
Operators
and

Matrices

Volume 12, Number 1 (2018), 229–252 doi:10.7153/oam-2018-12-15

ON THE BLOCK NUMERICAL RANGE OF

OPERATORS ON ARBITRARY BANACH SPACES

AGNES RADL AND MANFRED P. H. WOLFF

To the memory of our esteemed colleague Karl-Heinz Förster

(Communicated by M. Embree)

Abstract. We investigate the block numerical range of bounded linear operators on arbitrary Ba-
nach spaces. We show that the spectrum of an operator is always contained in the closure of its
block numerical range. The inclusion between block numerical ranges for refined block decom-
positions hold only in special cases which we characterize completely. Thereby we achieve a
new characterization of Lp -spaces. Finally we obtain an estimate of the resolvent in terms of the
block numerical range. All our results are new even for n×n -matrices.

1. Introduction and notation

The block numerical range of a bounded linear operator A on a Hilbert space with
respect to an orthogonal decomposition was introduced and analyzed by C. Tretter
and M. Wagenhofer in [20], see also the book [21, Chapter 1.11]. This notion was
generalized to decompositions of arbitrary Banach spaces by P. Kallus [12, p. 8], where
it is completely analyzed in the case of p -direct sums of Banach spaces. Unfortunately,
this paper has not yet been published.

In the present paper we investigate the block numerical range of bounded linear
operators on a complex Banach space X in the case of an arbitrary decomposition of
X .

1.1. Decomposition of Banach spaces

Our starting point is a complex Banach space (X ,‖ · ‖) which is decomposed into
the direct sum of n � 1 closed subspaces X1, . . . ,Xn of X :

X = X1⊕·· ·⊕Xn.

We abbreviate this decomposition as D . The number n = n(D) is called the order of
D . There exist n uniquely determined continuous projections P1, . . . ,Pn satisfying
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(i) Xk = Pk(X) .

(ii) PiPk = 0 for i �= k and

(iii) ∑n
1 Pk = I (the identity on X ).

We set PD := {P1, . . . ,Pn} .
The linear map

T : X →
n

∏
1

Xk, Tx = (P1x, . . . ,Pnx) =: (x1, . . . ,xn)

is an isometric isomorphism, where ∏n
1 Xk is equipped with the norm ‖(x1, . . . ,xn)‖ :=

‖x1 + · · ·+ xn‖ . For the sake of convenience and in agreement with the preceding
fundamental papers on our topic, e.g. [20, 12] we shall use henceforth the isometrically
isomorphic Cartesian product X1×·· ·×Xn in place of X1⊕·· ·⊕Xn .

A decomposition of X induces a corresponding decomposition D ′ of the dual
space X ′ , explicitly

X ′ =
n

∏
1

P′
k(X

′) = X ′
1×·· ·×X ′

n,

and by

X ′
k � ϕ �→ Jϕ = ϕ ◦Pk

the space X ′
k is canonically embedded into X ′ . This embedding is isometric if and only

if Pk is a contraction. A decomposition is called contractive if all projections Pk are
contractions.

Typical examples of this latter kind of decompositions are orthogonal decomposi-
tions of Hilbert spaces, as well as decompositions of Banach lattices into the direct sum
of projection bands. More precisely a direct sum decomposition X = ∏n

1 Xk is called
a band decomposition if all Xk are projection bands, i. e. Pk is a positive contractive
projection of X onto the band Xk for each k . For more details see [22, Definition 2.8
on p. 61].

Let us point out that the decompositions of the canonical Hilbert space Cn , consid-
ered in [8], are nothing else than band decompositions of Cn equipped with its canoni-
cal order.

Another class of contractive decompositions is the following one: Let Cn be
equipped with a lattice norm ρ satisfying ρ(e j) = 1 for the canonical basis {e j : j =
1, . . . ,n} (e j = (δ j,k) , δ j,k denotes the Kronecker symbol). Sometimes ρ is called
a normalized monotone norm, sometimes absolute norm (see [2, Theorem 2] for the
equivalence of these notions). The decomposition D is then required to satisfy

‖x‖ = ρ

⎛⎜⎝
⎛⎜⎝‖P1x‖

...
‖Pnx‖

⎞⎟⎠
⎞⎟⎠ .
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Since ρ is monotone and ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

‖Pkx‖
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

⎛⎜⎝‖P1x‖
...

‖Pnx‖

⎞⎟⎠ , (1)

D is contractive. This kind of direct sums becomes more and more important e. g.
under the name ψ -direct sum, see [6, 19] . We shall call it a ρ -normed decomposition.
The �p norm on Cn yields the p -direct sum as a special case. In particular, orthogonal
decompositions of a Hilbert space fall within this definition.

Our setting, however, comprises also decompositions of Hilbert spaces which are
not contractive, i. e. not orthogonal, thus including e. g. the spectral decomposition of
non-normal n×n matrices.

1.2. The block numerical range

In the following, L (X) denotes the set of bounded linear operators on the com-
plex Banach space X . Moreover we denote the unit sphere of the Banach space X by
SX = {x ∈ X : ‖x‖ = 1} .

Let X = ∏n
1 Xk be an arbitrary decomposition of X , abbreviated as D . For A ∈

L (X) and i, j ∈ {1, . . . ,n} we define bounded linear operators

Ai j : Xj → Xi, Xj � x �→ PiAx.

Obviously Ai j = PiAPj|Xj . Clearly, A can be written as an n × n operator matrix
(Ai j)n

i, j=1 where

(Ai j)n
i, j=1 : X → X ,

⎛⎜⎝ x1
...
xn

⎞⎟⎠ �→

⎛⎜⎝∑n
k=1 A1kxk

...
∑n

k=1 Ankxk

⎞⎟⎠ .

For an arbitrary complex Banach space Y with dual space Y ′ we define

Satt(Y ) := {(x,ϕ) ∈ SY ×SY ′ : ϕ(x) = 1}.
Then for a given decomposition D of order n we set

SD := Satt(X1)×·· ·×Satt(Xn).

Let d = ((u1,ϕ1), . . . ,(un,ϕn)) = ∏n
k=1(uk,ϕk)∈ SD . We define the projection Pd from

X onto Xd := span{u1, . . . ,un} by

Pdx = (ϕ1(P1x)u1, . . . ,ϕn(Pnx)un)
= (J1ϕ1(x)u1, . . . ,Jnϕn(x)un)
= (ϕ1(x1)u1, . . . ,ϕn(xn)un),
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where Jk : X ′
k �→ X ′, Jkϕk = ϕk ◦Pk and xk = Pkx (see Section 1.1).

Let A ∈ L (X) and d ∈ SD be arbitrary. Then we define Ad : Xd → Xd by

Ad = PdA|Xd , Xd � x �→ Pd(Ai j)n
i, j=1x.

The matrix representation of Ad with respect to the basis {u1, . . . ,un} is

Bd = (ϕi(Ai ju j))n
i, j=1 = (ϕi(PiAu j))n

i, j=1.

Denoting the spectrum of an operator T by the set

σ(T ) = {λ ∈ C : λ I−T is not bijective}
we have σ(Ad) = σ(Bd) .

Now we are ready to define the block numerical range.

DEFINITION 1.1. ([12, p. 8]) Let D be a decomposition of the complex Banach
space X and let A ∈ L (X) . The block numerical range of A with respect to the de-
composition D is the set

VD(A) :=
⋃

d∈SD

σ(Ad).

Observe that for the trivial decomposition X = X , denoted by D0 the block nu-
merical range VD0(A) is nothing else than the well known spatial numerical range (see
[4, 5, 9])

V (A) = {ϕ(Au) : (u,ϕ) ∈ Satt(X)}.
Moreover, if H is a Hilbert space and D an orthogonal decomposition, then VD(A)
coincides with the block numerical range introduced in [20]. More precisely in that
case Satt(H) = {(x,x′) : x ∈ SH} , where x′ denotes the linear form y �→ (x|y) (the
scalar product on H ). Then d = ((x j,x′j)) j=1···n and the corresponding matrix Bd is
Bd = ((xi|Ai jx j))

n
i, j=1 .

As already the research of C. Tretter and M. Wagenhofer (see [20]) shows the
block numerical range need not be closed nor convex. Moreover it depends heavily on
the choice of the decomposition D , even if two decompositions are of the same order
(see [20, p. 1007] as well as [21, Chapter 1.11] for striking examples).

The block numerical range is always bounded. This is a consequence of the fol-
lowing lemma:

LEMMA 1.2. Let D be an arbitrary decomposition of order n of the Banach
space X . Then

‖D‖ := sup{‖Pd‖ : d ∈ SD} �
n

∑
1
‖Pj‖.

Proof. Let d = ∏n
1(u j,ϕ j) ∈ SD be arbitrary. For x ∈ SX we obtain

‖Pdx‖ =

∥∥∥∥∥ n

∑
1

ϕ j(Pjx)u j

∥∥∥∥∥�
n

∑
1

|ϕ j(Pjx)| �
n

∑
1

∥∥Pj
∥∥ ,
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and the assertion follows. �

We call ‖D‖ the norm of the decomposition D .

PROPOSITION 1.3. VD(A) is bounded by ‖D‖ · ‖A‖.

Proof. For λ ∈VD(A) there exists d ∈ SD such that λ ∈ σ(Ad) . Then

|λ | � ‖Ad‖ � ‖Pd‖‖A‖� ‖D‖ · ‖A‖. �

1.3. Organization of the paper

Our paper is organized as follows:
Section 2 is devoted to the spectral inclusion σ(A) ⊂VD(A) .
In Section 3 we address the question of whether VD(A) ⊂V (A) holds. In contrast

to orthogonal decompositions of a Hilbert space, and, more generally to p -direct sums,
this inclusion is not true in general. The main result of this section (Theorem 3.6)
is a characterization of those decompositions for which the inclusion is satisfied. An
application to Banach lattices leads to a new characterization of Lp -spaces.

Finally in Section 4 we give an estimate of the norm of the resolvent of an operator
in terms of the block numerical range thereby generalizing [20, Theorem 4.2]. This
estimate is new even in the case of p -direct sums.

2. Spectral inclusion

In the following let X be a complex Banach space and let A ∈ L (X) be arbitrary.
Moreover let D be an arbitrary decomposition of X . The main result of this section is
the inclusion σ(A) ⊂VD(A) . This inclusion was proved first in the case of orthogonal
decompositions of a Hilbert space in [20] and generalized to p -direct sums in [12,
Theorem 1.13].

2.1. Ultrapowers

For our proof we need the theory of ultrapowers, see e. g. [10].
Let X be a complex Banach space and let U be a free ultrafilter on N . Consider

the space �∞(X) of all bounded sequences on X , equipped with the sup-norm. Then
c0,U (X) = {(xn)n ∈ �∞(X) : limU xn = 0} is a closed subspace, and the ultrapower X̂
is the quotient space �∞(X)/c0,U (X) .

If (xn) is a representative of x̂ , then we also use the notation (̂xn) := x̂ .
The norm on X̂ is given by ‖x̂‖ = limU ‖xn‖ for some and hence all representing

sequences (xn)n of x̂ .

The space X is always isometrically embedded into X̂ by X � x �→ ̂(x,x, . . .) where
(x,x, . . .) denotes the constant sequence with members x . We denote such an element
by x thus viewing X as a subspace of X̂ .
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Let Y be another Banach space. An operator A∈L (X ,Y ) has a natural extension
to a bounded linear operator from X̂ to Ŷ which is in the following denoted by Â . It is
given by

Âx̂ = (̂Axn)n. (2)

The ultrapower (̂X ′) of X ′ is canonically embedded into the dual space (X̂)′ of X̂
by

ϕ̂(x̂) = lim
U

(ϕn(xn)),

where (ϕn)n, (xn)n are arbitrary representing sequences of ϕ̂ , x̂ , respectively. Note

that (̂X ′) = (X̂)′ holds if and only if X is super-reflexive, see [10, Cor. 7.2]. For our

purposes, however, it suffices to work only with (̂X ′) .
Let Y be another Banach space and let A be a bounded linear operator from X

to Y . Considering representing sequences we obtain at once the following relation for
ψ̂ ∈ (̂Y ′) :

(Â′ψ̂)(x̂) = ψ̂(Âx̂).

Thus
(Â)′|(̂Y ′) = Â′ (3)

holds. In particular identifying Y ′ with its canonical image in (̂Y ′) we obtain the fol-
lowing useful formula for all ϕ ∈ Y ′ (notice ϕ = ϕ̂ ):

(A′ϕ)(x̂) = (A′ϕ)(x̂n) (4)

= ϕ((̂Axn)) (5)

= ϕ(Âx̂) (6)

= ϕ̂(Âx̂) = (Â′ϕ̂)(x̂). (7)

Now we define
Sr

att(X̂) := Satt(X̂)∩ (X̂ × (̂X ′)).

The superscript r in the definition above means reduced to the pair (X̂ , (̂X ′)) in place
of (X̂ ,(X̂)′) .

DEFINITION 2.1. Let X be a complex Banach space and A ∈ L (X) . Then we
call

Vr(Â) := {ϕ̂(Âx̂) : (x̂, ϕ̂) ∈ Sr
att(X̂)}

the reduced numerical range of Â .

If PD = {P1, . . . ,Pn} is the set of projections of a decomposition D of X , then
PD̂ = (P̂1, . . . , P̂n) is the set of projections of the induced decomposition D̂ of X̂ given
by P̂j(X̂) = X̂ j . Hence, for a given decomposition D of X we can define

Sr
D̂

:=
n

∏
k=1

Sr
att(X̂k).

This leads to the following definition.
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DEFINITION 2.2. If X is a complex Banach space, A ∈ L (X) and D a decom-
position of X , then we call

Vr
D̂

(Â) :=
⋃

d̂∈Sr
D̂

σ(Âd̂)

the reduced block numerical range of Â .

Obviously it is bounded by ‖D‖ · ‖A‖ , cf. Proposition 1.3.
We now show that to an arbitrary element (x̂, ϕ̂) ∈ Sr

att(X̂) there exists a sequence
(zn,ρn)n in Satt(X) representing it. Our main tool for the proof is the Bishop-Phelps-
Bollobás theorem, see e.g. [5, Theorem 16.1].

LEMMA 2.3. For each (x̂, ϕ̂) ∈ Sr
att(X̂) there are representatives (zn) of x̂ and

(ρn) of ϕ̂ such that (zn,ρn) ∈ Satt(X) , i. e.

‖zn‖ = ‖ρn‖ = ρn(zn) = 1 holds for all n ∈ N.

Proof. Let (yn) be an arbitrary representative of x̂ ∈ X̂ ,‖x̂‖ = 1. Then U := {n ∈
N : yn �= 0} ∈ U . Let x be an arbitrary normalized element in X . For n ∈ N define

xn :=
{

x, n �∈U,
yn/‖yn‖ , n ∈U.

Clearly, (xn) is also a representative of x̂ with the property that ‖xn‖ = 1 for all n ∈
N . Similarly, we find a representative (ϕn) of ϕ̂ such that ‖ϕn‖ = 1 for all n ∈ N .
Consider ηn := |1−ϕn(xn)| . By hypothesis, the sequence (ηn)n converges to 0 along
U . Let εn := 2

√ηn . By the Bishop-Phelps-Bollobás theorem, for each n ∈ N there
exist zn ∈ X and ρn ∈ X ′ such that

‖zn‖ = ‖ρn‖ = ρn(zn) = 1, ‖xn − zn‖ < εn and ‖ρn−ϕn‖ < εn.

Thus, (zn) and (ρn) are representatives of x̂ and ϕ̂ , respectively, with the desired
properties. �

The next lemma is a direct consequence of the principle of local reflexivity, see
[11, p. 493]:

LEMMA 2.4. Let X be a complex Banach space. Let G ⊂ X ′′ , H ⊂ X ′ be arbi-
trary finite-dimensional subspaces. Then there exists an isometric embedding R from
G to X̂ with the following properties:

(i)
Rx = x for all x ∈ G∩X . (8)

(ii)
ξ (ϕ) = ϕ(Rξ ) for all ϕ ∈ H,ξ ∈ G, (9)

where ϕ is identified with its canonical image in (̂X ′) .
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(iii) Let Y be another Banach space, let T ∈ L (X ,Y ) , and let ϕ ∈ (T ′)−1(H) be
arbitrary. Then for all ξ ∈ G we have

ξ (T ′ϕ) = (T ′ϕ)(Rξ ) = ϕ(T̂Rξ ). (10)

Proof. By the cited principle to each n ∈ N there exists a continuous linear injec-
tion Tn from G onto a finite-dimensional subspace of X satisfying

1. ‖Tn‖ · ‖T−1
n ‖ < 1+1/n.

2. Tnx = x for x ∈ G∩X .

3. ϕ(Tn(ξ )) = ξ (ϕ) for all ξ ∈ G , ϕ ∈ H .

Set Rξ = (̂Tnξ ) . Then equation (8) and (9) follow. The first part of equation (10)
follows from equation (9). The second part follows from (T ′ϕ)(Tnξ ) = ϕ(TTnξ ) for

all n and from T̂ (Rξ ) = (̂TTnξ ) , see equation (2). �
REMARK. There is a deep theorem stating the embeddability of X ′′ into X̂ with

properties similar to those above, due to C. W. Henson and L. C. Moore Jr. but it
requires either nonstandard analysis (see [23, Prop. 4.3.17]) or a more sophisticated
theory of ultraproducts (see e. g. [10, Theorem 6.7]).

2.2. The inclusion results

The usefulness of ultrapower techniques lies in the following proposition:

PROPOSITION 2.5. (cf. [17, Prop. 1.3.6]) Let X be a complex Banach space and
A ∈ L (X) . Then for each direct sum decomposition D of X we have

V r
D̂

(Â) = VD(A).

Proof. Let n be the order of the decomposition D . We assume that n � 2. (The
case n = 1 is analogous and is therefore omitted.)

“⊃” Let λ ∈VD(A) . Then there exist sequences

(dm)m∈N = ((u1,m,ϕ1,m), . . . ,(un,m,ϕn,m))m∈N ⊂ SD

and (λm)m∈N such that λm ∈ σ(Adm) and λ = limm→∞ λm . Moreover, we have

d̂ := (((̂u1,m), (̂ϕ1,m)), . . . ,((̂un,m), (̂ϕn,m)))m∈N ∈ Sr
D̂

.

For each m ∈ N let xm = (x1,m, . . . ,xn,m) ∈ Xdm be a normalized eigenvector of Adm

corresponding to the eigenvalue λm . Then (̂xm) := ((̂x1,m), . . . , (̂xn,m))∈ X̂d̂ is an eigen-
vector of Âd̂ corresponding to the eigenvalue λ , since

Âd̂ (̂xm) = ̂(Admxm) = (̂λmxm) = λ (̂xm).
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Hence, λ ∈Vr
D̂

(Â) .
“⊂” Let λ ∈ Vr

D̂
(Â) . Then there is a d̂ ∈ Sr

D̂
such that λ ∈ σ(Âd̂) = σ(Bd̂) . By

Lemma 2.3 applied to the components of d̂ , there is a sequence (dm) ⊂ SD such that

(̂dm) = d̂ . The entries of the n× n matrices Bdm converge along U to the entries of
Bd̂ . Hence, the Hausdorff distance between σ(Bdm) ⊂ VD(A) and σ(Bd̂) converges
along U to 0, see [3, Formula (VIII.3)], and thus λ ∈VD(A) . �

The following proposition states inclusions between the block numerical ranges of
an operator A ∈ L (X) and of its adjoint A′ . The result is interesting in itself and will
play a crucial role for the proof of the spectral inclusion in Theorem 2.8 below.

For a decomposition D let D ′ be the corresponding decomposition X ′ = ∏n
1 P′

j(X)
= X ′

1×·· ·×X ′
n of X ′ (see the introduction). Note that if (Ai j)n

i, j=1 is the block operator
representation of A with respect to D , then (A′

ji)
n
i, j=1 is the block operator representa-

tion of A′ with respect to D ′ , where A′
i j is the adjoint of Ai j , which is a bounded linear

operator from X ′
i to X ′

j .

PROPOSITION 2.6. Let X be a complex Banach space and A ∈ L (X) . Then for
each decomposition D of X of order n � 1 the following inclusions hold:

VD(A) ⊂VD ′(A′) ⊂VD(A).

Proof. First inclusion: Let λ ∈ VD(A) . There is a d = ∏n
k=1(uk,ϕk) ∈ SD such

that λ ∈ σ(Ad) . In the following we will identify X with its canonical image in the
bidual X ′′ . Then d′ := ∏n

k=1(ϕk,uk) ∈ SD ′ and A′
i j = P′

jA
′|X ′

i
hence

Bd′ =
(
ui(A′

jiϕ j)
)n
i, j=1

=
(
(A′

jiϕ j)(ui)
)n
i, j=1

= (ϕ j(Ajiui))n
i, j=1 = (Bd)T ,

where T denotes the operator of transposition. Hence, λ ∈ σ(A′
d′) ⊂VD ′(A′) .

Second inclusion: Let λ ∈VD ′(A′) . Then λ ∈ σ(A′
d′) for some d′ = ∏n

k=1(ϕk,ξk)
∈ SD ′ . Let G = span{ξ1, . . . ,ξn} and H = span{ϕ1, . . . ,ϕn,A′

i jϕi, i, j = 1, . . . ,n} . More-
over, let R be the mapping according to Lemma 2.4 and define x̂k := Rξk . We identify

X ′
k with its canonical image in (̂X ′

k) . By equation (3) and Lemma 2.4, equation (10),

ξ j(A′
i jϕi) =︸︷︷︸

eq.(9)

(A′
i jϕi)(x̂ j) =︸︷︷︸

eq.(3)

ϕi(Âi j x̂ j) (11)

holds for all i, j � n , ϕi ∈ X ′
i and x̂ j ∈ X̂ j . This equation gives

Bd′ =
(
ξi(A′

kiϕk)
)n
i,k=1

=
(
(A′

kiϕk)(x̂i)
)n
i,k=1

=
(

ϕk(Âikx̂i)
)n

i,k=1
= BT

d̂

for d̂ = ∏n
1(x̂k,ϕk) ∈ Sr

D r , and the assertion follows from Proposition 2.5. �
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REMARK. From VD(A) ⊂ VD(A′) we obtain immediately that VD(A) = VD(A′)
holds for reflexive Banach spaces.

LEMMA 2.7. Let D be a direct sum decomposition of the Banach space X . Then
the following assertions hold:

(i) for all x ∈ X there is a d ∈ SD such that Pdx = x;

(ii) for all x̂ ∈ X̂ there is a d̂ ∈ Sr
D̂

such that Pd̂x̂ = x̂ .

Proof. (i) Let n be the order of the decomposition D and assume that n � 2.
(The case n = 1 is analogous and is therefore omitted.) Let x ∈ X be arbitrary. If
Pkx �= 0 we set uk = Pkx/‖Pkx‖ . If Pkx = 0 we choose an arbitrary element of norm
1 in Xk and call it uk . For each k ∈ {1, . . . ,n} we choose ϕk ∈ X ′

k , ‖ϕk‖ = 1, such
that ϕk(uk) = 1. If d := ∏n

k=1(uk,ϕk) , then d ∈ SD . Moreover, x = (‖Pkx‖uk)n
k=1 and

hence Pdx = x .
(ii) Let (xm)m∈N be a representative of x̂ ∈ X̂ . For each xm let Pdm be the pro-

jection defined in (i) such that Pdmxm = xm . Then for d̂ := ∏n
k=1((̂uk,m)m, ̂(ϕk,m)m) we

have Pd̂x̂ = x̂ . �

We are now ready to prove that the spectrum of an operator is contained in the
closure of its block numerical range.

To this end we use the following subsets of the spectrum. The point spectrum of
A is

σp(A) = {λ ∈ C : λ −A is not injective}
while the approximate point spectrum of A is

σa(A) = {λ ∈ C : inf{‖(λ −A)x‖ : ‖x‖ = 1} = 0}.

Clearly, the inclusion σp(A) ⊂ σa(A) holds. Finally, the residual spectrum is

σr(A) = σ(A)\σa(A).

As is easily seen the residual spectrum is contained in the point spectrum of the
adjoint, i. e. σr(A) ⊂ σp(A′) .

THEOREM 2.8. Let X be a complex Banach space and A ∈ L (X) . Then the
following inclusions hold for each decomposition D of X of order n � 1 :

(i) σp(A) ⊂VD(A) ,

(ii) σr(A) ⊂VD ′(A′) ,

(iii) σ(A) ⊂VD(A) .
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Proof. (i) Let λ be an eigenvalue of A corresponding to the normalized eigen-
vector x . According to Lemma 2.7, there is a d ∈ SD such that Pdx = x . Then we have
Adx = λx , and hence λ ∈VD(A) .

(ii) As we have mentioned above, the inclusion σr(A) ⊂ σp(A′) is always satis-
fied. The assertion now follows by applying part (i) to A′ .

(iii) If λ ∈ σa(A) , then there exists a normalized vector x̂ with Âx̂ = λ x̂ (see
e.g. [22, Theorem V.1.4]). By Lemma 2.7 λ ∈ Vr

D̂
(cf. the proof of part (i)). But

Vr
D̂

(A) = VD(A) by Proposition 2.5 and the assertion follows. �

3. The block numerical range of refinements

3.1. Refinements and coarsenings

The philosophy behind the notion of the block numerical range in [20] was that
the finer the decomposition is, the nearer the block numerical range is to the spectrum.
In order to state this philosophy more precisely we need the following definition:

DEFINITION 3.1. Let D : X = X1×X2×·· ·×Xn be a direct sum decomposition.
For each j let D j : Xj = Yj1 × ·· ·×Yjr j be a decomposition of Xj (the trivial decom-
position Xj = Yj1 is allowed). Then the decomposition

D∗ : X =
n

∏
j=1

r j

∏
k=1

Yjk

is called a refinement of D and D itself is a called a coarsening of D∗ .

Let D∗ be a refinement of D . If X is a Hilbert space and the decomposition is an
orthogonal sum, or, more generally, if X is a p -direct sum of Banach spaces, then the
inclusion

VD∗(A) ⊂VD(A)

always holds, see [20, Theorem 3.5] for Hilbert spaces and [12, Theorem 1.16] for
p -direct decompositions.

Unfortunately, however, this is no longer true for an arbitrary direct sum decompo-
sition of X , as easy examples of non orthogonal, i. e. non contractive decompositions
of the Hilbert space C3 show. In the following example the decomposition is contrac-
tive and the norm is uniformly convex and smooth. Nevertheless there is an operator A
such that VD(A) is not contained in VD0(A) = V (A) .

EXAMPLE. Let X = C3 . Consider the canonical basis {e1,e2,e3} where e j =
(δk j)k=1,2,3 and δk j denotes the Kronecker symbol. Let Bj = span{e j} . Obviously, the
decomposition D∗ : X = B1 ×B2 ×B3 satisfies VD∗(A) = σ(A) independently of the
norm on X .

Let 4 � p < ∞ and q = p/(p−1) . We choose the norm

‖x‖ = (|x1|p +[(|x2|q + |x3|q)1/q)]p)1/p = (|x1|p +(|x2|q + |x3|q)p−1)1/p.
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Now consider the contractive coarsening D : X = span{e1,e2}×B3 . It is a band de-
composition and as such one it fits into the framework of [8]. Set

up = ((3/4)1/p,(1/4)1/p,0)T (12)

ϕp = ((3/4)1/q,(1/4)1/q,0) (13)

zp = ((3/4)1/p,0,(1/4)1/p)T . (14)

Here, the superscript T means transposition. Note that
∥∥up
∥∥ =

∥∥ϕp
∥∥ =

∥∥zp
∥∥ = 1 =

ϕp(up) . Then for d := ((up,ϕp),(e3,e′3)) ∈ SD with e′3 = (0,0,1) , the projection Pd

satisfies
∥∥Pdzp

∥∥ = 1.1074 . . . if p = 4. Moreover, the norm is monotone with respect
to p , so

∥∥Pdzp
∥∥> 1 for all 4 � p < ∞ .

The norm is smooth, so there exists exactly one normalized linear form ρ with
ρ(Pdzp) = ‖Pdzp‖ (> 1). Clearly, ρ is positive. For A = ρ ⊗ zp we obtain that Bd =(

ρ(up)ϕp(zp) ρ(e3)ϕp(zp)
ρ(up)e′3(zp) ρ(e3)e′3(zp)

)
is positive and of rank 1 hence its trace is in σ(Bd) .

This in turn implies VD(A) � trace(Bd) = ρ(Pdzp) > 1 whereas V (A) ⊂ {λ : |λ | � 1},
since A is a contraction. Thus VD(A) �⊂V (A) .

In fact this example suggests that all Pd should be contractions in order to ensure
the inclusion VD(A) ⊂V (A) . This leads to the following definition.

DEFINITION 3.2. The direct sum decomposition D of X is called ideal if every
projection Pd , d ∈ SD , is a contraction.

It turns out that every p -direct decomposition is ideal. More generally, every ρ -
normed direct sum (see the introduction) is ideal. This is a consequence of the following
proposition.

PROPOSITION 3.3. Let D be a ρ -normed decomposition of order n of the Ba-
nach space X . Then D is contractive and ideal.

Proof. We know already from the introduction that D is contractive.
Let d = ((u1,ϕ1), . . . ,(un,ϕn)) ∈ SD . Then

Pdx = (ϕ1(x1)u1, . . . ,ϕn(xn)un)

for
x = (P1x, . . . ,Pnx) = (x1, . . . ,xn).

Since ‖ϕk‖ = 1 = ‖uk‖ , k = 1, . . . ,n , and since all Pj are contractions we obtain

‖ϕk(xk)uk‖ � ‖xk‖ .

Using that ρ is a monotone norm (see the introduction), we finally have

‖Pdx‖ = ‖(ϕ1(x1)u1, . . . ,ϕn(xn)un)‖
= ρ((‖ϕ1(x1)u1‖ , . . . ,‖ϕn(xn)un‖)T )
� ρ((‖x1‖ , . . . ,‖xn‖)T )
= ‖(x1, . . . ,xn)‖ = ‖x‖ ,
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where T denotes the transposition. �
REMARK. An ideal decomposition need not be contractive. For example, every

decomposition of the 2-dimensional Hilbert space is ideal (Pd is always the identity),
but it is contractive if and only if it is orthogonal.

The next two lemmata are crucial for the proof of Theorem 3.6 below.

LEMMA 3.4. Let Y be a Banach space and let E : Y = ∏r
1Yj be an arbitrary

decomposition. Let x ∈Y satisfy Pex = x for some e ∈ SE . Then if Pe is a contraction,
there exists (v,ϕ) ∈ Satt(Y ) such that ϕ ⊗ v(x) = x and ϕ ⊗ v = (ϕ ⊗ v)◦Pe hold.

Proof. If x = 0 then choose an arbitrary v ∈ SPe(Y) , otherwise set v = x
‖x‖ . To v

there exists ψ such that 1 = ψ(v) = ‖ψ‖ holds. Set ϕ = P′
eψ . Then

1 = ψ(v) = ψ(Pev) = (P′
eψ)(v) = ϕ(v) � ‖ϕ‖ � ‖ψ‖ = 1,

since P′
e is a contraction by hypothesis. Moreover ϕ ⊗ v(x) = x and ϕ ⊗ v = ϕ ⊗ v◦Pe

hold. �

LEMMA 3.5. Let X be a complex Banach space. Let D be an arbitrary decom-
position of the Banach space X and let D∗ be an ideal refinement of D . Then for every
d∗ ∈ SD∗ and x ∈ X satisfying Pd∗x = x there exists d ∈ SD such that PdPd∗ = Pd as
well as Pdx = x hold.

Proof. Let D : X = X1 × X2 × ·· · × Xn and D∗ : X = ∏n
j=1 ∏

r j
k=1Yjk be given.

Let Pej be the restriction of Pd∗ to Xj . It is a contraction as well. Applying Lemma
3.4 to Xj , Pej and x j = Pj(x) , where Pj is the projection of X onto Xj , we obtain
(u j,ϕ j) ∈ Satt(Xj) with ϕ j ⊗ u j(x j) = x j and ϕ j ⊗ u j ◦Pej = ϕ j ⊗ u j . The projection
Pd for d = ((u1,ϕ1), . . . ,(un,ϕn)) is the desired one. �

THEOREM 3.6. Let D be an arbitrary decomposition of order n of the complex
Banach space X . Then the following assertions are equivalent.

(i) For every A ∈ L (X) and for every coarsening D̃ of D we have

VD(A) ⊂VD̃(A).

(ii) For every A ∈ L (X) we have

VD(A) ⊂V (A).

(iii) D is ideal.

Proof. (i) ⇒ (ii) : This is obvious because V (A) =VD0(A) for the trivial decom-
position X = X , abbreviated as D0 (see the introduction).

(ii) ⇒ (iii) : (cf. the example at the beginning of this section)
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Suppose that D is not ideal. Then there exists d = ∏n
1(u j,ϕ j) ∈ SD with ‖Pd‖ >

1. Hence there exists z of norm 1 satisfying ‖Pdz‖ = 1+ δ > 1. To Pd(z) there exists
a linear functional ϕ of norm 1 such that ϕ(Pdz) = 1+ δ . The operator ϕ ⊗ z =: A is
a contraction of rank 1. Hence, the n×n -matrix Bd corresponding to Ad is of rank 1.
This in turn implies that σ(Bd) = {0, trace(Bd)} ⊂ VD(A) . But trace(Bd) = ϕ(Pdz) =
1 + δ , whereas V (A) ⊂ {λ : |λ | � 1} since A is a contraction. This contradiction
proves the stated implication.

(iii) ⇒ (i) : Let A be an arbitrary bounded linear operator and let D̃ be an
arbitrary coarsening of D . Finally, let λ ∈ VD(A) be arbitrary. Then there exists a
d ∈ SD and an x �= 0 in Pd(X) =: Xd satisfying PdAx = λx . By Lemma 3.5 there exists
d̃ ∈ SD̃ such that Pd̃Pd = Pd as well as Pd̃x = x hold. But then

Pd̃Ax = Pd̃PdAx = Pd̃(λx) = λPd̃x = λx,

from which λ ∈VD̃(A) follows. �

This theorem together with Proposition 3.3 yields

COROLLARY 3.7. Let D be a ρ -normed decomposition. Then VD(A) ⊂ VD̃(A)
for every coarsening D̃ of D .

In the special case of p -direct sums this Corollary is due to P. Kallus, [12, Theorem
1.16].

Let now X be a complex Banach lattice. For notions not explained here we refer
to [22, 16, 18]. We assume that X is order complete. Then all bands are projection
bands. This is the case, for example, if the norm is order continuous. For an x ∈ X
we define x⊥ = {y : inf(|x|, |y|) = 0} . This set is a band. Moreover for an arbitrary set
M ⊂ X we set M⊥ =

⋂
x∈M x⊥ . Notice that M ⊂ M⊥⊥ . In the following we consider

the band decomposition X = x⊥× x⊥⊥ .
The following proposition rests heavily on a deep result of T. Ando [1, Lemma 1].

PROPOSITION 3.8. Let X be a complex Banach lattice of dimension dim(X) � 3
and with order continuous norm. Then the following assertions are equivalent:

(i) For each bounded linear operator A on X and for each band decomposition D
of order 2 , we have the inclusion

VD(A) ⊂V (A).

(ii) For each positive linear operator A and for each band decomposition D of order
2 , we have the inclusion

VD(A) ⊂V (A).

(iii) X is order isometrically isomorphic to an Lp -space for some p ∈ [1,∞) or to
c0(Γ) for some discrete index set Γ .
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Proof. (iii) ⇒ (i) : This follows from Corollary 3.7 since every band decompo-
sition is a p -direct sum.

(i) ⇒ (ii) : obvious.
(ii) ⇒ (iii) : Let F be an arbitrary sublattice of dimension 2. We show, that F is

the range of a positive contraction. Then (iii) follows from [1, Lemma 1], and (in the
case of p = ∞) in addition from our hypothesis that the norm is order continuous.

Since F is a 2-dimensional lattice there exist two positive unit vectors u,v ∈ F
and normalized positive linear forms ϕ and ψ such that inf{u,v} = 0, ϕ(u) = 1 =
ψ(v) , ϕ(v) = 0 = ψ(u) , and F = span{u,v} . We consider the band decomposition
X = u⊥ × u⊥⊥. The projection Pd with d = ((v,ψ),(u,ϕ)) is positive and satisfies
Pd(X) = F .

Claim: Pd is contractive.
Proof: (we adapt the corresponding part of the proof of Theorem 3.6.) Assume that

it is not contractive. Then there exists a positive normalized element z with ‖Pdz‖ =
1+ δ > 1. Since Pdz is positive there exists a positive linear form ϕ of norm 1 such
that ϕ(Pdz) = 1+δ . A = ϕ ⊗ z is a positive contraction of rank 1. The same argument
as in the proof of ”(ii) ⇒ (iii)” of Theorem 3.6 shows VD(A) ⊃ σ(Bd) �⊂ V (A) , a
contradiction to (ii) . This proves the claim and thereby the assertion. �

4. Estimate of the resolvent

4.1. The main result

It is well known (see e. g. [9, Lemma 6.1-4]) that in the case of Hilbert spaces the
resolvent of the operator A can be estimated in terms of the numerical range of A as
follows:

‖(A−λ I)−1‖ � 1
dist(λ ,V (A))

, λ �∈V (A).

C. Tretter and M. Wagenhofer [20, Theorem 4.2] gave the following generaliza-
tion of the inequality above1:

THEOREM 4.1. Let H be a Hilbert space, and let D : H = ∏n
1 Hj be an orthog-

onal decomposition of H . Let A ∈ L (H) be arbitrary. Then for λ /∈ VD(A) the
resolvent of A admits the estimate

‖(A−λ )−1‖ � (‖A‖+ |λ |)n−1

(dist(λ ,VD(A)))n . (15)

It is our aim to prove a corresponding result for decompositions of arbitrary Ba-
nach spaces, see Theorem 4.3. The estimate we shall get differs from that one above
only by a constant factor γ on the right hand side of the inequality depending solely on
the decomposition D , but not on the particular operator A .

Let E = Cn . As before we denote by e j the elements e j = (δ j,k) . Let D be a
decomposition of X of order n and let d = ((u j,ϕ j))1� j�n ∈ SD be arbitrary. We define

1We cite only that part of the Theorem which we want to generalize.
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the mapping Td : Pd(X) =: Xd → E by Td(∑n
1 ξ ju j) = ∑n

1 ξ je j , and we set ‖�ξ‖d :=
‖T−1

d (�ξ )‖. Then all these norms satisfy ‖e j‖d = 1 (1 � j � n ).
Unfortunately in general for d �= d̃ the corresponding norms need not be equal as

the following example, which is even contractive and ideal, shows:

EXAMPLE. Consider X = C4 with its canonical lattice structure and take the
canonical band decomposition X = C2 ×C2 = X1 × X2 Define the two seminorms

p1(�ξ ,�η)= max{|ξ1|, |η1|} and p2(�ξ ,�η)= |ξ2|+ |η2| . Then p , given by p =
√

p2
1 + p2

2

is a lattice norm on X which induces the usual Hilbert norm on each Xj . We parametrize
a subset of SD by the mapping [0,1]2 � (s,t) �→ ((xs,x′s),(yt ,y′t)) =: ds,t where xs =
(s,

√
1− s2)T and yt = (t,

√
1− t2)T (T : transposition). Then M := {((xs,x′s),(yt ,y′t)) :

s,t ∈ [0,1]}⊂ SD (see page 232). The corresponding norm ‖.‖ds,t on C2 is easily com-
puted as

‖�ξ‖2
ds,t

= (max{|ξ1|s, |η1|t})2 +(|ξ2|
√

1− s2 + |η2|
√

1− t2)2.

No two different subspaces Pds,t (X), Pdu.v(X) are isometrically isomorphic.
Therefore the following notion is substantial for this section. At first let us intro-

duce some helpful notations:
For �ξ = ∑n

1 ξ je j the norms ‖.‖∞ and ‖.‖1 are defined by

‖�ξ‖∞ = max(|ξ j|)1� j�n,

‖�ξ‖1 =
n

∑
1

|ξ j|.

DEFINITION 4.2. The decomposition D is called bounded if

sup
d∈SD

sup
0 �=�ξ

(
‖�ξ‖∞

‖�ξ‖d

)
=: γD < ∞.

The number γD is called the bound of D .

First of all we show that many decompositions are bounded:

EXAMPLE.
1. Assume that all norms ‖.‖d are monotone norms. Then γD = 1. For let ‖.‖d be

such a monotone norm. Then |ξ j|e j � |�ξ | (1� j � n ) implies |ξi|= ‖|ξi|ei‖d � ‖|�ξ |‖d ,
hence

‖�ξ‖∞ � ‖|�ξ |‖d = ‖�ξ‖d �
n

∑
1

|ξ j|‖e j‖d = ‖�ξ‖1.

2. For all p -direct sums and more generally for all ρ -normed decompositions we
have ‖�ξ‖d = ρ(�ξ ) for all d . In particular these decompositions have bound γD = 1.
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3. Let X be a Banach lattice and let D be a band decomposition of order n . For
d = ∏(u j,ϕ j) ∈ SD it follows that |d| = ∏(|u j|, |ϕ j|) ∈ SD . Then we have

‖(ξ1u1, . . . ,ξnun)‖ = ‖|(ξ1u1, . . . ,ξnun)|‖ = ‖(|ξ1||u1|, . . . , |ξn||un|)‖

since inf(|ui|, |u j|) = 0 for i �= j . Thus ‖ · ‖d = ‖ · ‖|d| holds and this latter norm is a
monotone norm. So γD = 1 by the first example.

Unfortunately not all decompositions are bounded as the following example shows:

EXAMPLE. First of all we define norms on C2 by

pk(�ξ )2 =
(

1− 1
2k2

)
|ξ1− ξ2|2 +

1
2k2 |ξ1 + ξ2|2.

Then

sup
k

sup
0 �=�ξ

(
‖�ξ‖∞

pk(�ξ )

)
= ∞.

To show this consider �ξ = k ·2−1/2(e1 + e2) . Then pk(�ξ ) = 1, but ‖�ξ‖∞ = k√
2
.

Let X1 = X2 = �2(N) and equip X = X1×X2 with the norm p given by

p(x,y)2 =
∞

∑
1

[
pk
(( xk

yk

))]2
.

It is not hard to verify that this series converges for all (x,y) ∈ X , and moreover, that
X is complete with respect to this norm, and that this norm induces the usual Hilbert
space norm on each Xj .

Consider the decomposition D : X = X1 × X2 . Let ek = (δ j,k) j<∞ and e′k the
corresponding element: e′k(x) = xk . Then dk = ((ek,e′k),(ek,e′k)) is in SD (see page
232) and the corresponding norm ‖.‖dk on C2 is nothing other than pk . Thus D is
unbounded.

The main theorem of this section, the announced generalization of Theorem 4.1,
reads as follows:

THEOREM 4.3. Let D be an arbitrary bounded decomposition of X of order n �
2 with bound γD and norm ‖D‖ . Let A be an arbitrary bounded linear operator on
X . Then for λ �∈VD(A) the resolvent of A admits the estimate

‖(λ I−A)−1‖ � γ · (‖A‖+ |λ |)n−1

(dist(λ ,VD(A)))n , (16)

where

γ := γD ·n2‖D‖
(√

n−1 ·max
i

(‖Pi‖)
)n−1

(17)

depends only on the decomposition D .
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REMARKS.
1. It is an open problem whether there exists such an estimate for unbounded

decompositions (obviously with another constant γ ).
2. In the case of a contractive and ideal decomposition we obtain

γ = γD ·n2(n−1)(n−1)/2.

But even stronger estimates are possible in special cases as the following corollary
shows.

COROLLARY 4.4. In the following cases the constant γ in equation (16) can be
replaced by smaller constants:

(a) If D is a p-direct sum (1 � p � ∞ , p �= 2) then

γ = n · (n−1)(n−1)/2

suffices.

(b) If D is a 2 -direct sum then γ = 1 suffices.

(c) If X is an order complete Banach lattice, and if D is a band decomposition of
order n then γ = n2‖D‖ · (n−1)(n−1)/2 suffices.

REMARK. Assertion (b) implies that Theorem 4.1 from [20] holds not only for
orthogonal decompositions of Hilbert spaces but more generally for all 2-direct sums
of arbitray Banach spaces.

In order to prove our theorem we need several lemmata.

LEMMA 4.5. Let D be an arbitrary decomposition of X and let A be a bounded
linear operator on X . Then

inf{‖PdAx‖ : x ∈ SPd(X), d ∈ SD} � ‖D‖ inf{‖Ay‖ : y ∈ SX}.

Proof. Set δ = inf{‖PdAx‖ : x ∈ SPd(X), d ∈ SD} and suppose the inequality does
not hold. Then there exists y ∈ SX satisfying ‖D‖‖Ay‖< δ . Now by Lemma 2.7 there
exists d ∈ SD with Pdy = y , in particular y ∈ SPd(X). We obtain

δ > ‖D‖‖Ay‖� ‖PdAy‖ � δ ,

a contradiction. �

In the following we identify L (Ck) with the space of k×k -matrices. For a given
norm p on Ck and D = (di j)k

i, j=1 we consider the corresponding operator norm ‖D‖op

and in addition the norm ‖D‖∞ = maxi, j(|di j|).
The following inequality goes back to Hadamard. Its proof can be found in [7,

Cor. 9.24].
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LEMMA 4.6. Let D = (di j) be a k× k matrix. Then

|det(D)| � (
√

k‖D‖∞)k

holds.

We introduce the following two vectors in Cn , (Cn)′ , respectively: 1 =

⎛⎜⎝1
...
1

⎞⎟⎠
and 1′ = (1, . . . ,1) . Obviously |1′(�ξ )| � ‖�ξ‖∞ ·n and ‖1‖ � n for every norm ‖.‖ on
Cn satisfying ‖e j‖ = 1 for all j .

LEMMA 4.7. Let B = (bi j) be an invertible n× n-matrix and let ‖.‖ be a norm

on E := Cn satisfying ‖e j‖ = 1 ( j = 1 . . .n) as well as ‖�ξ‖∞ � δ‖�ξ‖ for some δ and

all �ξ .
(a) In general

‖B−1‖op � n2δ
|det(B)| ·

(
‖B‖∞ ·√n−1

)n−1
(18)

holds.
(b) If the norm is monotone then the following in general sharper estimate holds:

‖B−1‖op � ‖1′‖′ · ‖1‖
|det(B)| ·

(
‖B‖∞ ·√n−1

)n−1
, (19)

where ‖.‖′ denotes the dual norm induced by ‖.‖ .
(c) If the norm is the usual l2 -norm, then

‖B−1‖op �
‖B‖n−1

op

|det(B)| (20)

holds.

Proof. (a) Let �ξ ∈ SE be arbitrary. Then

B−1�ξ =
1

det(B) ∑
i

(
∑
j

(−1)i+ j det(Bji)ξ j

)
ei, (21)

where Bi j is obtained from B by deleting the i th row and the j th column. Hence
‖Bi j‖∞ � ‖B‖∞ . Using Lemma 4.6 we obtain

|∑
j
(−1)i+ j det(Bji)ξ j| � (‖B‖∞

√
n−1)n−1 ∑

j
|ξ j| (22)

= (‖B‖∞
√

n−1)n−11′(|�ξ |). (23)
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This inequality, the triangle inequality, and the fact that ‖ei‖= 1 holds for all 1 � i � n ,
together imply

‖B−1�ξ‖ � n2

|det(B)| (‖B‖∞
√

n−1)n−1‖�ξ‖∞.

But ‖�ξ‖∞ � δ by hypothesis. So inequality (18) follows.
(b) Let the norm be monotone. At first we note that equation (21) together with

inequality (22) imply

|B−1�ξ | � 1
|det(B)| (‖B‖∞

√
n−1)n−11′(|�ξ |) ·1. (24)

Since ‖B−1�ξ‖ = ‖|B−1�ξ |‖ and ‖�ξ‖ = ‖|�ξ |‖ = 1 the inequality follows.
(c) This inequality is due to T. Kato [13, footnote 2 on p. 28]. �
Proof of Theorem 4.3. (I) Assume first of all λ = 0, i. e. dist(0,VD(A)) > 0. Then

by Theorem 2.8 we have 0 /∈ σ(A) . Moreover, by definition of VD(A) , 0 /∈ σ(Bd) for
every d ∈ SD . Lemma 4.5 implies: to every ε > 0 there exists d ∈ SD such that
‖A−1‖− ε < ‖D‖‖B−1

d ‖op where ‖.‖op denotes the operator norm induced by ‖.‖d .
By Lemma 4.7, inequality (18), and by our hypothesis that D is bounded by γD we
obtain

‖B−1
d ‖op � n2γD

|det(Bd)|
(
‖Bd‖∞ ·√n−1

)n−1
.

Now
‖Bd‖∞ = max

i, j
(|ϕi(PiAu j)|) � max

i
(‖Pi‖)‖A‖

and
|det(Bd)| � (dist(0,σ(Bd))n � (dist(0,VD(A))n

hold. Summing up our considerations we obtain

‖A−1‖− ε � n2γD · ‖D‖
(dist(0,VD(A)))n ·

(√
n−1 ·max

i
(‖Pi‖)‖A‖

)n−1

. (25)

Since ε was arbitrary the theorem follows for the case λ = 0.
(II) In the general case replace A by λ I−A and apply (I). �

Proof of Corollary 4.4. (a) ρ(�ξ ) = (∑n
i=1 |ξi|p)1/p is a monotone norm, hence all

norms ‖.‖d are equal to ρ . In particular γD = 1 = ‖D‖ = max j ‖Pj‖ (for the first
equality see the example following Definition 4.2). Moreover using equation (19) and
the fact that ‖1′‖q · ‖1‖p = n we obtain the result.

(b) We start as in the proof of the theorem by the inequality ‖A−1‖−ε<‖D‖‖B−1
d ‖op

for given ε > 0. Now ‖Bd‖op = ‖PdA|Pd(X)‖ � ‖A‖ holds since ‖Pd‖ = 1. Equation
(20) yields

‖B−1
d ‖op � ‖A‖n−1

|det(Bd)| � ‖A‖n−1

(dist(0,VD(A)))n
.
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Inserting this into the inequality above we obtain

‖A−1‖− ε � ‖A‖n−1

(dist(0,VD(A)))n ,

since ‖D‖ = 1 (see p. 231), and the assertion follows.
(c) In this case ‖γD‖= max(‖Pj‖)= 1 (see Example 3 on p. 245) and the assertion

follows from the theorem. Notice that ‖D‖ > 1 is possible as the example on p. 239
shows. �

4.2. The case n = 2

As the application of Corollary 4.4 to A = I (the identity operator) shows, the
estimate is still rather rough. For ρ -normed decompositions of order 2 a much sharper
estimate is possible.

Let B = (bi j) be a 2×2 matrix acting as an operator on the Banach lattice E = C2 ,
equipped with the lattice norm ρ . Let C = (ci j) satisfy ci j � |bi j| for all i, j . Then

‖B‖op � ‖(|bi j|)‖op � ‖C‖op (26)

holds, where ‖.‖op denotes the operator norm.
Let us consider a ρ -normed decomposition X = X1 ×X2 of the Banach space X

into the Banach spaces X1 and X2 , abbreviated as D . For A ∈ L (X) , A = (Aik) we
set

M(A) =
( ‖A22‖ ‖A12‖
‖A21‖ ‖A11‖

)
and κ(A) = ‖M(A)‖op, where M(A) operates on (C2,ρ). (Please note that A22 is the
first element in the matrix M(A) and not A11 .) For λ ∈ C κ(λ I −A) � κ(A)+ |λ |
holds on account of inequality (26).

Now we can formulate our supplementary result:

PROPOSITION 4.8. Let D be a ρ -normed decomposition of order n = 2 and let
A ∈ L (X) be arbitrary. Let λ /∈VD(A) . Then

‖(λ I−A)−1‖ � κ(A)+ |λ |
(dist(λ ,VD(A)))2 . (27)

Proof. First of all let λ = 0. As in the proof of Theorem 4.3 to every ε > 0 we
find Bd satisfying ‖A−1‖− ε � ‖B−1

d ‖op for some d = ((u1,ϕ1),(u2,ϕ2)) . Now

B−1
d =

1
det(Bd)

(
ϕ2(A22u2) −ϕ1(A12u2)
−ϕ2(A21u1) ϕ1(A11u1)

)
.

So by using inequality (26) for C = M(A)/|det(Bd)| we find

‖A−1‖− ε � ‖B−1
d ‖op � κ(A)

|det(Bd)| � κ(A)
(dist(0,VD(A)))2

.
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If λ �= 0 then apply the preceding proof to λ I−A . �

REMARKS.
1. Replacing ‖A‖ by κ(A) in inequality (15) by C. Tretter and M. Wagenhofer

yields our inequality (27).

2. For A = I and λ �= 1 inequality (27) yields |λ − 1|−1 � 1+|λ |
|λ−1|2 showing that

in the case of n = 2 this inequality is an improvement of Corollary 4.4 (a). Indeed for
λ = 0 one obtains even equality.

3. For the norm ρ = ‖.‖∞ we get

κ(A) = max(‖A22‖+‖A12‖,‖A21‖+‖A11‖) .

For 1 < p < ∞ and ρ = ‖.‖p it is rather difficult to calculate the operator norm. So one
may take the following estimate using the so called Lq,p norm (q = p

p−1 ) ‖M(A)‖q,p

of M(A) :
κ(A)p � (‖A22‖q +‖A12‖q)p/q +(‖A21‖q +‖A11‖q)p/q.

The right hand side of this inequality is the so-called Lq,p norm ‖M(A)‖q,p of M(A) .
For p = 2 it is the Hilbert-Schmidt norm.

To see this inequality, let C be an n×n matrix with rows �c j, j = 1, . . . ,n and let
x be a vector with ‖x‖p = 1. Then using Hölder’s inequality we obtain

‖Cx‖p = ∑
j
|�c j · x|p � ∑

j
(‖�c j‖q · ‖x‖p)

p = ∑
j

(‖�c j‖q)
p =: β ,

and hence ‖C‖p
op � β .

4.3. Examples

1. Let X = (C4,‖.‖∞) = C2 ×C2 ( ‖.‖∞ the maximum norm). We consider

A =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠=
(

0 S
S 0

)
where S =

(
0 1
1 0

)
. Then VD(A) = D := {λ ∈C : |λ |� 1} .

Proof. VD(A) ⊆ D holds by Propositions 1.3 and 3.3.

In order to show equality choose u1 =
(

1
1

)
, u2 =

(
1
δ

)
, where |δ | = 1. More-

over let ϕ1 = (1,0) and ϕ2,t = ((1− t),δ t) , 0 � t � 1. Then d = ((u1,ϕ1),(u2,ϕ2,t))∈
SD and Bd =

(
0 δ

(1− t)+ δt 0

)
. So λ 2

1,2 = δ (1− t)+ 1 · t holds for the eigenvalues

λ1,2 of Bd . Notice that the lines {δ (1− t) + 1 · t : 0 � t � 1, |δ | = 1} exhaust D .
Therefore for every λ ∈ D there exist δ ,t such that λ 2 = δ (1− t)+1 · t . �

A2 = I implies (λ I − A)−1 = 1
λ 2−1

· (λ I + A) for λ /∈ σ(A) , in particular for

|λ | > 1. This implies ‖(λ I−A)−1‖ = 1
λ−1 for λ > 1. Now κ(A) = ‖A‖ = 1, hence
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for λ > 1 inequality (27) yields

‖(λ I−A)−1‖ � λ +1
(λ −1)2 ,

whereas Corollary 4.4, part (a) gives

‖(λ I−A)−1‖ � 2 · λ +1
(λ −1)2 .

2. let X = �∞(Z) = �∞(Z−)× �∞(Z+) where Z+ = {z ∈ Z : z � 0} and Z− = Z\Z+ .
Let A be the shift on X , given by A f (z) = f (z + 1) , and let S± be its restriction
to the corresponding subspaces. Then the matrix representation with respect to the

decomposition D is A =
(

S− e′0 ⊗ e−1

0 S+

)
. Here ek(l) = δkl and e′k( f ) = f (k) . So

every Bd is upper triangular hence VD(A) = V (S+)∪V (S−) . We show that both sets
are equal to D . Because ‖S±‖ = 1 V (S±) ⊂ D . Let λ ∈ D be arbitrary, λ = δ · |λ | ,
|λ | = t . Set u = e1 + δe2 and ϕ = te′1 + δ (1− t)e′2 . Then ϕ(S+u) = ϕ(e0 + δe1) =
δ t = λ . Similarly we obtain the result for S− .

Now ‖A‖ = 1. Let λ > 1 be arbitrary. Then ‖(λ I−A)−1‖ = 1
λ−1 , and M(A) =(

1 1
0 1

)
, hence κ(A) = 2. So inequality (27) gives

‖(λ I−A)−1‖ � λ +2
(λ −1)2 ,

whereas Corollary 4.4 (a) yields

‖(λ I−A)−1‖ � 2λ +2
(λ −1)2 .

FINAL REMARK. First applications based on a preliminary version of our theory
may be found in [17, 18]. Further applications in particular for positive operators on
Banach lattices are in preparation.
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