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Abstract. We study pointwise-generalized-inverses of linear maps between C* -algebras. Let
® and ¥ be linear maps between complex Banach algebras A and B. We say that ¥ is a
pointwise-generalized-inverse of @ if ®(aba) = ®(a)¥(b)®(a), for every a,b € A. The pair
(®@,¥) is Jordan-triple multiplicative if @ is a pointwise-generalized-inverse of ¥ and the latter
is a pointwise-generalized-inverse of ®. We study the basic properties of this maps in con-
nection with Jordan homomorphism, triple homomorphisms and strongly preservers. We also
determine conditions to guarantee the automatic continuity of the pointwise-generalized-inverse
of continuous operator between C * -algebras. An appropriate generalization is introduced in the
setting of JB * -triples.

1. Introduction

Let A: A — B be a mapping between two Banach algebras. Accordingly to the
standard literature (see [22, 23, 26] and [27]) we shall say that A is a Jordan triple map
(respectively, Jordan triple product homomorphism or a Jordan triple multiplicative
mapping) if the identity

A(abe + cba) = A(a)A(B)A(c) + A(c)A(b)A(a)

(respectively, A(aba) = A(a)A(b)A(a)) holds for every a,b,c € A. For a linear map
T : A — B, itis easy to see that 7 is a Jordan triple map if, and only if, it is a Jordan
triple product homomorphism. In [27], L. Molnar gives a complete description of those
Jordan triple multiplicative bijections @ between the self-adjoint parts of two von Neu-
mann algebras M and N. F. Lu studies in [23] bijective maps from a standard operator
algebrainto a (Q-algebra which are generalizations of Jordan triple multiplicative maps.

In papers [22, 23, 26, 27] the mappings are not assumed to be linear, but are shown
to be so. In this paper we introduce a new point of view by considering and studying
pairs of linear maps which are Jordan triple multiplicative. Henceforth let A and B
denote two complex Banach algebras.
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DEFINITION 1. Let @, : A — B be linear maps. We shall say that ¥ is a
pointwise-generalized-inverse (pg-inverse for short) of @ if the identity

®(aba) = ©(a)¥(b)D(a),

holds for all a,b € A. If in addition @ also is a pointwise-generalized-inverse of ‘¥, we
shall say that ¥ is a normalized-pointwise-generalized-inverse (normalized-pg-inverse
for short) of ®. In this case, we shall simply say that (®,¥) is Jordan-triple multi-
plicative.

Let us observe that, in the linear setting, ¥ : A — B is a pg-inverse of ® if and
only if
D (abc + cba) = D(a)¥ (D)P(c) + P(c)¥(D)DP(a),

forall a,b,c € A.

Every Jordan homomorphism (in particular, every homomorphism and every anti-
homomorphism) 7 : A — B admits a pg-inverse. Actually, the couple (7, 7) is Jordan-
triple multiplicative.

Pairs of linear maps satisfying certain properties have been previously studied in
functional analysis and algebra. For example, centralizers of C* -algebras [8], deriva-
tions on Banach-Jordan pairs [12], and structural transformations [25].

An element a in an associative ring % is called regular or von Neumann reg-
ular if it admits a generalized inverse b in % satisfying aba = a. The element b
is not, in general, unique. Under these hypothesis ab and ba are idempotents with
(ab)a = a(ba) = a. If the identities aba = a and bab = b hold we say that b is a nor-
malized generalized inverse of a. An element a may admit many different normalized
generalized inverses. However, every regular element a in a C*-algebra A admits a
unique Moore-Penrose inverse that is, a normalized generalized inverse b such that ab
and ba are projections (i.e. self-adjoint idempotents) in A (see [15, Theorems 5 and
6]). The unique Moore-Penrose inverse of a regular element a will be denoted by a .

A linear map between C* -algebras admitting a pg-inverse is a weak preserver, that
is, maps regular elements to regular elements (see Lemma 1). However, we shall show
later the existence of linear maps between C* -algebras preserving regular elements but
not admitting a pg-inverse (see Example 1). Being a linear weak preserver between C* -
algebras is not a completely determining condition, actually, for an infinite-dimensional
complex separable Hilbert space H, a bijective continuous unital linear map preserving
generalized invertibility in both directions @ : B(H) — B(H) leaves invariant the ideal
of all compact operators, and the induced linear map on the Calkin algebra is either an
automorphism or an antiautomorphism (see [24]).

In Proposition 2 we show that a linear map @ : A — B between complex Banach
algebras with A unital, admits a normalized-pg-inverse if and only if one of the follow-
ing statements holds:

(b) There exists a Jordan homomorphism 7 : A — B such that ® = Rg(;)o 7 and
®(1)B=T(1)B;

(c) There exists a Jordan homomorphism S : A — B such that ® = Lg(;)o S and
B®(1) = BS(1).
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A similar conclusion remains true for a pair of bounded linear maps between general
C* -algebras which are Jordan-triple multiplicative (see Corollary 1).

A linear map ® between C* -algebras satisfying that ®(a') = ®(a)" for every
regular element a in the domain is called a strongly preserver. Strongly preservers
between C* -algebras and subsequent generalizations to JB* -triples have been studied
in [5, 6, 7]. Following the conclusions of the above paragraph we can easily find a
bounded linear map between C*-algebras admitting a normalized-pg-inverse which is
not a strongly preserver. In this setting, we shall show in Theorem 1 that for each pair
of linear maps between C*-algebras ®,¥ : A — B such that (®,¥) is Jordan-triple
multiplicative, the following statements are equivalent:

(a) ® and W are contractive;

(b) ¥(a) =D(a*)*, forevery a € A;

(¢) @ and ¥ are triple homomorphisms.

When A is unital the above conditions are equivalent to the following:
(d) @ and ¥ are strongly preservers,

(see [6, Theorem 3.5]). As a consequence, we prove that every contractive Jordan
homomorphism between C* -algebras or between JB* -algebras is a Jordan *-homo-
morphism (cf. Corollaries 2 and 4).

Let ®,¥ : A — B be linear maps between complex Banach algebras. If A is unital
and (®,¥) is Jordan-triple multiplicative, then @ is norm continuous if and only if ¥
is norm continuous (cf. Lemma 1). In the non-unital setting this conclusion becomes a
difficult question. In section 3, we explore this problem by showing that if ®,'¥': c) —
co are linear maps such that @ is continuous and (®,¥) is Jordan-triple multiplicative,
then ¥ is continuous (see Proposition 3). In the non-commutative setting, we prove
that if ®,¥ : K(H;) — K(H,) are linear maps such that ® is continuous and (®,¥)
is Jordan-triple multiplicative, then ® admits a continuous normalized-pg-inverse (see
Theorem 2).

In the last section we extend the notion of being pg-invertible to the setting of
JB* -triples.

1.1. Preliminaries and background

We gather some basic facts, definitions, and references in this subsection. We
recall that a JB*-triple is a complex Jordan triple system (E,{.,.,.,}) which is also a
Banach space satisfying the following axioms:

(a) Themap L(x,x) is an hermitian operator with non-negative spectrum for all x € E..
(b) |[{x,x,x} || = ||x||* forall x € E.

where L(x,y)(z) := {x,y,2}, forall x,y,z in E (see [19] and [9]).
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The attractive of this definition relies, among other holomorphic properties, on the
fact that every C* -algebra is a JB * -triple with respect to

{xyz} =27 (' e+ 2y').

The Banach space B(H,K) of all bounded linear operators between two complex Hilbert
spaces H,K is also an example of a JB * -triple with respect to the triple product given
above, and every JB * -algebra is a JB* -triple with triple product

{a,b,c} = (aob*)oc+ (cob*)oa— (aoc)ob™

In a clear analogy with von Neumann algebras, a JB*-triple which is also a dual
Banach space is called a JBW* -triple. Every JBW * -triple admits a (unique) isometric
predual and its triple product is separately weak * continuous [2]. The second dual of a
JB* -triple E is a JBW *-triple with a product extending the product of E [10].

Projections are frequently applied to produce approximation and spectral resolu-
tions of hermitian elements in von Neumann algebras. In the wider setting of JBW *-
triple this role is played by tripotents. We recall that an element ¢ in a JB*-triple E is
called a rripotent if {e,e,e} = e. Each tripotent e in E produces a Peirce decomposi-
tion of E in the form

E =Ex(e) ©E1(e) D Eole),

where for i = 0,1,2, E;(e) is the £ eigenspace of L(e,e) (compare [9, §4.2.2]). The
projection of E onto E;(e) is denoted by P;(e).

It is known that the Peirce space E,(e) is a JB*-algebra with product xo,y :=
{x,e,y} and involution x* := {e,x,e}.

For additional details on JB * -algebras and JB * -triples the reader is referred to the
encyclopedic monograph [9].

For the purposes of this paper, we also consider von Neumann regular elements in
the wider setting of JB* -triples (see subsection 1.1 for the concrete definitions). Let a
be an element in a JB*-triple E. Following the standard notation in [11], [20] and [4]
we shall say that a is von Neumann regular if a € Q(a)(E) = {a,E,a}. It is known
that a is von Neumann regular if, and only if, a is strongly von Neumann regular (i.e.
a € Q(a)?(E)) if, and only if, there exists (a unique) b € E such that Q(a)(b) = a,
0(b)(a) = b and [0(a), 0(b)] := 0(a) O(b) — O(b) Q) = 0 if, and only if, O(a)(E)
is norm-closed (compare [1 1, Theorem 1], [20, Lemma 3.2, Corollary 3.4, Proposition
3.5, Lemma 4.1], [4, Theorem 2.3, Corollary 2.4]). The unique element b given above
is denoted by a”. The set of all von Neumann regular elements in E is denoted by E”.

Let us recall that an element « in a unital Jordan Banach algebra J is called invert-
ible whenever there exists b € J satisfying aob = 1 and a” ob = a. Under the above
circumstances, the element b is unique and will be denoted by a~!. The symbol J~! =
inv(J) will denote the set of all invertible elements in J. It is well known in Jordan the-
ory that « is invertible if, and only if, the mapping x +— U,(x) := 2(aox)oa —a*ox is
invertible in L(J), and in that case U, = U, 1 (see, for example [9, §4.1.1]).

The notion of invertibility in the Jordan setting provides an adequate point of view
to study regularity. More concretely, it is shown in [20], [21, Lemma 3.2] and [4,
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Proposition 2.2 and proof of Theorem 3.4] that an element a in a JB* -triple E is von
Neumann regular if and only if there exists a tripotent v € E such that a is a positive
and invertible element in the JB * -algebra E;(e). Itis further known that a” is precisely
the (Jordan) inverse of @ in Ey(v).

2. Pointwise-generalized-inverses
Our first lemma gathers some basic properties of pg-inverses.

LEMMA 1. Let ® : A — B be a linear map between complex Banach algebras
admitting a pg-inverse Y. Then the following statements hold:

(a) ® maps regular elements in A to regular elements in B, that is, ® is a weak
regular preserver. More concretely, if b is a generalized inverse of a then W(b) is
a generalized inverse of ®(a);

(b) If A is unital and (®,¥) is Jordan-triple multiplicative, then ker(®) = ker(‘V);

(¢) If A is unital and (®,¥) is Jordan-triple multiplicative, then @ is norm continu-
ous if and only if ¥ is norm continuous;

(d) If A and B are unital and ®(1) € B!, then ¥ = Re(1)-1 © Lop(1y-1 0P is the
unique pg-inverse of @;

(e) Let @ :C — A and @, : B— C be linear maps admitting a pg-inverse, where C
is a Banach algebra, then ®,® and ®D, admit a pg-inverse too. In particular, if
A and B are C* -algebras, then the maps x — ®(x)*, x — ®(x*), and x +— O(x*)*
admit pg-inverses.

Proof. (a) Suppose that « is a regular element in A and let b be a generalized
inverse of a. Then ®(a) = ®(aba) = ®(a)¥(b)®(a), and hence D(a) is regular too.

(b) The conclusion follows from the identities ®(x) = ®(1)¥(x)P(1) and ¥ (x) =
Y(1)®(x)¥(1) (x € A). Statement (c) can be proved from the same identities.

(d) Suppose A and B are unital and ®(1) € B~!. Let ¥ : A — B be an arbitrary
pg-inverse of @. Since the identity ®(b) = ®(1)¥(b)D(1) holds for every b € A, we
deduce that ¥ = Rq)(l),l oLq)(l),l od.

(e) Suppose that @; : C — A admits a pg-inverse ¥ . Then

QP (aba) = ®(D(a)¥1(b)D1(a)) = P(Py)(a) ¥ (V1 (b)) D(P)(a),

forall a,b € C. Therestis clear. [l

In the hypothesis of the above lemma, let us observe that a pg-inverse of a contin-
uous linear operator @ : A — B need not be, in general, continuous. Take, for exam-
ple, two infinite dimensional Banach algebras A and B, a continuous homomorphism
7 : A — B and an unbounded linear mapping F' : A — B. We define ®,W :AG~A —
B@®” B, ®(aj,ay) = (n(a;),0) and ¥(n(a;),F(az)). Clearly, ¥ is unbounded and
D(ay,a2)¥(b1,b2)®(ar,az) = P((ar,a2)(b1,b2) (a1, a2).
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We have just seen that every linear map admitting a pg-inverse is a weak regular
preserver. The Example 1 below shows that the reciprocal implication is not always
true.

The following technical lemma isolates an useful property of linear maps admit-
ting a pg-inverse.

LEMMA 2. Let ®: A — B be a linear map between complex Banach algebras,
where A is unital. Suppose that ¥ : A — B is a pg-inverse of ®. Then we have

P = Loy °P = Reva) o P
Proof. Since ®(1) = ®(1)¥(1)D(1), we deduce that (1) is a generalized in-

verse of ®(1), and consequently the elements ®(1)¥(1) and W(1)®(1) are idempo-
tents. For each x € A we have

20(x) = B(11x+x11) = O(1)P(1)D(x) + O(x)¥(1)D(1).

Since ®(1)¥(1) and W(1)®(1) are idempotents we deduce that ®(1)¥(1)P(x) =
O(1)¥ (1)@ (x)¥(1)D(1) = @(x)¥(1)@(1), and

O(x) = (P(1)¥(1))®(x) = O(x)(¥(1)@(1)). [
Itis not obvious that a linear map admitting a pg-inverse also admits a normalized-

pg-inverse. We can conclude now that if the domain is a unital Banach algebra then the
desired statement is always true.

PROPOSITION 1. Suppose that A is a unital Banach algebra. Let ®: A — B a
linear map admitting a pointwise-generalized-inverse. Then @ has a normalized-pg-
inverse. More concretely, if ¥ is pg-inverse of @, then the mapping © = Ly (o
Ry(1) o @ is a normalized-pg-inverse of ®.

Proof. Since W is a pg-inverse of @, we deduce that W(1) is a generalized inverse
of ®(1). We set © = Ly(;) o Ry(1) 0 @. By applying Lemma 2, we get

O(aba) = ¥(1)®(aba)¥(1) = ¥(1)D(a)¥(b)®(a)¥(1)
—¥(1) (@(a)‘i’(l)@(l))‘l’(b) (d)(l)‘{’(l)d)(a))‘l’(l)
- (‘I’(l)d)(a)‘{’(l)) (q>(1)qf(b)q>(1)) (‘P(l)d)(a)‘{’(l)) — 0(a)D(b)O(a).
On the other hand, by Lemma 2 we also have
®(aba) = O(a)¥ (b)®(a) = (@(a)‘l’(l)d)(l))‘{’(b) (@(1)‘1’(1)@((1))

— ®(a) (‘{’(1) (@(l)‘f‘(b)@(l))‘l’(l))@(a) — ®(a) (‘P(l)cl)(b)‘l’(l))cl)(a)
= ®(a)0(h)®(a). O
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Let A and B be complex Banach algebras. We recall that a linearmap 7 : A — B
is called a Jordan homomorphism if T (a?) = T(a)? for every a € A, or equivalently,
T(aob)=T(a)oT (D), where o denotes the natural Jordan product defined by xoy:=

%(xy+yx). For each a in A the mapping U, : A — A is given by U,(x) :=2(aox)o

a—a*ox = axa. It is well known that a Jordan homomorphism satisfies the identity

T(aba) =T (Ua(b)) = Ur()(T (b)) = T(a)T (b)T (a), forall a,b € A.

We can now add some additional information to the statement in the above propo-
sition. If ¥ : A — B is normalized-pg-inverse of a linear mapping ® : A — B, by
Proposition 1, (1) is a generalized inverse of ®(1), and we clearly have

W(x) =¥(1)Px)¥(1),
forall x€A.

LEMMA 3. Let ®,¥ : A — B be linear maps between Banach algebras, with A
unital. Suppose that (®,Y) is Jordan-triple multiplicative. Then the following state-
ments hold:

(a) The identities

D(a)¥(b) =D(1)¥(a)®(b)¥(1), and ¥ (1)D(a)¥(b)P(1) = ¥(a)P(b),
hold for all a,b € A,

(b) The linear maps T = Ly(1yo® and S = Ry(1) o @ are Jordan homomorphisms
satisfying:

®(a)¥(b) = S(a)S(b), and ¥(a)®(b) = T(a)T (b),

forall a,b e A.

Proof. (a) We know from previous results that ®(a) = ®(1)¥(a)®(1), ¥(a) =
Y(1)®(a)¥(1), forall a € A, and ®(1) is a normalized generalized inverse of ¥(1).
We conclude from Lemma 2 that

¥(1)D(a) = F(1)D(1)¥(a)D(1) = ¥(a)D(1),

and

The remaining identity follows by symmetry.
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(b) With the notation above, T (a)T (b) = ¥(1)®(a)¥(1)D(d) =¥ (a)®(b), and
consequently,

2T (a?) = 2% (1)®(a*) = ¥(1)®(aal + laa)
=¥ (1)®(a)¥(a)®(1) +P(1)D(1)¥(a)P(a) = 2% (a)®(a) = 2T (a)>.

The rest is left to the reader. [

The previous properties now result in an equivalence.

PROPOSITION 2. Let @ : A — B be a linear map between complex Banach alge-
bras with A unital. Then the following statements are equivalent:

(a) @ admits a normalized-pg-inverse;

(b) There exists a Jordan homomorphism 7 : A — B such that ® = Rg(jyo T and
®(1)B=T(1)B;

(c) There exists a Jordan homomorphism S : A — B such that ® = Lg(jy oS and
B®(1) =BS(1).

Proof. (a) = (b) Suppose that ® admits a normalized-pg-inverse ¥ : A — B. By
Lemma 3 the mapping T = Lg1) o'V is a Jordan homomorphism and Rg1)0 T (a) =
D(1)¥(a)®P(1) = P(a), or every a € A. On the other hand, 7(1) = ®(1)¥(1) is an
idempotentin B and 7'(1)®(1) = ®(1), which implies that 7(1)B = ®(1)B.

(b) = (a) Let T : A — B be a Jordan homomorphism such that ® = R¢(;)0 7 and
®(1)B = T(1)B. Under these hypothesis, there exists ¢ € B such that T(1) = T(1)> =
@(1)c. The element T(1) is an idempotent in B with T(a)oT(1) = T(a), for every
a€A.Thus, T(a)=T()T(a) =T(a)T(1) =T(1)T(a)T(1), forevery a in A. If we
set W =L.oT, by applying Lemma 2, we obtain

®(aba) = T (aba)®(1) = T(a)T (b)T (a)®(1) = T (a)T (1)T (b)T (a)d(1)
= T(@)[®(1)]T(b)T(a)®(1) = ®(a)¥(b)®(a); Ya,be A.

The implications (a) = (¢) and (¢) = (a) follow by similar arguments. [

EXAMPLE 1. [7, Remark 5.10] Let H be an infinite dimensional complex Hilbert
space, let v, w be (maximal) partial isometries such that v'v =1=w*w and vw* L ww*.
We set A=C @~ C, and consider the operator T : A — B(H) given by

T = 2w+ E—w).
2 2
It is shown in [7, Remark 5.10] that 7 maps extreme point of the closed unit ball of
A to extreme point of the closed unit ball of B(H), but T does not preserves Moore-
Penrose inverses strongly, that is, T(a') # T (a)" for every Moore-Penrose invertible
element a € A.



POINTWISE-GENERALIZED-INVERSES OF LINEAR MAPS 377

Letus show that T is a weak preserver, that is, 7 maps regular elements to regular
elements. It is easy to check that an element @ = (A, ) € A is regular if and only if
it is Moore-Penrose invertible if and only if [A|+|u| # 0 (i.e. a #0), and in such a
case a' = (A71,0) if u =0, a' = (0,u~") if A =0 and " = a~' otherwise. Given
A,u € C we have

T(a)'T(a) = (%(H— w)+=(v— w)*) (%(v +w)+ %(v - w))

B G T P £ <l
_<4+4 (Vv+ww) = 2 T )b

=

which assures that T'(a) admits a Moore-Penrose inverse.

We shall finally show that T does not admit a pg-inverse. Arguing by contradic-
tion, we assume that 7' admits a pg-inverse. Proposition | assures that 7 admits a
normalized-pg-inverse and Proposition 2(c¢) implies the existence of a Jordan homo-
morphism J : A — B(H) such that T(a) = T(1)J(a), for every a € A. Having in mind
that T(1) =T(1,1) = v, we have T(A,u) =vJ(A,u), forevery A,u € C. Therefore
J(A, 1) =vvI(A,u) =v*T(A,u), forevery A,u € C, and thus

2,2 2,2 2,2
AHH 1:v*(A er“ it 2“ W) =V T2 0%) =V T((2,1)?)

=('TA,W)(V'T(A,u))
oA A— LA A—
:v( +u uw>v< +u uw>

2 v+ 3 2 v+ 5
_/l+ul/l+u1_(/l+u)2l
T2 2 4 ’

for every A, € C, which is impossible.

It is known that we can find an infinite dimensional complex Banach algebra A
and an unbounded homomorphism 7 : A — C. Clearly © admits a normalized-pg-
inverse but it is not continuous. However, every homomorphism 7 from an arbitrary
complex Banach algebra A into a C*-algebra B whose image is a *-subalgebra of B
is automatically continuous (see [29, Theorem 4.1.20]).

In Proposition 2 we can relax the hypothesis of A being unital at the cost of as-
suming the continuity of @ and Y. Henceforth, the bidual of a Banach space X will
be denoted by X**.

LEMMA 4. Let ®,¥ : A — B be continuous linear maps between C* -algebras.
Suppose that ¥ is a (normalized-)pg-inverse of ®. Then Y** : A*™ — B** is a (norma-
lized-)pg-inverse of ®**.

Proof. The maps @ W**: A*™* — B** are weak " -to-weak ™ continuous operators
between von Neumann algebras. We recall that, by Sakai’s theorem (see [30, Theo-
rem 1.7.8]), the products of A** and B** are separately weak *-continuous. Let us fix



378 A.B. ALI ESSALEH, A. M. PERALTA AND M. I. RAMIREZ

a,b,c € A, By Goldstine’s theorem we can find three bounded nets (a; ), (b,) and
(cs) in A converging in the weak ™ -topology of A** to a,b and c, respectively. By
hypothesis,

®(apbucs +csazby) = P(az )V (bu)P(cs) + P(cs)Plan)¥(by),
forevery A, and &. Taking weak *-limits in A,  and & we get

@ (abc + cba) = @ (a) ¥V (b)D*(c) + @ (c) D™ (a)¥P** (D).

Combining Proposition 2 with Lemma 4 we get the following.

COROLLARY 1. Let ® : A — B be a continuous linear operator between C* -
algebras. Then the following statements are equivalent:

(a) @ admits a continuous normalized-pg-inverse;

(b) There exists a continuous Jordan homomorphism T : A** — B** such that ® =
R<1>**(1) oT and q)**(l)B** = T(l)B**,

(¢) There exists a continuous Jordan homomorphism S : A** — B™* such that ® =
L(I)**(l) oS and B**q)**(l) = B**S(l)

Let A and B be C*-algebras. We recall that a linear mapping 7 : A — B strongly
preserves Moore-Penrose invertibility (respectively, invertibility) if for each Moore-
Penrose invertible (respectively, invertible) element a € A, the element T (a) is Moore-
Penrose invertible (respectively, invertible) and we have T (a') = T(a)" (respectively,
T(a=') = T(a)~!). Hua’s theorem (see [18]) affirms that every unital additive map
between skew fields that strongly preserves invertibility is either an isomorphism or
an anti-isomorphism. Suppose A is unital. In this case M. Burgos, A. C. Marquez-
Garcia and A. Morales-Campoy establish in [6, Theorem 3.5] that a linear map 7 :
A — B strongly preserves Moore-Penrose invertibility if, and only if, T is a Jordan *-
homomorphism § multiplied by a partial isometry e in B such that T(a) = ee*T (a)e*e
for all a € A, if and only if, T is a triple homomorphism (i.e. 7 preserves triple
products of the form {a,b,c} := %(ab*c—f— cb*a)). The problem for linear maps strongly
preserving Moore-Penrose invertibility between general C* -algebras remains open.

Let T : A — B be a triple homomorphism between C* -algebras. In this case

T(aba) = T({a,b",a}) = {T(a), T(b"), T(@)} = T(@)T (5" T(a),
and
T(a) T()T(a")" ={T(a")",T(b)",T(a")"} ={T(a"),T(b),T(a")}"
=T{a",b,a"})" =T (a"b*a*)" =T ((aba)")",

for all a,b € A. These identities show that x — T (x*)* is a normalized-pg-inverse of
T. So, when A is unital, it follows from the results by Burgos, Marquez-Garcia and
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Morales-Campoy that every linear map 7 : A — B strongly preserving Moore-Penrose
invertibility admits a normalized-pg-inverse. However, the class of linear maps admit-
ting a normalized-pg-inverse is strictly bigger than the class of linear maps strongly
preserving Moore-Penrose invertibility. For example, let z be an invertible element in
B(H) with z* # z, the mapping T : B(H) — B(H), T(x) = zxz~! is a homomorphism,
and hence a Jordan homomorphism and does not strongly preserve Moore-Penrose in-
vertibility.

We recall that an element e in a C*-algebra A is a partial isometry if ee*e = e.
Let us observe that a C* -algebra might not contain a single partial isometry. However,
a famous result due to Kadison shows that the extreme points of the closed unit ball
of a unital C*-algebra A are precisely the maximal partial isometries in A (see [30,
Proposition 1.6.1 and Theorem 1.6.4]). Therefore, every von Neumann algebra contains
an abundant set of partial isometries. When a C* -algebra A is a regarded as a JB* -triple
with respect to the product given by {a,b,c} = 1(ab*c+cb*a), partial isometries in A
are exactly the fixed points of this triple product and are called tripotents.

Suppose that ¢ and v are non-zero partial isometries in a C* -algebra A such that
eve =e¢ and v=vev. Then e = (ee*)v*(e*e) and v = (vw*)e*(v*v). This implies, in the
terminology of [13], that P»(e)(v*) = (ee*)v*(e*e) = e. Since v is a norm-one element,
we can conclude from [13, Lemma 1.6 or Corollary 1.7] that v = e+ (1 — ee®)v*(1 —
e*e). However the identity v = vev implies that v = ¢*.

THEOREM 1. Let @, : A — B be linear maps between C*-algebras. Suppose
that (®,%) is Jordan-triple multiplicative. Then the following are equivalent:

(a) ® and ¥ are contractive;
(b) Y(a) =D(a*)", forevery a € A;

(¢) @ and ¥ are triple homomorphisms.

Proof. (a) = (b) Clearly ®** and W** are contractive operators and by Lemma
4, W** is a normalized-pg-inverse of ®**. Let e be a partial isometry in A**. Since

we deduce that W**(e*) is a generalized inverse of ®**(e). Applying that ®** and ¥**
are contractions, it follows that ®**(e) and W**(e) lie in the closed unit ball of B** and
admit normalized generalized inverses in the closed unit ball of B**. Corollary 3.6 in [4]
implies that ®**(e) and W**(e) are partial isometries in B**. We can now deduce from
(1) and the comments preceding this theorem that W**(e*) = ®**(e)*. In particular,
Y(p) = ®(p)*, for every projection p € A**. Since in a von Neumann algebra every
self-adjoint element can be approximated in norm by a finite linear combination of
mutually orthogonal projections, we get W**(a) = ®**(a)*, for every a € A%}, and by
linearity we have ®**(a)* = W**(a*), for every a € A**.
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(b) = (c) Let us assume that W (a*) = ®(a)*, for every a € A. In this case
1 1
®{abc} = Ed)(ab*c +cb*a) = 3 (D(a)¥P(b")D(c) +P(c)P(b")D(a))

= %(@P(a)@(b)*q’(@ +@(c)®(b) ®(a)) = {®(a), ®(b),P(c)},

which shows that @ (and hence W) is a triple homomorphism.
The implication (c¢) = (a) follows form the fact that triple homomorphisms are
contractive (see, for example, [ 14, Proposition 3.4] or [1, Lemma 1 (a)]). O

The fact that every contractive representation of a C* -algebra (equivalently, every
contractive homomorphism between C* -algebras) is a *-homomorphism seems to be
part of the folklore in C*-algebra theory (see, for example, the last lines in the proof
of [3, Theorem 1.7]). Actually, every contractive Jordan homomorphism between C*-
algebras is a Jordan *-homomorphism. However, we do not know an explicit reference
for this fact. We present next an explicit argument derived from our results. A gen-
eralization for Jordan homomorphisms between JB* -algebras will be established in
Corollary 4.

COROLLARY 2. Let A and B be C*-algebras and let ® : A — B be a Jordan
homomorphism. Then the following statements are equivalent:

(a) @ is a contraction;
(b) @ is a symmetric map (i.e. @ is a Jordan * -homomorphism);

(¢) @ is a triple homomorphism.
If A is unital, then the above statements are also equivalent to the following:

(d) @ strongly preserves regularity.

Proof. The implication (a) = (b) is given by Theorem 1. It is known that every
Jordan *-homomorphism is a triple homomorphism, then () implies (c). Every triple
homomorphism is continuous and contractive (see [ 1, Lemma 1 (a)]), and hence (c¢) =
(@).

The final statement follows from [6, Theorem 3.5]. [l

It seems appropriate to clarify the connections between Corollary 2 and previ-
ous results. It is known that every triple homomorphism between general C* -algebras
strongly preserves regularity (compare [6] and [7]). Actually, if A and B are C*-
algebras with A unital, and 7 : A — B is a linear map, then by [6, Theorem 3.5], T
strongly preserves regularity if, and only if, T is a triple homomorphism. So, if A is
unital the equivalence (¢) < (d) in Corollary 2 can be established under weaker hy-
pothesis. For a non-unital C*-algebra A the continuity of a linear mapping 7 : A — B
strongly preserving regularity does not follow automatically. For example, by [7, Re-
mark 4.2], we know the existence of an unbounded linear mapping 7 : c) — c¢o which
strongly preserves regularity. According to our knowledge, it is an open problem
whether every continuous linear map strongly preserving regularity between general
C* -algebras is a triple homomorphism.
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3. Orthogonality preservers and non-unital versions

Let A be a C*-algebra. We recall that an approximate unit of A is anet (1)) such
that 0 <uy <1 forevery A, uy <uy forevery A < u, and

Iim |[x —xuy || = lim ||x — uyx|| = lim ||x — uyxuy || =0
m|| Al im|[|x —uj x| AH axug || =0,

for every x € A. Every C*-algebra admits an approximate unit (see [28, Theorem
3.1.1]).

Let (1)) be an approximate unit in a C*-algebra A, and let us regard A as a C*-
subalgebra of A**. Having in mind that a functional ¢ in A* is positive if and only if
l|¢|| = limy ¢(uy) (see [28, Theorem 3.3.3]), we can easily see that (1) — 1 in the
weak ™ topology of A**.

LEMMA 5. Let ®,¥ : A — B be linear maps between C* -algebras. Suppose that
@ is continuous and (®,¥) is Jordan-triple multiplicative. Then the following state-
ments hold:

(a) @ (abc+ cba) =D (a)¥ (D)D" (c)+ D (c)¥(D)D**(a) for every a,c in A**,
and every b in A;

(b) ®(b) =" (1)¥(b)D"* (1) forevery b in A;

(¢) The mapping T : A — B**, T(x) = ®**(1)¥(x) satisfies T(a)T (b) = ®(a)¥ (D),
and ®(a) =T (a)®*(1), for every a,b € A;

(d) The mapping S: A — B*, S(x) = ¥ (x)®** (1) satisfies S(a)S(b) = ¥(a)®(b),
and ®(a) = ®**(1)S(a), for every a,b € A;

(e) Supposethat p and q are projections in A with pqg=20, then T (p)T (q) = S(p)S(q)
=0, where T and S are the maps defined in previous items.

Proof. (a) Applying that @ is continuous, the bitransposed map ®** : A** — B**
is weak*-continuous. Let @ and ¢ be elements in A*™*, and let b € A. By Golds-
tine’s theorem we can find bounded nets (@) and (cy) in A converging, in the weak *
topology of A**, to a and c, respectively. By hypothesis

O(apbey +cpbay) = @(a )Y (b)P(cy) + P(cp) ¥ (b)P(az),

for every A, . Since the product of A** is separately weak* continuous, the weak * -
continuity of ®** implies that

@ (abc + cba) = @ (a)¥(b)D™(c) + @ (c)¥ (D)D" (a).

(b) Follows from (a) witha=c=1.
(¢) By definition and (b) we have

T(a)T (b) = & (1)¥(a)0" (1)¥(b) = D(a)¥(b).
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and T (a)®** (1) = ®**(1)¥(a)®** (1) = ®(a), for every a,b € A. The proof of (d) is
very similar.

(e) Let us take two projections p,q € A with pg = 0. By definition and (b) or
(¢) we have

T(p)T(q) =@ (1)¥(p)@" (1)¥(q) = ©(p)¥(q)
D(p)¥(q)®(q)¥(q) = (P(pgq +qqp) — P(q)¥(q)P(p))¥(q)
=-0(q)¥(q)®(p)¥(q) = —D(q)¥(gpq) =0. O

Let us explore some of the questions posed before. In our first proposition we shall
prove that the normalized-pg-inverse of a continuous linear map on c¢q is automatically
continuous.

PROPOSITION 3. Let ®,%W : ¢y — c¢o be linear maps such that @ is continuous
and (®,¥) is Jordan-triple multiplicative. Then ¥ is continuous.

Proof. We can assume that @,V # 0. Let (e,) be the canonical basis of ¢. Ap-
plying the previous Lemma 5 (c), the mapping 7 : ¢y — ¢§* = le, T(x) = @ (1)¥(x)
satisfies T(a)T (b) = ®(a)¥(b), and ®(a) =T (a )@**(1) for every a,b € ¢(. By the
just quoted lemma, T'(p)T (q) = 0 for every pair of projections p,q € ¢y with pg =0,
and consequently,

O(p)®(q) =T (p)@" ()T (q)@™ (1) =T (p)T (q)@* (1)@ (1) = 0.

We can therefore conclude that ®(e, )®(e,,) = 0 for every n # m in N. Since ®(e,) =
D(e,)¥(en)D(e,) and ¥(e,) = Y(e,)P(en)¥(en), we deduce that d(e,) and P(e,)
both are regular elements in ¢ and ®(e,) is a normalized generalized inverse of
W(e,). Therefore, for each natural n with ®(e,) # 0 there exists a finite subset
supp(®P(en))={k7,...,ky, }CN and non-zero complex numbers {1} : jEsupp(P(en))}
with the following properties: [1]| < [|®|| for every j € supp(®(e,)) and every natural
n,

supp(®(en)) Nsupp(P(en)) = 0, for all n # m,

and
1
D(e,) = Y Ajej, and ¥ (e,) = ——ej, YneN.
JjeSupp(®(ex)) JjesSupp(@(ex)) i

Let us observe that ||'\¥(e,)| = max{‘}f—,_,l : j € supp(®(e,))}. To simplify the
J
notation, let j(n) € supp(®(e,)) be an element satisfying M,}T =||W¥(en)|-
j(n

We claim that the set {||'¥(e,)|| :n € N} must be bounded. Otherwise, we can find
a subsequence (||'¥'(es(,))||) satisfying )L— = |[W(eg(n))|| > n for every natural n.

o) |
Let m : cog — co be the natural projection of ¢y onto the C*-subalgebra generated by

the elements {e(g(x)) : 7 € N}, and let 1 : ¢o = 5pan{eg(,) : n € N} — ¢y denote the
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natural inclusion. The maps ®; = m®1,¥Y| = mW¥1 : co — ¢ are linear maps, ¥

is a normalized-pg-inverse of @, the latter is continuous, ¥} (es(,)) = ﬁe i(o(n)
j(o(n)
and @ (eg(,)) = kﬁg&))e}-(o(")). The element a = Z /lq;;g?r)n))ej(c(m)) lies in cq and
[W1(a)|| < eo. Therefore Wi(a) = tmejo for a unique sequence (U,) — 0.
meN

Let us write j(o(n)) = ji(n). Under these conditions

A5 i) = ¥1 (@@ (e, ) = ¥1 (@)1 (&) ¥1 (€, ()P (€, 1)
= (Y1lejmejimatacjmeim) = Fi(ejm)Pi(e) ) ¥1(a)Pilejy ()
= W1 (225 1)) @1 (€3 ()~ 1 (€5, D1 ) ¥1 (@)D (e )
_ 500
=227 (1€, ) P1 (e, () — Wi(ejy ()P (e, (e ()
)
)

n n)
222,9— ejl(n)—‘ifl(ejl(n))d)l(kq E

J1 )ejl(”)’

which proves that u,, =1 for all n, leading to a contradiction.

Let M be a positive bound of the set {||¥(e,)|| : n € N}. For each natural n, we
set gn 1= 2;_, ex. Clearly, (g,) is an approximate unit in ¢q. Since for each n # m we
have ®(e,)®(e,) =0 (i.e., supp(P(e,)) Nsupp(P(e,)) = 0), and, for each natural j,
®(e;) is a normalized generalized inverse of ¥(e;), we deduce that ‘P'(e,)¥(e,) =0
(i.e., supp(¥(ey)) Nsupp(¥(en)) = 0) for every n # m. Consequently, for each finite
subset F C N we have

H‘P( e,>H max {||W(¢))|| : j € F} <M, 2
JjeEF

and consequently ||W(g,)|| < M, for every natural n.
We shall prove next that for each x € ¢y we have

li;n(‘P(x —gnx))n =0.

Indeed, let us take y,z,w € co such that x = yzw (in the case of ¢( the existence of such
v,z,w is almost obvious but we can always allude to Cohen’s factorization theorem [ 16,
Theorem VIII.32.22]). By assumptions

W(x = gnx) =Y (1 — gn)zw) = ¥ () P(z— gn2) ¥ (w).

Since @ is continuous and ((1 —g,)z) tends in norm to 0, we deduce that lim, (¥ (x —
qnx))n =0 as we claimed.
Finally, for an arbitrary x in the closed unit ball of ¢y we have

W(gqnx) = ¥(qnxqn) = ¥(qn)@(x)¥(qn),

and hence ||¥(g,x)|| < M?||®||. The norm convergence of ¥(g,x) to W(x), assures
that ||¥(x)|| < M?||®||. The arbitrariness of x proves the continuity of ¥. [
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The previous proposition remains valid if ¢ is replaced with ¢o(T).

Our next goal is to extend the previous Proposition 3 to linear maps on K(H ). For
that purpose we isolate first a technical result which is implicit in the proof of the just
commented proposition.

LEMMA 6. Let @, : A — B be linear maps between C* -algebras such that ®
is continuous and (®,¥) is Jordan-triple multiplicative. Then the following are equiv-
alent:

(1) @ admits a continuous normalized-pg-inverse ¥ : A — B**;

(2) ®**(1) is a regular element in B**.

Proof. (1) = (2) Suppose that @ admits a continuous normalized-pg-inverse ¥ :
A — B. By Lemma 4, the mapping W** : A** — B** is a normalized-pg-inverse of ®**.
In particular @**(1) = ®**(1)¥**(1)®**(1).

(2) = (1) Let v € B** such that ®**(1) = ®**(1)v®**(1). The mapping ¥’ =
L,oR,o®: A — B* is continuous, and by Lemma 5 (b), we have

D) =0 (1)P(h)D™ (1), VDbeA,
and consequently
O(b)v@* (1) = O (1)¥ (D)D" (1)vd** (1) = D(b),

and
O (1)v®@(b) = O™ (1)v®@™ (1)¥P(h)D* (1) =®(b), VbeA

Now, for arbitrary a, b € A, we get:

®(aba) = O©(a)¥(b)D(a) = ®(a)v®** (1)¥(h)D" (1)v®@(a)
= ®(a)v®(b)v®(a) = ®(a)V' (b)®(a)

and

¥ (aba) = v®(aba)v = v®(a)V (b)D(a)v
=v®(a)v®** (1)¥ (b)) (1)v®(a)y = ¥ (a)®(b)¥ (a). O

We can now extend our study to linear maps between K(H) spaces.

THEOREM 2. Let ®,Y : K(H,) — K(H,) be linear maps such that ® is continu-
ous and (D,¥) is Jordan-triple multiplicative. Then ® admits a continuous normalized-
pg-inverse.

Proof. We may assume that H; is infinite dimensional.
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We shall first prove that for every infinite family {p;: j € A} of mutually orthog-
onal projections in K(H}) the set

{¥(p;): j € A} is bounded. 3)

Arguing by contradiction, we assume that the above set is unbounded. Then we can find
a countable subset Ag in A such that |[¥(p,)| > n?, for every natural n. Since the

o - 1
projections in the sequence (p,) are mutually orthogonal, the element xy = Z —pn €
=11

K(H), and by hypothesis,

) D)W (x0) = ¥ (xopto) = —¥(n),

and hence

1
n:—n3<‘

2 2
pe < ¥ G0) [ 1D (pa) [| < I Cxo) [ |1

1
—¥ n
—¥(pn)

for every natural n, which is impossible.

Now, let {p;: j € A} be a maximal set of mutually orthogonal (minimal) pro-
jections in K(H;). By (3) there exists a positive R such that |[\¥(p;)|| < R, for every
J € A. Let #(A) denote the collection of all finite subsets of A, ordered by inclusion.
For each F € .7 (A) we set q, := Y, p; € K(H;). It is known that (g,) is an

JjeF
approximate unit in K(H,). Clearly for each F € % (A) we have ||W(q,.)| < (8F) R.
We shall now prove that

FEF(A) )

{¥(q,):F € Z(A)} is bounded. 4)

Suppose, contrary to our goal, that the above set is unbounded.

Now, we shall establish the following property: for each F € % (A), and each
positive § there exists G € .# (A) with GNF =0 and [|¥(q,)|| > &. Indeed, if that
is not the case, there would exist F € .7 (A) and § > 0 such that |¥(q,)|| < 0, for
every G € #(A) with GNF = 0. In such a case, for each H € #(A) we have

1@ < 1)1+ 1)) | < (GF) RS,

which contradicts the unboundedness of the set {¥(q,): F € #(A)}.
Applying the above property, we find a sequence (F,) C .#(A) with F,NF, =0

1
for every n # m and ||¥(q,, )|| > n?, for every natural n. We take yo:= Y —gq, €
n n n
n=1

K(Hy). By hypothesis, ¥'(y0)®(gy, )'¥(vo) = ¥ (04, y0) = =¥ (qy;, ), and hence

1
n=—n’ <|[¥(y0)®(q;, )P o)l < ¥ (o) P[],

for every natural n, leading to the desired contradiction. This concludes the proof of

(G2
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Now, by (4) the net (*(q;)),., is bounded in K(H;) € B(H), and by the
weak * -compactness of the closed unit ball of the latter space, we can find a subnet
(‘W(q)))jenr converging to some w € B(H>) in the weak™ topology of this space. We
observe that (q) ., — 1 in the weak™ topology of B(H\), and by the weak * con-
tinuity of ®** we also have (®(q;));jcpr — ®**(1) in the weak ™ topology of B(Ha).
Lemma 5 implies that

®(q;) = @™ (1)¥(g;)®™ (1)
forevery j € A’. Taking weak* limits in the above equality we get
O (1) = O™ (1)wd* (1),
and hence ®**(1) is regular in B(H).

Finally, an application of Lemma 6 gives the desired statement. [

We can now obtain an improved version of Corollary 1 for linear maps between
K(H) spaces.

COROLLARY 3. Let ®,Y : K(H,) — K(H,) be linear maps such that ® is con-
tinuous and (®,Y) is Jordan-triple multiplicative. Then the following statements hold:
(a) There exists a continuous Jordan homomorphism T : K(H;) — B(H,) such that

D(a) =T(a)®**(1), for every a € K(H,), and ®*(1)B(H,) = T(1)B(Ha);

(b) There exists a continuous Jordan homomorphism S : K(H,) — B(Ha) such that
®(a) = ©**(1)S(a), for every a € K(H;), and B(H,)®** (1) = B(H;)S(1).

Proof. By Theorem 2 ® admits a continuous normalized-pg-inverse ¥ : K(H;) —
B(H,). Applying Lemma 5 we deduce that the mappings 7,S : K(H,) — B(H>),
T(a) = ®*(1)¥(a) and S(a) = ¥(a)®**(1) (a € K(H})), are linear and continuous
and the identities

T(a)T(b) = ®(a)¥(b), ®(a) =T (a)®™(1),
and
S(a)S(b) = (@)D (b), D(a) = D™ (1)T (),

hold for every a,b € K(H)).
Let (u) be an approximate unit in K(H;). Applying the separate weak™ conti-
nuity of the product of B(H,) we have

¥(@)@" (1)¥(a) = weak™-lim P (a) ®(u ) ¥(a)
= weak"-lim ¥ (auy a) = ¥ (a?) = Y(d?),
forall a € K(H). Finally, by Lemma 5 we get
T(a)® = @™ (1)¥(a)®" (1)¥(a) = ™ (1)¥(a’) = T(a?),

forall a in K(H). The statement for S follows by similar arguments. [

Let @ : K(H;) — K(H,) be a bounded linear map. We do not know if any
normalized-pg-inverse of @ is automatically continuous.
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4. Pointwise-generalized-inverses of linear maps between JB * -triples

In this section we explore a version of pointwise-generalized inverse in the setting
of JB* -triples.

DEFINITION 2. Let ® : E — F be a linear mapping between JB*-triples. We
shall say that 7 admits a pointwise-generalized-inverse (pg-inverse) if there exists a
linear mapping ¥ : E — F satisfying

(I){a,b,c} = {q)(a)»\P(b)»q)(C)}»

forevery a,b,c € E. If ® also is a pg-inverse of ¥ we shall say that ¥ is a normalized-
pg-inverse of @ or that (®,W¥) is JB*-triple multiplicative.

Let @,V : A — B be linear maps between C* -algebras. The pair (®,¥) is Jordan-
triple multiplicative if ®(aba) = ®(a)¥(b)®P(a) and ¥(aba) = ¥ (a)®(b)¥(a). C*-
algebras can be regarded as JB* -triples and in such a case, the couple (®,¥) is JB*-
triple multiplicative if ®(ab*a) = ®(a)¥(b)*®@(a) and ¥(ab*a) = ¥(a)®(b)*¥(a).
We should remark, that these two notions are, in principle, independent.

Every triple homomorphism between JB*-triples is a normalized-pg-inverse of
itself. The next lemma gathers some basic properties of linear maps between JB* -
triples admitting a pg-inverse.

LEMMA 7. Let ® : E — F be a linear map between JB* -triples admitting a pg-
inverse ¥. Then the following statements hold:

(a) ® maps von Neumann regular elements in E to von Neumann regular elements in
F, that is, @ is a weak regular preserver, More concretely, if b is a generalized
inverse of a then ¥ (b) is a generalized inverse of ®(a);

(b) Let ®;:A — E and @, : F — B be linear maps between JB* -triples admitting a
pg-inverse, then @, ® and ®D| admit a pg-inverse too;

(¢) If ® and ¥ are continuous then W** : E** — F** is a pg-inverse of ®**.

Proof. (a) If a is von Neumann regular the there exists b € E such that Q(a)(b) =
{a,b,a} = a. By hypothesis, ®(a) = ®{a,b,a} = {®(a),¥(b),P(a)}, which shows
that ®(a) is von Neumann regular.

(b) Under these hypothesis, let ¥'; be a pg-inverse of ®;. Then

O ®{a,b,a} =D {P(a),¥(D),D(a)} = {DP(a), ¥ ¥ (D), D(a)},

which shows that W is a pg-inverse of @;®. The rest of the statement follows from
similar arguments.

(¢) Assuming that @ and W are continuous, the maps ®**, W** are weak"*-
continuous. The bidual E** of E is a JBW*-triple, and hence its triple product is
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separately weak™ (see [2]). Then we can repeat the arguments in the proof of Lemma
4 to conclude, via Goldstine’s theorem, that

O {a,b,c} = {0 (a), ¥ (b), D" (c)},

forevery a,b,c € E**. [

Let us observe that the arguments in the proof of Theorem 1 are obtained with
geometric tools which are not merely restricted to the setting of C*-algebras. Our next
result is a generalization of the just commented theorem, to clarify the parallelism, we
recall that, by Kadison’s theorem ([30, Proposition 1.6.1 and Theorem 1.6.4]), a C*-
algebra A is unital if and only if its closed unit ball contains extreme points.

THEOREM 3. Let ®,¥ : E — F be linear maps between JB* -triples. Suppose
that (®,%¥) is JB* -triple multiplicative. Then the following are equivalent:

(a) ® and ¥ are contractive;
(b) ¥ =D is a triple homomorphism.

If the closed unit ball of E contains extreme points, then the above statements are also
equivalent to the following:

(c) @ strongly preserves regularity, that is, ®(x"\) = ®(x)" for every x € E.

Proof. (a) = (b) By Lemma 7 (c¢), ¥** is a normalized-pg-inverse of ®**. Let
e be a tripotent in £**. The maps W** and ®** are contractive, and by Lemma 7 (@),
W**(e) is a generalized inverse of ®**(e) and both lie in the closed unit ball of F**.
Corollary 3.6 in [4] assures that ®**(e) and W**(e) both are tripotents in F**. Let us
assume that ®**(e) (equivalently, ¥**(¢)) is non-zero. The identity

O™ () = {D™(e), ¥ (e), @™ (e)} (5)
implies that P»(®**(e))(P**(¢)) = ®**(e). Lemma 1.6 in [13] assures that
P (e) = @7 (e) + Po(P™ (e)) (P (e))
and similarly
D™ (e) =¥ (e) + P (¥ (€)) (D7 (e))-

We deduce from (5) that @**(e) = P**(e), for every tripotent e € E**.

In a JBW* -triple every element can be approximated in norm by a finite linear
combination of mutually orthogonal tripotents (see [17, Lemma 3.11]). We can there-
fore guarantee that ®** = ¥** is a triple homomorphism.

The implication (b) = (a) is established in [1, Lemma 1 (a)].

The final statement follows from [7, Theorem 3.2]. [

The next corollary, which is an extension of Corollary 2 for JB * -algebras, is prob-
ably part of the folklore in JB * -algebra theory but we do not know an explicit reference.
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COROLLARY 4. Let A and B be JB* -algebras and let ® : A — B be a Jordan
homomorphism. Then the following statements are equivalent:

(a) @ is a contraction;
(b) @ is a symmetric map (i.e. @ is a Jordan *-homomorphism);
(¢) @ is a triple homomorphism.

If the closed unit ball of A contains extreme points, then the above statements are also
equivalent to the following:

(d) @ strongly preserves regularity, that is, ®(x") = ®(x)" for every x € A™.

Proof. In the hypothesis of the Corollary, we observe that the identities
®{a,b,a}t = D(Ua(b")) = Ugp(a)(P(0")) = {P(a),@(b")", D(a)},

®({a,b,a}*)" = O(Ua (b))" = Up(ar) (®(b)") = {®(a”)", (D), P(a")"},

hold for every a,b € A. This shows that the mapping x — ¥(x) = ®(x*)* is a norma-
lized-pg-inverse of ®.

(a) = (b) If @ is contractive then ¥ is contractive too, and it follows from Theo-
rem 3 that ¥ = @, or equivalently, ®(a*) = ®(a)* for every a. The other implications
have been proved in Theorem 3. [J

Returning to Corollaries 2 and 4, in a personal communication, M. Cabrera and A.
Rodriguez noticed that, though an explicit reference for these results seems to be un-
known, they can be also rediscovered with arguments contained in their recent mono-
graph [9]. We thank Cabrera and Rodriguez for bringing our attention to the lemma
and arguments presented below, and for providing the appropriate connections with the
results in [9].

LEMMA 8. Let A be a JB* -algebra, and let e be an idempotent in A such that
lle]| = 1. Then e* =e.

Proof. By [9, Proposition 3.4.6], the closed subalgebra of A generated by {e,e*}
is a JC*-algebra (i.e. a norm closed Jordan *-subalgebra of a C*-algebra). Therefore
e can be regarded as a norm-one idempotent in a C* -algebra, so that, by [9, Corollary
1.2.50], we have ¢* = e, as required. [J

The unital version of Corollary 4 is treated in [9, Corollary 3.3.17(a)]. The general
statement needs a more elaborated argument to rediscover Corollary 4.

New proof of Corollary 4. Let @ : A — B be a contractive Jordan homomorphism
between JB* -algebras. If A and B are unital and ® maps the unit in A to the unit in
B, then the result follows from [9, Corollary 3.3.17(a)].

We deal now with the general statement. We may assume that @ £ 0. It is known
that A** and B** are unital JB*-algebras whose products and involutions extend those
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of A and B, respectively (cf. [9, Proposition 3.5.26]), ®** : A** — B** is a contractive
Jordan algebra homomorphism (cf. [9, Lemma 3.1.17]), and e := ®(1) is a norm-
one idempotent in B**. Therefore, by Lemma 8 and [9, Lemma 2.5.3], U,(B**) is a
closed Jordan *-subalgebra of B** (hence a unital JB * -algebra) containing ®**(A™*).
Then ®**, regarded as a mapping from A™* to U,(B**), becomes a unit-preserving
contractive algebra homomorphism. By the first paragraph of this proof, ®** (and
hence @) is a *-mapping. [J
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