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Abstract. We consider boundary value problem for fourth order differential equation with un-
bounded discrete operator coefficient. One of the boundary conditions involves the λ parameter.
The asymptotics of spectrum of corresponding selfadjoint operator is obtained. We also calculate
the trace of that operator.

Introduction

In this paper we extend the spectral analysis of second order differential prob-
lems with unbounded operator coefficient in equation and eigenvalue parameter in the
boundary condition to fourth order differential problems. Our main aim here is to inves-
tigate the spectrum of operator associated with that problem and derive the regularized
trace formula. In scalar case boundary value problems for the second order differential
equation with λ dependent boundary condition were treated in [1, 2]. In stated works
considered problem is embedded into the theory of Hilbert space in which it can be
considered as the eigenvalue problem of a selfadjoint operator. That approach was used
for the Sturm-Liuville operator equations with unbounded operator operator-coefficient
and eigenvalue dependent boundary condition in [3, 4]. Namely, by introducing the
new Hilbert space they describe the selfadjoint extension of minimal operator and find
asymptotics of eigenvalues.

Theory of differential-operator equations is one of the most important methods
of contemporary mathematics. Many problems for partial differential equations lead
to problems for differential-operator equations posed in some functional spaces. And
sometimes that approach provides methods for solving problems which are impossible
to treat by classical methods. For example, in asymptotic expansion of eigenvalues
of boundary value problems for partial differential equations the remainder term does
not form convergent series. But usually that term is known for scalar problems. That
is why it is impossible to calculate regularized trace of an operator corresponding to
that problem by methods existing for scalar differential operators. We may refer to
monographes by M. L. Gorbachuk and V. I. Gorbachuk [5], F. S. Rofe-Beketov and
A. M. Holkin [6] where the theory of differential operator equations is developed.
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Comprehensive list of references to works where spectral properties of differential
operators with operator coefficients are studied is given in [8]. In that work authors
treat in detail basic spectral theory for self adjoint Schrödinger operators with oper-
ator valued potentials including Weyl-Titchmarch theory, Green’s function structure,
diagonalization and a version of spectral theorem.

History and current state of the traces of linear operators are presented in survey
paper [7].

In [9–14] we considered singular and regular differential operator equations of
second order with λ dependent boundary conditions. For that problems we obtained the
asymptotics of λ and established trace formulas. In [14] the boundary value problem
for fourth order differential operator equation without spectral parameter in boundary
condition is studied.

1. Problem statement

We consider in space L2 ((0,1) ,H) (where H is separable abstract Hilbert space)
the boundary value problem

yIV (x)+Ay(x)+q(x)y(x) = λy(x) , (1)

y(0) = y′′ (0) = 0, (2)

y′′ (1) = 0 (3)

and
y′′′ (1)+ λy(1) = 0. (4)

Here A is assumed to be a selfadjoint operator in H , moreover A > I , I is identity
operator in H , A−1 ∈ σ∞ . Under that assumptions A−1 is compact operator and spec-
trum of A is discrete. Denote its eigen-vectors by ϕ1,ϕ2, . . . . About q(x) we suppose
that it is operator-valued function in H for each x ∈ [0,1] , and has weak derivatives
q(l) (x) , where l = 1,2. Moreover, it satisfies the next conditions:

1) q∗ (x) = q(x) .
2) q(l) (x) ∈ σ1 , (σ1 is space of trace class operators),

[
q(l) (x)

]∗
= q(l) (x) , l = 0,1,2

3)
1∫
0

(q(x)ϕ j,ϕ j)dx = 0.

Recall that L2 ((0,1) ,H) is space of vector functions with integrible square of H
norms, namely class of vector functions y(x) with values from H and

1∫
0

‖y(x)‖2
H dx < ∞.
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Introduce the space H1 = L2 ((0,1) ,H)⊕H of vectors Y = {y(x) ,y1} , where
y(x) ∈ L2 ((0,1) ,H) , y1 ∈ H . Define in H1 the scalar product of elements Y,Z ∈ H1 ,
Y = (y(x) ,y1) , Z = (z(x) ,z1) by

(Y,Z) =
1∫

0

(y(x) ,z(x))H dx+(y1,z1)H .

Define in H1 operators L0,L1 by

D(L0) =
{
Y ∈ H1/y′′′ (x) is absolutely contionous in norm ‖·‖ ,

yIV (x)+Ay(x) ∈ L2 ((0,1) ,H) ,y1 = y(1)
}

,

L0Y =
{
yIV (x)+Ay(x) ,−y′′′ (0)

}
,

L = L0 +Q, QY = {q(x)y(x) ,0} .

By the technic of [3, 4, 15] it might be shown that L and L0 are self-adjoint op-
erators in H1 . The main questions to be treated in that paper are to investigate the
asymptotic behavior of eigenvalues of L and L0 and derive the regularized trace for-
mula for operator L . Under stated conditions L0 and L are both discrete operators.
Denote their eigenvalues by μ1,μ2, . . . and λ1 � λ2 � . . . respectively, in ascending
order by counting multiplicities.

2. Asymptotics of eigenvalues

Denote eigenvalues of A by γ1 � γ2 � . . . . Since A is a self-adjoint operator then
expanding the problem (1)–(4) in its eigenvectors we get the next spectral problem in
L2 (0,1) for Fourier coefficients yk (x) = (y(x) ,ϕk)H :

yIV
k (x)+ γkyk (x) = λyk (x) , (5)

yk (0) = y′′k (0) = 0, (6)

y′′k (1) = 0, (7)

and
y′′′k (1)+ λyk (1) = 0. (8)

Solution of equation (5) satisfying conditions (6) is

yk (x) = c1 sin 4
√

λ − γkx+ c2sh
4
√

λ − γkx. (9)

Let
z = 4

√
λ − γk.

Solution (9) satisfies (7) and (8) if and only if hold

− c1 sinz+ c2shz = 0 (10)
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and
− c1z

3 cosz+ c2z
3chz+ c1

(
z4 + γk

)
sinz+ c2

(
z4 + γk

)
shz = 0. (11)

System of equations (10), (11) in c1 , c2 has unique solution only if∣∣∣∣ −sinz shz
−z3 cosz+

(
z4 + γk

)
sinz z3chz+

(
z4 + γk

)
shz

∣∣∣∣ = 0

or equivalently

z3 (shzcosz− chzsinz)−2
(
z4 + γk

)
sinzshz = 0. (12)

Writing it in form

tgz =
z3

2(z4 + γk)+ z3cthz

we get that real roots are

αk = πk+O

(
1
k

)
. (13)

Now look for roots of (12) having form z = iy (y > 0) , if any. Taking in (12)
z = iy we have

(iy)3 (sh iycos iy− ch iysin iy)−2
(
(iy)4 + γk

)
sin iysh iy = 0

which simplifies to

−y3 (shycosy− chysiny) = −2
(
y4 + γk

)
sinyshy.

The last is equivalent to (12). Thus

y = πm+O

(
1
m

)
(14)

and corresponding to that roots imaginary roots of (12) are eigenvalues of L0 are

βm = iy = i

(
πm+O

(
1
m

))
.

Eigenvalues of selfadjoint operator L0 are real and expressible like μk = γk + z4 , where
z is root of (12). Now we will study existence of roots of (12) of form y + iy , since
fourth degree of that numbers yields real number

2iy2 (y+ iy)
[
ey+iy − e−y−iy

2
· eiy−y + e−iy+y

2
− ey+iy + e−y−iy

2
· e

iy−y + e−iy+y

2i

]

−2
(−4y4 + γk

)[
eiy−y − e−iy+y

2i
· e

y+iy − e−y−iy

2

]
= 0.
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Multiplying the terms

iy2 (y+ iy)
[
e2iy + e2y− e−2y− e−2iy

2
− e2iy− e2y + e−2y− e−2iy

2i

]

−2
(−4y4 + γk

)[
e2iy − e−2y− e2y + e−2iy

2

]
= 0,

or (
iy3 − y3)[

sh2y+ isin2y+
sh2y

i
− sin2y

]
− (

γk −4y4)[
cos2y

i
− ch2y

i

]
= 0,

y3 (i−1)
[
i+1

i
sh2y+ sin2y(i−1)

]
− (

γk −4y4)[
cos2y− ch2y

i

]
= 0,

y3 [−2sh2y+2sin2y] =
(
γk −4y4)(cos2y− ch2y) .

Expanding the last into power series

2y3

[
∞

∑
k=0

(−1)k (2y)2k+1

(2k+1)!
−

∞

∑
k=0

(2y)2k+1

(2k+1)!

]

=
(
γk −4y4)[

∞

∑
k=0

(−1)k (2y)2k

(2k)!
−

∞

∑
k=0

(2y)2k

(2k)!

]
.

After simplifications

− γk +
∞

∑
k=1

y4k24k−1 (4k (4k+1)(4k+2)+ (4k−1)4k (4k+1)(4k+2)−4γk)
(4k+2)!

= 0.

(15)
Obviously starting with some k all coefficients at y4k in (15) become positive.

Thus by Descarte’s rule of signs for each k (15) has exactly one positive root. Find
asymptotics of that roots. Rewrite (15) in the form

2y3 (sin2y− sh2y)
cos2y− ch2y

= γk −4y4. (16)

Since left hand side of (16) is positive, then γk −4y4 > 0, thus 0 < y < 4
√

γk
4 .

Expanding functions on the left of (16)

4y4
∞
∑

n=1

(2y)4n−2

(4n−1)!

∞
∑

n=1

(2y)4n−2

(4n−2)!

= γk −4y4, (17)

or

4y4α (y) = γk −4y4, α (y) =

∞
∑

n=1

(2y)4n−2

(4n−1)!

∞
∑

n=1

(2y)4n−2

(4n−2)!

,
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and

y = 4

√
γk

4α (y)+4
.

Clearly, α (y) < 1 and close to 1.
Eigenvalues corresponding to that roots are

μk = γk −4y4 =
4α (y)

4α (y)+4
γk, k = 1,2, . . . .

Analogously putting in (12) z = y− iy we again get equation (16). Resuming all
stated above we conclude that for each k equation (12) has countable real roots and
exactly one root of forms y± iy . Thus we have proved the next theorem.

THEOREM 1. Eigenvalues of operator L0 are repeated with multiplicities 2 and
they form two series

λk,m = γk +
(

πm+O

(
1
m

))4

, (18)

λk ∼ c(y)γk, (19)

where c(y) <
1
2

and close to
1
2

.

Assume that γk ∼ a · kα , a > 0, α > 0. Then in virtue of (18), (19) also asymp-
totics (13), (14) and since Q is bounded operator in H1 , by the way of Theorem 1 [15]
we get the next lemma.

LEMMA 1. If eigenvalues of operator A for big k values satisfy γk ∼ a ·kα (a > 0 ,
α > 0) , then for eigenvalues of L0 and L the next asymptotic relation is true:

μn ∼ λn ∼ cn
4α

4+α .

Now we turn to deriving trace formula for L .
From that lemma it follows that the resolvent of L0 and L is trace class operator

(from σ1 ) if α >
4
3

. So under that condition by the way of Theorem 1 and Theorem 2

from [16] we get that

∞

∑
n=1

′
(λn− μn) ≡ lim

m→∞

nm

∑
n=1

(λn− μn) =
∞

∑
n=1

(Qψn,ψn) , (20)

where {ψn}∞
n=1 are orthonormal eigenvectors of L0 , nm some subsequence of natural

numbers. Sum
∞
∑

n=1

′
(λn− μn) in accordance with [16] we call regularized trace. Thus

for evaluating sum of series in (20) we have to find orthonormal eigenvectors of L0 .
Eigenvectors of L0 are

Y = {[c1 sin(αmx)+ c2sh (αmx)]ϕk,− [c1 sinαm + c2shαm]ϕk} , m = 0, ∞, (α0 = y+ iy)

Y = {[c1 sin(βmx)+ c2sh (βmx)]ϕk,− [c1 sinβm + c2shβm]ϕk} , m = 0, ∞, (β0 = y− iy).



SPECTRAL PROPERTIES OF FOURTH ORDER DIFFERENTIAL OPERATOR EQUATION 293

From (8) c2 = c1
sinαm

shαm
.

Norm of Y is

‖Y‖2
H1

= c2
1

1∫
0

[
sin2 (αmx)+

2sinαm

shαm
sh (αmx) sin(αmx)+

sin2 αm

sh2αm
sh2 (αmx)

]
dx

+4sin2 αm

=
1
2
− sin2αm

4αm
+

sinαm

shαm
· 1

αm
(chαm sinαm − shαm cosαm)

+
sin2 αm

sh2αm

sin2αm

4αm
− 1

2
sin2 αm

sh2αm
+4sin2 αm.

Taking into consideration from (12) that

chαm sinαm − shαm cosαm =
−2

(
α4

m + γk
)
sinαmshαm

α3
m

after simplifications we get

‖Y‖ =
2αmsh2αm − sin2αmsh2αm +8αmsh2αm sin2 αm

4αmsh2αm

+
sin2 αmsh2αm −2αm sin2 αm − 8γk sin2 αmsh2αm

α3
m

4αmsh2αm
.

The same result we get writing βm in place of αm . Thus taking c1 =
√

4αmsh2αm
Hk,m

,

where

Hk,m = αmsh2αm − sin2αmsh2αm +8αmsh2αm sin2 αm

+sin2 αmsh2αm −2αm sin2 αm − 8γk sin2 αmsh2αm

α3
m

(also expression Hk,m with βm instead of αm which we shall denote H ′
k,m ) we obtain

orthonormal eigen-vectors of operator L0 .

Now we will prove absolute convergence of series
∞
∑

n=1
(Qψn,ψn) .
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LEMMA 2. Under conditions 1) – 3)

∞

∑
k=1

∞

∑
m=0

∣∣∣∣∣∣
4αmsh2αm

Hk,m

⎛
⎝ 1∫

0

qk (x) sin2 (αmx)dx+
1∫

0

2qk (x)
sinαm

shαm
sh (αmx)sin(αmx)dx

+
1∫

0

qk (x)
sin2 αm

sh2αm
sh2 (αmx) sin2 (αmx)dx

⎞
⎠

+
∞

∑
k=1

∞

∑
m=0

∣∣∣∣∣∣
4βmsh2βm

H ′
k,m

⎛
⎝ 1∫

0

qk (x)sin2 (βmx)dx+
1∫

0

2qk (x)
sinβm

shβm
sh (βmx) sin(βmx)dx

+
1∫

0

qk (x)
sin2 βm

sh 2βm
sh2 (βmx) sin2 (βmx)dx

⎞
⎠

∣∣∣∣∣∣ < ∞. (21)

Proof. For the first of series in left of (21)

4αmsh2αm

Hk,m

1∫
0

qk (x)sin2 (αmx)dx =
−2αmsh2αm

Hk,m

1∫
0

qk (x)cos(αmx)dx. (22)

Here condition 3) is used. In virtue of asymptotics αm (13) coefficient at integral
in (22) for big m values is equivalent to 2. Integrating twise by parts

1∫
0

qk (x)cos(αmx)dx =
1

2αm
sin(2αmx)qk (x)

∣∣∣∣
1

0
−

1∫
0

1
2αm

sin(2αmx)q′k (x)dx

=
1

2αm
sin2αmqk (1)+

1
4α2

m
cos2αmq′k (1)

− 1
4α2

m
q′k (0)− 1

4α2
m

1∫
0

cos(2αmx)q′′k (x)dx.

Now convergence of series with term (22) follow from asymptotics αm and con-
dition 2) (∥∥∥q(l) (x)

∥∥∥
σ1

� const, l = 0,1,2

)
.

Now consider series with terms

1∫
0

qk (x)
sinαm

shαm
sh (αmx) sin(αmx)dx. (23)

From asymptotics αm it follows that

sinαm = O

(
1

αm

)
,
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sh (αmx)
shαm

∼ eαm(x−1). (24)

By condition 2) it follows that

∣∣∣∣ ∞
∑

k=1
qk (x)

∣∣∣∣ < const . Therefore from (24) and (2)

∣∣∣∣∣∣
∞

∑
k=1

∞

∑
m=1

1∫
0

qk (x)
sinαm

shαm
sh (αmx)sin(αmx)dx

∣∣∣∣∣∣
∼

∞

∑
m=1

1∫
0

∣∣∣∣∣e
αm(x−1)

αm

∞

∑
k=1

qk (x)dx

∣∣∣∣∣ <
∞

∑
m=1

const

1∫
0

eαm(x−1)

αm
dx

= const
∞

∑
m=1

1
α2

m

(
1− 1

eαm

)
< const.

For m = 0 we have series

∞

∑
k=1

1∫
0

qk (x)
sinα0

shα0
sh (α0x)sin(α0x)dx. (25)

For big k values root of (21) y is also quite big and reciprocal of norm is equivalent
to

1

2sin2 α0
∼ 1

2e2y (α0 = y+ iy) .

The product in (25) with exception qk (x) is equivalent to e2y(x−1) .
Now convergence of (25) follow from condition ‖q(x)‖σ1

< const . Consider se-
ries with terms

1∫
0

qk (x)
sin2 αm

sh2αm
sh2 (αmx)dx. (26)

Again from asymptotics of αm (26) for big m values behave like

O

(
1

α2
m

) 1∫
0

qk (x)
sh2αmx
sh2αm

dx ∼ O

(
1

α2
m

)
,

1∫
0

qk (x)eαm(x−1)dx < O

(
1

α2
m

) 1∫
0

qk (x)dx. (27)

Convergence follow from (27). Using similar arguments we could justify also
convergence of series with terms βm instead of αm . Lemma 2 is proved. �
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From lemma 2 it directly follows that

∞

∑
n=1

′
(λn− μn) =

∞

∑
k=1

∞

∑
m=0

1
Hk,m

⎡
⎣−2αmsh2αm

1∫
0

qk (x)cos(αmx)dx+ (28)

+
1∫

0

2qk (x)
sinαm

shαm
sh (αmx)sin(αmx)dx+

+
1∫

0

qk (x)
sin2 αm

sh 2αm
sh2 (αmx) sin2 (αmx)dx

⎤
⎦+

+
∞

∑
k=1

∞

∑
m=0

1
H ′

k,m

⎡
⎣−2βmsh2βm

1∫
0

cos(2βmx)qk (x)dx +

+
1∫

0

2qk (x)
sinβm

shβm
sh (βmx) sin(βmx)dx+

+
1∫

0

qk (x)
sin2 βm

sh 2βm
sh2 (βmx) sin2 (βmx)dx

⎤
⎦ . (29)

To evaluate the sum of that series we shall select a function of complex variable
z having as poles the roots of equation (12) and residues of which are terms of series
(28). Then by selecting appropriate extending closed contours involving zeros of that
function and investigating behavior of that function along that contours, by applying
Cauchy theorem we derive the trace formula.

Consider

SN (x) =
∞

∑
m=0

[
−2αmsh2αm

Hk,m
cos(αmx)qk (x)+

−2βmsh2βm

H ′
k,m

cos(2βmx)qk (x)

]
.

To evaluate lim
N→∞

SN (x) we take the function

f1 (z) =
zcos2zx

sin2 z
(
−zcthz+ zctgz−2z2−2 γk

z2

) .

Obviously it has poles at points αm , βm , y± iy and πm .

res f1(z)
z=αm

=
αm cos(2αmx)

sin2 αm

(
−zcthz+ zctgz−2z2−2 γk

z2

)′
z=αm

=
αm cos(2αmx)

sin2 αm

(
−cthz+ z

sh2z
+ ctgz− z

sin2 z
−4z+ 4γk

z3

)
z=αm

=
−2αmsh2αm cos(2αmx)

Hk,m
.
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Then

res f1(z)
z=πm

=
πmcos(2πmx)

cos(2πmx)
(
−πmcth (πm)sin(πm)+ πmcos(πm)−2(πm)2 sin(πm)− 2γk sin(πm)

(πm)2

)
=

πmcos(2πmx)
πm

= cos(2πmx) .

Consider also functions

f2 (z) =
−2zsinzsh (zx)sin (zx)

shzsin2 z
(
−zcthz+ zctgz−2z2−2 γk

z2

)
and

f3 (z) =
sin2 zch (2zx)

sh2zsin2 z
(
−zcthz+ zctgz−2z2−2 γk

z2

) .

It might be shown by direct calculation that residues of that functions at pales
are second and third terms of series (28). f2 (z) and f3 (z) have no other poles with
exception αm and βm .

Take as contour of integration a regular contour l with vertices at ±BM , BM± iAN ,
where BM = πM+ π

2 , AN = πN+ π
2 . For such choice of AN inside considered countour

lie N real and M imaginary zeros of function f1 (z) . To include also zeros of form

y+ iy we shall take AN > 4
√

γk
4 , BM > 4

√
γk
4 . Since f1 (z) is odd function points −iαm

are also zeros of that function. That is why contour l should pass by imaginary zero
iy,y > 0 along small semicircle centered at iy on the left and −iy on the right.

Let z = u+ iv . The order of f1 (z) for large v values and for u � 0 is O
(

1
|v|e2|v|(1−x)

)
and integrals along upper and lower sides of contour vanish when M → ∞ .

Thus we have

SN (x)+
N

∑
m=0

cos(2πmx) =
1

2π i

BM+iAN∫
BM−iAN

zcos(2zx)dz

sin2 z
(
−zcthz+ zctgz−2z2−2 γk

z2

) . (30)

f1 (z) for big z values is of order O

(
cos2zx
zcos2z

)
.

When N → ∞ we have

lim
M→∞

1
2π i

AN+iBM∫
AN−iBM

f1 (z)dz ∼ 1
π i

AN+i∞∫
AN−i∞

cos2zx
zcos2zx

dz (31)

∼ 1
π

+∞∫
−∞

cosπx(2N +1)cos2ivx− sinπx(2N +1)sin2ivx
−(AN + iv)cos2iv

dv.
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Absolute value of the last is less than

2
AN

∞∫
0

[
cos2vx
ch2v

+
sin2vx
sh2v

]
dx <

2+2sin πx
2

AN cos πx
2

.

Therefore under condition

1∫
0

qk (x)
cos πx

2

dx < ∞ (32)

it follows that

lim
N→∞

lim
M→∞

1
2π i

1∫
0

AN+iBM∫
AN−iBM

f1 (z)dzqk (x)dx = 0. (33)

Analogously it can be shown that

lim
N→∞

lim
M→∞

1
2π i

1∫
0

AN+iBM∫
AN−iBM

( f2 (z)+ f3 (z))dzqk (x)dx = 0. (34)

Taking under consideration (29), (31), (32),

∞

∑
m=0

−2αmsh2αm

Hk,m

1∫
0

cos(2αmx)qk (x)dx = lim
N→∞

1∫
0

SN (x)qk (x)dx

= − lim
N→∞

1∫
0

N

∑
m=0

cos(2πmx)qk (x)dx = −qk (0)+qk (1)
4

. (35)

From (28), (32) and (33) we obtain

∞

∑
n=1

(λn− μn) = −
∞

∑
k=1

qk (0)+qk (1)
4

= − trq(0)+ trq(1)
4

.

Thus we have proved the next theorem.

THEOREM 2. Let be satisfied the conditions 1) – 3). If eigenvalues of A satisfy

γk ∼ akα , α >
4
3

and (31) is fulfilled then for the regularized trace the formulae

∞

∑
n=1

′
(λn− μn) = − trq(0)+ trq(1)

4

is valid.



SPECTRAL PROPERTIES OF FOURTH ORDER DIFFERENTIAL OPERATOR EQUATION 299

RE F ER EN C ES

[1] J. WALTER, Regular eigenvalue problems with eigenvalue parameter in boundary condition, Math. Z.
133 (1973) 301–312.

[2] CHARLES T. FULTON, Two-point boundary value problems with eigenvalue parameter contained in
the boundary conditions, Proceedings of the Royal Society of Edinburgh 77 A (1977), 293–308.

[3] V. I. GORBACHUK, M. A. RYBAK, On boundary value problems for Sturm-Liouville operator equa-
tion with spectral parameter dependent boundary condition, Direct and Ill posed problems of scatter-
ing theory, Kiev, 3–13, (1981).

[4] M. A. RYBAK, On aymptotics of eigenvalue distribution of some boundary value problems for Sturm-
Liouville operator equation, Ukr. Math. Journal 32, no. 2 (1980), 248–252 .

[5] V. I. GORBACHUK, M. L. GORBACHUK, Boundary value problems for operator, Differential equa-
tions, Kluwer, Dordrecht, 1991.

[6] F. S. ROFE-BEKETOV, A. M. KHOLKIN, Spectral analysis of differential operators, Interplay be-
tuwun spectral and ascillatory properties. WSPC. Singapore, 2005, 46.

[7] V. A. SADOVNICHII, V. E. PODOLSKII, Traces of operators, Russian Math. Surveys 61: 5 (2006),
885–953.

[8] F. GESZTESY, R. WEIKARD, M. ZINCHENKO, On spectral theory for Schrödenger oper-
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