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Abstract. We study pointwise-generalized-inverses of linear maps between C ∗ -algebras. Let
Φ and Ψ be linear maps between complex Banach algebras A and B . We say that Ψ is a
pointwise-generalized-inverse of Φ if Φ(aba) = Φ(a)Ψ(b)Φ(a), for every a,b ∈ A . The pair
(Φ,Ψ) is Jordan-triple multiplicative if Φ is a pointwise-generalized-inverse of Ψ and the latter
is a pointwise-generalized-inverse of Φ . We study the basic properties of this maps in con-
nection with Jordan homomorphism, triple homomorphisms and strongly preservers. We also
determine conditions to guarantee the automatic continuity of the pointwise-generalized-inverse
of continuous operator between C ∗ -algebras. An appropriate generalization is introduced in the
setting of JB ∗ -triples.

1. Introduction

Let Δ : A → B be a mapping between two Banach algebras. Accordingly to the
standard literature (see [22, 23, 26] and [27]) we shall say that Δ is a Jordan triple map
(respectively, Jordan triple product homomorphism or a Jordan triple multiplicative
mapping) if the identity

Δ(abc+ cba) = Δ(a)Δ(b)Δ(c)+ Δ(c)Δ(b)Δ(a)

(respectively, Δ(aba) = Δ(a)Δ(b)Δ(a)) holds for every a,b,c ∈ A . For a linear map
T : A → B, it is easy to see that T is a Jordan triple map if, and only if, it is a Jordan
triple product homomorphism. In [27], L. Molnar gives a complete description of those
Jordan triple multiplicative bijections Φ between the self-adjoint parts of two von Neu-
mann algebras M and N . F. Lu studies in [23] bijective maps from a standard operator
algebra into a Q -algebra which are generalizations of Jordan triple multiplicative maps.

In papers [22, 23, 26, 27] the mappings are not assumed to be linear, but are shown
to be so. In this paper we introduce a new point of view by considering and studying
pairs of linear maps which are Jordan triple multiplicative. Henceforth let A and B
denote two complex Banach algebras.
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DEFINITION 1. Let Φ,Ψ : A → B be linear maps. We shall say that Ψ is a
pointwise-generalized-inverse (pg-inverse for short) of Φ if the identity

Φ(aba) = Φ(a)Ψ(b)Φ(a),

holds for all a,b∈ A . If in addition Φ also is a pointwise-generalized-inverse of Ψ, we
shall say that Ψ is a normalized-pointwise-generalized-inverse (normalized-pg-inverse
for short) of Φ. In this case, we shall simply say that (Φ,Ψ) is Jordan-triple multi-
plicative.

Let us observe that, in the linear setting, Ψ : A → B is a pg-inverse of Φ if and
only if

Φ(abc+ cba) = Φ(a)Ψ(b)Φ(c)+ Φ(c)Ψ(b)Φ(a),

for all a,b,c ∈ A .
Every Jordan homomorphism (in particular, every homomorphism and every anti-

homomorphism) π : A → B admits a pg-inverse. Actually, the couple (π ,π) is Jordan-
triple multiplicative.

Pairs of linear maps satisfying certain properties have been previously studied in
functional analysis and algebra. For example, centralizers of C∗ -algebras [8], deriva-
tions on Banach-Jordan pairs [12], and structural transformations [25].

An element a in an associative ring R is called regular or von Neumann reg-
ular if it admits a generalized inverse b in R satisfying aba = a . The element b
is not, in general, unique. Under these hypothesis ab and ba are idempotents with
(ab)a = a(ba) = a . If the identities aba = a and bab = b hold we say that b is a nor-
malized generalized inverse of a . An element a may admit many different normalized
generalized inverses. However, every regular element a in a C∗ -algebra A admits a
unique Moore-Penrose inverse that is, a normalized generalized inverse b such that ab
and ba are projections (i.e. self-adjoint idempotents) in A (see [15, Theorems 5 and
6]). The unique Moore-Penrose inverse of a regular element a will be denoted by a† .

A linear map between C∗ -algebras admitting a pg-inverse is a weak preserver, that
is, maps regular elements to regular elements (see Lemma 1). However, we shall show
later the existence of linear maps between C∗ -algebras preserving regular elements but
not admitting a pg-inverse (see Example 1). Being a linear weak preserver between C∗ -
algebras is not a completely determining condition, actually, for an infinite-dimensional
complex separable Hilbert space H , a bijective continuous unital linear map preserving
generalized invertibility in both directions Φ : B(H) → B(H) leaves invariant the ideal
of all compact operators, and the induced linear map on the Calkin algebra is either an
automorphism or an antiautomorphism (see [24]).

In Proposition 2 we show that a linear map Φ : A → B between complex Banach
algebras with A unital, admits a normalized-pg-inverse if and only if one of the follow-
ing statements holds:

(b) There exists a Jordan homomorphism T : A → B such that Φ = RΦ(1) ◦ T and
Φ(1)B = T (1)B;

(c) There exists a Jordan homomorphism S : A → B such that Φ = LΦ(1) ◦ S and
BΦ(1) = BS(1).
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A similar conclusion remains true for a pair of bounded linear maps between general
C∗ -algebras which are Jordan-triple multiplicative (see Corollary 1).

A linear map Φ between C∗ -algebras satisfying that Φ(a†) = Φ(a)† for every
regular element a in the domain is called a strongly preserver. Strongly preservers
between C∗ -algebras and subsequent generalizations to JB∗ -triples have been studied
in [5, 6, 7]. Following the conclusions of the above paragraph we can easily find a
bounded linear map between C∗ -algebras admitting a normalized-pg-inverse which is
not a strongly preserver. In this setting, we shall show in Theorem 1 that for each pair
of linear maps between C∗ -algebras Φ,Ψ : A → B such that (Φ,Ψ) is Jordan-triple
multiplicative, the following statements are equivalent:

(a) Φ and Ψ are contractive;

(b) Ψ(a) = Φ(a∗)∗, for every a ∈ A;

(c) Φ and Ψ are triple homomorphisms.

When A is unital the above conditions are equivalent to the following:

(d) Φ and Ψ are strongly preservers,

(see [6, Theorem 3.5]). As a consequence, we prove that every contractive Jordan
homomorphism between C∗ -algebras or between JB∗ -algebras is a Jordan ∗ -homo-
morphism (cf. Corollaries 2 and 4).

Let Φ,Ψ : A → B be linear maps between complex Banach algebras. If A is unital
and (Φ,Ψ) is Jordan-triple multiplicative, then Φ is norm continuous if and only if Ψ
is norm continuous (cf. Lemma 1). In the non-unital setting this conclusion becomes a
difficult question. In section 3, we explore this problem by showing that if Φ,Ψ : c0 →
c0 are linear maps such that Φ is continuous and (Φ,Ψ) is Jordan-triple multiplicative,
then Ψ is continuous (see Proposition 3). In the non-commutative setting, we prove
that if Φ,Ψ : K(H1) → K(H2) are linear maps such that Φ is continuous and (Φ,Ψ)
is Jordan-triple multiplicative, then Φ admits a continuous normalized-pg-inverse (see
Theorem 2).

In the last section we extend the notion of being pg-invertible to the setting of
JB∗ -triples.

1.1. Preliminaries and background

We gather some basic facts, definitions, and references in this subsection. We
recall that a JB*-triple is a complex Jordan triple system (E,{., ., .,}) which is also a
Banach space satisfying the following axioms:

(a) The map L(x,x) is an hermitian operator with non-negative spectrum for all x∈E .

(b) ‖{x,x,x}‖ = ‖x‖3 for all x ∈ E .

where L(x,y)(z) := {x,y,z} , for all x,y,z in E (see [19] and [9]).
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The attractive of this definition relies, among other holomorphic properties, on the
fact that every C∗ -algebra is a JB∗ -triple with respect to

{x,y,z} := 2−1(xy∗z+ zy∗x).

The Banach space B(H,K) of all bounded linear operators between two complexHilbert
spaces H,K is also an example of a JB∗ -triple with respect to the triple product given
above, and every JB∗ -algebra is a JB∗ -triple with triple product

{a,b,c} := (a ◦ b∗)◦ c+(c◦ b∗)◦ a− (a ◦ c)◦ b∗.

In a clear analogy with von Neumann algebras, a JB∗ -triple which is also a dual
Banach space is called a JBW∗ -triple. Every JBW∗ -triple admits a (unique) isometric
predual and its triple product is separately weak∗ continuous [2]. The second dual of a
JB∗ -triple E is a JBW∗ -triple with a product extending the product of E [10].

Projections are frequently applied to produce approximation and spectral resolu-
tions of hermitian elements in von Neumann algebras. In the wider setting of JBW∗ -
triple this role is played by tripotents. We recall that an element e in a JB∗ -triple E is
called a tripotent if {e,e,e} = e . Each tripotent e in E produces a Peirce decomposi-
tion of E in the form

E = E2(e)⊕E1(e)⊕E0(e),

where for i = 0,1,2, Ei(e) is the i
2 eigenspace of L(e,e) (compare [9, §4.2.2]). The

projection of E onto Ei(e) is denoted by Pi(e) .
It is known that the Peirce space E2(e) is a JB∗ -algebra with product x ◦e y :=

{x,e,y} and involution x�e := {e,x,e} .
For additional details on JB∗ -algebras and JB∗ -triples the reader is referred to the

encyclopedic monograph [9].
For the purposes of this paper, we also consider von Neumann regular elements in

the wider setting of JB∗ -triples (see subsection 1.1 for the concrete definitions). Let a
be an element in a JB∗ -triple E . Following the standard notation in [11], [20] and [4]
we shall say that a is von Neumann regular if a ∈ Q(a)(E) = {a,E,a} . It is known
that a is von Neumann regular if, and only if, a is strongly von Neumann regular (i.e.
a ∈ Q(a)2(E)) if, and only if, there exists (a unique) b ∈ E such that Q(a)(b) = a,
Q(b)(a) = b and [Q(a),Q(b)] := Q(a)Q(b)−Q(b)Q(a) = 0 if, and only if, Q(a)(E)
is norm-closed (compare [11, Theorem 1], [20, Lemma 3.2, Corollary 3.4, Proposition
3.5, Lemma 4.1], [4, Theorem 2.3, Corollary 2.4]). The unique element b given above
is denoted by a∧ . The set of all von Neumann regular elements in E is denoted by E∧ .

Let us recall that an element a in a unital Jordan Banach algebra J is called invert-
ible whenever there exists b ∈ J satisfying a ◦ b = 1 and a2 ◦ b = a. Under the above
circumstances, the element b is unique and will be denoted by a−1 . The symbol J−1 =
inv(J) will denote the set of all invertible elements in J . It is well known in Jordan the-
ory that a is invertible if, and only if, the mapping x 	→Ua(x) := 2(a ◦ x)◦ a−a2◦ x is
invertible in L(J) , and in that case U−1

a = Ua−1 (see, for example [9, §4.1.1]).
The notion of invertibility in the Jordan setting provides an adequate point of view

to study regularity. More concretely, it is shown in [20], [21, Lemma 3.2] and [4,
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Proposition 2.2 and proof of Theorem 3.4] that an element a in a JB∗ -triple E is von
Neumann regular if and only if there exists a tripotent v ∈ E such that a is a positive
and invertible element in the JB∗ -algebra E2(e) . It is further known that a∧ is precisely
the (Jordan) inverse of a in E2(v) .

2. Pointwise-generalized-inverses

Our first lemma gathers some basic properties of pg-inverses.

LEMMA 1. Let Φ : A → B be a linear map between complex Banach algebras
admitting a pg-inverse Ψ . Then the following statements hold:

(a) Φ maps regular elements in A to regular elements in B, that is, Φ is a weak
regular preserver. More concretely, if b is a generalized inverse of a then Ψ(b) is
a generalized inverse of Φ(a);

(b) If A is unital and (Φ,Ψ) is Jordan-triple multiplicative, then ker(Φ) = ker(Ψ);

(c) If A is unital and (Φ,Ψ) is Jordan-triple multiplicative, then Φ is norm continu-
ous if and only if Ψ is norm continuous;

(d) If A and B are unital and Φ(1) ∈ B−1, then Ψ = RΦ(1)−1 ◦ LΦ(1)−1 ◦Φ is the
unique pg-inverse of Φ;

(e) Let Φ1 : C → A and Φ2 : B →C be linear maps admitting a pg-inverse, where C
is a Banach algebra, then Φ2Φ and ΦΦ1 admit a pg-inverse too. In particular, if
A and B are C∗ -algebras, then the maps x 	→ Φ(x)∗ , x 	→Φ(x∗) , and x 	→Φ(x∗)∗
admit pg-inverses.

Proof. (a) Suppose that a is a regular element in A and let b be a generalized
inverse of a . Then Φ(a) = Φ(aba) = Φ(a)Ψ(b)Φ(a) , and hence Φ(a) is regular too.

(b) The conclusion follows from the identities Φ(x)= Φ(1)Ψ(x)Φ(1) and Ψ(x)=
Ψ(1)Φ(x)Ψ(1) (x ∈ A). Statement (c) can be proved from the same identities.

(d) Suppose A and B are unital and Φ(1) ∈ B−1. Let Ψ : A → B be an arbitrary
pg-inverse of Φ . Since the identity Φ(b) = Φ(1)Ψ(b)Φ(1) holds for every b ∈ A , we
deduce that Ψ = RΦ(1)−1 ◦LΦ(1)−1 ◦Φ .

(e) Suppose that Φ1 : C → A admits a pg-inverse Ψ1 . Then

ΦΦ1(aba) = Φ(Φ1(a)Ψ1(b)Φ1(a)) = Φ(Φ1)(a)Ψ(Ψ1(b))Φ(Φ1)(a),

for all a,b ∈C . The rest is clear. �
In the hypothesis of the above lemma, let us observe that a pg-inverse of a contin-

uous linear operator Φ : A → B need not be, in general, continuous. Take, for exam-
ple, two infinite dimensional Banach algebras A and B , a continuous homomorphism
π : A → B and an unbounded linear mapping F : A → B . We define Φ,Ψ : A⊕∞ A →
B⊕∞ B , Φ(a1,a2) = (π(a1),0) and Ψ(π(a1),F(a2)) . Clearly, Ψ is unbounded and
Φ(a1,a2)Ψ(b1,b2)Φ(a1,a2) = Φ((a1,a2)(b1,b2)(a1,a2) .
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We have just seen that every linear map admitting a pg-inverse is a weak regular
preserver. The Example 1 below shows that the reciprocal implication is not always
true.

The following technical lemma isolates an useful property of linear maps admit-
ting a pg-inverse.

LEMMA 2. Let Φ : A → B be a linear map between complex Banach algebras,
where A is unital. Suppose that Ψ : A → B is a pg-inverse of Φ . Then we have

Φ = L(Φ(1)Ψ(1)) ◦Φ = R(Ψ(1)Φ(1)) ◦Φ.

Proof. Since Φ(1) = Φ(1)Ψ(1)Φ(1), we deduce that Ψ(1) is a generalized in-
verse of Φ(1) , and consequently the elements Φ(1)Ψ(1) and Ψ(1)Φ(1) are idempo-
tents. For each x ∈ A we have

2Φ(x) = Φ(11x+ x11) = Φ(1)Ψ(1)Φ(x)+ Φ(x)Ψ(1)Φ(1).

Since Φ(1)Ψ(1) and Ψ(1)Φ(1) are idempotents we deduce that Φ(1)Ψ(1)Φ(x) =
Φ(1)Ψ(1)Φ(x)Ψ(1)Φ(1) = Φ(x)Ψ(1)Φ(1), and

Φ(x) = (Φ(1)Ψ(1))Φ(x) = Φ(x)(Ψ(1)Φ(1)). �

It is not obvious that a linear map admitting a pg-inverse also admits a normalized-
pg-inverse. We can conclude now that if the domain is a unital Banach algebra then the
desired statement is always true.

PROPOSITION 1. Suppose that A is a unital Banach algebra. Let Φ : A → B a
linear map admitting a pointwise-generalized-inverse. Then Φ has a normalized-pg-
inverse. More concretely, if Ψ is pg-inverse of Φ , then the mapping Θ = LΨ(1) ◦
RΨ(1) ◦Φ is a normalized-pg-inverse of Φ .

Proof. Since Ψ is a pg-inverse of Φ, we deduce that Ψ(1) is a generalized inverse
of Φ(1) . We set Θ = LΨ(1) ◦RΨ(1) ◦Φ. By applying Lemma 2, we get

Θ(aba) = Ψ(1)Φ(aba)Ψ(1) = Ψ(1)Φ(a)Ψ(b)Φ(a)Ψ(1)

= Ψ(1)
(

Φ(a)Ψ(1)Φ(1)
)

Ψ(b)
(

Φ(1)Ψ(1)Φ(a)
)

Ψ(1)

=
(

Ψ(1)Φ(a)Ψ(1)
)(

Φ(1)Ψ(b)Φ(1)
)(

Ψ(1)Φ(a)Ψ(1)
)

= Θ(a)Φ(b)Θ(a).

On the other hand, by Lemma 2 we also have

Φ(aba) = Φ(a)Ψ(b)Φ(a) =
(

Φ(a)Ψ(1)Φ(1)
)

Ψ(b)
(

Φ(1)Ψ(1)Φ(a)
)

= Φ(a)
(

Ψ(1)
(

Φ(1)Ψ(b)Φ(1)
)

Ψ(1)
)

Φ(a) = Φ(a)
(

Ψ(1)Φ(b)Ψ(1)
)

Φ(a)

= Φ(a)Θ(b)Φ(a). �
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Let A and B be complex Banach algebras. We recall that a linear map T : A → B
is called a Jordan homomorphism if T (a2) = T (a)2 for every a ∈ A , or equivalently,
T (a◦b) = T (a)◦T (b) , where ◦ denotes the natural Jordan product defined by x◦y :=
1
2(xy+ yx) . For each a in A the mapping Ua : A → A is given by Ua(x) := 2(a ◦ x) ◦
a− a2 ◦ x = axa . It is well known that a Jordan homomorphism satisfies the identity
T (aba) = T (Ua(b)) = UT (a)(T (b)) = T (a)T (b)T (a), for all a,b ∈ A.

We can now add some additional information to the statement in the above propo-
sition. If Ψ : A → B is normalized-pg-inverse of a linear mapping Φ : A → B , by
Proposition 1, Ψ(1) is a generalized inverse of Φ(1) , and we clearly have

Ψ(x) = Ψ(1)Φ(x)Ψ(1),

for all x ∈ A .

LEMMA 3. Let Φ,Ψ : A → B be linear maps between Banach algebras, with A
unital. Suppose that (Φ,Ψ) is Jordan-triple multiplicative. Then the following state-
ments hold:

(a) The identities

Ψ(1)Φ(a) = Ψ(a)Φ(1), Φ(a)Ψ(1) = Φ(1)Ψ(a),

Φ(a)Ψ(b) = Φ(1)Ψ(a)Φ(b)Ψ(1), and Ψ(1)Φ(a)Ψ(b)Φ(1) = Ψ(a)Φ(b),

hold for all a,b ∈ A;

(b) The linear maps T = LΨ(1) ◦Φ and S = RΨ(1) ◦Φ are Jordan homomorphisms
satisfying:

Φ(a)Ψ(b) = S(a)S(b), and Ψ(a)Φ(b) = T (a)T (b),

for all a,b ∈ A.

Proof. (a) We know from previous results that Φ(a) = Φ(1)Ψ(a)Φ(1), Ψ(a) =
Ψ(1)Φ(a)Ψ(1), for all a ∈ A , and Φ(1) is a normalized generalized inverse of Ψ(1) .
We conclude from Lemma 2 that

Ψ(1)Φ(a) = Ψ(1)Φ(1)Ψ(a)Φ(1) = Ψ(a)Φ(1),

and
Φ(a)Ψ(1) = Φ(1)Ψ(a)Φ(1)Ψ(1) = Φ(1)Ψ(a),

for all a ∈ A . Consequently,

Φ(a)Ψ(b) = Φ(1)Ψ(a)Φ(1)Ψ(1)Φ(b)Ψ(1) = Φ(1)Ψ(a)Φ(b)Ψ(1).

The remaining identity follows by symmetry.
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(b) With the notation above, T (a)T (b) = Ψ(1)Φ(a)Ψ(1)Φ(b) = Ψ(a)Φ(b), and
consequently,

2T (a2) = 2Ψ(1)Φ(a2) = Ψ(1)Φ(aa1+1aa)

= Ψ(1)Φ(a)Ψ(a)Φ(1)+ Ψ(1)Φ(1)Ψ(a)Φ(a) = 2Ψ(a)Φ(a) = 2T (a)2.

The rest is left to the reader. �
The previous properties now result in an equivalence.

PROPOSITION 2. Let Φ : A → B be a linear map between complex Banach alge-
bras with A unital. Then the following statements are equivalent:

(a) Φ admits a normalized-pg-inverse;

(b) There exists a Jordan homomorphism T : A → B such that Φ = RΦ(1) ◦ T and
Φ(1)B = T (1)B;

(c) There exists a Jordan homomorphism S : A → B such that Φ = LΦ(1) ◦ S and
BΦ(1) = BS(1).

Proof. (a)⇒ (b) Suppose that Φ admits a normalized-pg-inverse Ψ : A → B . By
Lemma 3 the mapping T = LΦ(1) ◦Ψ is a Jordan homomorphism and RΦ(1) ◦T (a) =
Φ(1)Ψ(a)Φ(1) = Φ(a), or every a ∈ A . On the other hand, T (1) = Φ(1)Ψ(1) is an
idempotent in B and T (1)Φ(1) = Φ(1), which implies that T (1)B = Φ(1)B.

(b)⇒ (a) Let T : A→ B be a Jordan homomorphism such that Φ = RΦ(1)◦T and
Φ(1)B = T (1)B. Under these hypothesis, there exists c ∈ B such that T (1) = T (1)2 =
Φ(1)c. The element T (1) is an idempotent in B with T (a) ◦T (1) = T (a) , for every
a ∈ A . Thus, T (a) = T (1)T (a) = T (a)T (1) = T (1)T (a)T (1) , for every a in A . If we
set Ψ = Lc ◦T, by applying Lemma 2, we obtain

Φ(aba) = T (aba)Φ(1) = T (a)T (b)T (a)Φ(1) = T (a)T (1)T (b)T (a)Φ(1)
= T (a)[Φ(1)c]T (b)T (a)Φ(1) = Φ(a)Ψ(b)Φ(a); ∀ a,b ∈ A.

The implications (a) ⇒ (c) and (c) ⇒ (a) follow by similar arguments. �

EXAMPLE 1. [7, Remark 5.10] Let H be an infinite dimensional complex Hilbert
space, let v,w be (maximal) partial isometries such that v∗v = 1 = w∗w and vv∗ ⊥ww∗ .
We set A = C⊕∞ C, and consider the operator T : A → B(H) given by

T (λ ,μ) =
λ
2

(v+w)+
μ
2

(v−w).

It is shown in [7, Remark 5.10] that T maps extreme point of the closed unit ball of
A to extreme point of the closed unit ball of B(H), but T does not preserves Moore-
Penrose inverses strongly, that is, T (a†) = T (a)† for every Moore-Penrose invertible
element a ∈ A .
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Let us show that T is a weak preserver, that is, T maps regular elements to regular
elements. It is easy to check that an element a = (λ ,μ) ∈ A is regular if and only if
it is Moore-Penrose invertible if and only if |λ |+ |μ | = 0 (i.e. a = 0), and in such a
case a† = (λ−1,0) if μ = 0, a† = (0,μ−1) if λ = 0 and a† = a−1 otherwise. Given
λ ,μ ∈ C we have

T (a)∗T (a) =

(
λ
2

(v+w)∗ +
μ
2

(v−w)∗
)(

λ
2

(v+w)+
μ
2

(v−w)
)

=
( |λ |2

4
+

|μ |2
4

)
(v∗v+w∗w) =

( |λ |2
4

+
|μ |2
4

)
1,

which assures that T (a) admits a Moore-Penrose inverse.
We shall finally show that T does not admit a pg-inverse. Arguing by contradic-

tion, we assume that T admits a pg-inverse. Proposition 1 assures that T admits a
normalized-pg-inverse and Proposition 2(c) implies the existence of a Jordan homo-
morphism J : A → B(H) such that T (a) = T (1)J(a), for every a ∈ A . Having in mind
that T (1) = T (1,1) = v , we have T (λ ,μ) = vJ(λ ,μ), for every λ ,μ ∈ C. Therefore
J(λ ,μ) = v∗vJ(λ ,μ) = v∗T (λ ,μ) , for every λ ,μ ∈ C , and thus

λ 2 + μ2

2
1 = v∗

(λ 2 + μ2

2
v+

λ 2− μ2

2
w
)

= v∗T (λ 2,μ2) = v∗T ((λ ,μ)2)

= (v∗T (λ ,μ))(v∗T (λ ,μ))

= v∗
(λ + μ

2
v+

λ − μ
2

w
)
v∗
(λ + μ

2
v+

λ − μ
2

w
)

=
λ + μ

2
1

λ + μ
2

1 =
(λ + μ)2

4
1,

for every λ ,μ ∈ C , which is impossible.

It is known that we can find an infinite dimensional complex Banach algebra A
and an unbounded homomorphism π : A → C . Clearly π admits a normalized-pg-
inverse but it is not continuous. However, every homomorphism π from an arbitrary
complex Banach algebra A into a C∗ -algebra B whose image is a ∗ -subalgebra of B
is automatically continuous (see [29, Theorem 4.1.20]).

In Proposition 2 we can relax the hypothesis of A being unital at the cost of as-
suming the continuity of Φ and Ψ . Henceforth, the bidual of a Banach space X will
be denoted by X∗∗ .

LEMMA 4. Let Φ,Ψ : A → B be continuous linear maps between C∗ -algebras.
Suppose that Ψ is a (normalized-)pg-inverse of Φ . Then Ψ∗∗ : A∗∗ → B∗∗ is a (norma-
lized-)pg-inverse of Φ∗∗ .

Proof. The maps Φ∗∗,Ψ∗∗ : A∗∗ →B∗∗ are weak∗ -to-weak∗ continuous operators
between von Neumann algebras. We recall that, by Sakai’s theorem (see [30, Theo-
rem 1.7.8]), the products of A∗∗ and B∗∗ are separately weak∗ -continuous. Let us fix
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a,b,c ∈ A∗∗ . By Goldstine’s theorem we can find three bounded nets (aλ ) , (bμ) and
(cδ ) in A converging in the weak∗ -topology of A∗∗ to a,b and c , respectively. By
hypothesis,

Φ(aλ bμcδ + cδ aλ bμ) = Φ(aλ )Ψ(bμ)Φ(cδ )+ Φ(cδ )Φ(aλ )Ψ(bμ),

for every λ ,μ and δ . Taking weak∗ -limits in λ , μ and δ we get

Φ∗∗(abc+ cba) = Φ∗∗(a)Ψ∗∗(b)Φ∗∗(c)+ Φ∗∗(c)Φ∗∗(a)Ψ∗∗(b).

Combining Proposition 2 with Lemma 4 we get the following.

COROLLARY 1. Let Φ : A → B be a continuous linear operator between C∗ -
algebras. Then the following statements are equivalent:

(a) Φ admits a continuous normalized-pg-inverse;

(b) There exists a continuous Jordan homomorphism T : A∗∗ → B∗∗ such that Φ =
RΦ∗∗(1) ◦T and Φ∗∗(1)B∗∗ = T (1)B∗∗;

(c) There exists a continuous Jordan homomorphism S : A∗∗ → B∗∗ such that Φ =
LΦ∗∗(1) ◦ S and B∗∗Φ∗∗(1) = B∗∗S(1).

Let A and B be C∗ -algebras. We recall that a linear mapping T : A → B strongly
preserves Moore-Penrose invertibility (respectively, invertibility) if for each Moore-
Penrose invertible (respectively, invertible) element a∈ A, the element T (a) is Moore-
Penrose invertible (respectively, invertible) and we have T (a†) = T (a)† (respectively,
T (a−1) = T (a)−1 ). Hua’s theorem (see [18]) affirms that every unital additive map
between skew fields that strongly preserves invertibility is either an isomorphism or
an anti-isomorphism. Suppose A is unital. In this case M. Burgos, A. C. Márquez-
Garcı́a and A. Morales-Campoy establish in [6, Theorem 3.5] that a linear map T :
A → B strongly preserves Moore-Penrose invertibility if, and only if, T is a Jordan ∗ -
homomorphism S multiplied by a partial isometry e in B such that T (a) = ee∗T (a)e∗e
for all a ∈ A , if and only if, T is a triple homomorphism (i.e. T preserves triple
products of the form {a,b,c} := 1

2(ab∗c+cb∗a)). The problem for linear maps strongly
preserving Moore-Penrose invertibility between general C∗ -algebras remains open.

Let T : A → B be a triple homomorphism between C∗ -algebras. In this case

T (aba) = T ({a,b∗,a}) = {T (a),T (b∗),T (a)} = T (a)T (b∗)∗T (a),

and

T (a∗)∗T (b)T (a∗)∗ = {T (a∗)∗,T (b)∗,T (a∗)∗} = {T (a∗),T (b),T (a∗)}∗
= T ({a∗,b,a∗})∗ = T (a∗b∗a∗)∗ = T ((aba)∗)∗,

for all a,b ∈ A. These identities show that x 	→ T (x∗)∗ is a normalized-pg-inverse of
T . So, when A is unital, it follows from the results by Burgos, Márquez-Garcı́a and
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Morales-Campoy that every linear map T : A → B strongly preserving Moore-Penrose
invertibility admits a normalized-pg-inverse. However, the class of linear maps admit-
ting a normalized-pg-inverse is strictly bigger than the class of linear maps strongly
preserving Moore-Penrose invertibility. For example, let z be an invertible element in
B(H) with z∗ = z , the mapping T : B(H)→ B(H), T (x) = zxz−1 is a homomorphism,
and hence a Jordan homomorphism and does not strongly preserve Moore-Penrose in-
vertibility.

We recall that an element e in a C∗ -algebra A is a partial isometry if ee∗e = e .
Let us observe that a C∗ -algebra might not contain a single partial isometry. However,
a famous result due to Kadison shows that the extreme points of the closed unit ball
of a unital C∗ -algebra A are precisely the maximal partial isometries in A (see [30,
Proposition 1.6.1 and Theorem 1.6.4]). Therefore, every von Neumann algebra contains
an abundant set of partial isometries. When a C∗ -algebra A is a regarded as a JB∗ -triple
with respect to the product given by {a,b,c}= 1

2 (ab∗c+ cb∗a) , partial isometries in A
are exactly the fixed points of this triple product and are called tripotents.

Suppose that e and v are non-zero partial isometries in a C∗ -algebra A such that
eve = e and v = vev . Then e = (ee∗)v∗(e∗e) and v = (vv∗)e∗(v∗v) . This implies, in the
terminology of [13], that P2(e)(v∗) = (ee∗)v∗(e∗e) = e . Since v is a norm-one element,
we can conclude from [13, Lemma 1.6 or Corollary 1.7] that v∗ = e+(1− ee∗)v∗(1−
e∗e). However the identity v = vev implies that v = e∗ .

THEOREM 1. Let Φ,Ψ : A → B be linear maps between C∗ -algebras. Suppose
that (Φ,Ψ) is Jordan-triple multiplicative. Then the following are equivalent:

(a) Φ and Ψ are contractive;

(b) Ψ(a) = Φ(a∗)∗, for every a ∈ A;

(c) Φ and Ψ are triple homomorphisms.

Proof. (a) ⇒ (b) Clearly Φ∗∗ and Ψ∗∗ are contractive operators and by Lemma
4, Ψ∗∗ is a normalized-pg-inverse of Φ∗∗ . Let e be a partial isometry in A∗∗ . Since

Φ∗∗(e) = Φ∗∗(e)Ψ∗∗(e∗)Φ∗∗(e), and Ψ∗∗(e∗) = Ψ∗∗(e∗)Φ∗∗(e)Ψ∗∗(e∗), (1)

we deduce that Ψ∗∗(e∗) is a generalized inverse of Φ∗∗(e). Applying that Φ∗∗ and Ψ∗∗
are contractions, it follows that Φ∗∗(e) and Ψ∗∗(e) lie in the closed unit ball of B∗∗ and
admit normalized generalized inverses in the closed unit ball of B∗∗. Corollary 3.6 in [4]
implies that Φ∗∗(e) and Ψ∗∗(e) are partial isometries in B∗∗ . We can now deduce from
(1) and the comments preceding this theorem that Ψ∗∗(e∗) = Φ∗∗(e)∗. In particular,
Ψ(p) = Φ(p)∗, for every projection p ∈ A∗∗. Since in a von Neumann algebra every
self-adjoint element can be approximated in norm by a finite linear combination of
mutually orthogonal projections, we get Ψ∗∗(a) = Φ∗∗(a)∗, for every a ∈ A∗∗

sa , and by
linearity we have Φ∗∗(a)∗ = Ψ∗∗(a∗), for every a ∈ A∗∗ .
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(b) ⇒ (c) Let us assume that Ψ(a∗) = Φ(a)∗, for every a ∈ A. In this case

Φ{abc}=
1
2

Φ(ab∗c+ cb∗a) =
1
2
(Φ(a)Ψ(b∗)Φ(c)+ Φ(c)Ψ(b∗)Φ(a))

=
1
2
(Φ(a)Φ(b)∗Φ(c)+ Φ(c)Φ(b)∗Φ(a)) = {Φ(a),Φ(b),Φ(c)},

which shows that Φ (and hence Ψ) is a triple homomorphism.
The implication (c) ⇒ (a) follows form the fact that triple homomorphisms are

contractive (see, for example, [14, Proposition 3.4] or [1, Lemma 1(a)]). �
The fact that every contractive representation of a C∗ -algebra (equivalently, every

contractive homomorphism between C∗ -algebras) is a ∗ -homomorphism seems to be
part of the folklore in C∗ -algebra theory (see, for example, the last lines in the proof
of [3, Theorem 1.7]). Actually, every contractive Jordan homomorphism between C∗ -
algebras is a Jordan ∗ -homomorphism. However, we do not know an explicit reference
for this fact. We present next an explicit argument derived from our results. A gen-
eralization for Jordan homomorphisms between JB∗ -algebras will be established in
Corollary 4.

COROLLARY 2. Let A and B be C∗ -algebras and let Φ : A → B be a Jordan
homomorphism. Then the following statements are equivalent:

(a) Φ is a contraction;

(b) Φ is a symmetric map (i.e. Φ is a Jordan ∗ -homomorphism);

(c) Φ is a triple homomorphism.

If A is unital, then the above statements are also equivalent to the following:

(d) Φ strongly preserves regularity.

Proof. The implication (a) ⇒ (b) is given by Theorem 1. It is known that every
Jordan ∗ -homomorphism is a triple homomorphism, then (b) implies (c) . Every triple
homomorphism is continuous and contractive (see [1, Lemma 1(a)]), and hence (c)⇒
(a) .

The final statement follows from [6, Theorem 3.5]. �
It seems appropriate to clarify the connections between Corollary 2 and previ-

ous results. It is known that every triple homomorphism between general C∗ -algebras
strongly preserves regularity (compare [6] and [7]). Actually, if A and B are C∗ -
algebras with A unital, and T : A → B is a linear map, then by [6, Theorem 3.5], T
strongly preserves regularity if, and only if, T is a triple homomorphism. So, if A is
unital the equivalence (c) ⇔ (d) in Corollary 2 can be established under weaker hy-
pothesis. For a non-unital C∗ -algebra A the continuity of a linear mapping T : A → B
strongly preserving regularity does not follow automatically. For example, by [7, Re-
mark 4.2], we know the existence of an unbounded linear mapping T : c0 → c0 which
strongly preserves regularity. According to our knowledge, it is an open problem
whether every continuous linear map strongly preserving regularity between general
C∗ -algebras is a triple homomorphism.
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3. Orthogonality preservers and non-unital versions

Let A be a C∗ -algebra. We recall that an approximate unit of A is a net (uλ ) such
that 0 � uλ � 1 for every λ , uλ � uμ for every λ � μ , and

lim
λ

‖x− xuλ‖ = lim
λ

‖x−uλx‖ = lim
λ

‖x−uλxuλ‖ = 0,

for every x ∈ A . Every C∗ -algebra admits an approximate unit (see [28, Theorem
3.1.1]).

Let (uλ ) be an approximate unit in a C∗ -algebra A , and let us regard A as a C∗ -
subalgebra of A∗∗ . Having in mind that a functional φ in A∗ is positive if and only if
‖φ‖ = limλ φ(uλ ) (see [28, Theorem 3.3.3]), we can easily see that (uλ ) → 1 in the
weak∗ topology of A∗∗ .

LEMMA 5. Let Φ,Ψ : A → B be linear maps between C∗ -algebras. Suppose that
Φ is continuous and (Φ,Ψ) is Jordan-triple multiplicative. Then the following state-
ments hold:

(a) Φ∗∗(abc+ cba)= Φ∗∗(a)Ψ(b)Φ∗∗(c)+Φ∗∗(c)Ψ(b)Φ∗∗(a) for every a,c in A∗∗ ,
and every b in A;

(b) Φ(b) = Φ∗∗(1)Ψ(b)Φ∗∗(1) for every b in A;

(c) The mapping T : A → B∗∗ , T (x) = Φ∗∗(1)Ψ(x) satisfies T (a)T (b) = Φ(a)Ψ(b) ,
and Φ(a) = T (a)Φ∗∗(1) , for every a,b ∈ A;

(d) The mapping S : A → B∗∗ , S(x) = Ψ(x)Φ∗∗(1) satisfies S(a)S(b) = Ψ(a)Φ(b) ,
and Φ(a) = Φ∗∗(1)S(a) , for every a,b ∈ A;

(e) Suppose that p and q are projections in A with pq = 0 , then T (p)T (q)= S(p)S(q)
= 0 , where T and S are the maps defined in previous items.

Proof. (a) Applying that Φ is continuous, the bitransposed map Φ∗∗ : A∗∗ → B∗∗
is weak∗ -continuous. Let a and c be elements in A∗∗ , and let b ∈ A . By Golds-
tine’s theorem we can find bounded nets (aλ ) and (cμ) in A converging, in the weak∗
topology of A∗∗ , to a and c , respectively. By hypothesis

Φ(aλ bcμ + cμbaλ ) = Φ(aλ )Ψ(b)Φ(cμ)+ Φ(cμ)Ψ(b)Φ(aλ ),

for every λ ,μ . Since the product of A∗∗ is separately weak∗ continuous, the weak∗ -
continuity of Φ∗∗ implies that

Φ∗∗(abc+ cba) = Φ∗∗(a)Ψ(b)Φ∗∗(c)+ Φ∗∗(c)Ψ(b)Φ∗∗(a).

(b) Follows from (a) with a = c = 1.
(c) By definition and (b) we have

T (a)T (b) = Φ∗∗(1)Ψ(a)Φ∗∗(1)Ψ(b) = Φ(a)Ψ(b),



382 A. B. ALI ESSALEH, A. M. PERALTA AND M. I. RAMÍREZ

and T (a)Φ∗∗(1) = Φ∗∗(1)Ψ(a)Φ∗∗(1) = Φ(a) , for every a,b∈ A . The proof of (d) is
very similar.

(e) Let us take two projections p,q ∈ A with pq = 0. By definition and (b) or
(c) we have

T (p)T (q) = Φ∗∗(1)Ψ(p)Φ∗∗(1)Ψ(q) = Φ(p)Ψ(q)
= Φ(p)Ψ(q)Φ(q)Ψ(q) = (Φ(pqq+qqp)−Φ(q)Ψ(q)Φ(p))Ψ(q)
= −Φ(q)Ψ(q)Φ(p)Ψ(q) = −Φ(q)Ψ(qpq) = 0. �

Let us explore some of the questions posed before. In our first proposition we shall
prove that the normalized-pg-inverse of a continuous linear map on c0 is automatically
continuous.

PROPOSITION 3. Let Φ,Ψ : c0 → c0 be linear maps such that Φ is continuous
and (Φ,Ψ) is Jordan-triple multiplicative. Then Ψ is continuous.

Proof. We can assume that Φ,Ψ = 0. Let (en) be the canonical basis of c0 . Ap-
plying the previous Lemma 5(c) , the mapping T : c0 → c∗∗0 = �∞ , T (x) = Φ∗∗(1)Ψ(x)
satisfies T (a)T (b) = Φ(a)Ψ(b) , and Φ(a) = T (a)Φ∗∗(1) , for every a,b ∈ c0 . By the
just quoted lemma, T (p)T (q) = 0 for every pair of projections p,q ∈ c0 with pq = 0,
and consequently,

Φ(p)Φ(q) = T (p)Φ∗∗(1)T (q)Φ∗∗(1) = T (p)T (q)Φ∗∗(1)Φ∗∗(1) = 0.

We can therefore conclude that Φ(en)Φ(em) = 0 for every n = m in N . Since Φ(en) =
Φ(en)Ψ(en)Φ(en) and Ψ(en) = Ψ(en)Φ(en)Ψ(en) , we deduce that Φ(en) and Ψ(en)
both are regular elements in c0 and Φ(en) is a normalized generalized inverse of
Ψ(en) . Therefore, for each natural n with Φ(en) = 0 there exists a finite subset
supp(Φ(en))={kn

1, . . . ,k
n
mn
}⊂N and non-zero complex numbers {λ n

j : j∈supp(Φ(en))}
with the following properties: |λ n

j |� ‖Φ‖ for every j ∈ supp(Φ(en)) and every natural
n ,

supp(Φ(en))∩ supp(Φ(em)) = /0, for all n = m,

and

Φ(en) = ∑
j∈supp(Φ(en))

λ n
j e j, and Ψ(en) = ∑

j∈supp(Φ(en))

1
λ n

j
e j, ∀n ∈ N.

Let us observe that ‖Ψ(en)‖ = max{ 1
|λ n

j | : j ∈ supp(Φ(en))} . To simplify the

notation, let j(n) ∈ supp(Φ(en)) be an element satisfying 1
|λ n

j(n)|
= ‖Ψ(en)‖ .

We claim that the set {‖Ψ(en)‖ : n∈N} must be bounded. Otherwise, we can find
a subsequence (‖Ψ(eσ(n))‖) satisfying 1

|λ σ(n)
j(σ(n)) |

= ‖Ψ(eσ(n))‖ > n for every natural n .

Let π2 : c0 → c0 be the natural projection of c0 onto the C∗ -subalgebra generated by
the elements {e j(σ(n)) : n ∈ N} , and let ι : c0 = span{eσ(n) : n ∈ N} → c0 denote the
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natural inclusion. The maps Φ1 = π2Φι,Ψ1 = π2Ψι : c0 → c0 are linear maps, Ψ
is a normalized-pg-inverse of Φ, the latter is continuous, Ψ1(eσ(n)) = 1

λ σ(n)
j(σ(n))

e j(σ(n)) ,

and Φ1(eσ(n)) = λ σ(n)
j(σ(n))e j(σ(n)) . The element a = ∑

m∈N

λ σ(m)
j(σ(m))e j(σ(m)) lies in c0 and

‖Ψ1(a)‖ < ∞ . Therefore Ψ1(a) = ∑
m∈N

μme j(σ(m)) for a unique sequence (μm) → 0.

Let us write j(σ(n)) = j1(n) . Under these conditions

λ σ(n)
j1(n)μne j1(n) = Ψ1(a)Φ1(e j1(n)) = Ψ1(a)Φ1(e j1(n))Ψ1(e j1(n))Φ1(e j1(n))

= (Ψ1(e j1(n)e j1(n)a+ae j1(n)e j1(n))−Ψ1(e j1(n))Φ1(e j1(n))Ψ1(a))Φ1(e j1(n))

= Ψ1(2λ σ(n)
j1(n)e j1(n))Φ1(e j1(n))−Ψ1(e j1(n))Φ1(e j1(n))Ψ1(a)Φ1(e j1(n))

= 2λ σ(n)
j1(n)Ψ1(e j1(n))Φ1(e j1(n))−Ψ1(e j1(n))Φ1(e j1(n)ae j1(n))

= 2λ σ(n)
j1(n)e j1(n)−Ψ1(e j1(n))Φ1(λ

σ(n)
j1(n)e j1(n)) = λ σ(n)

j1(n)e j1(n),

which proves that μn = 1 for all n, leading to a contradiction.
Let M be a positive bound of the set {‖Ψ(en)‖ : n ∈ N} . For each natural n , we

set qn := ∑n
k=1 ek . Clearly, (qn) is an approximate unit in c0 . Since for each n = m we

have Φ(en)Φ(em) = 0 (i.e., supp(Φ(en))∩ supp(Φ(em)) = /0), and, for each natural j ,
Φ(e j) is a normalized generalized inverse of Ψ(e j) , we deduce that Ψ(en)Ψ(em) = 0
(i.e., supp(Ψ(en))∩ supp(Ψ(em)) = /0) for every n = m . Consequently, for each finite
subset F ⊆ N we have∥∥∥∥∥Ψ

(
∑
j∈F

e j

)∥∥∥∥∥= max
{∥∥Ψ(e j)

∥∥ : j ∈ F
}

� M, (2)

and consequently ‖Ψ(qn)‖ � M , for every natural n .
We shall prove next that for each x ∈ c0 we have

lim
n

(Ψ(x−qnx))n = 0.

Indeed, let us take y,z,w ∈ c0 such that x = yzw (in the case of c0 the existence of such
y,z,w is almost obvious but we can always allude to Cohen’s factorization theorem [16,
Theorem VIII.32.22]). By assumptions

Ψ(x−qnx) = Ψ(y(1−qn)zw) = Ψ(y)Φ(z−qnz)Ψ(w).

Since Φ is continuous and ((1−qn)z) tends in norm to 0, we deduce that limn(Ψ(x−
qnx))n = 0 as we claimed.

Finally, for an arbitrary x in the closed unit ball of c0 we have

Ψ(qnx) = Ψ(qnxqn) = Ψ(qn)Φ(x)Ψ(qn),

and hence ‖Ψ(qnx)‖ � M2 ‖Φ‖ . The norm convergence of Ψ(qnx) to Ψ(x) , assures
that ‖Ψ(x)‖ � M2 ‖Φ‖ . The arbitrariness of x proves the continuity of Ψ . �
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The previous proposition remains valid if c0 is replaced with c0(Γ) .
Our next goal is to extend the previous Proposition 3 to linear maps on K(H) . For

that purpose we isolate first a technical result which is implicit in the proof of the just
commented proposition.

LEMMA 6. Let Φ,Ψ : A → B be linear maps between C∗ -algebras such that Φ
is continuous and (Φ,Ψ) is Jordan-triple multiplicative. Then the following are equiv-
alent:

(1) Φ admits a continuous normalized-pg-inverse Ψ : A → B∗∗ ;

(2) Φ∗∗(1) is a regular element in B∗∗.

Proof. (1)⇒ (2) Suppose that Φ admits a continuous normalized-pg-inverse Ψ :
A→ B. By Lemma 4, the mapping Ψ∗∗ : A∗∗ → B∗∗ is a normalized-pg-inverse of Φ∗∗.
In particular Φ∗∗(1) = Φ∗∗(1)Ψ∗∗(1)Φ∗∗(1).

(2) ⇒ (1) Let v ∈ B∗∗ such that Φ∗∗(1) = Φ∗∗(1)vΦ∗∗(1). The mapping Ψ′ =
Lv ◦Rv ◦Φ : A → B∗∗ is continuous, and by Lemma 5 (b), we have

Φ(b) = Φ∗∗(1)Ψ(b)Φ∗∗(1), ∀ b ∈ A,

and consequently

Φ(b)vΦ∗∗(1) = Φ∗∗(1)Ψ(b)Φ∗∗(1)vΦ∗∗(1) = Φ(b),

and
Φ∗∗(1)vΦ(b) = Φ∗∗(1)vΦ∗∗(1)Ψ(b)Φ∗∗(1) = Φ(b), ∀ b ∈ A

Now, for arbitrary a, b ∈ A, we get:

Φ(aba) = Φ(a)Ψ(b)Φ(a) = Φ(a)vΦ∗∗(1)Ψ(b)Φ∗∗(1)vΦ(a)
= Φ(a)vΦ(b)vΦ(a) = Φ(a)Ψ′(b)Φ(a)

and

Ψ′(aba) = vΦ(aba)v = vΦ(a)Ψ(b)Φ(a)v
= vΦ(a)vΦ∗∗(1)Ψ(b)Φ∗∗(1)vΦ(a)v = Ψ′(a)Φ(b)Ψ′(a). �

We can now extend our study to linear maps between K(H) spaces.

THEOREM 2. Let Φ,Ψ : K(H1) → K(H2) be linear maps such that Φ is continu-
ous and (Φ,Ψ) is Jordan-triplemultiplicative. Then Φ admits a continuous normalized-
pg-inverse.

Proof. We may assume that H1 is infinite dimensional.
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We shall first prove that for every infinite family {p j : j ∈ Λ} of mutually orthog-
onal projections in K(H1) the set

{Ψ(p j) : j ∈ Λ} is bounded. (3)

Arguing by contradiction, we assume that the above set is unbounded. Then we can find
a countable subset Λ0 in Λ such that ‖Ψ(pn)‖ � n3, for every natural n . Since the

projections in the sequence (pn) are mutually orthogonal, the element x0 =
∞

∑
k=1

1
n

pn ∈
K(H1), and by hypothesis,

Ψ(x0)Φ(pn)Ψ(x0) = Ψ(x0pnx0) =
1
n2 Ψ(pn),

and hence

n =
1
n2 n3 <

∥∥∥∥ 1
n2 Ψ(pn)

∥∥∥∥� ‖Ψ(x0)‖2 ‖Φ(pn)‖ � ‖Ψ(x0)‖2 ‖Φ‖ ,

for every natural n , which is impossible.
Now, let {p j : j ∈ Λ} be a maximal set of mutually orthogonal (minimal) pro-

jections in K(H1) . By (3) there exists a positive R such that ‖Ψ(p j)‖ � R , for every
j ∈ Λ . Let F (Λ) denote the collection of all finite subsets of Λ , ordered by inclusion.
For each F ∈ F (Λ) we set qF := ∑

j∈F
p j ∈ K(H1). It is known that (qF )

F∈F (Λ) ) is an

approximate unit in K(H1) . Clearly for each F ∈ F (Λ) we have ‖Ψ(qF )‖ � (�F) R.
We shall now prove that

{Ψ(qF ) : F ∈ F (Λ)} is bounded. (4)

Suppose, contrary to our goal, that the above set is unbounded.
Now, we shall establish the following property: for each F ∈ F (Λ) , and each

positive δ there exists G ∈ F (Λ) with G∩F = /0 and ‖Ψ(qG)‖ > δ . Indeed, if that
is not the case, there would exist F ∈ F (Λ) and δ > 0 such that ‖Ψ(qG)‖ � δ , for
every G ∈ F (Λ) with G∩F = /0 . In such a case, for each H ∈ F (Λ) we have

‖Ψ(qH )‖ � ‖Ψ(q(H∩F) )‖+‖Ψ(q(H∩Fc) )‖ � (�F) R+ δ ,

which contradicts the unboundedness of the set {Ψ(qF ) : F ∈ F (Λ)} .
Applying the above property, we find a sequence (Fn) ⊂ F (Λ) with Fn∩Fm = /0

for every n = m and ‖Ψ(qFn
)‖ > n3, for every natural n . We take y0 :=

∞

∑
n=1

1
n
qFn

∈
K(H1) . By hypothesis, Ψ(y0)Φ(qFn

)Ψ(y0) = Ψ(y0qFn
y0) = 1

n2 Ψ(qFn
), and hence

n =
1
n2 n3 < ‖Ψ(y0)Φ(qFn

)Ψ(y0)‖ � ‖Ψ(y0)‖2‖Φ‖,

for every natural n , leading to the desired contradiction. This concludes the proof of
(4).
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Now, by (4) the net (Ψ(qF ))
F∈F (Λ) is bounded in K(H2) ⊆ B(H2), and by the

weak∗ -compactness of the closed unit ball of the latter space, we can find a subnet
(Ψ(q j)) j∈Λ′ converging to some w ∈ B(H2) in the weak∗ topology of this space. We
observe that (qF )

F∈F (Λ) → 1 in the weak∗ topology of B(H1) , and by the weak∗ con-
tinuity of Φ∗∗ we also have (Φ(q j)) j∈Λ′ → Φ∗∗(1) in the weak∗ topology of B(H2) .
Lemma 5 implies that

Φ(q j) = Φ∗∗(1)Ψ(q j)Φ∗∗(1)

for every j ∈ Λ′ . Taking weak∗ limits in the above equality we get

Φ∗∗(1) = Φ∗∗(1)wΦ∗∗(1),

and hence Φ∗∗(1) is regular in B(H2) .
Finally, an application of Lemma 6 gives the desired statement. �
We can now obtain an improved version of Corollary 1 for linear maps between

K(H) spaces.

COROLLARY 3. Let Φ,ϒ : K(H1) → K(H2) be linear maps such that Φ is con-
tinuous and (Φ,ϒ) is Jordan-triple multiplicative. Then the following statements hold:

(a) There exists a continuous Jordan homomorphism T : K(H1) → B(H2) such that
Φ(a) = T (a)Φ∗∗(1) , for every a ∈ K(H1) , and Φ∗∗(1)B(H2) = T (1)B(H2);

(b) There exists a continuous Jordan homomorphism S : K(H1) → B(H2) such that
Φ(a) = Φ∗∗(1)S(a), for every a ∈ K(H1) , and B(H2)Φ∗∗(1) = B(H2)S(1).

Proof. By Theorem 2 Φ admits a continuous normalized-pg-inverse Ψ : K(H1)→
B(H2) . Applying Lemma 5 we deduce that the mappings T,S : K(H1) → B(H2) ,
T (a) = Φ∗∗(1)Ψ(a) and S(a) = Ψ(a)Φ∗∗(1) (a ∈ K(H1)), are linear and continuous
and the identities

T (a)T (b) = Φ(a)Ψ(b), Φ(a) = T (a)Φ∗∗(1),

and
S(a)S(b) = Ψ(a)Φ(b), Φ(a) = Φ∗∗(1)T (a),

hold for every a,b ∈ K(H1) .
Let (uλ ) be an approximate unit in K(H1) . Applying the separate weak∗ conti-

nuity of the product of B(H2) we have

Ψ(a)Φ∗∗(1)Ψ(a) = weak∗- lim
λ

Ψ(a)Φ(uλ )Ψ(a)

= weak∗- lim
λ

Ψ(auλa) = Ψ∗∗(a2) = Ψ(a2),

for all a ∈ K(H1) . Finally, by Lemma 5 we get

T (a)2 = Φ∗∗(1)Ψ(a)Φ∗∗(1)Ψ(a) = Φ∗∗(1)Ψ(a2) = T (a2),

for all a in K(H1) . The statement for S follows by similar arguments. �
Let Φ : K(H1) → K(H2) be a bounded linear map. We do not know if any

normalized-pg-inverse of Φ is automatically continuous.
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4. Pointwise-generalized-inverses of linear maps between JB∗ -triples

In this section we explore a version of pointwise-generalized inverse in the setting
of JB∗ -triples.

DEFINITION 2. Let Φ : E → F be a linear mapping between JB∗ -triples. We
shall say that T admits a pointwise-generalized-inverse (pg-inverse) if there exists a
linear mapping Ψ : E → F satisfying

Φ{a,b,c} = {Φ(a),Ψ(b),Φ(c)},

for every a,b,c∈E . If Φ also is a pg-inverse of Ψ we shall say that Ψ is a normalized-
pg-inverse of Φ or that (Φ,Ψ) is JB∗ -triple multiplicative.

Let Φ,Ψ : A→ B be linear maps between C∗ -algebras. The pair (Φ,Ψ) is Jordan-
triple multiplicative if Φ(aba) = Φ(a)Ψ(b)Φ(a) and Ψ(aba) = Ψ(a)Φ(b)Ψ(a) . C∗ -
algebras can be regarded as JB∗ -triples and in such a case, the couple (Φ,Ψ) is JB∗ -
triple multiplicative if Φ(ab∗a) = Φ(a)Ψ(b)∗Φ(a) and Ψ(ab∗a) = Ψ(a)Φ(b)∗Ψ(a) .
We should remark, that these two notions are, in principle, independent.

Every triple homomorphism between JB∗ -triples is a normalized-pg-inverse of
itself. The next lemma gathers some basic properties of linear maps between JB∗ -
triples admitting a pg-inverse.

LEMMA 7. Let Φ : E → F be a linear map between JB∗ -triples admitting a pg-
inverse Ψ . Then the following statements hold:

(a) Φ maps von Neumann regular elements in E to von Neumann regular elements in
F , that is, Φ is a weak regular preserver, More concretely, if b is a generalized
inverse of a then Ψ(b) is a generalized inverse of Φ(a);

(b) Let Φ1 : A → E and Φ2 : F → B be linear maps between JB∗ -triples admitting a
pg-inverse, then Φ2Φ and ΦΦ1 admit a pg-inverse too;

(c) If Φ and Ψ are continuous then Ψ∗∗ : E∗∗ → F∗∗ is a pg-inverse of Φ∗∗ .

Proof. (a) If a is von Neumann regular the there exists b∈E such that Q(a)(b)=
{a,b,a} = a . By hypothesis, Φ(a) = Φ{a,b,a} = {Φ(a),Ψ(b),Φ(a)} , which shows
that Φ(a) is von Neumann regular.

(b) Under these hypothesis, let Ψ1 be a pg-inverse of Φ1 . Then

Φ1Φ{a,b,a} = Φ1{Φ(a),Ψ(b),Φ(a)} = {Φ1Φ(a),Ψ1Ψ(b),Φ1Φ(a)},

which shows that Ψ1Ψ is a pg-inverse of Φ1Φ . The rest of the statement follows from
similar arguments.

(c) Assuming that Φ and Ψ are continuous, the maps Φ∗∗ , Ψ∗∗ are weak∗ -
continuous. The bidual E∗∗ of E is a JBW∗ -triple, and hence its triple product is
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separately weak∗ (see [2]). Then we can repeat the arguments in the proof of Lemma
4 to conclude, via Goldstine’s theorem, that

Φ∗∗{a,b,c} = {Φ∗∗(a),Ψ∗∗(b),Φ∗∗(c)},

for every a,b,c ∈ E∗∗ . �
Let us observe that the arguments in the proof of Theorem 1 are obtained with

geometric tools which are not merely restricted to the setting of C∗ -algebras. Our next
result is a generalization of the just commented theorem, to clarify the parallelism, we
recall that, by Kadison’s theorem ([30, Proposition 1.6.1 and Theorem 1.6.4]), a C∗ -
algebra A is unital if and only if its closed unit ball contains extreme points.

THEOREM 3. Let Φ,Ψ : E → F be linear maps between JB∗ -triples. Suppose
that (Φ,Ψ) is JB∗ -triple multiplicative. Then the following are equivalent:

(a) Φ and Ψ are contractive;

(b) Ψ = Φ is a triple homomorphism.

If the closed unit ball of E contains extreme points, then the above statements are also
equivalent to the following:

(c) Φ strongly preserves regularity, that is, Φ(x∧) = Φ(x)∧ for every x ∈ E∧ .

Proof. (a) ⇒ (b) By Lemma 7(c) , Ψ∗∗ is a normalized-pg-inverse of Φ∗∗ . Let
e be a tripotent in E∗∗ . The maps Ψ∗∗ and Φ∗∗ are contractive, and by Lemma 7(a) ,
Ψ∗∗(e) is a generalized inverse of Φ∗∗(e) and both lie in the closed unit ball of F∗∗ .
Corollary 3.6 in [4] assures that Φ∗∗(e) and Ψ∗∗(e) both are tripotents in F∗∗ . Let us
assume that Φ∗∗(e) (equivalently, Ψ∗∗(e)) is non-zero. The identity

Φ∗∗(e) = {Φ∗∗(e),Ψ∗∗(e),Φ∗∗(e)} (5)

implies that P2(Φ∗∗(e))(Ψ∗∗(e)) = Φ∗∗(e) . Lemma 1.6 in [13] assures that

Ψ∗∗(e) = Φ∗∗(e)+P0(Φ∗∗(e))(Ψ∗∗(e))

and similarly
Φ∗∗(e) = Ψ∗∗(e)+P0(Ψ∗∗(e))(Φ∗∗(e)).

We deduce from (5) that Φ∗∗(e) = Ψ∗∗(e) , for every tripotent e ∈ E∗∗ .
In a JBW∗ -triple every element can be approximated in norm by a finite linear

combination of mutually orthogonal tripotents (see [17, Lemma 3.11]). We can there-
fore guarantee that Φ∗∗ = Ψ∗∗ is a triple homomorphism.

The implication (b) ⇒ (a) is established in [1, Lemma 1(a)].
The final statement follows from [7, Theorem 3.2]. �
The next corollary, which is an extension of Corollary 2 for JB∗ -algebras, is prob-

ably part of the folklore in JB∗ -algebra theory but we do not know an explicit reference.
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COROLLARY 4. Let A and B be JB∗ -algebras and let Φ : A → B be a Jordan
homomorphism. Then the following statements are equivalent:

(a) Φ is a contraction;

(b) Φ is a symmetric map (i.e. Φ is a Jordan ∗ -homomorphism);

(c) Φ is a triple homomorphism.

If the closed unit ball of A contains extreme points, then the above statements are also
equivalent to the following:

(d) Φ strongly preserves regularity, that is, Φ(x∧) = Φ(x)∧ for every x ∈ A∧ .

Proof. In the hypothesis of the Corollary, we observe that the identities

Φ{a,b,a}= Φ(Ua(b∗)) = UΦ(a)(Φ(b∗)) = {Φ(a),Φ(b∗)∗,Φ(a)},
Φ({a,b,a}∗)∗ = Φ(Ua∗(b))∗ = UΦ(a∗)∗(Φ(b)∗) = {Φ(a∗)∗,Φ(b),Φ(a∗)∗},

hold for every a,b ∈ A . This shows that the mapping x 	→ Ψ(x) = Φ(x∗)∗ is a norma-
lized-pg-inverse of Φ .

(a)⇒ (b) If Φ is contractive then Ψ is contractive too, and it follows from Theo-
rem 3 that Ψ = Φ , or equivalently, Φ(a∗) = Φ(a)∗ for every a . The other implications
have been proved in Theorem 3. �

Returning to Corollaries 2 and 4, in a personal communication, M. Cabrera and A.
Rodrı́guez noticed that, though an explicit reference for these results seems to be un-
known, they can be also rediscovered with arguments contained in their recent mono-
graph [9]. We thank Cabrera and Rodrı́guez for bringing our attention to the lemma
and arguments presented below, and for providing the appropriate connections with the
results in [9].

LEMMA 8. Let A be a JB∗ -algebra, and let e be an idempotent in A such that
‖e‖ = 1 . Then e∗ = e.

Proof. By [9, Proposition 3.4.6], the closed subalgebra of A generated by {e,e∗}
is a JC∗ -algebra (i.e. a norm closed Jordan ∗ -subalgebra of a C∗ -algebra). Therefore
e can be regarded as a norm-one idempotent in a C∗ -algebra, so that, by [9, Corollary
1.2.50], we have e∗ = e , as required. �

The unital version of Corollary 4 is treated in [9, Corollary 3.3.17(a)]. The general
statement needs a more elaborated argument to rediscover Corollary 4.

New proof of Corollary 4. Let Φ : A → B be a contractive Jordan homomorphism
between JB∗ -algebras. If A and B are unital and Φ maps the unit in A to the unit in
B , then the result follows from [9, Corollary 3.3.17(a)].

We deal now with the general statement. We may assume that Φ = 0. It is known
that A∗∗ and B∗∗ are unital JB∗ -algebras whose products and involutions extend those
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of A and B , respectively (cf. [9, Proposition 3.5.26]), Φ∗∗ : A∗∗ → B∗∗ is a contractive
Jordan algebra homomorphism (cf. [9, Lemma 3.1.17]), and e := Φ(1) is a norm-
one idempotent in B∗∗ . Therefore, by Lemma 8 and [9, Lemma 2.5.3], Ue(B∗∗) is a
closed Jordan ∗ -subalgebra of B∗∗ (hence a unital JB∗ -algebra) containing Φ∗∗(A∗∗) .
Then Φ∗∗ , regarded as a mapping from A∗∗ to Ue(B∗∗) , becomes a unit-preserving
contractive algebra homomorphism. By the first paragraph of this proof, Φ∗∗ (and
hence Φ) is a ∗ -mapping. �
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[5] M. BURGOS, A. C. MÁRQUEZ-GARCÍA, A. MORALES-CAMPOY,Linear maps strongly preserving
Moore-Penrose invertibility, Oper. Matrices, Volume 6, Number 4 (2012), 819–831.
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