT is p-paranormal on �2 ;
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(ii) the block shift matrix operator M(α,β ) as in Proposition 3.2 is p-paranormal;
(iii) hp ◦T (n) � E(hp)(n) , n ∈ N0 , where h = dμ ◦T−1/dμ ;
(iv) the following inequality holds(
m(T−1(T (n)))

mT (n)

)p

� 1
m(T−1(T (n))) ∑

l∈T−1(T(n))

m(T−1(l))p

mp
l

ml, n ∈ N0. (3.3)

Proof. By [9, Theorem 2.2], we get that (i) and (iii) are equivalent. Also by using
Proposition 3.2, we have (i) and (ii) are equivalent. Hence, it is sufficient to show that
(i) and (iv) are equivalent. To compute hp ◦T (n) , we require the consideration of two
cases.

Case 1: n = k(r + s)+ i+ r−1 (1 � i � s) , then n ∈ T−1(k(r +1)+ r +1) . By
(2) we obtain that

(hp ◦T )(n) =

(
m(T−1(T (n)))

mT (n)

)p

, n = k(r+ s)+ i+ r−1, 1 � i � s.

Case 2: n = k(r+ s)+ i−1 ((1 � i � r) , we have n ∈ T−1(k(r+1)+ i) , and

(hp ◦T)(n) =

(
m(T−1(T (n)))

mT (n)

)p

, n = k(r+ s)+ i−1, 1 � i � r.

We now turn to the computation of E(hp) . This also will be considered in two cases as
above. For n = k(r+ s)+ i+ r−1 (1 � i � s) , we have n ∈ T−1(k(r+1)+ r+1) and
using (3.2) we have

E(hp)(n) =
1

m(T−1(k(r+1)+ r+1) ∑
l∈T−1(k(r+1)+r+1)

hP(l)ml

=
1

m(T−1(T (n))) ∑
l∈T−1(T (n))

( 1
ml

∑
s∈T−1(l)

ms

)p
ml

=
1

m(T−1(T (n))) ∑
l∈T−1(T (n))

m(T−1(l))pml

mp
l

On the other hand, for n = k(r + s)+ i−1, ((1 � i � r) , we have n ∈ T−1(k(r +
1) + i) , by using (3.2) we can arrive at the last line above, or in this case we may
simplify to

E(hp)(n) =
1

mk(r+s)+i−1
.hP(n).mn =

(
mT−1(n)

mn

)p

.

Therefore, we deduce the inequality hp ◦T (n) � E(hp) is equivalent to that(
m(T−1(T (n)))

mT (n)

)p

� 1
m(T−1(T (n))) ∑

l∈T−1(T (n))

m(T−1(l))p

mp
l

ml . �
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The conditions above simplify considerably if we specialize to the case of a re-
peated block. Let M(α,β ) be a block shift matrix operator where α := {an

i } 1�i�r
0�n<∞

and β := {bn
j} 1� j�s

0�n<∞
as follows:

M(α,β ) : A ≡ A1 = A2 = . . . (3.4)

α : a(n)
i = ai, n ∈ N0, 1 � i � r;

β : b(n)
j = b j, n ∈ N0, 1 � j � s.

For any n∈N0 , let tn denote the solution to the conditions 1 � tn � r+s and n = k(r+
s)+tn+r−1 for some k∈N0 . Similarly, let in satisfy 1 � in � r and n = k1(r+1)+ in
for some k1 ∈ N0 .

THEOREM 3.6. Let M(α,β ) be as in (3.4). Then the block matrix operator
M(α,β ) is p-paranormal if and only if the following two conditions hold:

(i) if n = k(r + s)+ i+ r−1 for 1 � i � s, then for all 1 � il � r and 1 � tl � s
we have (

∑
1�i�s

b2
i

)p

� ∑
l∈T−1(T (n))

l≡r+1mod(r+1)

(
∑

1�i�s

b2
i

)p(
b2
tl

∑1�i�s b
2
i

)

+ ∑
l∈T−1(T (n))

l≡ilmod(r+1)

(ail )
2p

(
b2
tl

∑1�i�s b
2
i

)
(3.5)

(ii) if n = k(r+ s)+m−1 for 1 � m � r , then

(ii−a) a2
m � ∑

1�i�s

b2
i n ≡ r+1 mod(r+1)

(ii−b) a2
m � a2

in n ≡ in mod(r+1).

Proof. Case 1: n = k(r+s)+ i+r−1 for 1 � i � s . Thus T (n) = k(r+1)+r+1
and T−1(T (n)) = {k(r + s)+ i+ r− 1 : 1 � i � s} . By using Proposition 3.2 we get
that

m(T−1(T (n))) = ∑
1�i�s

mk(r+s)+i+r−1 = ∑
1�i�s

(b(k)
i )2mk(r+1)+r+1,

since for any k ∈ N0 , b(k)
i = bi . So m(T−1(T (n))) = ∑1�i�s b

2
i mk(r+1)+r+1. Hence, we

have (
m(T−1(T (n)))

mT (n)

)p

=

(
∑1�i�s b

2
i mT (n)

mT (n)

)p

=

(
∑

1�i�s

b2
i

)p

.
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To compute the right hand side (3.3), we first calculate ml
m(T−1(T (n))) for l ∈ T−1(T (n)) .

By using Proposition 3.2, ml = mk(r+s)+tl+r−1 = b2
tl mk(r+1)+r+1 , then

ml

m(T−1(T (n)))
=

b2
tl
mk(r+1)+r+1

∑1�i�s b
2
i mk(r+1)+r+1

=
b2
tl

∑1�i�s b
2
i

, 1 � tl � s.

Now, we compute
(

m(T−1(l))
ml

)p
for l ∈ T−1(T (n)) . We consider two subcases.

Case 1a : l = k1(r +1)+ r +1, k1 ∈ N0 , then we have T−1(l) = {k1(r + s)+ i+
r−1 : 1 � i � s} . By Proposition 3.2, we obtain that

m(T−1(l)) = ∑
1�i�s

mk1(r+s)+i+r−1 = ∑
1�i�s

b2
i mk1(r+1)+r+1.

Therefore (
m(T−1(l))

ml

)p

=

(
∑1�i�s b

2
i mk1(r+1)+r+1

mk1(r+1)+r

)p

=

(
∑

1�i�s

b2
i

)p

.

Case 1b : l = k1(r + 1)+ il for k1 ∈ N0 and 1 � il � r . In this case we get that
T−1(l) = k1(r+ s)+ il −1 : 1 � il � r , so Proposition 3.2 implies that

m(T−1(l)) = mk1(r+s)+il −1 = a2
il
mk1(r+1)+il ,

this follows that (
m(T−1(l))

ml

)p

=
(
a2

il

)p
.

Therefore, for l ∈ T−1(T (n)) ,

(
m(T−1(l))

ml

)p

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
∑

1�i�r

b2
i

)p

l ≡ r, mod(r+1),

a2p
il

l ≡ il, mod(r+1).

Consequently, for n = k(r+ s)+ i+ r−1 and 1 � i � s , we deduce that (3.3) is equiv-
alent to (3.5).

Case 2: n = k(r + s)+m− 1 for 1 � m � r . It is easy to see that T (n) = k(r +
1)+m−1 and T−1(T (n)) = n , by using Proposition 3.2, we get that

m(T−1(T (n)))
m(T (n))

=
mn

mk(r+1)+m
=

mk(r+s)+m−1

mk(r+1)+m
=

a2
mmk(r+1)+m

mk(r+1)+m
= a2

m,

hence (
m(T−1(T (n)))

m(T (n))

)p

= a2p
m .
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Since T−1(T (n)) = n for n = k(r + s) + m− 1, obviously m(T−1(T (n)))
ml

= 1 for l ∈
T−1(T (n)) . Now we consider two subcases for computations of

(
m(T−1(l))

ml

)p
, l ∈

T−1(T (n)) .
Case 2a : l(= n) = k2(r +1)+ r +1 for some k2 ∈ N0 . Then we have T−1(l) =

{k2(r+ s)+ i+ r−1 : 1 � i � s} . By Proposition 3.2, we obtain that

m(T−1(l)) = ∑
1�i�s

mk2(r+s)+i+r−1 = ∑
1�i�s

b2
i mk2(r+1)+r+1,

this implies that

m(T−1(l))
ml

=
∑1�i�s b

2
i mk2(r+1)+r+1

mk2(r+1)+r+1
= ∑

1�i�s

b2
i .

Case 2b : l(= n) = k2(r +1)+ in for some k2 ∈ N0 , with 1 � in � r . Obviously
T−1(l) = {k2(r+ s)+ in−1 : 1 � in � r} , by Proposition 3.2, we get that

m(T−1(l)) = mk2(r+s2)+in −1 = a2
inmk2(r+1)+in ,

consequently
m(T−1(l))

ml
=

a2
inmk2(r+1)+in

mk2(r+1)+in
= a2

in .

Therefore we deduce that for l ∈ T−1(T (n)) ,

(
m(T−1(l))

ml

)p

=

⎧⎪⎨
⎪⎩
(
∑1�i�r b

2
i

)p
l(= n) ≡ r+1, mod(r+1),

a2p
in

l(= n) ≡ in, mod(r+1).

Thus for n = k(r+ s)+m−1 and 1 � m � r , we get that (3.3) is equivalent to⎧⎪⎨
⎪⎩

a2
m �

(
∑1�i�r b

2
i

)p
n ≡ r+1, mod(r+1),

a2
m � a2p

in
n ≡ in, mod(r+1).

�

EXAMPLE 3.7. Let

D :=

⎡
⎢⎢⎣

0 a 0 0
0 0 b 0
0 0 0 1
0 0 0 1

⎤
⎥⎥⎦ and M :=

⎡
⎢⎣

D
D

. . .

⎤
⎥⎦ .

Note that a and b are fixed positive real number. Then some direct computations
show that the conditions for M to be p -paranormal in Theorem 3.5 is equivalent to the
following condition:

a2p +b2p � 2p (3.6)
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Let 0 < p < q and M be p -paranormal. Then by using (3.6) we can find a and b such
that M is not q -paranormal. Namely for a = 1 and b = 1, it is easy to check that M is
1-paranormal but it is not 2-paranormal. Similarly for a = 1.2 and a = 1.3 it is easy
to see that M is 2-paranormal but it is not 3-paranormal.

EXAMPLE 3.8. Let

E :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 x 0 0
0 0 y 0
0 0 0 1
0 0 0 1
0 0 0 3
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and M :=

⎡
⎢⎣

E
E

. . .

⎤
⎥⎦ .

Note that x and y are fixed positive real number. Then by using Theorem 3.6 it is
easy to see that M is p -paranormal if and only if the following conditions hold:

9

(
x2

12

)p

+2

(
y2

12

)p

� 11, 12 � x2 and x2 � y2 (3.7)

Let 0 < p < q and M be q -paranormal. Then by using (3.7) we can find x and y such
that M is not p -paranormal. Put x = 3.48 and y = 3.4 by using (3.7) it is easy to see
that M is 2-paranormal but it is not 1-paranormal.
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