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(Communicated by I. M. Spitkovsky)

Abstract. Yanni Chen [3] extended the classical Beurling-Helson-Lowdenslager theorem for
Hardy spaces on the unit circle T defined in terms of continuous gauge norms on L∞ that
dominate ‖ · ‖1 . We extend Chen’s result to a much larger class of continuous gauge norms. A
key ingredient is our result that if α is a continuous normalized gauge norm on L∞ , then there
is a probability measure λ , mutually absolutely continuous with respect to Lebesgue measure
on T , such that α � c‖ ·‖1,λ for some 0 < c � 1.

1. Introduction

Let T be the unit circle, i.e., T = {λ ∈ C : |λ | = 1} , and let μ be Haar mea-
sure (i.e., normalized arc length) on T . The classical and influential Beurling-Helson-
Lowdenslager theorem (see [1], [7]) states that if W is a closed H∞(T,μ)-invariant sub-
space (or, equivalently, zW ⊆W ) of L2 (T,μ) , then W = ϕH2 for some ϕ ∈ L∞(T,μ),
with |ϕ | = 1 a.e.(μ) or W = χEL2(T,μ) for some Borel set E ⊂ T . If 0 �= W ⊂
H2(T,μ) , then W = ϕH2(T,μ) for some ϕ ∈ H∞(T,μ) with |ϕ |= 1 a.e. (μ) . Later,
the Beurling’s theorem was extended to Lp(T,μ) and Hp(T,μ) with 1 � p � ∞ , with
the assumption that W is weak*-closed when p = ∞ (see [5], [6], [7], [8]). In [3],
Yanni Chen extended the Helson-Lowdenslager-Beurling theorem for all continuous
‖ · ‖1,μ -dominating normalized gauge norms on T .

In this paper we extend the Helson-Lowdenslager-Beurling theorem for a much
larger class of norms. We first extend Chen’s results to the case of c‖ ·‖1,μ -dominating
continuous gauge norms. We then prove that for any continuous gauge norm α , there
is a probability measure λ that is mutually absolutely continuous with respect to μ
such that α is c‖ · ‖1,λ -dominating. We use this result to extend Chen’s theorem.
Our extension depends on Radon-Nikodym derivative dλ/dμ . In particular, Chen’s
theorem extends exactly whenever log(dλ/dμ) ∈ L1(T,μ) .

Mathematics subject classification (2010): Primary: 46E20, 30H10, Secondary: 30J99, 47L10.
Keywords and phrases: Gauge norm, Hardy space, Beurling theorem.
∗ Supported by a Collaboration from the Simons Foundation.

c© � � , Zagreb
Paper OaM-12-14

215

http://dx.doi.org/10.7153/oam-2018-12-14


216 H. FAN, D. HADWIN AND W. LIU

2. Continuous gauge norms on Ω

Suppose (Ω,Σ,ν) is a probability space. A norm α on L∞(Ω,ν) is a normalized
gauge norm if

1. α(1) = 1,

2. α(| f |) = α( f ) for every f ∈ L∞(Ω,ν) .

In addition we say α is continuous (ν -continuous) if

lim
ν(E)→0

α(χE) = 0,

that is, whenever {En} is a sequence in Σ and ν (En) → 0, we have α (χEn) → 0.
We say that a normalized gauge norm α is c‖ ·‖1,ν -dominating for some c > 0 if

α( f ) � c‖ f‖1,ν , for every f ∈ L∞(Ω,ν).

It is easily to see the following fact that
(1) The common norm ‖ · ‖p,ν is a α norm for 1 � p � ∞ .
(2) If ν and λ are mutually absolutely continuous probability measures, then

L∞(Ω,ν) = L∞(Ω,λ ) and a normalized gauge norm is ν -continuous if and only if it is
λ -continuous.

We can extend the normalized gauge norm α from L∞(Ω,ν) to the set of all
measurable functions, and define α for all measurable functions f on Ω by

α( f ) = sup{α(s) : s is a simple function ,0 � s � | f |}.
It is clear that α( f ) = α(| f |) still holds.

Define

L α(Ω,ν) = { f : f is a measurable function on Ω with α( f ) < ∞},

Lα(Ω,ν) = L∞(ν)
α
, i.e., the α -closure of L∞(ν) in L α .

Since L∞ (Ω,ν) with the norm α is dense in Lα(Ω,ν) , they have the same
dual spaces. We prove in the next lemma that the normed dual (Lα(Ω,ν),α)# =
(L∞ (Ω,ν) ,α)# can be viewed as a vector subspace of L1(Ω,ν) . Suppose w∈L1(Ω,ν) ,
we define the functional ϕw : L∞(Ω,ν) → C by

ϕw ( f ) =
∫

Ω
f wdν.

LEMMA 2.1. Suppose (Ω,Σ,ν) is a probability space and α is a continuous nor-
malized gauge norm on L∞(Ω,ν) . Then

(1) if ϕ : L∞(Ω,ν) → C is an α -continuous linear functional, then there is a
w ∈ L1(Ω,ν) such that ϕ = ϕw ,

(2) if ϕw is α -continuous on L∞(Ω,ν) , then
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(a) ‖w‖1,μ � ‖ϕw‖ =
∥∥ϕ|w|

∥∥ ,

(b) given ϕ in the dual of Lα(Ω,λ ) , i.e., ϕ ∈ (Lα (Ω,λ ))# , there exists a w ∈
L1(Ω,λ ) , such that

∀ f ∈ L∞(Ω,λ ), ϕ( f ) =
∫

Ω
f wdλ and wLα(Ω,λ ) ⊆ L1(Ω,λ ).

Proof. (1) If α is continuous, it follows that, whenever {En} is a disjoint sequence
of measurable sets,

lim
N→∞

α

(
χ∪∞

n=1En −
N

∑
k=1

χEk

)
= lim

N→∞
α
(

χ∪∞
k=N+1Ek

)
= 0,

since limN→∞ ν
(∪∞

k=N+1Ek
)

= 0. It follows that

ρ (E) = ϕ (χE)

defines a measure ρ and ρ � ν . It follows that if w = dρ/dν, then

‖w‖1,ν = sup

{∣∣∣∣∫Ω
wsdν

∣∣∣∣ : s is simple, ‖s‖∞ � 1

}
= sup{|ϕ (s)| : s simple, ‖s‖∞ � 1} � ‖ϕ‖ .

Hence w ∈ L1(Ω,ν) . Also, since, for every f ∈ L∞(Ω,ν)

|ϕ ( f )| � ‖ϕ‖α ( f ) � ‖ϕ‖‖ f‖∞ ,

we see that ϕ is ‖ · ‖∞ -continuous on L∞(Ω,ν), so it follows that ϕ = ϕw .
(2a) From (1) we will see ‖w‖1,ν � ‖ϕ‖ .

(2b) For any measurable set E ⊆ Ω , and for all ϕ ∈ (Lα (λ ))# , define ρ(E) =
ϕ(χE). we can prove ρ is a measure as in Theorem 2.2, and ρ � λ . By Radon-
Nikodym theorem, there exists a function w ∈ L1(λ ) such that, for every measurable
set E ⊆ Ω , ϕ(χE) = ρ(E) =

∫
Ω χEwdλ . Thus ∀ f ∈ L∞(Ω,λ ) , ϕ( f ) =

∫
Ω f wdλ =∫

Ω f wgdμ =
∫

Ω f w|h|dμ =
∫

Ω f wuhdμ =
∫

Ω f w̃hdμ , where w̃ = wu, |w̃| = |w|, here
w̃∈ L1(Ω,λ ) and g,h as in Theorem 2.2, so w̃h∈ L1(μ) . Therefore, ϕ( f ) =

∫
Ω f w̃hdμ

for all f ∈ Lα (Ω,λ ) .
Suppose f ∈ Lα(Ω,λ ) , f = u| f | , |u| = 1. | f | ∈ Lα(Ω,λ ) . There exists an in-

creasing positive sequence sn such that sn → | f | a.e. (μ) , thus usn → u| f | a.e. (μ) .
∀w ∈ L1(Ω,λ ) , w = v|w| , where |v| = 1, so we have vsn → v| f | a.e. (μ) , where
v is the conjugate of v and α(vsn − v| f |) → 0. Thus ϕ(vsn) → ϕ(v| f |) . On the
other hand, we also have ϕ(vsn) =

∫
Ω vsnwdλ → ∫

Ω v| f |wdλ =
∫

Ω | f ||w|dλ by mono-
tone convergence theorem. Thus

∫
Ω | f ||w|dλ =

∫
Ω | f |vwdλ = ϕ(v| f |) < ∞ , therefore

f w ∈ L1(Ω,λ ) , i.e., wLα(Ω,λ ) ⊆ L1(Ω,λ ) , where w ∈ L1(Ω,λ ) . �

THEOREM 2.2. Suppose (Ω,Σ,ν) is a probability space, α is a continuous nor-
malized gauge norm on L∞(Ω,ν) and ε > 0 . Then there exists a constant c with
1− ε < c � 1 and a probability measure λ on Σ that is mutually absolutely continu-
ous with respect to ν such that α is c‖ · ‖1,λ -dominating.
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Proof. Let M = {ν
(
h−1 ((0,∞))

)
: h ∈ L1(Ω,ν),h � 0,ϕh is α -continuous} . It

follows from Lemma 2.1 that M �= ∅ . Choose {hn} in L1(Ω,ν) such that hn � 0, ϕhn

is α -continuous, and such that

ν
(
h−1

n ((0,∞))
)→ supM.

Let

h0 =
∞

∑
n=1

1
2n

1
‖ϕhn‖

hn.

Since ‖hn‖1,ν � ‖ϕhn‖ , we see that ‖h0‖1,ν � 1. Also

ϕh0 =
∞

∑
n=1

1
2n

1
‖ϕhn‖

ϕhn ,

so ϕh0 is α -bounded and
∥∥ϕh0

∥∥ � 1. On the other hand h−1
n ((0,∞)) ⊂ h−1

0 ((0,∞))
for n � 1, so we have

ν
(
h−1

0 ((0,∞))
)

= supM.

Let E = Ω\h−1
0 ((0,∞)) and assume, via contradiction, that ν (E) > 0. Then α (χE) >

0. Hence, by the Hahn-Banach theorem, there is a g ∈ L1(Ω,ν) such that
∥∥ϕg
∥∥ = 1

and

α (χE) = ϕg (χE) =
∫

Ω
gχEdν = ϕgχE (χE) � ϕ|g|χE

(χE) .

It follows that ν
(
(|g|χE)−1 (0,∞)

)
= η > 0, and that if h1 = h0 + |g|χE , then

supM � ν
(
h−1

1 ((0,∞))
)

= ν
(
h−1 ((0,∞))

)
+ η = supM + η .

This contradiction shows that ν (E) = 0, so we can assume that h0 (ω) > 0 a.e. (ν) .
By replacing h0 with h0/

∫
Ω h0dν , we can assume that

∫
Ω h0dν = 1.

If we define a probability measure λ : Σ → [0,1] by

λ (E) =
∫

E
h0dν,

then λ is a measure, λ � ν and ν � λ since 0 < h0 a.e. (ν) . Also, we have for
every f ∈ L∞ (Ω,ν) ,

‖ f‖1,λ =
∫

Ω
| f |dλ =

∫
Ω
| f |h0dν = ϕh0 (| f |) �

∥∥ϕh0

∥∥α ( f ) .

Since ϕh0 (1) = 1, we know
∥∥ϕh0

∥∥ � 1. Hence, 0 < c0 = 1/
∥∥ϕh0

∥∥ � 1, and we see
that α is c0‖ · ‖1,λ -dominating on E . If we apply the Hahn-Banach theorem as above
with E = Ω , we can find a nonnegative function k ∈ L1(Ω,ν) such that

‖ϕk‖ = 1 = α (1) = ϕk (1) =
∫

Ω
k1dν.
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For 0 < t < 1 let ht = (1− t)k+ th0 . Then ϕht = (1− t)ϕk + tϕh0 . Thus

lim
t→0+

‖ϕht‖ = ‖ϕk‖ = 1.

Choose t so that ‖ϕht‖ < 1/(1− ε) , so 1− ε < c = 1/‖ϕht‖ � 1. If we define a
probability measure λt : Σ → [0,1] by

λt (E) =
∫

E
htdν,

we see that λt � μν and since ht � th0 > 0, we see ν � λt . As above we see, for
every f ∈ L∞(Ω,μ) we have

c‖ f‖1,λt
� 1

‖ϕht‖
∫

Ω
| f |htdν =

1
‖ϕht‖

ϕht (| f |) � α ( f ) .

Therefore, α is c‖ · ‖1,λt -dominating on Ω. �
If we take Ω = T, Theorem 2.2 holds for the probability space (Ω,ν) = (T,μ).

The Lp -version of the Helson-Lowdenslager theorem also holds, in a sense, on the
circle T when μ is replaced with a mutually absolutely continuous probability measure

λ . Here the role of Hp (T,λ ) is replaced with
(
1/g

1
p

)
Hp (T,μ) . This result is well-

known, we include a proof for completeness as the following corollary.

COROLLARY 2.3. Suppose λ is a probability measure on T and μ � λ and
λ � μ . Let g = dλ/dμ and suppose 1 � p < ∞ . Suppose W is a closed subspace of

Lp(T,λ ) , and zW ⊂ W . Then g
1
pW = χEL1(T,μ) for some Borel subset E of T or

g
1
pW = ϕHp(T,μ) for some unimodular function ϕ .

Proof. Define U : Lp(T,λ )−→ Lp(T,μ) by U f = f g
1
p , for f ∈Lp(T,λ ) . Clearly

U is a surjective isometry, since

‖U f‖p
p,μ =

∫
T

∣∣∣ f g 1
p

∣∣∣p dμ =
∫

T

| f |p gdμ =
∫

T

| f |p dλ = ‖ f‖p,λ .

Define
Mz,μ : Lp(T,μ) −→ Lp(T,μ) by Mz,μ f = z f

and
Mz,λ : Lp(T,λ ) −→ Lp(T,λ ) by Mz,λ f = z f .

Then
UMz,λ f = U(z f ) = g

1
p z f = zg

1
p f = Mz,μg

1
p f = Mz,μU f ,

so UMz,λ = Mz,μU. It follows that W is a closed z-invariant subspace of Lp(T,λ ) if

and only if g
1
pW = U(W ) is a z-invariant closed linear subspace of Lp(T,μ) . The

conclusion now follows from the classical Beurling theorem for Lp (T,μ) . �
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3. Continuous gauge norms on the unit circle

Suppose α is a continuous normalized gauge norm on L∞ (T,μ) , suppose that
c > 0 and λ is a probability measure on T such that λ � μ and μ � λ and such that
α is c‖ · ‖1,λ -dominating. We let g = dλ/dμ and g > 0. We consider two cases

(1)
∫ |logg|dμ < ∞,

(2)
∫ |logg|dμ = ∞.

We define Lp (T,λ ) to be the ‖ · ‖p,λ -closure of L∞ (T,λ ) and define Hp(T,λ )
to be ‖ · ‖p,λ -closure of the polynomials for 1 � p < ∞ . Denote L∞(T,μ) = L∞(μ),
Lp(T,μ) = Lp(μ) and Hp(T,μ) = Hp(μ).

LEMMA 3.1. The following are true:
(1)

∫ |logg|dμ < ∞ ⇔ there is an outer function h ∈ H1 (μ) with |h| = g,
(2)

∫ |logg|dμ = ∞ ⇔ H1 (λ ) = L1 (λ ) .

Proof. Clearly H1 (λ ) is a closed z-invariant subspace of L1 (λ ) . Thus, by corol-
lary 2.3, either gH1 (λ ) = ϕH1 (μ) for some unimodular ϕ or gH1 (λ ) = χEL1 (μ) for
some Borel set E ⊂ T .

For (1), if gH1(λ ) = ϕH1(μ) for some unimodular ϕ , and 0 < g ∈ gH1(λ ), then
0 �= ϕg ∈ H1(μ) which implies logg = log |ϕg| ∈ L1(μ). It is a standard fact that if
g > 0 and logg are in L1(μ), then there exists an outer function h ∈ H1(μ) with the
same modulus as g,(i.e., |h| = g). Therefore, (1) is proved by Lemma 3.2 in [3].

For (2), since gH1(λ ) = ϕH1(μ) if and only if
∫ |logg|dμ < ∞. Suppose∫ |logg|dμ = ∞. Then gH1 (λ ) = χEL1 (μ) . We have g = χE f for some f ∈ L1(μ),

which implies χE = 1 since g > 0. Thus gH1 (λ ) = L1 (μ) = gL1(μ), which implies
H1(λ ) = L1(λ ). Conversely, if H1(λ ) = L1(λ ), then gH1 (λ ) = gL1 (λ ) = L1 (μ) =
χTL1(μ), which means gH1(λ ) �= ϕH1(μ), i.e.,

∫ |logg|dμ = ∞. �

There is an important characterization of outer functions in H1 (μ) .

LEMMA 3.2. A function f is an outer function in H1 (μ) if and only there is a
real harmonic function u with harmonic conjugate u such that

(1) u ∈ L1 (μ) ,
(2) f = eu+iu,

(3) f ∈ L1 (μ) .

Through the remainder of following sections we assume

1. α is a continuous normalized gauge norm on L∞ (μ) .

2. and that c > 0 and λ is a probability measure on T such that λ � μ and μ � λ
and such that α is c‖ · ‖1,λ -dominating.

3. h ∈ H1 (μ) is an outer function, η is unimodular and ηh = g = dλ/dμ .
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Since λ and μ are mutually absolutely continuous we have L∞(μ) = L∞(λ ) ,
Lα(μ) = Lα(λ ) and Hα(μ) = Hα(λ ), we will use L∞ to denote L∞(μ) and L∞(λ ) ,
use Lα to denote Lα (μ) and Lα (λ ) , use Hα to denote Hα(μ) and Hα(λ ). It follows
that Lα ,L∞,Hα do not depend on λ or μ . However, this notation slightly conflicts
with the classical notation for L1 (μ) = L‖·‖1,μ or H1 (μ) = H‖·‖1,μ , so we will add the
measure to the notation when we are talking about Lp or Hp .

THEOREM 3.3. We have hL1(λ ) = L1(μ) and hH1(λ ) = H1(μ).

Proof. We know from our assumption (3) that hL1(λ ) = gηL1 (λ ) = gL1 (λ ) =
L1 (μ) . By Lemma 3.1(1), we have gH1 (λ ) = ηH1 (μ) , so

hH1 (λ ) = ηgH1 (λ ) = ηηH1 (μ) = H1 (μ) . �

COROLLARY 3.4. gH1(λ ) = γH1(μ) for some unimodular γ ⇔ ∫
T
|logg|dμ <

∞.

Proof. Assume gH1(λ ) = γH1(μ) , Since 1 ∈ H1(λ ),g ∈ gH1(λ ) , ∃φ ∈ H1(μ)
such that g = γφ . Since φ ∈ H1(μ),φ = ψh , where ψ is an inner function and h is
an outer function. Thus,

∫
T
|logg|dμ =

∫
T
log |g|dμ =

∫
T
log |h|dμ < ∞ , since h is an

outer function.
Assume

∫
T
|logg|dμ < ∞,g and logg ∈ L1(μ),g > 0. Thus there exists an outer

function h ∈ H1(μ) , such that |h| = |g| = g, |h| = φh, |φ | = 1,g = ηh , Define V :
L1(λ ) −→ L1(μ) by V f = h f , as in Theorem 3.3, we have hH1(λ ) = H1(μ) , so
gH1(λ ) = ηhH1(λ ) = ηH1(μ). Let γ = η , then gH1(λ ) = γH1(μ). �

We now get a Helson-Lowdenslager theorem when α = ‖ · ‖p,λ and logg ∈
L1 (μ) .

COROLLARY 3.5. Suppose 1 � p < ∞ . If W is a closed subspace of Lp(λ ) and
zW ⊆W , then either W = γHp(λ ) for some unimodular function γ , or W = χELp(λ )
for some Borel subset E of T .

The following theorem shows the relation between Hα ,H1(λ ) and Lα . This result
parallels a result of Y. Chen [3], which is a key ingredient in her proof of her general
Beurling theorem. However, her result was for H1 (μ) instead of H1 (λ ) .

THEOREM 3.6. Hα = H1(λ )∩Lα .

Proof. Since α is continuous c‖ · ‖1,λ -dominating, α -convergence implies
‖ · ‖1,λ -convergence, thus

Hα = H∞α ⊆ H∞‖·‖1,λ = H1(λ ).

Also,
Hα = H∞(λ )

α ⊂ L∞α = Lα .
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Thus Hα ⊆ H1(λ )∩Lα .
Since α -convergence implies ‖ · ‖1,λ -convergence, H1(λ )∩ Lα is an α -closed

subspace of Lα . Suppose ϕ ∈ (Lα)# such that ϕ |H∞ = 0. It follows from Lemma 2.1
that there is a w ∈ L1 (λ ) such that wLα ⊂ L1 (λ ) and such that, for every f ∈ Lα ,

ϕ ( f ) =
∫

fηwdλ =
∫

f whdμ .

Since wLα ⊂ L1 (λ ) , we know that whLα ⊂ L1 (μ) . Since ϕ |H∞ = 0, we have∫
T

znhwdμ = ϕ (zn) = 0

for every integer n � 0. Thus hw ∈ H1
0 (μ) .

Now suppose f ∈ H1(λ )∩Lα . Then h f ∈ H1 (μ) . We know that every function
in H1 (μ) has a unique inner-outer factorization. Thus we can write

h f = γ1h1

with γ1 inner and h1 outer. Moreover, since hw ∈ H1
0 (μ) , we can write

(hw) (z) = zγ2 (z)h2 (z)

with γ2 inner and h2 outer. By Lemma 3.2, we can find real harmonic functions
u,u1,u2 ∈ L1 (μ) such that

h = eu+iu, h1 = eu1+iu1 , and h2 = eu2+iu2 .

Thus
h fw = h f hw/h = zγ1γ2e

(u1+u2−u)+i(u1+u2−u) ∈ H1 (μ) .

It follows from Lemma 3.2 that

ϕ ( f ) =
∫

T

h fwdμ = (h fw) (0) = 0.

Hence every continuous linear functional on Lα that annihilates Hα also annihilates
H1 (λ )∩Lα . It follows from the Hahn-Banach theorem that H1 (λ )∩Lα ⊂ Hα . �

The following result is a factorization theorem for Lα .

THEOREM 3.7. If k ∈ L∞ , k−1 ∈ Lα , then there is a unimodular function u ∈ L∞

and an outer function s ∈ H∞ such that k = us and s−1 ∈ Hα .

Proof. Recall that an outer function is uniquely determined by its absolute bound-
ary values, which are necessarily absolutely log integrable. Since k−1 ∈ Lα ⊆ L1(λ ) ,
we know that ‖k‖∞ > 0. Thus log |k| � log‖k‖∞ ∈ R . Moreover, k−1 ∈ Lα ⊆ L1(λ )
implies hk−1 ∈ L1 (μ) , so

log |h|− log |k| = log
(∣∣hk−1

∣∣)�
∣∣hk−1

∣∣ .
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Hence
log |h|− ∣∣hk−1

∣∣� log |k| � log‖k‖∞ ,

and since log |h| , ∣∣hk−1
∣∣ and log‖k‖∞ are in L1 (μ) , we see that log |k| ∈ L1 (μ) .

Therefore, by the first statement of Lemma 3.1, there is an outer function s ∈ H1 (μ)
such that |s|= |k| . It follows that s ∈H∞ . Hence there is a unimodular function u such
that k = us.

We also know that∣∣log
∣∣hk−1

∣∣∣∣= |log(|h|)− log |k|| � |log(|h|)|+ |log |k|| ∈ L1 (μ) ,

so there exists an outer function f ∈ H1(μ) such that |k−1h|= | f | . Thus s f is outer in
H1 (μ) and |h| = |s f | , so h = eit s f for some real number t. Since H1(μ) = hH1(λ ) ,
we see that there exists a function f1 ∈ H1(λ ) such that h f1 = f = h

(
e−it s−1

)
. It

follows that s−1 = eit f1 ∈ H1 (λ ) . Also,
∣∣s−1

∣∣= ∣∣k−1
∣∣ , so s−1 ∈ Lα . It follows from

Theorem 3.6 that s−1 ∈ H1(λ )∩Lα = Hα . �

LEMMA 3.8. If M is a closed subspace of Lα and zM ⊆ M, then H∞M ⊆ M.

Proof. Suppose ϕ ∈ (Lα)# and ϕ |M = 0. It follows from Lemma 2.1 that there is
a w ∈ L1 (λ ) such that wLα ⊂ L1 (λ ) such that, for every f ∈ Lα

ϕ ( f ) =
∫

T

f wηdλ =
∫

T
fwhdμ .

Suppose f ∈ M . Then, for every integer n � 0, we have zn f ∈ M , so

0 =
∫

T

zn fwhdμ .

Since f wh ∈ hL1 (λ ) = L1 (μ) , it follows that f wh ∈H1
0 (μ) . Thus if k ∈H∞ , we have

0 =
∫

T

k fwhdμ = ϕ (k f ) .

Hence every ϕ ∈ (Lα )# that annihilates M must annihilate H∞M . It follows from the
Hahn-Banach theorem that H∞M ⊂ M. �

We let B = { f ∈ L∞ : ‖ f‖∞ � 1} denote the closed unit ball in L∞(λ ) .

LEMMA 3.9. Let α be a continuous norm on L∞(λ ) , then
(1) The α -topology, the ‖ · ‖2,λ -topology, and the topology of convergence in λ -

measure coincide on B ,
(2) B = { f ∈ L∞(λ ) : ‖ f‖∞ � 1} is α -closed.

Proof. For (1), since α is c‖ · ‖1,λ -dominating, α -convergence implies ‖ · ‖1,λ -
convergence, and ‖ · ‖1,λ -convergence implies convergence in measure. Suppose { fn}
is a sequence in B , fn → f in measure and ε > 0. If En = {z ∈T : | f (z)− fn(z)|� ε

2} ,
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then limn→∞ λ (En) = 0. Since α is continuous, we have limn→∞ α(χEn) = 0, which
implies that

α( fn − f ) = α(( f − fn)χEn +( f − fn)χT\En)

� α(( f − fn)χEn)+ α(( f − fn)χT\En)

< α((| f − fn|)χEn)+
ε
2

� ‖ f − fn‖∞α(χEn)+
ε
2

� 2α(χEn)+
ε
2
.

Hence α( fn − f ) → 0 as n → ∞ . Therefore α -convergence is equivalent to conver-
gence in measure on B . Since α was arbitrary, letting α = ‖·‖2,λ , we see that ‖·‖2,λ -
convergence is also equivalent to convergence in measure. Therefore, the α -topology
and the ‖ · ‖2,λ -topology coincide on B .

For (2), suppose { fn} is a sequence in B , f ∈ Lα and α( fn − f ) → 0. Since
‖ f‖1,λ � 1

c α( f ) . it follows that ‖ fn − f‖1,λ → 0, which implies that fn → f in λ -
measure. Then there is a subsequence { fnk} such that fnk → f a.e. (λ ) . Hence
f ∈ B. �

The following theorem and its corollary relate the closed invariant subspaces of
Lα to the weak*-closed invariant subspaces of L∞ .

THEOREM 3.10. Let W be an α -closed linear subspace of Lα and M be a
weak*-closed linear subspace of L∞(λ ) such that zM ⊆ M and zW ⊆W . Then

(1) M = M
α ∩L∞(λ ) ,

(2) W ∩L∞(λ ) is weak*-closed in L∞(λ ) ,

(3) W = W ∩L∞(λ )
α
.

Proof. For (1), it is clear that M ⊂ M
α ∩L∞(λ ) . Assume, via contradiction, that

w ∈ M
α ∩L∞(λ ) and w /∈ M . Since M is weak*-closed, there is an F ∈ L1(λ ) such

that
∫
T

Fwdλ �= 0, but
∫
T
Frdλ = 0 for every r ∈M . Since k = 1

|F |+1 ∈ L∞(λ ) , k−1 ∈
L1(λ ), it follows from Theorem 3.7, that there is an s ∈ H∞(λ ),s−1 ∈ H1(λ ) and a
unimodular function u such that k = us . Choose a sequence {sn} in H∞(λ ) such
that ‖sn − s−1‖1,λ → 0. Since sF = ukF = u F

|F |+1 ∈ L∞(λ ) , we can conclude that

‖snsF −F‖1,λ = ‖snsF − s−1sF‖1,λ � ‖sn− s−1‖1,λ‖sF‖∞ → 0. For each n ∈ N . For
every r ∈ M , from Lemma 3.8, we know that snsr ∈ H∞(λ )M ⊂ M . Hence∫

T

rsnsFdλ =
∫

T

snsrFdλ = 0,∀r ∈ M.

Suppose r ∈ M
α
. Then there is a sequence {rm} in M such that α(rm − r) → 0

as m → ∞. For each n ∈ N , it follows from snsF ∈ H∞(λ )L∞(λ ) that
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|
∫

T

rsnsFdλ −
∫

T

rmsnsFdλ | �
∫

T

|(r− rm)snsF |dλ

� ‖snsF‖∞

∫
T

|r− rm|dλ = ‖snsF‖∞‖r− rm‖1,λ

� ‖snsF‖∞α(r− rm) → 0.∫
T

rsnsFdλ = lim
m→0

∫
T

rmsnsFdλ = 0, ∀r ∈ M
α
.

In particular, w ∈ M
α ∩L∞(λ ) implies that∫

T

snsFwdλ =
∫

T

wsnsFdλ = 0.

Hence,

0 �= |
∫

T

Fwdλ | � lim
n→∞

|
∫

T

Fw− snsFwdλ |+ lim
n→∞

|
∫

T

snsFwdλ |
� lim

n→∞
‖F − snsF‖1,λ‖w‖∞ +0 = 0.

We get a contradiction. Hence M = M
α ∩L∞(λ ).

For (2), to prove W ∩L∞(λ ) is weak*-closed in L∞(λ ) , using the Krein-Smulian
theorem, we only need to show that W ∩L∞(λ )∩B , i.e., W ∩B , is weak*-closed. By
Lemma 3.9, W ∩B is α -closed. Since α is c‖ · ‖1,λ -dominating, it follows from the
Lemma 3.9, W ∩B is ‖ · ‖2,λ closed. The fact that W ∩B is convex implies W ∩B is
closed in the weak topology on L2(λ ) . If { fλ} is a net in W ∩B and fλ → f weak* in
L∞(λ ) , then, for every w∈ L1(λ ),

∫
T
( fλ − f )wdλ → 0. Since L2(λ )⊂ L1(λ ) , fλ → f

weakly in L2(λ ) , so f ∈W ∩B . Hence W ∩B is weak*-closed in L∞(λ ) .
For (3), since W is α -closed in Lα , it is clear that W ⊃ W ∩L∞(λ )

α
, suppose

f ∈W and let k = 1
| f |+1 . Then k ∈ L∞(λ ) , k−1 ∈ Lα . It follows from Theorem 3.7

that there is an s ∈ H∞(λ ) , s−1 ∈ Hα and an unimodular function u such that k = us ,
so s f = uks = u f

| f |+1 ∈ L∞(λ ) . There is a sequence {sn} in H∞(λ ) such that α(sn −
s−1) → 0. For each n ∈ N , it follows from Lemma 3.8 that sns f ∈ H∞(λ )H∞(λ )W ⊂
W and sns f ∈ H∞(λ )L∞(λ ) ⊂ L∞(λ ) , which implies that {sns f} is a sequence in
W ∩L∞(λ ) , α(sns f − f ) � α(sn − s−1)‖s f‖∞ → 0. Thus f ∈W ∩L∞(λ )

α
. Therefore

W = W ∩L∞(λ )
α

. �

COROLLARY 3.11. A weak*-closed linear subspace M of L∞(λ ) satisfies zM ⊂
M if and only if M = ϕH∞(λ ) for some unimodular function ϕ or M = χEL∞(λ ) , for
some Borel subset E of T .

Proof. If M = ϕH∞(λ ) for some unimodular function ϕ or M = χEL∞(λ ) , for
some Borel subset E of T , clearly, a weak*-closed linear subspace M of L∞(λ )
with zM ⊂ M . Conversely, since zM ⊂ M , and we have zM

‖·‖2,λ ⊂ M
‖·‖2,λ . Hence
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by Beurling-Helson-Lowdenslager theorem for ‖ · ‖2,λ , we consider either M
‖·‖2,λ =

ϕH2(λ ) for some unimodular function ϕ , then M = M
‖·‖2,λ ∩ L∞(λ ) = ϕH2(λ )∩

L∞(λ ) ; or M
‖·‖2,λ = χEL2(λ ) , for some Borel subset E of T , in this case, M =

M
‖·‖2,λ ∩L∞(λ ) = χEL2(λ )∩L∞(λ ) = χEL∞(λ ) , i.e., M = χEL∞(λ ) . �

Now we obtain our main theorem, which extends the Chen-Beurling Helson-
Lowdenslager theorem.

THEOREM 3.12. Suppose μ is Haar measure on T and α is a continuous nor-
malized gauge norm on L∞(μ) . Suppose also that c > 0 and λ is a probability mea-
sure that is mutually absolutely continuous with respect to μ such that α is c‖‖1,λ -

dominating and log |dλ/dμ | ∈ L1 (μ) . Then a closed linear subspace W of Lα(μ) sat-
isfies zW ⊂W if and only if either W = ϕHα(μ) for some unimodular function ϕ , or
W = χELα (μ) , for some Borel subset E of T . If 0 �=W ⊂ Hα(μ) , then W = ϕHα(μ)
for some inner function ϕ .

Proof. Recall that L∞(μ) = L∞(λ ) , Lα (μ) = Lα(λ ) and Hα(μ) = Hα(λ ).The
only if part is obvious. Let M = W ∩ L∞(λ ) , and in Theorem 2.2, we have proved
that there exists a measure λ such that λ � μ and μ � λ and there exists c > 0,
∀ f ∈ L∞(μ) = L∞(λ ) , α( f ) � c‖ f‖1,λ . i.e., α is a continuous c‖ · ‖1,λ -dominating
normalized gauge norm on L∞(λ ) . It follows from the (2) in Theorem 3.10 that M is
weak* closed in L∞(λ ) . Since zW ⊂ W , it is easy to check that zM ⊂ M . Then by
Corollary 3.11, we can conclude that either M = ϕH∞(λ ) for some unimodular func-
tion ϕ or M = χEL∞(λ ) , for some Borel subset E of T . By the (3) in Theorem 3.10,
if M = ϕH∞(λ ), W = W ∩L∞(λ )

α
= M

α = ϕH∞(λ )
α

= ϕHα = ϕHα(μ) , for some
unimodular function ϕ . If M = χEL∞(λ ), W = W ∩L∞(λ )

α
= M

α = χEL∞(λ )
α

=
χELα = χELα (μ) , for some Borel subset E of T . The proof is completed. �

4. Which α ’s have a good λ ?

In the preceding section we proved a version of Beurling’s theorem for Lα when
there is a probability measure λ on T that is mutually absolutely continuous with
respect to μ , such that α is c‖ · ‖1,λ -dominating and dλ/dμ is log-integrable with
respect to μ . How do we tell when such a good λ exists. Suppose ρ is a probability
measure on T that is mutually absolutely continuous with respect to μ such that∫

T

log(dρ/dμ)dμ = −∞.

Here are some useful examples.

EXAMPLE 4.1. Let α = 1
2

(‖ · ‖1,μ +‖ · ‖1,ρ
)
. Then α is a continuous gauge

norm. If we let λ1 = ρ and λ2 = μ we see that α � 1
2 λk for k = 1,2 and∫

T

|log(dλk/dμ)|dμ =
{

∞ if k = 1
0 if k = 2

.
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Hence there is both a bad choice of λ and a good choice.

EXAMPLE 4.2. Suppose ρ is as in the preceding example and let α = ‖ · ‖1,ρ .
Suppose λ is a probability measure that is mutually absolutely continuous with respect
to μ and

‖ · ‖1,ρ = α � c‖ · ‖1,λ for some constant c.

It follows that dλ/dρ � c a.e., and thus∫
T

log(dλ/dμ)dμ =
∫

T

log(dλ/dρ)dμ +
∫

T

log(dρ/dμ)dμ � logε +(−∞) = −∞.

In this case there is no good λ .

5. A special case

Suppose λ is any probability measure that is mutually absolutely continuous with
respect to μ and α = ‖ · ‖p,λ for some p with 1 � p < ∞ . Assume λ is bad, i.e.,∫
T

∣∣∣log dλ
dμ

∣∣∣dμ = ∞. In this case, we define a bijective isometry mapping U : Lp(λ ) →
Lp(μ) by U f = g

1
p f . Let Hp(λ ) be the α -closure of all polynomials, then Hp(λ ) is a

closed subspace of Lp(λ ) and zHp(λ )⊆ Hp(λ ). Therefore, g
1
p H p(λ ) is a z-invariant

closed subspace of Lp(μ). By Beurling-Helson-Lowdenslager theorem, we have

g
1
p H p(λ ) = χELp(μ) for some Borel set E ⊆ T, or ϕHp(μ), where |ϕ | = 1.

If g
1
p H p(λ ) = χELp(μ), then Hp(λ ) = Lp(λ ), in this case, ϕHp(λ )= ϕLp(λ ), where

|ϕ |= 1. If M0 = 1
g1/p H p(μ), then M0 is a proper z-invariant closed subspace of Lp(λ ),

and M0 �= χELp(λ ). Therefore, Beurling-Helson-Lowdenslager theorem is not true for
this case. However, we have the following theorem

THEOREM 5.1. Suppose λ is any probability measure that is mutually absolutely
continuous with respect to μ and α = ‖·‖p,λ for some p with 1 � p < ∞ . Also assume∫
T

∣∣∣log dλ
dμ

∣∣∣dμ = ∞. If M is a closed subspace of Lα(λ ), then zM ⊆ M if and only if

(1) M = ϕM0 for some unimodular function ϕ , where M0 = 1
g1/p H p(μ), or

(2) M = χELα (λ ) for some Borel subset E of T .
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