UC-MAJORIZATION AND ITS STRONGLY LINEAR PRESERVERS

Mina Jamshidi

(Communicated by F. Hansen)

Abstract

In this paper we introduce the concept of semimajorization as a generalized form of majorization. After that we discuss uc-majorization. For $x, y \in \mathbb{R}^{n}$, we say x is uc-majorized by y (written as $x \prec_{u c} y$) if there exists an upper triangular column stochastic matrix A such that $x=A y$. In our main theorem we characterize all linear maps that strongly preserve $\prec_{u c}$ on \mathbb{R}^{n}. Furthermore at the end, we characterize strong linear preservers for lc-majorization.

1. Introduction

Many researches on majorization and their linear preservers have been conducted recently. Assume that \mathbb{R}^{n} is the vector space of all real $n \times 1$ real matrices called real vectors. For a relation \sim on \mathbb{R}^{n}, a linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be a strong linear preserver of \sim, if for all $x, y \in \mathbb{R}^{n}$

$$
x \sim y \Leftrightarrow T x \sim T y .
$$

Let $M_{n}(\mathbb{R})$ be the space of all real $n \times n$ matrices. A nonnegative matrix $D \in$ $M_{n}(\mathbb{R})$ is called column(row) stochastic if the sum of all entries in each column (row) is equal to 1 , and D is called doubly stochastic if it is both column and row stochastic. For $x, y \in \mathbb{R}^{n}$, it is said that x is majorized by y (denoted by $x \prec y$) if there is a doubly stochastic matrix D such that $x=D y$. It is well known that $x \prec y$ if and only if

$$
\sum_{j=1}^{k} x_{[j]} \leqslant \sum_{j=1}^{k} y_{[j]}, \quad \text { for } \quad k=1,2, \ldots, n-1
$$

and

$$
\sum_{j=1}^{n} x_{[j]}=\sum_{j=1}^{n} y_{[j]}
$$

where $x_{[j]}$ is the $j^{\text {th }}$ largest element of vector x. For more study see [7].
In $[1,5]$, all strong linear preservers of \prec on \mathbb{R}^{n} are characterized as follows:

[^0]THEOREM 1. A linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ strongly preserves \prec if and only if there exist $\alpha, \beta \in \mathbb{R}$ and a permutation matrix P such that $T x=\alpha P x+\beta J$ and $\alpha(\alpha+n \beta) \neq 0$, where \boldsymbol{J} denoted the matrix whose entries are all 1 .

Let A and B be real $n \times m$ matrices. A is said to be GUT-majorized by B, if there exists an $n \times n$ real row stochastic matrix $R, A=R B$. In [2] authors characterized all strong linear preservers of GUT-majorization as follows:

THEOREM 2. A linear map $T: M_{n, m} \longrightarrow M_{n, m}$ strongly preserves GUT-majorization if and only if $T X=A X R+E X S$ for $R, S \in M_{n}$ and invertible real row stochastic matrix A, such that $R(R+S)$ is invertible.

Moreover some kinds of linear preservers of special majorizations can be found in $[3,6]$.

In this paper, in the first place, we introduce the concept of semimajorization and uc-majorization and then we characterize all linear operators that strongly preserve this kind of semimajorization.

Throughout this paper we use the following notations: $M_{n, m}$ denotes the set of all $n \times m$ real matrices, $\mathbb{R}^{n}=M_{n, 1}$ the set of all $n \times 1$ real vectors, $\operatorname{tr}(x)$ the sum of all entries of vector $x \in \mathbb{R}^{n}, \mathscr{U}_{n}^{u c}$ the set of all upper triangular column stochastic matrices, $\left\{e_{1}, \cdots, e_{n}\right\}$ the standard basis of \mathbb{R}^{n} and $G L_{n}\left(\mathbb{R}^{n}\right)$ the group of all linear maps on \mathbb{R}^{n}. Also for $x \in \mathbb{R}^{n}$ we use the notation $x \geqslant 0$, if all entries of x are nonnegative and we denote by $[T]=\left(a_{i j}\right)$ the matrix representation of linear map $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$.

2. uc(lc)-majorization

We start this section with some preliminaries and the definition of uc-majorization on \mathbb{R}^{n}. Let $G L_{n}\left(\mathbb{R}^{n}\right)$ be the general linear group acting on \mathbb{R}^{n} and G be a subgroup of $G L_{n}\left(\mathbb{R}^{n}\right)$. Then G induces an equivalence relation on \mathbb{R}^{n} by $x \sim y$ if and only if $x=g y$ for some $g \in G$. The equivalence class of $x \in \mathbb{R}^{n}$ is $O(X)=\{g x: g \in G\}$. A vector y is said to be G-majorized by x, denoted by $y \prec_{G} x$, if it is in the convex hull of $O(x)$.

REMARK 1. It is common to consider a subgroup of an orthogonal group. But here we use the concept stated in [4].

Consider G be the group of permutation matrices, P_{n}, then the relation $\prec_{P_{n}}$ is the classic majorization introduced in introduction. For another example consider the relation $\prec_{E_{n}}$, where E_{n} is the group of even permutation matrices [9]. Also in [8] authors consider the group of circulant permutation matrices and the majorization induced by this group.

In the following we propose a definition of semimajorization in which we consider a monoid instead of a subgroup. The definition is similar to the above definition. Before that we mention the definition of a monoid.

DEFINITION 1. A set M with a binary operation $*: M \times M \longrightarrow M$ is called a monoid if
a) $(a * b) * c=a *(b * c), \quad \forall a, b, c \in M$
b) There exists $e \in M$ such that for every $a \in M, e * a=a * e=a$, that is called the identity element.

Definition 2. Let $G L_{n}\left(\mathbb{R}^{n}\right)$ be the general linear group acting on \mathbb{R}^{n} and G be a submonoid of $G L_{n}\left(\mathbb{R}^{n}\right)$. Then G induces a relation on \mathbb{R}^{n} by $x \mathscr{R} y$ if and only if $x=g y$ for some $g \in G$. Define the orbit $x \in \mathbb{R}^{n}$ by $O(X)=\{g x: g \in G\}$. A vector y is said to be G-semimajorized by x if it is in the convex hull of $O(x)$.

For continuing our main discussion we need to prove a simple lemma. We say matrix $A=\left(a_{i j}\right)$ has equal column sum a if $\sum_{i=1}^{n} a_{i j}=\sum_{i=1}^{n} a_{i j+1}=a$, for $1 \leqslant j \leqslant$ $n-1$. We have the following lemma.

LEMMA 1. If A and B have equal column sums a and b respectively, then $A B$ has equal column sum $a b$.

Proof. Let $A B=\left(c_{i j}\right)$ we have,

$$
\sum_{i=1}^{n} c_{i j}=\sum_{i=1}^{n} \sum_{a_{i t}} b_{t j}=\sum_{t=1}^{n}\left(b_{t j} \sum_{k=1}^{n} a_{k j}\right)=a \sum_{t=1}^{n} b_{t j}=a b .
$$

Now we let's get back to our main discussion. In the following lemma we prove that the set of all upper triangular matrices with exactly one entry equal to 1 in each column and 0 elsewhere, is a monoid. Consider the set

$$
\mathscr{U}=\left\{\left[e_{i_{1}} e_{i_{2}} \cdots e_{i_{n}}\right]: 1 \leqslant i_{k} \leqslant k, k=1, \cdots n\right\} \subset G L_{n}\left(\mathbb{R}^{n}\right)
$$

of $n \times n$ matrices, where $e_{i_{j}}$ is one of the standard basis vectors e_{1}, \cdots, e_{n}. Note that $i_{k} \leqslant k$ implies that the matrices are upper triangular. We have the following Lemma.

LEMMA 2. The set $\mathscr{U}=\left\{\left[e_{i_{1}} e_{i_{2}} \cdots e_{i_{n}}\right]: 1 \leqslant i_{k} \leqslant k, k=1, \cdots n\right\} \subset G L_{n}\left(\mathbb{R}^{n}\right)$ is a monoid.

Proof. Let $u, v \in \mathscr{U}$. Since u and v are upper triangular, $u v$ is as well. Also u and v both have equal column sum 1 , hence by the above lemma $u v$ has equal column sum 1. Since each entry of $u v$ is an integer more than or equal to 1 , we conclude that $u v$ has exactly one 1 in each column and the other entries are 0 . Hence $u v \in \mathscr{U}$. Obviously $I \in \mathscr{U}$. Hence \mathscr{U} is a monoid.

Obviously the set of all upper triangular column stochastic matrices is a convex hull of \mathscr{U}, hence considering the above lemma and the definition of semimajorization, we define the following kind of semimajorization.

DEFINITION 3. Let $x, y \in \mathbb{R}^{n}$. We say that x is uc-majorized(or simply uc-majorized) by y (written as $x \prec_{u c} y$) if there exists $D \in \mathscr{U}_{n}^{u c}$ such that $x=D y$. Also we say x is lc-majorized by $y\left(x \prec_{l c} y\right)$ if D is a lower triangular column stochastic matrix.

In the following we prove some properties of uc-majorization. These properties will then be used to prove our main theorem.

Lemma 3. Let $x=\sum_{i=1}^{n} x_{i} e_{i} \in \mathbb{R}^{n}$. Then $x[t]=\sum_{i=1}^{t} x_{i} e_{1}+\sum_{i=t+1}^{n} x_{i} e_{i-t+1}$ is ucmajorized by x, for each $1 \leqslant t \leqslant n$.

Proof. Consider the following column stochastic upper triangular matrices:

$$
U_{1}=I, U_{2}=\left(\begin{array}{ccccc}
1 & 1 & \cdots & 0 & 0 \\
& 0 & 1 & \cdots & 0 \\
& & \ddots & \ddots & \vdots \\
& 0 & & 0 & 1 \\
& & & & 0
\end{array}\right), \cdots, U_{n}=\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
0 & 0 & \cdots & 0 \\
& & \ddots & \ddots & \vdots \\
& 0 & & 0 & 0 \\
& & & & 0
\end{array}\right)
$$

It is obvious that $x[t]=U_{t} x$, and hence $x[t] \prec_{u c} x$.
The following lemma gives an understanding about vectors being uc-majorized by nonnegative vectors.

Lemma 4. Let $x, y \in \mathbb{R}^{n}$:
(i) If $x \prec_{u c} y$, then $\operatorname{tr}(x)=\operatorname{tr}(y)$.
(ii) Let $y \geqslant 0$. Then $x \prec_{u c} y$ if and only if $0 \leqslant \sum_{i=t}^{n} x_{i} \leqslant \sum_{i=t}^{n} y_{i}$ for every $1 \leqslant t \leqslant k$ and $\operatorname{tr}(x)=\operatorname{tr}(y)$.
(iii) If $y \geqslant 0, x \prec_{u c} y$ and k is the largest index with $y_{k} \neq 0$, then $x_{i}=0$ for every $i \geqslant k$.

Proof. i) $x \prec_{u c} y$ implies that there is $D \in \mathscr{U}_{n}^{u c}$ such that $x=D y$.

$$
\operatorname{tr}(x)=\left(\sum_{i=1}^{n} d_{i 1}\right) y_{1}+\cdots+\left(\sum_{i=1}^{n} d_{i n}\right) y_{n}=\operatorname{tr}(y)
$$

ii) Since both y and D are nonnegative, so is x. We have

$$
\begin{aligned}
0 \leqslant \sum_{i=t}^{n} x_{i} & =\left(d_{t t} y_{t}+\cdots+d_{t n} y_{n}\right)+\cdots+d_{n n} y_{n} \\
& =\sum_{i=t}^{n} d_{i t} y_{t}+\cdots+d_{n n} y_{n} \\
& \leqslant \sum_{i=t}^{n} y_{i}
\end{aligned}
$$

What is more by virtue of part $(i), \operatorname{tr}(x)=\operatorname{tr}(y)$. Conversely, suppose x and y satisfy the conditions. Define matrix $D=\left(d_{i j}\right)$, such that $d_{k k}=\frac{\sum_{i=k}^{n} x_{i}-\sum_{i=k+1}^{n} y_{i}}{y_{t}}$ and $d_{k k+1}=$ $1-d_{k-1 k-1}$ and the other entries of the matrix are 0 .(Here we consider $\frac{0}{0}=0$). It is easy to check that $D \in \mathscr{U}_{n}^{u c}$ and $x=D y$.
iii) Follows from part (ii).

3. Strong linear preservers of uc(lc)-majorization

In this section we characterizes all strong linear preservers of $\prec_{u c}$.

Definition 4. A linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be a strong linear preserver of $\prec_{u c}$, if for all $x, y \in \mathbb{R}^{n}$

$$
x \prec_{u c} y \Leftrightarrow T x \prec_{u c} T y .
$$

In the following theorem the notation $\phi(x)$ is used for the set $\left\{y \in \mathbb{R}^{n}: y \prec_{u c} x\right\}$.
THEOREM 3. A linear map $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ strongly preserves $\prec_{u c}$ if and only if $[T]$ satisfies the following conditions:
(i) $[T]$ is an invertible upper triangular matrix.
(ii) [T] has equal column sums.

Proof. First, let T be a strong linear preserver of $\prec_{u c}$, we show that $[T]$ satisfies the conditions. To show that $[T]$ is invertible, suppose that $T(x)=0$. Since T is a linear map, $T(x)=T(0)=0$. Hence we have $T(x) \prec_{u c} T(0) . T$ is a strong linear preserver of $\prec_{u c}$ which implies $x \prec_{u c} 0$ and hence $x=0$.

We know $e_{i} \prec_{u c} e_{i+1}$. Since T preserves $\prec_{u c}$, we have $T e_{i} \prec_{u c} T e_{i+1}$. So by lemma 4, $\operatorname{tr}\left(T e_{i}\right)=\operatorname{tr}\left(T e_{i+1}\right)$, for every $1 \leqslant i \leqslant n$ which implies that [T] has equal column sums. To complete the proof it suffices to show that $[T]$ is an upper triangular matrix.

Let $x=\left(x_{1}, \cdots, x_{n}\right)^{t} \in \mathbb{R}^{n}$. We show that k is the largest index with $x_{k} \neq 0$ if and only if $<\phi(x)>=<e_{1}, \cdots, e_{k}>$. First, let k be the largest index with $x_{k} \neq 0$. By lemma 3, we know $x[t]=\sum_{i=1}^{t} x_{i} e_{1}+\sum_{i=t+1}^{k} x_{i} e_{i-t+1} \prec_{u c} x$, for each $t \leqslant k$. It is straightforward to see that $x[1], \cdots, x[k]$ are linearly independent and hence $<e_{1}, \cdots, e_{k}>\subseteq<$ $\phi(x)>$. Also by lemma 3, if $y \in \phi(x)$, then k is the largest index that $y_{k} \neq 0$ hence $y \in<e_{1}, \cdots, e_{k}>$. Now suppose that $<\phi(x)>=<e_{1}, \cdots, e_{k}>$. Since $x \in \phi(x)$, $x=\sum_{i=1}^{k} a_{i} e_{i}$ and hence k is the largest index that $x_{k} \neq 0$.

Now since T is invertible and strongly preserves $\prec_{u c}$, we have

$$
\begin{aligned}
T(\langle\phi(x)\rangle) & =\left\langle\left\{T y: y \prec_{u c} x\right\}\right\rangle \\
& =\left\langle\left\{T y: T y \prec_{u c} T x\right\}\right\rangle \\
& =\left\langle\left\{z: z \prec_{u c} T x\right\}\right\rangle \\
& =\langle\phi(T x)\rangle
\end{aligned}
$$

By the above argument we know $\left\langle\phi\left(e_{k}\right)\right\rangle=\left\langle e_{1}, \cdots, e_{k}\right\rangle$. Since T is invertible, $\operatorname{dim}\left\langle\phi\left(T e_{k}\right)\right\rangle=\operatorname{dim} T\left\langle\phi\left(e_{k}\right)\right\rangle=\operatorname{dim}\left\langle\phi\left(e_{k}\right)\right\rangle=k$. Repeating the above argument we conclude that $T e_{k}=\left(a_{1 k}, \cdots, a_{k k}, 0, \cdots, 0\right)^{t}$ which means $[T]$ is an upper triangular matrix.

Conversely, let $[T]$ satisfy the conditions and $x \prec_{u c} y$. This means that there is a column stochastic upper triangular matrix D such that $x=D y$. To complete the proof, it suffices to show that $D^{\prime}=[T] D[T]^{-1}$ is a column stochastic upper triangular matrix, because we have:

$$
\begin{aligned}
& x \prec_{u c} y \\
\Leftrightarrow & x=D y \\
\Leftrightarrow & {[T] x=[T] D y } \\
\Leftrightarrow & {[T] x=[T] D[T]^{-1}[T] y }
\end{aligned}
$$

Actually we will prove even more. We will show that $D^{\prime}=D$. Since $[T]$ and D are upper triangular, so is D^{\prime}. Also by the above lemma D^{\prime} has equal column sums 1 , and therefore it is an upper triangular matrix with column sums 1 . We complete proof using induction. First let's relabel the indexes of the entries of an upper triangular matrix A. Put $a_{i j}=a_{(j-i-1) n-\frac{(j-i-1)(j-i)}{2}+i}$, i.e.:

$$
A=\left(\begin{array}{ccccc}
a_{1} & a_{n+1} & & \cdots & a_{n} \\
& a_{2} & a_{n+2} & & \vdots \\
& & \ddots & \ddots & \\
0 & & a_{n-1} & a_{2 n-1} \\
& & & & a_{n}
\end{array}\right)
$$

Now we prove by induction on new indexes. Obviously $d_{1}^{\prime} a_{11}=a_{11} d_{1}$, hence $d_{1}^{\prime}=d_{1}$. Let $d_{t}^{\prime}=d_{t}$ for all new indexes less than k. We prove it for $k+1$. Let $k+1$ is related to the index $i j$. So we must proof $d_{i j}^{\prime}=d_{i j}$. Considering old indexes and the induction hypothesis, we have:

$$
\begin{gathered}
a_{11} d_{1 j}+a_{12} d_{2 j}+\cdots+a_{1 j} d_{j j}=d_{11} a_{1 j}+d_{12} a_{2 j}+\cdots+d_{1 j} a_{j j} \\
a_{22} d_{2 j}+\cdots+a_{2 j} d_{j j}=d_{22} a_{2 j}+\cdots+d_{2 j} a_{j j} \\
\vdots \\
a_{j-1 j} d_{j j}=d_{j-1 j} a_{j j}
\end{gathered}
$$

and note that the $\mathrm{i}^{\text {th }}$ equality is:

$$
a_{i i} d_{i j}+\cdots+a_{i j} d_{j j}=d_{i i} a_{i j}+\cdots+d_{i j-1} a_{j-1 j}+d_{i j}^{\prime} a_{j j}
$$

Summing up the sides of the equations and considering that D and D^{\prime} both have column sums 1, we have:

$$
\begin{aligned}
a d_{1 j}+\cdots+a d_{j-1 j}+\left(a-a_{j j}\right) & d_{j j}= \\
& =a_{1 j}+\cdots+a_{j-1 j}+ \\
& \left(d_{1 j}+\cdots+d_{i-1 j}+d_{i j}^{\prime}+d_{i+1 j}+\cdots+d_{j-1 j}\right) a_{j j} \\
\Rightarrow & a-a_{j j} d_{j j}=a-a_{j j}+\left(1-d_{i j}+d_{i j}^{\prime}-d_{j j}\right) a_{j j} \\
\Rightarrow & a_{j j}\left(1-d_{j j}\right)=\left(1-d_{i j}+d_{i j}^{\prime}-d_{j j}\right) a_{j j} \\
\Rightarrow & d_{i j}=d_{i j}^{\prime}
\end{aligned}
$$

Hence $D=D^{\prime}$, and the proof is completed.
The definition of a strong linear preserver of $\prec_{l c}$ is similar to definition 4. In what follows we use the above theorem to characterize all linear maps that strongly preserve lc-majorization. We use the notation P for backward identity matrix.

Lemma 5. A linear map $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ strongly preserves $\prec_{l c}$ if and only if $P[T] P$ strongly preserves $\prec_{u c}$.

Proof. Let $x, y \in \mathbb{R}^{n}$. It is easy to see that $x \prec_{u c} y$ if and only if $P x \prec_{l c} P y$. Let T strongly preserves $\prec_{l c}$. We have:

$$
\begin{aligned}
x \prec_{u c} y & \Leftrightarrow P x \prec_{l c} P y \\
& \Leftrightarrow[T] P x \prec_{l c}[T] P y \\
& \Leftrightarrow P[T] P x \prec_{u c} P[T] P y
\end{aligned}
$$

Hence if T strongly preserves $\prec_{l c}$, then $P[T] P$ strongly preserves $\prec_{u c}$. Proof of the converse is similar.

Corollary 1. A linear map $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ strongly preserves $\prec_{l c}$ if and only if $[T]$ satisfies the following conditions:
(i) $[T]$ is an invertible lower triangular matrix.
(ii) [T] has equal column sums.

Proof. The proof follows from theorem 3 and lemma 5.

Acknowledgements. The author would like to thank an anonymous referee for helpful comments and remarks.

REFERENCES

[1] T. Ando, Majorization, Doubly stochastic matrices, and comparision of eigenvalues, Linear Algebra and its Applications 118 (1989), 163-248.
[2] A. ARmANDNEJAD AND A. Ilkhanizadeh Manesh, GUT-majorization and its linear preservers, Electronic Journal of Linear Algebra 23 (2012) 646-654.
[3] A. Armandnejad and S. Mohtashami and M. Jamshidi, On linear preservers of g-tridiagonal majorization on \mathbb{R}^{n}, Linear Algebra and its Applications 459 (2014) 145-153.
[4] A. Giovagnoli and H.P. Wynn, G-majorization with applications to matrix orderings, Linear Algebra and its Applications 67 (1985) 111-135.
[5] A. M. HASANI AND M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electronic Journal of Linear Algebra 15 (2006) 260-268.
[6] F. Khalooei and A. Salemi, The Structure of linear preservers of left matrix majorization on \mathbb{R}^{p}, Electronic Journal of Linear Algebra 18 (2009) 88-97.
[7] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer, 2011.
[8] M. Soleymani and A. ARmandnejad, Linear preservers of circulant majorization on \mathbb{R}^{n}, Linear Algebra and its Applications 440 (2014) 286-292.
[9] M. Soleymani and A. Armandnejad, Linear preserver of even majorization on $M_{n, m}$, Linear Multilinear Algebra 62 (2014) 1437-1449.

(Received December 18, 2016)
Mina Jamshidi
Departement of Mathematics, Faculty of Sciences and Modern Technologies Graduate University of Advanced Technology
Kerman, Iran
e-mail: m.jamshidi@kgut.ac.ir

[^0]: Mathematics subject classification (2010): 15A04, 15A21.
 Keywords and phrases: Semimajorization, uc-majorization, lc-majorization, strong linear preserver linear preserver.

