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PRODUCTS OF RADIAL DERIVATIVE AND WEIGHTED

COMPOSITION OPERATORS FROM WEIGHTED
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Abstract. Let H(Bn) be the space of all holomorphic functions on the unit ball Bn of Cn , ϕ
a holomorphic self-map of B

n , u∈H(Bn) , and ℜ the radial derivative operator on H(Bn) . Two
operators on H(Bn) are defined by ℜWu,ϕ f (z)=ℜ(u(z) f (ϕ(z))) and Wu,ϕ ℜ f (z)=u(z)ℜ f (ϕ(z)) ,
which are called the products of radial derivative operators and weighted composition opera-
tors. In this paper, the boundedness and compactness of the operators ℜWu,ϕ and Wu,ϕ ℜ from
weighted Bergman-Orlicz spaces to a class of weighted-type spaces are characterized.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk of the complex plane C and Bn = {z ∈
Cn : |z| < 1} the unit ball of the complex vector space Cn . Let H(D) be the space of
all analytic functions on D , H(Bn) the space of all holomorphic functions on B

n and
S(Bn) the class of all holomorphic self-maps of Bn .

Let ϕ ∈ S(Bn) and u ∈ H(Bn) . The weighted composition operator Wu,ϕ is de-
fined on H(Bn) by

Wu,ϕ f (z) = u(z) f (ϕ(z)).

When u(z) ≡ 1 on Bn , the operator Wu,ϕ is reduced to the composition operator, usu-
ally denoted by Cϕ , while if ϕ(z)= z , the operator Wu,ϕ is reduced to the multiplication
operator, usually denoted by Mu . It is clear that the weighted composition operator is
the product of composition operator and multiplication operator. Weighted composition
operators between various spaces of holomorphic functions on different domains have
been studied by numerous authors (see, e.g., [4, 6, 8, 9, 11, 12, 16, 21, 23, 24, 25, 30,
31, 38, 39, 43] and the references therein).

Let D be the differentiation operator on H(D) defined by

Df (z) = f ′(z).

The products of differentiation and composition operators DCϕ and CϕD have been
studied, for example, in [2, 7, 10, 13, 14, 17, 27, 32, 34], while some generalizations of
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these product-type operators have been studied, for example, in [15, 29, 35, 36, 37, 40].
Recently, in [22] Sharma has studied the following six operators:

MuCϕD,MuDCϕ ,CϕMuD,CϕDMu,DMuCϕ ,DCϕMu. (1)

The operators in (1) have been also studied by Stević, Sharma and Bhat in a unified
manner in [41] and [42]. Quite recently, the products of differentiation and weighted
composition operators DWu,ϕ and Wu,ϕD have also been studied in [5]. A natural prob-
lem is to consider the products of radial derivative and weighted composition operators
on some subspaces of H(Bn) . Let ℜ be the radial derivative operator on H(Bn) , that
is

ℜ f (z) =
n

∑
j=1

z j
∂ f
∂ z j

(z).

The products of radial derivative and weighted composition operators on some sub-
spaces of H(Bn) are defined as follows

ℜWu,ϕ f (z) = ℜ(u(z) f (ϕ(z)))

and

Wu,ϕℜ f (z) = u(z)ℜ f (ϕ(z)).

This paper is devoted to studying the operators ℜWu,ϕ and Wu,ϕℜ from weighted
Bergman-Orlicz spaces to a class of weighted-type spaces. Weighted composition oper-
ators and the integral-type operators defined and studied in [26, 28, 33], from weighted
Bergman-Orlicz spaces to a class of weighted-type spaces have been studied in [18].
Here it must be mentioned that Stević in [35] introduced a more general operator ℜm

u,ϕ ,
called the weighted iterated radial composition operator. Clearly, for m = 1 the opera-
tor ℜm

u,ϕ becomes the operator Wu,ϕℜ . This paper can be regarded as a continuation of
the investigation of concrete operators between these spaces.

Let dν be the Lebesgue measure on the unit ball B
n , dσ the normalized surface

measure on Sn = ∂Bn (the boundary of Bn ). Let z = (z1, . . . ,zn) and w = (w1, . . . ,wn)
be points in Cn , 〈z,w〉 = z1w1 + · · ·+ znwn and |z|2 = 〈z,z〉 . For α > −1, by dνα we
denote the normalized Lebesgue measure cα(1− |z|2)αdν(z) (constant cα is chosen
such that να (Bn) = 1).

We now present some facts from [18]. The function Φ �≡ 0 is called a growth
function, if it is a continuous and nondecreasing function from the interval [0,∞) onto
itself. Clearly, these conditions, among others, imply that Φ(0) = 0.

The function Φ is of positive upper type q � 1, if there exists C > 0 such that
Φ(st) � CtqΦ(s) for every s > 0 and t � 1. We denote by Uq the set of growth
functions Φ of positive upper type q (for some q � 1), such that the function t �→
Φ(t)/t is non-decreasing on (0,∞) . The function Φ is of positive lower type p > 0, if
there exists C > 0 such that Φ(st) � Ct pΦ(s) for every s > 0 and 0 < t � 1. By Lp

we denote the set of growth functions Φ of positive lower type p (for some 0 < p � 1),
such that the function t �→ Φ(t)/t is non-increasing on (0,∞) .
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Let Φ be a growth function. The weighted Bergman-Orlicz space AΦ
α (Bn) consists

of all f ∈ H(Bn) such that

‖ f‖AΦ
α (Bn) =

∫
Bn

Φ(| f (z)|)dνα (z) < ∞.

On AΦ
α (Bn) is defined the following quasi-norm

‖ f‖lux
AΦ

α (Bn) = inf
{

λ > 0 :
∫

Bn
Φ

( | f (z)|
λ

)
dνα(z) � 1

}
.

If Φ ∈Uq or Φ∈Lp , then the quasi-norm on AΦ
α (Bn) is finite and call the Luxembourg

norm.
The classical weighted Bergman space Ap

α(Bn) , p > 0, α > −1, corresponds to
Φ(t) = t p and consists of all f ∈ H(Bn) such that

‖ f‖p
Ap

α (Bn) =
∫

Bn
| f (z)|pdνα(z) < ∞.

We say that a function ω : (0,1] → (0,∞) belongs to class Ω1 , if ω is nonin-
creasing, 1/ω is of some positive lower type and the function tω is increasing. For
example, the function ω(t) = 1/tα , 0 < α < 1, belongs to class Ω1 . We say that a
function ω : (0,1]→ (0,∞) belongs to class Ω2 , if ω ∈Lp , and satisfies the condition:

∫ 1

t

ω(s)
s2 ds � ω(t)

t
(0 < t < 1).

Let ω be a positive function defined on (0,1] . An f ∈ H(Bn) is said to be in
H∞

ω (Bn) , if

‖ f‖H∞
ω (Bn) = sup

z∈Bn

| f (z)|
ω(1−|z|) < ∞.

It is easy to see that H∞
ω (Bn) is a Banach space with the norm ‖ · ‖H∞

ω (Bn) . The space
H∞

ω (Bn) with ω ∈ Ω1 is not quite often used in the literature. It seems to first appear in
[3] as far as we know.

An f ∈ H(Bn) belongs to Λω (Bn) , if ℜ f ∈ H∞
ω/t(B

n) , that is

bΛω (Bn) = sup
z∈Bn

(1−|z|)|ℜ f (z)|
ω(1−|z|) < ∞.

Λω(Bn) is a Banach space under the norm

‖ f‖Λω (Bn) = | f (0)|+bΛω(Bn).

For the relations between H∞
ω (Bn) and Λω(Bn) , we have that, if ω ∈Ω1 , then H∞

ω (Bn)=
Λω(Bn) ; if ω ∈ Ω2 , then H∞

ω (Bn) embeds continuously into Λω(Bn) .
Let X and Y be topological vector spaces whose topologies are given by transla-

tion invariant metrics dX and dY , respectively. Let L : X → Y be a linear operator. The
operator L : X → Y is bounded if there exists a positive constant K such that

dY (L f ,0) � KdX( f ,0)
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for all f ∈ X . The operator L : X →Y is compact if it maps bounded sets into relatively
compact sets.

Throughout this paper, positive constant C may differ from one occurrence to the
other. The notation a � b means that a � Cb for some positive constant C .

2. Preliminary results

We first have the following compactness criteria. Since the proof is similar to that
of Proposition 3.11 in [1], it is omitted.

LEMMA 2.1. Let α > −1 , ω a positive function defined on (0,1] , and Φ ∈
Uq ∪Lp . Let ϕ ∈ S(Bn) , u ∈ H(Bn) and T ∈ {ℜWu,ϕ ,Wu,ϕℜ} . Then the bounded
operator T : AΦ

α (Bn) → H∞
ω (Bn) is compact if and only if for every bounded sequence

{ f j} in AΦ
α (Bn) such that f j → 0 uniformly on any compact subset of Bn as j → ∞ , it

follows that
lim
j→∞

‖T f j‖H∞
ω (Bn) = 0.

We need the following estimate. See Lemma 2.16 in [19] for a complete proof.

LEMMA 2.2. Let α >−1 and Φ ∈ Uq∪Lp . Then there exists a positive constant
C independent of f ∈ AΦ

α (Bn) and z ∈ Bn such that

| f (z)| � CΦ−1
( 1

(1−|z|2)n+1+α

)
‖ f‖lux

AΦ
α (Bn).

We also need the following estimate for derivative of functions in weighted Berg-
man-Orlicz spaces. See Lemma 4.8 in [20] for a complete proof.

LEMMA 2.3. Let α > −1 and Φ ∈ Uq ∪Lp . Then there exist two positive con-
stants Cn = C(α,n) and Dn = D(α,n) independent of f ∈ AΦ

α (Bn) and z ∈ Bn such
that

|∇ f (z)| � Cn

1−|z|2 Φ−1
( Dn

(1−|z|2)n+1+α

)
‖ f‖lux

AΦ
α (Bn).

REMARK 2.1. By the proofs of Lemma 2.16 in [19] and Lemma 4.8 in [20], we
can choose the constant C := max{1,Dn} instead of 1 and Dn in Lemmas 2.2 and 2.3.

LEMMA 2.4. Let α > −1 and Φ ∈ Uq ∪Lp . Then for every t � 0 and w ∈ Bn ,
the following function is in AΦ

α (Bn)

fw,t (z) = Φ−1
( C

(1−|w|2)n+1+α

)( 1−|w|2
1−〈z,w〉

)2(n+1+α)+t
,

where C is an arbitrary positive constant. Moreover,

sup
w∈Bn

‖ fw,t‖lux
AΦ

α (Bn) � 1.
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Proof. Let

gw(z) =
( 1−|w|2

1−〈z,w〉
)2(n+1+α)+t

.

We first have
∫

Bn
Φ(| fw,t (z)|)dνα (z) =

∫
Bn

Φ
(

Φ−1
( C

(1−|w|2)n+1+α

)∣∣gw(z)
∣∣)dνα(z) = I + J,

where

I =
∫
{z∈Bn:|gw(z)|�1}

Φ
(

Φ−1
( C

(1−|w|2)n+1+α

)∣∣gw(z)
∣∣)dνα(z)

and

J =
∫
{z∈Bn:|gw(z)|>1}

Φ
(

Φ−1
( C

(1−|w|2)n+1+α

)∣∣gw(z)
∣∣)dνα(z).

Let us start by considering the case where Φ∈Uq . Since Φ(r)/r is non-decreasing
on (0,∞) , we have

Φ(r|gw(z)|)
r|gw(z)| � Φ(r)

r

for any z ∈ {z ∈ Bn : |gw(z)| � 1} , which shows

I =
∫
{z∈Bn:|gw(z)|�1}

Φ
(

Φ−1
( C

(1−|w|2)n+1+α

)∣∣gw(z)
∣∣)dνα(z)

� C
∫

Bn

(1−|w|2)n+1+α+t

|1−〈z,w〉|2(n+1+α)+t
dνα(z)

� 1,

where we use Theorem 1.12 in [45]. Using that Φ is of positive upper type q and
q � 1, we obtain

J =
∫
{z∈Bn:|gw(z)|>1}

Φ
(

Φ−1
( C

(1−|w|2)n+1+α

)∣∣gw(z)
∣∣)dνα(z)

�
∫
{z∈Bn:|gw(z)|>1}

Φ
(

Φ−1
( C

(1−|w|2)n+1+α

))∣∣gw(z)
∣∣qdνα(z)

� C
(1−|w|2)n+1+α

∫
Bn

(1−|w|2)2q(n+1+α+ t
2 )

|1−〈z,w〉|2q(n+1+α+ t
2 )

dνα(z)

� 1.

We now consider the case where Φ ∈ Lp . Using that Φ is of lower type p and
Theorem 1.12 in [45], we have

I =
∫
{z∈Bn:|gw(z)|�1}

Φ
(

Φ−1
( C

(1−|w|2)n+1+α

)∣∣gw(z)
∣∣)dνα(z)

� C
(1−|w|2)n+1+α

∫
Bn

|gw(z)|pdνα(z)
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=
C

(1−|w|2)n+1+α

∫
Bn

( 1−|w|2
|1−〈z,w〉|

)[2(n+1+α)+t]p
dνα(z)

� 1.

We consider the second integral. Using the fact that Φ−1(r)/r is non-decreasing
on (0,∞) , we obtain

Φ−1(r)
r

� Φ−1(r|gw(z)|)
r|gw(z)|

for any z ∈ {z ∈ Bn : |gw(z)| > 1} , which shows

|gw(z)|Φ−1(r) � Φ−1(r|gw(z)|)
for any z ∈ {z ∈ Bn : |gw(z)| > 1} . Hence, we have

J =
∫
{z∈Bn:|gw(z)|>1}

Φ
(

Φ−1
( C

(1−|w|2)n+1+α

)∣∣gw(z)
∣∣)dνα(z)

� 1
(1−|w|2)n+1+α

∫
Bn

( 1−|w|2
|1−〈z,w〉|

)2(n+1+α)+t
dνα (z)

� 1.

This finishes the proof of the lemma. �

3. Boundedness and compactness of ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn)

Let ϕ = (ϕ1, . . . ,ϕn)∈ S(Bn) . By (ℜϕ1, . . . ,ℜϕn) we denote ℜϕ , and by ∇ f the
gradient of function f . We assume that holomorphic self-map ϕ satisfies the following
condition:

There is a δ ∈ (0,1) such that

∣∣ℜϕ(z)
∣∣ � 1

δ
∣∣〈ℜϕ(z),ϕ(z)

〉∣∣ (2)

on K = {z ∈ Bn : |ϕ(z)| � δ} .
It is easily seen that if n = 1, all the holomorphic self-maps of D satisfy this

condition. While if n > 1, we can also find some holomorphic self-maps ϕ to satisfy
this condition. For example, if ℜϕ(z) = ϕ(z) , then ϕ satisfies the condition. For such
holomorphic self-maps, one can see, for example, ϕ(z) = (z1,z2/2, . . . ,zn/n) .

Now, we characterize the boundedness of ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn) .

THEOREM 3.1. Let α >−1 , ϕ ∈ S(Bn) satisfying condition (2), u∈H(Bn) , Φ∈
Uq∪Lp , and ω be a positive function defined on (0,1] . Then the following statements
are equivalent:

(i) The operator ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn) is bounded.
(ii) The functions u and ϕ satisfy the following conditions

M1 := sup
z∈Bn

∣∣ℜu(z)
∣∣

ω(1−|z|)Φ−1
( C

(1−|ϕ(z)|2)n+1+α

)
< ∞ (3)
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and

M2 := sup
z∈Bn

∣∣u(z)
∣∣∣∣ℜϕ(z)

∣∣
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ∞, (4)

where C is the positive constant in Remark 2.1.

Proof. (i) ⇒ (ii) . Suppose that (i) holds. First for each h ∈ H(Bn) , we have

∂ (h(ϕ(z)))
∂ z j

=
n

∑
i=1

∂h
∂ zi

(ϕ(z))
∂ϕi

∂ z j
(z),

from which it follows that

ℜ(h(ϕ(z))) =
〈
∇h(ϕ(z)),ℜϕ(z)

〉
. (5)

In Lemma 2.4, let t = 0, C the constant in Remark 2.1, and replace w with ϕ(w) .
Then we obtain the function fw(z) := fϕ(w),0(z) . From some calculations, it follows
that

fw(ϕ(w)) = Φ−1
( C

(1−|ϕ(w)|2)n+1+α

)
(6)

and

∂ fw
∂ z j

(z) = cα ,nΦ−1
( C

(1−|ϕ(w)|2)n+1+α

)( 1−|ϕ(w)|2
1−〈z,ϕ(w)〉

)2(n+1+α) ϕ j(w)
1−〈z,ϕ(w)〉 ,

(7)

where cα ,n = 2(n+ α +1) . From (7), we have

∂ fw
∂ z j

(ϕ(w)) = cα ,nΦ−1
( C

(1−|ϕ(w)|2)n+1+α

) ϕ j(w)
1−|ϕ(w)|2 . (8)

From (8), we obtain

∇ fw(ϕ(w)) = cα ,nΦ−1
( C

(1−|ϕ(w)|2)n+1+α

) ϕ(w)
1−|ϕ(w)|2 . (9)

Hence, from (5) and (9) we deduce that

∣∣ℜ( fw(ϕ(w)))
∣∣ = cα ,nΦ−1

( C
(1−|ϕ(w)|2)n+1+α

)∣∣〈ℜϕ(w),ϕ(w)〉∣∣
1−|ϕ(w)|2 . (10)

From (6), (10) and the boundedness of ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn) , we have

Φ−1
( C

(1−|ϕ(w)|2)n+1+α

) ∣∣ℜu(w)
∣∣

ω(1−|w|)
− cα ,nΦ−1

( C
(1−|ϕ(w)|2)n+1+α

) |u(w)||〈ℜϕ(w),ϕ(w)〉|
ω(1−|w|)(1−|ϕ(w)|2)
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=
1

ω(1−|w|)
∣∣ℜu(w) fw(ϕ(w))

∣∣− 1
ω(1−|w|)

∣∣u(w)ℜ( fw(ϕ(w)))
∣∣

� 1
ω(1−|w|)

∣∣∣ℜu(w) fw(ϕ(w))+u(w)ℜ( fw(ϕ(w)))
∣∣∣

=
1

ω(1−|w|)
∣∣ℜWu,ϕ fw(w)

∣∣ � ‖ℜWu,ϕ fw‖H∞
ω (Bn) � C‖ℜWu,ϕ‖. (11)

From (11), we obtain the following inequality

Φ−1
( C

(1−|ϕ(w)|2)n+1+α

) ∣∣ℜu(w)
∣∣

ω(1−|w|)
� C‖ℜWu,ϕ‖+ cα ,nΦ−1

( C
(1−|ϕ(w)|2)n+1+α

) |u(w)||〈ℜϕ(w),ϕ(w)〉|
ω(1−|w|)(1−|ϕ(w)|2) . (12)

On the other hand, from Lemma 2.4 it follows that the function

gw(z) := fϕ(w),1(z)− fϕ(w),0(z)

is in AΦ
α (Bn) and ‖gw‖lux

AΦ
α (Bn)

� C . From some calculations, we similarly obtain

∣∣ℜ(gw(ϕ(w)))
∣∣ = Φ−1

( C
(1−|ϕ(w)|2)n+1+α

)∣∣〈ℜϕ(w),ϕ(w)〉∣∣
1−|ϕ(w)|2 (13)

and gw(ϕ(w))= 0. From this, (13) and the boundedness of ℜWu,ϕ : AΦ
α (Bn)→H∞

ω (Bn) ,
it follows that

Φ−1
( C

(1−|ϕ(w)|2)n+1+α

) |u(w)||〈ℜϕ(w),ϕ(w)〉|
ω(1−|w|)(1−|ϕ(w)|2)

=
1

ω(1−|w|)
∣∣u(w)ℜ(gw(ϕ(w)))

∣∣

=
1

ω(1−|w|)
∣∣∣ℜu(w)gw(ϕ(w))+u(w)ℜ(g(ϕ(w)))

∣∣∣
=

1
ω(1−|w|)

∣∣ℜWu,ϕgw(w)
∣∣

�
∥∥ℜWu,ϕgw

∥∥
H∞

ω (Bn), (14)

which shows

sup
z∈Bn

Φ−1
( C

(1−|ϕ(z)|2)n+1+α

) |u(z)||〈ℜϕ(z),ϕ(z)〉|
ω(1−|z|)(1−|ϕ(z)|2) �

∥∥ℜWu,ϕgw
∥∥

H∞
ω (Bn). (15)

Hence, from (12) and (15), it follows that

M1 = sup
z∈Bn

|ℜu(z)|
ω(1−|z|)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ∞.
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For δ and K in (2), from (15) we have

sup
z∈K

|u(z)||ℜϕ(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)

� 1
δ

sup
z∈K

|u(z)||〈ℜϕ(z),ϕ(z)〉|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)

� 1
δ

∥∥ℜWu,ϕgw
∥∥

H∞
ω (Bn)

� C
∥∥ℜWu,ϕ

∥∥
< ∞. (16)

Take functions f (z) = 1 and f (z) = z j , respectively. From the boundedness of ℜWu,ϕ :
AΦ

α (Bn) → H∞
ω (Bn) , we get

sup
z∈Bn

|ℜu(z)|
ω(1−|z|) < ∞ (17)

and

sup
z∈Bn

1
ω(1−|z|)

∣∣ϕ j(z)ℜu(z)+u(z)ℜϕ j(z)
∣∣ < ∞. (18)

From (17), (18) and the boundedness of ϕ j(z) , we have

sup
z∈Bn

|u(z)||ℜϕ j(z)|
ω(1−|z|) < ∞. (19)

Since
|ℜϕ(z)| � |ℜϕ1(z)|+ |ℜϕ2(z)|+ · · ·+ |ℜϕn(z)|,

by (19) we have

sup
z∈Bn\K

|u(z)||ℜϕ(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)

� cα ,δ sup
z∈Bn

|u(z)||ℜϕ(z)|
ω(1−|z|)

� cα ,δ

n

∑
j=1

sup
z∈Bn

|u(z)||ℜϕ j(z)|
ω(1−|z|)

< ∞, (20)

where

cα ,δ =
1

1− δ 2 Φ−1
( C

(1− δ 2)n+1+α

)
.

Consequently, from (16) and (20) we get

M2 = sup
z∈Bn

|u(z)||ℜϕ(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ∞.
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(ii) ⇒ (i) . Suppose that (3) and (4) hold. Then for every f ∈ AΦ
α (Bn) , from

Lemma 2.2, Lemma 2.3 and Remark 2.1 we have

‖ℜWu,ϕ f‖H∞
ω (Bn) = sup

z∈Bn

1
ω(1−|z|)

∣∣ℜu(z) f (ϕ(z))+u(z)ℜ( f (ϕ(z)))
∣∣

� sup
z∈Bn

|ℜu(z)|| f (ϕ(z))|
ω(1−|z|) + sup

z∈Bn

|u(z)||ℜ( f (ϕ(z)))|
ω(1−|z|)

= sup
z∈Bn

|ℜu(z)|| f (ϕ(z))|
ω(1−|z|) + sup

z∈Bn

∣∣u(z)
∣∣∣∣〈∇ f (ϕ(z)),ℜϕ(z)〉∣∣

ω(1−|z|)

� C sup
z∈Bn

|ℜu(z)|
ω(1−|z|)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
‖ f‖lux

AΦ
α (Bn)

+ sup
z∈Bn

|u(z)||ℜϕ(z)||∇ f (ϕ(z))|
ω(1−|z|)

� C sup
z∈Bn

|ℜu(z)|
ω(1−|z|)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
‖ f‖lux

AΦ
α (Bn)

+Cn sup
z∈Bn

|u(z)||ℜϕ(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
‖ f‖lux

AΦ
α (Bn)

= (CM1 +CnM2)‖ f‖lux
AΦ

α (Bn),

which shows that the operator ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn) is bounded. �

From the fact H∞
ω (Bn) ↪→ Λω (Bn) when ω ∈ Ω2 , and Theorem 3.1, we can obtain

the following result.

PROPOSITION 3.2. Let α > −1 , ϕ ∈ S(Bn) satisfying condition (2), u ∈ H(Bn) ,
Φ ∈ Uq∪Lp , and ω ∈ Ω2 . If u and ϕ satisfy the following conditions:

sup
z∈Bn

|ℜu(z)|
ω(1−|z|)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ∞

and

sup
z∈Bn

|u(z)||ℜϕ(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ∞,

where C is the positive constant in Remark 2.1, then the operator ℜWu,ϕ : AΦ
α (Bn) →

H∞
ω (Bn) is bounded.

Next we prove the following compactness criteria.

THEOREM 3.3. Let α > −1 , ϕ ∈ S(Bn) satisfying condition (2), u ∈ H(Bn) ,
Φ∈Uq∪Lp , and ω a positive function defined on (0,1] . Then the following statements
are equivalent:

(i) The operator ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn) is compact.
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(ii) The functions u and ϕ are such that ℜu ∈ H∞
ω (Bn) , for each j ∈ {1,2, . . . ,n}

Lj := sup
z∈Bn

|u(z)||ℜϕ j(z)|
ω(1−|z|) < ∞, (21)

lim
|ϕ(z)|→1

|ℜu(z)|
ω(1−|z|)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
= 0, (22)

and

lim
|ϕ(z)|→1

|u(z)||ℜϕ(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
= 0, (23)

where C is the positive constant in Remark 2.1.

Proof. (i) ⇒ (ii) . Suppose that (i) holds. Then ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn) is
bounded. For any f ∈ AΦ

α (Bn) , it follows that

‖ℜWu,ϕ f‖H∞
ω (Bn) = sup

z∈Bn

1
ω(1−|z|)

∣∣ℜu(z) f (ϕ(z))+u(z)ℜ( f (ϕ(z)))
∣∣ < ∞. (24)

Taking f (z) = 1 and f (z) = z j in (24), we obtain that ℜu ∈ H∞
ω (Bn) and (21).

Next consider a sequence {ϕ(z j)} in Bn such that |ϕ(z j)| → 1 as j → ∞ . If such
sequence does not exist, then (22) and (23) obviously hold. Using this sequence, we
define the functions f j(z) = fϕ(z j),0(z) . Then the sequence { f j} is uniformly bounded

in AΦ
α (Bn) and uniformly converges to zero on any compact subset of Bn as j → ∞ .

Since f j is defined by replacing ϕ(w) by ϕ(z j) in fw in the proof of Theorem 3.1,
from (12) we have

|ℜu(z j)|
ω(1−|z j|)Φ−1

( C
(1−|ϕ(z j)|2)n+1+α

)

− cα ,n
|u(z j)||〈ℜϕ(z j),ϕ(z j)〉|
ω(1−|z j|)(1−|ϕ(z j)|2)Φ−1

( C
(1−|ϕ(z j)|2)n+1+α

)

� ‖ℜWu,ϕ f j‖H∞
ω (Bn), (25)

We also define the function

g j(z) = fϕ(z j),1(z)− fϕ(z j),0(z)

for each j ∈ N . The sequence {g j} is uniformly bounded in AΦ
α (Bn) and uniformly

converges to zero on any compact subset of B
n as j → ∞ . From (15), we have

|u(z j)|
∣∣〈ℜϕ(z j),ϕ(z j)〉

∣∣
ω(1−|z j|)(1−|ϕ(z j)|2)Φ−1

( C
(1−|ϕ(z j)|2)n+1+α

)
�

∥∥ℜWu,ϕg j
∥∥

H∞
ω (Bn). (26)
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From (25) and (26), it follows that

|ℜu(z j)|
ω(1−|z j|)Φ−1

( C
(1−|ϕ(z j)|2)n+1+α

)
� ‖ℜWu,ϕ f j‖H∞

ω (Bn) + cα ,n‖ℜWu,ϕg j‖H∞
ω (Bn).

From the compactness of ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn) , it follows that (22) holds.
Since |ϕ(z j)| → 1 as j → ∞ , there exists a J ∈N such that |ϕ(z j)|> δ for j � J ,

that is, ϕ(z j) ∈ K for j � J . Similar to (16), we can obtain

|u(z j)||ℜϕ(z j)|
ω(1−|z j|)(1−|ϕ(z j)|2) � 1

δ
∥∥ℜWu,ϕg j

∥∥
H∞

ω (Bn).

This implies that (23) holds.
(ii) ⇒ (i) . We first check that ℜWu,ϕ : AΦ

α (Bn) → H∞
ω (Bn) is bounded. For this,

we observe that (22) and (23) imply that for every ε > 0, there is an η ∈ (0,1) such
that

|ℜu(z)|
ω(1−|z|)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ε (27)

and

|u(z)||ℜϕ(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ε, (28)

for any z ∈ Kη = {z ∈ Bn : |ϕ(z)| > η} .
Write

I(z) :=
|ℜu(z)|

ω(1−|z|)Φ−1
( C

(1−|ϕ(z)|2)n+1+α

)

and

J(z) :=
|u(z)||ℜϕ(z)|

ω(1−|z|)(1−|ϕ(z)|2)Φ−1
( C

(1−|ϕ(z)|2)n+1+α

)
.

Then from (21), (27) and (28) we have

M1 = sup
z∈Bn

I(z) = sup
z∈Bn\Kη

I(z)+ sup
z∈Kη

I(z)

� ‖ℜu‖H∞
ω (Bn)Φ−1

( C
(1−η2)n+1+α

)
+ ε

and

M2 = sup
z∈Bn

J(z) = sup
z∈Bn\Kη

J(z)+ sup
z∈Kη

J(z)

�
n

∑
j=1

LjΦ−1
( C

(1−η2)n+1+α

)
+ ε.



PRODUCTS OF RADIAL DERIVATIVE AND WEIGHTED COMPOSITION OPERATORS 313

From Theorem 3.1, it follows that ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn) is bounded.
To prove that ℜWu,ϕ : AΦ

α (Bn)→H∞
ω (Bn) is compact, by Lemma 2.1 we just need

to prove that, if { f j} is a sequence in AΦ
α (Bn) such that ‖ f j‖AΦ

α (Bn) � M and { f j}
uniformly converges to zero on any compact subset of Bn as j → ∞ , then

lim
j→∞

‖ℜWu,ϕ f j‖H∞
ω (Bn) = 0.

For any ε > 0 and the associated η in (27) and (28), by using again ℜu ∈ H∞
ω (Bn) ,

(27), (28), Lemmas 2.2, 2.3 and Remark 2.1, we have

‖ℜWu,ϕ f j‖H∞
ω (Bn)

= sup
z∈Bn

1
ω(1−|z|)

∣∣∣ℜ(u(z) f j(ϕ(z)))
∣∣∣

= sup
z∈Bn

1
ω(1−|z|)

∣∣∣ℜu(z) f j(ϕ(z))+u(z)ℜ( f j(ϕ(z)))
∣∣∣

= sup
z∈Bn

1
ω(1−|z|)

∣∣∣ℜu(z) f j(ϕ(z))+u(z)
〈
∇ f j(ϕ(z)),ℜϕ(z)

〉∣∣∣

� sup
z∈Bn

∣∣ℜu(z)
∣∣

ω(1−|z|)
∣∣ f j(ϕ(z))

∣∣+ sup
z∈Bn

∣∣u(z)
∣∣

ω(1−|z|)
∣∣∣〈∇ f j(ϕ(z)),ℜϕ(z)

〉∣∣∣

� sup
z∈Bn

∣∣ℜu(z)
∣∣

ω(1−|z|)
∣∣ f j(ϕ(z))

∣∣+ sup
z∈Bn

∣∣u(z)
∣∣|ℜϕ(z)|

ω(1−|z|)
∣∣∇ f j(ϕ(z))

∣∣

� sup
z∈Bn\Kη

∣∣ℜu(z)
∣∣

ω(1−|z|)
∣∣ f j(ϕ(z))

∣∣+ sup
z∈Kη

∣∣ℜu(z)
∣∣

ω(1−|z|)
∣∣ f j(ϕ(z))

∣∣

+ sup
z∈Bn\Kη

∣∣u(z)
∣∣∣∣ℜϕ(z)

∣∣
ω(1−|z|)

∣∣∇ f j(ϕ(z))
∣∣+ sup

z∈Kη

∣∣u(z)
∣∣∣∣ℜϕ(z)

∣∣
ω(1−|z|)

∣∣∇ f j(ϕ(z))
∣∣

� ‖ℜu‖H∞
ω (Bn) sup

{z:|z|�η}

∣∣ f j(z)
∣∣+CM sup

z∈Kη

∣∣ℜu(z)
∣∣

ω(1−|z|)Φ−1
( C

(1−|ϕ(z)|2)n+1+α

)

+
n

∑
j=1

Lj sup
{z:|z|�η}

∣∣∇ f j(z)
∣∣+CnM sup

z∈Kη

∣∣u(z)
∣∣∣∣ℜϕ(z)

∣∣
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)

� ‖ℜu‖H∞
ω (Bn) sup

{z:|z|�η}

∣∣ f j(z)
∣∣+ n

∑
j=1

Lj sup
{z:|z|�η}

∣∣∇ f j(z)
∣∣+(C+Cn)Mε. (29)

It is easy to see that, if { f j} uniformly converges to zero on any compact subset of

Bn , then { ∂ f j
∂ zi

} also does as j → ∞ for each i = 1,2, . . . ,n . This shows that {|∇ f j|}
uniformly converges to zero on any compact subset of Bn as j → ∞ . Since {z ∈ Bn :
|z| � η} is compact subset of Bn , by letting j → ∞ in (29) we have

lim
j→∞

‖ℜWu,ϕ f j‖H∞
ω (Bn) = 0.

This shows that ℜWu,ϕ : AΦ
α (Bn) → H∞

ω (Bn) is compact. �
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4. Boundedness and compactness of Wu,ϕℜ : AΦ
α (Bn) → H∞

ω (Bn)

THEOREM 4.1. Let α > −1 , ϕ ∈ S(Bn) , u ∈ H(Bn) , Φ ∈ Uq ∪Lp , and ω a
positive function defined on (0,1] . Then the following statements are equivalent:

(i) The operator Wu,ϕℜ : AΦ
α (Bn) → H∞

ω (Bn) is bounded.
(ii) The functions u and ϕ satisfy the following condition

M3 := sup
z∈Bn

|u(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ∞, (30)

where C is the positive constant in Remark 2.1.

Proof. (i) ⇒ (ii) . Suppose that (i) holds. Then there exists a positive constant C
such that for every f ∈ AΦ

α (Bn) ,

‖Wu,ϕℜ f‖H∞
ω (Bn) � C‖ f‖lux

AΦ
α (Bn).

Considering the function fw(z) = fϕ(w),0(z), we have

∣∣ℜ fw(ϕ(w))
∣∣ = cα ,n

|ϕ(w)|2
1−|ϕ(w)|2 Φ−1

( C
(1−|ϕ(w)|2)n+1+α

)
.

From this and the boundedness of Wu,ϕℜ : AΦ
α (Bn) → H∞

ω (Bn) , we obtain

1
ω(1−|w|)

∣∣Wu,ϕℜ fw(w)
∣∣ =

1
ω(1−|w|)

∣∣u(w)ℜ fw(ϕ(w))
∣∣

= cα ,n
|u(w)||ϕ(w)|2

ω(1−|w|)(1−|ϕ(w)|2)Φ−1
( C

(1−|ϕ(w)|2)n+1+α

)

� ‖Wu,ϕℜ fw‖H∞
ω (Bn) � C

∥∥Wu,ϕℜ
∥∥,

which shows

I := sup
z∈Bn

|u(z)||ϕ(z)|2
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ∞.

Then for a fixed δ ∈ (0,1) , we have

sup
{z:|ϕ(z)|>δ}

|u(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
� I

δ 2 < ∞. (31)

Also taking the function f (z) = z j , we have

‖Wu,ϕℜ f‖H∞
ω (Bn) = sup

z∈Bn

|u(z)||ϕ j(z)|
ω(1−|z|) < ∞.

From this and the boundedness of ϕ j , we get

J := sup
z∈Bn

|u(z)|
ω(1−|z|) < ∞. (32)
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Hence,

sup
{z:|ϕ(z)|�δ}

|u(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
� dδ J < ∞, (33)

where

dδ =
1

1− δ 2 Φ−1
( C

(1− δ 2)n+1+α

)
.

Consequently, (31) and (33) show that M3 < ∞ .
(ii) ⇒ (i) . Suppose that (30) holds. Since

|ℜ f (z)| =
∣∣∣ n

∑
j=1

z j
∂ f (z)
∂ z j

∣∣∣ �
n

∑
j=1

|z j|
∣∣∣∂ f (z)

∂ z j

∣∣∣ �
n

∑
j=1

∣∣∣∂ f (z)
∂ z j

∣∣∣ =
√

n|∇ f (z)|

for every f ∈ AΦ
α (Bn) , by Lemma 2.3 we have

‖Wu,ϕℜ f‖H∞
ω (Bn) = sup

z∈Bn

1
ω(1−|z|)

∣∣u(z)ℜ f (ϕ(z))
∣∣

�
√

nCn sup
z∈Bn

|u(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
‖ f‖lux

AΦ
α (Bn)

=
√

nCnM3‖ f‖lux
AΦ

α (Bn),

which shows that the operator Wu,ϕℜ : AΦ
α (Bn) → H∞

ω (Bn) is bounded. �
The following result is proved similarly.

PROPOSITION 4.2. Let α > −1 , ϕ ∈ S(Bn) , u ∈ H(Bn) , Φ ∈ Uq∪Lp , and ω ∈
Ω2 . If u and ϕ satisfy the condition

sup
z∈Bn

|u(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ∞,

where C is the positive constant in Remark 2.1, then the operator Wu,ϕℜ : AΦ
α (Bn) →

H∞
ω (Bn) is bounded.

Now we prove the compactness criteria.

THEOREM 4.3. Let p � 1 , α >−1 , ϕ ∈ S(Bn) , u∈H(Bn) , Φ ∈Uq∪Lp , and ω
be a positive function defined on (0,1] . Then the following statements are equivalent:

(i) The operator Wu,ϕℜ : AΦ
α (Bn) → H∞

ω (Bn) is compact.
(ii) The functions u and ϕ are such that u ∈ H∞

ω (Bn) and

lim
|ϕ(z)|→1

|u(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
= 0, (34)

where C is the positive constant in Remark 2.1.

Proof. (i) ⇒ (ii) . Suppose that (i) holds. Then Wu,ϕℜ : AΦ
α (Bn) → H∞

ω (Bn) is
bounded, so for any f ∈ AΦ

α (Bn) ,

‖Wu,ϕℜ f‖H∞
ω (Bn) = sup

z∈Bn

∣∣u(z)ℜ f (ϕ(z))
∣∣

ω(1−|z|) < ∞. (35)
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Taking f (z) = z j in (35), we obtain

sup
z∈Bn

|u(z)||ϕ j(z)|
ω(1−|z|) < ∞. (36)

From the boundedness of ϕ j(z) and (36), it follows that

sup
z∈Bn

|u(z)|
ω(1−|z|) < ∞,

which means that u ∈ H∞
ω (Bn) .

Next consider a sequence {ϕ(z j)} in Bn such that |ϕ(z j)| → 1 as j → ∞ . If such
sequence does not exist, then (34) obviously holds. Using this sequence, we define
the functions f j(z) = fϕ(z j),0(z) . Then { f j} is uniformly bounded in AΦ

α (Bn) and
uniformly converges to zero on any compact subset of Bn as j → ∞ . From some
calculations, we obtain

∣∣ℜ f j(ϕ(z j))
∣∣ = cα ,n

|ϕ(z j)|2
1−|ϕ(z j)|2 Φ−1

( C
(1−|ϕ(z j)|2)n+1+α

)
.

Hence, the compactness of Wu,ϕℜ : AΦ
α (Bn) → H∞

ω (Bn) implies that

lim
j→∞

‖Wu,ϕℜ f j‖H∞
ω (Bn) = 0.

From this, we have

lim
j→∞

|u(z j)|
ω(1−|z j|)(1−|ϕ(z j)|2)Φ−1

( C
(1−|ϕ(z j)|2)n+1+α

)
= 0.

This shows that (34) holds.
(ii) ⇒ (i) . We first prove that Wu,ϕℜ : AΦ

α (Bn) → H∞
ω (Bn) is bounded. For this

we observe that (34) implies that for every ε > 0, there exists an η ∈ (0,1) such that

|u(z)|
ω(1−|z|)(1−|ϕ(z)|2)Φ−1

( C
(1−|ϕ(z)|2)n+1+α

)
< ε, (37)

for any z ∈ Kη = {z ∈ Bn : |ϕ(z)| > η} .
Let

K(z) :=
|u(z)|

ω(1−|z|)(1−|ϕ(z)|2)Φ−1
( C

(1−|ϕ(z)|2)n+1+α

)
.

Then we have

M3 = sup
z∈Bn\Kη

K(z)+ sup
z∈Kη

K(z) � ‖u‖H∞
ω (Bn)

1
1−η2 Φ−1

( C
(1−η2)n+1+α

)
+ ε, (38)

which shows that Wu,ϕℜ : AΦ
α (Bn) → H∞

ω (Bn) is bounded.
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To prove that Wu,ϕℜ : AΦ
α (Bn)→H∞

ω (Bn) is compact, by Lemma 2.1 we just need
to prove that, if { f j} is a sequence in AΦ

α (Bn) such that ‖ f j‖AΦ
α (Bn) � M and { f j}

uniformly converges to zero on any compact subset of Bn as j → ∞ , then

lim
j→∞

‖Wu,ϕℜ f j‖H∞
ω (Bn) = 0.

For any ε > 0 and the associated η in (37), we have, by using again u ∈H∞
ω (Bn) , (37)

and Lemma 2.3,

‖Wu,ϕℜ f j‖H∞
ω (Bn) = sup

z∈Bn

1
ω(1−|z|)

∣∣Wu,ϕℜ f j(z)
∣∣ = sup

z∈Bn

1
ω(1−|z|)

∣∣∣u(z)ℜ f j(ϕ(z))
∣∣∣

� sup
z∈Bn\Kη

∣∣u(z)
∣∣

ω(1−|z|)
∣∣ℜ f j(ϕ(z))

∣∣+ sup
z∈Kη

∣∣u(z)
∣∣

ω(1−|z|)
∣∣ℜ f j(ϕ(z))

∣∣
� ‖u‖H∞

ω (Bn) sup
{z∈Bn:|z|�η}

∣∣ℜ f j(z)
∣∣

+CnM sup
z∈Kη

∣∣u(z)
∣∣

ω(1−|z|)(1−|ϕ(z)|2)Φ−1
( C

(1−|ϕ(z)|2)n+1+α

)

� ‖u‖H∞
ω (Bn) sup

{z∈Bn:|z|�η}

∣∣ℜ f j(z)
∣∣+CnMε. (39)

It is easy to see that, if { f j} uniformly converges to zero on any compact subset of B
n ,

then {ℜ f j} also does as j → ∞ . From this, and since {z ∈ Bn : |z| � η} is compact
subset of Bn , letting j → ∞ in (39) gives

lim
j→∞

‖Wu,ϕℜ f j‖H∞
ω (Bn) = 0.

This shows that the operator Wu,ϕℜ : AΦ
α (Bn) → H∞

ω (Bn) is compact. �
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[38] S. STEVIĆ, R. P. AGARWAL, Weighted composition operators from logarithmic Bloch-type spaces to
Bloch-type spaces, J. Inequal. Appl. 2009 (2009), Article ID 964814, 21 pages.
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