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SCALAR APPROXIMANTS OF QUADRATIC

OPERATORS WITH APPLICATIONS
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Abstract. Among other results, we find the best scalar approximant of a quadratic operator with
respect to the numerical radius and the operator norm. We use these results to give estimates for
the numerical radii of products and commutators of quadratic operators.

1. Introduction

In what follows, all operators are bounded linear operators on a complex Hilbert
space H. Let W (A) and w(A) denote, respectively, the numerical range and the nu-
merical radius of A defined as

W (A) = {〈Ax,x〉 : x ∈ H and ‖x‖ = 1}

and
w(A) = sup

λ∈W(A)
|λ | ,

where 〈·, ·〉 and ‖·‖ in the definition of W (A) are the inner product and its correspond-
ing norm on H. It is well-known that W (A) is a bounded convex subset of the complex
plane, which contains the spectrum of A in its closure. Moreover, if H is finite dimen-
sional, then W (A) is compact. The numerical radius w(·) defines a norm on the space
of all bounded linear operators on H, which is equivalent to the operator norm. In fact,
the inequalities

1
2
‖A‖ � w(A) � ‖A‖ (1)

hold. For proofs and more facts about the numerical range and the numerical radius, we
refer the reader to [8] and [10]. Recall that A is quadratic if A2 +αA+β I = 0 for some
scalars α and β . A is square-zero if A2 = 0, idempotent if A2 = A and involution if
A2 = I.

In Section 2, we prove some results regarding quadratic operators. Among other
results, we show that if A is a quadratic operator with spectrum σ (A) = {a,b} , then
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d(A) = w
(
A− a+b

2 I
)

and D(A) =
∥∥A− a+b

2 I
∥∥ . Here, d(A) and D(A) denote the dis-

tances of A from scalar operators, with respect to the numerical radius and the operator
norm, respectively, that is,

d(A) = inf
λ∈C

w(A−λ I)

and
D(A) = inf

λ∈C

‖A−λ I‖ .

In Section 3, the results of Section 2 are employed to give estimates for the numerical
radii of the products AB and the commutators AB±BA when A is quadratic.

2. Scalar approximants of quadratic operators

In order to achieve our goals, we need the following lemmas. The first lemma is
well-known. The second lemma, which can be found in [11], gives estimates for the
operator norms of the 2×2 operator matrices. The third lemma describes the spectrum,
the canonical form and the numerical range of a quadratic operator. It is from [17].

LEMMA 1. For every A,

w(A) = sup
θ∈R

‖Re(eiθ A)‖.

Replacing A by iA in the previous identity, we have

w(A) = sup
θ∈R

‖ Im(eiθ A)‖.

LEMMA 2. Let A∈B(H1,H1) , B∈B(H2,H1) , C∈B(H1,H2) and D∈B(H2,H2) .
Then ∥∥∥∥

[
A B
C D

]∥∥∥∥ �
∥∥∥∥
[‖A‖ ‖B‖
‖C‖ ‖D‖

]∥∥∥∥ .

Here B(Hj,Hi) is the space of all bounded linear operators from Hj to Hi .

LEMMA 3. Let A be a quadratic operator satisfying A2 + αA+ β I = 0 for some
scalars α and β . Then

(a) σ (A) = {a,b} , where a and b are the roots of the quadratic equation z2 +
αz+ β = 0,

(b) A is unitarily equivalent to an operator of the form

aI1⊕bI2⊕
[
aI3 T
0 bI3

]
,

where T is positive definite, and
(c) W (A) is the elliptic disc with foci a and b, major axis of length ‖A−aI‖ and

minor axis of length
√
‖A−aI‖2−|a−b|2.
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The follwing lemma is a useful tool used in this paper.

LEMMA 4. Let A = aI1 ⊕ bI2 ⊕
[
aI3 T
0 bI3

]
be a quadratic operator and let A

′
=[

a ‖T‖
0 b

]
. Then

(a) ‖A‖ = ‖A′‖,
(b) ‖A∗A+AA∗‖ = ‖A′∗A′

+A
′
A

′∗‖,
(c) W (A) = W (A

′
) and w(A) = w(A

′
).

Proof. (a) For a proof, see, e.g., [17, Lemma 2.2] and [1, Lemma 3.2].

(b) Without loss of generality, we prove the assertion for A =
[
aI T
0 bI

]
on H ⊕H.

First, notice that

‖A′∗A
′
+A

′
A

′∗‖ =
∥∥∥∥
[
2 |a|2 +‖T‖2 (a+b)‖T‖
(a+b)‖T‖ 2 |b|2 +‖T‖2

]∥∥∥∥
=

∥∥∥∥
[
2 |a|2 +‖T‖2 |a+b|‖T‖
|a+b|‖T‖ 2 |b|2 +‖T‖2

]∥∥∥∥ .

Hence,

‖A′∗A
′
+A

′
A

′∗‖ =
〈[

2 |a|2 +‖T‖2 |a+b|‖T‖
|a+b|‖T‖ 2 |b|2 +‖T‖2

][
α
β

]
,

[
α
β

]〉

for some scalars α and β with |α|2 + |β |2 = 1. By Lemma 2,

‖A∗A+AA∗‖ =
∥∥∥∥
[
2 |a|2 I +TT ∗ (a+b)T

(a+b)T ∗ 2 |b|2 I +T ∗T

]∥∥∥∥
�

∥∥∥∥
[
2 |a|2 +‖T‖2 |a+b|‖T‖
|a+b|‖T‖ 2 |b|2 +‖T‖2

]∥∥∥∥ (2)

= ‖A′∗A
′
+A

′
A

′∗‖.
Now, let {xn} and {yn} be sequences of unit vectors in H such that |〈Tyn,xn〉| → ‖T‖
(as n→∞) and let θn be a real number satisfying (a+b)〈Tyn,xn〉= |a+b| |〈Tyn,xn〉|eiθn .
Consider the sequence {zn}=

{
αeiθnxn⊕βyn

}
. It is easy to see that {zn} is a sequence

of unit vectors in H⊕H and

〈(A∗A+AA∗)zn,zn〉
= (2 |a|2 +‖T ∗xn‖2)|α|2 +2 |a+b| |〈Tyn,xn〉|Re(αβ )+ (2 |b|2 +‖Tyn‖2)|β |2
→ (2 |a|2 +‖T‖2)|α|2 +2 |a+b|‖T‖Re(αβ )+ (2 |b|2 +‖T‖2)|β |2 (as n → ∞)

=
〈[

2 |a|2 +‖T‖2 |a+b|‖T‖
|a+b|‖T‖ 2 |b|2 +‖T‖2

][
α
β

]
,

[
α
β

]〉

= ‖A′∗A
′
+A

′
A

′∗‖.
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Thus,
‖A∗A+AA∗‖ � ‖A′∗A

′
+A

′
A

′∗‖. (3)

By the inequalities (2) and (3), we deduce that

‖A∗A+AA∗‖ = ‖A′∗A
′
+A

′
A

′∗‖,

as required.
(c) The assertion follows from Lemma 3 (c) by recalling that

‖A−aI‖=
∥∥∥∥
[
0 T
0 (b−a)I3

]∥∥∥∥ =
∥∥∥∥
[
0 ‖T‖
0 b−a

]∥∥∥∥ = ‖A′ −aI
′‖,

where I
′
=

[
1 0
0 1

]
. �

REMARK 1. Let A = aI1 ⊕ bI2 ⊕
[
aI3 T
0 bI3

]
be a quadratic operator and let A

′
=[

a ‖T‖
0 b

]
.

(a) It follows from Lemma 4 (a) and (b) that

‖A‖ =
1√
2

√
|a|2 + |b|2 +‖T‖2 +

√(
|a|2 + |b|2 +‖T‖2

)2−4 |a|2 |b|2 (4)

and

‖A∗A+AA∗‖ = |a|2 + |b|2 +‖T‖2 +

√(
|a|2 −|b|2

)2
+ |a+b|2 ‖T‖2. (5)

Using a similar argument as in the proof of Lemma 4 (b), we can show that

‖ReA‖ = ‖ReA
′ ‖ =

1
2

(
Re(a+b)+

√
Re2 (a−b)+‖T‖2

)
(6)

and

‖ImA‖ = ‖ ImA
′ ‖ =

1
2

(
Im(a+b)+

√
Im2 (a−b)+‖T‖2

)
. (7)

(b) By Lemma 4 (c), in order to give a formula for w(A) , we need to calculate
w(A

′
). In fact, no explicit formula for the numerical radius of a general 2×2 matrix is

known. In [12, Theorem 1.1], a general formula was given. However, its use is limited
since it involves calculating a specific root of a quartic equation. For instance, it follows
from the formula (1.4) in [12, Theorem 1.1] that if ab is real, then

w(A) =
1
2

(
|a+b|+

√
|a−b|2 +‖T‖2

)
. (8)
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Formula (8) can also be proved as follows: When ab is real, then a and b lie on a line
passing through the origin. By Lemma 3 (c), W (A) is an elliptic disc with center a+b

2
and major axis of length ‖A−aI‖ . Hence,

w(A) =
1
2
|a+b|+ 1

2
‖A−aI‖

=
1
2

(
|a+b|+

√
|a−b|2 +‖T‖2

)
.

(c) It follows from the formula (4) of ‖A‖ , using simple computation, that

‖T‖2 = ‖A‖2 + |a|2 |b|2 ‖A‖−2− (|a|2 + |b|2). (9)

Hence, the formulas in Lemma 5 and the formulas (5), (6), (7) and (8) can be written in
terms of a,b and ‖A‖ (rather than ‖T‖).

(d) A2 = a2I1⊕b2I2⊕
[
a2I3 (a+b)T
0 b2I3

]
is quadratic and (by Remark 1 (c))

|a+b|2 ‖T‖2 =
∥∥A2

∥∥2
+ |a|4 |b|4 ∥∥A2

∥∥−2 − (|a|4 + |b|4). (10)

The following proposition is a consequence of the formulas (5), (9) and (10).

PROPOSITION 1. Let A be a quadratic operator with σ (A) = {a,b} .
(a) If A is square-zero (i.e., a = b = 0 ), then

‖A∗A+AA∗‖ = ‖A‖2 .

(b) Otherwise,

‖A∗A+AA∗‖ = ‖A‖2 +
∥∥A2

∥∥−|a|2 |b|2
(∥∥A2

∥∥−1−‖A‖−2
)

.

REMARK 2. It follows from Proposition 1 that if A is quadratic, then

‖A∗A+AA∗‖ � ‖A‖2 +
∥∥A2

∥∥ . (11)

In fact, the inequality (11) holds for every A . See, e.g., [13, Lemma 7].

In the following lemma, we show that the operator a+b
2 I is the best scalar approx-

imant of A with respect to the numerical radius and the operator norm.

LEMMA 5. Let A = aI1⊕bI2⊕
[
aI3 T
0 bI3

]
be a quadratic operator. Then

(a) d (A) = w
(
A− a+b

2 I
)

= 1
2

√
|a−b|2 +‖T‖2 and

(b) D(A) =
∥∥A− a+b

2 I
∥∥ = 1

2

(√
|a−b|2 +‖T‖2 +‖T‖

)
.
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Proof. (a) It is not hard to see that d (A) equals the radius of the smallest closed
circular disc containing W (A). The center of this disc is the scalar λ0 for which d (A) =
w(A−λ0I) . Hence, by Lemma 3 (c), we have

d (A) = w
(
A− a+b

2 I
)

=
1
2
‖A−aI‖=

1
2

√
|a−b|2 +‖T‖2.

(b) Let λ be an arbitrary scalar. Using Lemma 4 (a), it is sufficient to show that

‖A′ − a+b
2 I

′ ‖ � ‖A′ −λ I
′‖, where A

′
=

[
a ‖T‖
0 b

]
and I

′
=

[
1 0
0 1

]
. Observe that

2‖A′ −λ I
′‖2 = |a−λ |2 + |b−λ |2 +‖T‖2

+

√(
|a−λ |2 + |b−λ |2 +‖T‖2

)2−4 |a−λ |2 |b−λ |2

= |a−λ |2 + |b−λ |2 +‖T‖2

+

√(
|a−λ |2−|b−λ |2

)2
+2

(
|a−λ |2 + |b−λ |2

)
‖T‖2 +‖T‖4

� |a−λ |2 + |b−λ |2 +‖T‖2 +
√

2
(
|a−λ |2 + |b−λ |2

)
‖T‖2 +‖T‖4.

Since

1
2
|a−b|2 =

1
2
|a−λ − (b−λ )|2

� 1
2

(|a−λ |+ |b−λ |)2 � |a−λ |2 + |b−λ |2 ,

we have

2‖A′ −λ I
′‖2 � 1

2
|a−b|2 +‖T‖2 +

√
|a−b|2 ‖T‖2 +‖T‖4

=
1
2

(√
|a−b|2 +‖T‖2 +‖T‖

)2

= 2‖A′ − a+b
2 I

′ ‖2,

as required. �

REMARK 3. (a) In connection with Lemma 5, it is worth mentioning that, for
every A, if ‖A−λ0I‖= D(A) or w(A−λ0I) = d(A), then λ0 ∈W (A). For the case of
the operator norm, see [16, Theorem 4] or, for finite matrices, [5, Lemma 5]. The proof
for the numerical radius case is easy.

(b) Lemma 5 (b) for 2× 2 matrices has been known years ago. For example, it
was noted in [9, Section 13].



SCALAR APPROXIMANTS OF QUADRATIC OPERATORS 259

3. Estimates for the numerical radii of products and commutators
of quadratic operators

The numerical radius is not submultiplicative. In fact, the inequality

w(AB) � w(A)w(B) (12)

is not true even for commuting operators A and B. By the inequalities in (1), we have

w(AB) � 2‖A‖w(B) . (13)

The constant 2 in the inequality (13) is best possible (see, e.g., [10, p. 118]). In [14],
it has been shown, using a 12-dimensional example, that the inequality

w(AB) � ‖A‖w(B) (14)

(which is weaker than the inequality (12)) is also not true even if A and B commute.
One of the known conditions so that the inequality (14) holds is the double commu-
tativity of A and B (i.e., AB = BA and AB∗ = B∗A). Recently, it has been shown in
[18, Theorem 5] that if A is quadratic and AB = BA , then w(AB) � w(A)‖B‖ . The
question whether, under the same condition, w(AB) � ‖A‖w(B) holds is still open, al-
though it is known to be true if A is square-zero, idempotent (see [7, Proposition 2 and
Theorem 3, respectively]) or involution (see [15]). Also, it is known (see [6, Theorem
7 and Theorem 11]) that for every A and B,

w(AB±BA) � 4w(A)w(B) (15)

and
w(AB±BA) � 2

√
2‖A‖w(B). (16)

The constants 4 and 2
√

2 in the previous inequalities are best possible. In [2], [3]
and [4], many refinements of the inequalities (13), (15) and (16) have been established.
Among other inequalities, the following were given.

LEMMA 6. For every A and B,

w(AB) � (‖A‖+D(A))w(B), (17)

w(AB+BA) � 2(w(A)+d(A))w(B) (18)

and
w(AB+BA) �

√
‖A∗A+AA∗‖

√
‖B∗B+BB∗‖. (19)

REMARK 4. It is obvious that the inequalities (17) and (18) refine the inequalities
(13) and (15), respectively. The inequality (19) refine both inequalities (15) and (16).
To see this, it is sufficient to show that for every A,

‖A∗A+AA∗‖ � 4w2 (A) . (20)
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Notice that A∗A+AA∗ = 2(Re2 A+Im2 A). Hence, by the triangle inequality and Lemma
1, we have

‖A∗A+AA∗‖ � 2(‖ReA‖2 +‖ImA‖2) � 4w2 (A) .

Since
‖A‖2 = ‖A∗A‖ � ‖A∗A+AA∗‖ ,

we have
‖A‖2 � ‖A∗A+AA∗‖ � 4w2 (A) . (21)

This proves that the inequality (20) is a refined version of the inequality

‖A‖ � 2w(A) . (22)

The inequalities in (21) are sharp. In fact, if A is square-zero, then

‖A‖2 = ‖A∗A+AA∗‖ = 4w2 (A) .

In [1, Theorem 2.4], the following refinement of the inequality (20) has been given. For
every A,

‖A∗A+AA∗‖ � 4w2 (A)−2m(A2), (23)

where m(A2) = inf
‖x‖=1

∣∣〈A2x,x
〉∣∣ . A refinement of the inequality (20) (different from

(23)) and a refinment of (22) are given in the following proposition.

PROPOSITION 2. For every A,

‖A‖ � w(A)+d (A) (24)

and
‖A∗A+AA∗‖ � 2

(
w2 (A)+d2 (A)

)
. (25)

Proof. Let λ0 be the scalar satisfying w(A− λ0I) = d(A) and let θ be a real
number such that λ0 = |λ0|eiθ . Then, we have for every A,

‖A‖ = ‖ReA+ i ImA‖ � ‖ReA‖+‖ImA‖ .

Replacing A in the above inequality by e−iθ A, we get

‖A‖ = ‖Re(e−iθ A)+ i Im(e−iθ A)‖
� ‖Re(e−iθ A)‖+‖ Im(e−iθ A)‖
= ‖Re(e−iθ A)‖+‖ Im(e−iθ (A−λ0I)‖.

Hence, by Lemma 1,

‖A‖ � w(e−iθ A)+w(e−iθ (A−λ0)) = w(A)+d(A).

The proof of the inequality (25) follows by recalling that A∗A+AA∗ = 2(Re2 A+ Im2 A)
and mimcking the proof of the inequality (24). �

The following theorem is a direct consequence of Lemma 6, Lemma 5 and Remark
1 (c).
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THEOREM 1. Let A be a quadratic operator with σ (A) = {a,b} . Then for every
B,

w(AB) �
(
‖A‖+

1
2

(√
|a−b|2 + c2 + c

))
w(B), (26)

w(AB+BA) � 2

(
w(A)+

1
2

√
|a−b|2 + c2

)
w(B) (27)

and

w(AB+BA) �

√
|a|2 + |b|2 + c2 +

√(
|a|2−|b|2

)2
+ |a+b|2 c2

√
‖B∗B+BB∗‖,

where c =
√
‖A‖2 + |a|2 |b|2 ‖A‖−2−

(
|a|2 + |b|2

)
.

For every A and B, recall that

w(AB−BA) � 4w(A)w(B) (28)

and
w(AB−BA) � 2

√
2‖A‖w(B). (29)

By replacing A and B in the inequality (28), by A− λ0I and B− λ1I, respectively,
where λ0 and λ1 are scalars satisfying w(A−λ0I) = d(A) and w(B−λ1I) = d(B),
we have

w(AB−BA) = w((A−λ0I)(B−λ1I)− (B−λ1I)(A−λ0I))
� 4w(A−λ0I)w(B−λ1I) .

Hence,
w(AB−BA) � 4d (A)d (B) .

Similarly, by considering the inequality (29), one can show that

w(AB−BA) � 2
√

2D(A)d(B).

Hence, we have the following theorem by Lemma 5 and Remark 1 (c).

THEOREM 2. Let A be a quadratic operator with σ (A) = {a,b} . Then for every
B,

w(AB−BA) � 2
√
|a−b|2 + c2d(B)

and

w(AB−BA) �
√

2

(√
|a−b|2 + c2 + c

)
d (B) ,

where c =
√
‖A‖2 + |a|2 |b|2 ‖A‖−2−

(
|a|2 + |b|2

)
.
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