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SHARPENING SOME CLASSICAL NUMERICAL RADIUS INEQUALITIES

MOHSEN ERFANIAN OMIDVAR, HAMID REZA MORADI AND KHALID SHEBRAWI

(Communicated by S. McCullough)

Abstract. New upper and lower bounds for the numerical radii of Hilbert space operators are
given. Among our results, we prove that if A ∈ B (H ) is a hyponormal operator, then for all
non-negative non-decreasing operator convex f on [0,∞), we have

f (ω (A)) � 1
2

∥∥∥∥∥∥ f

⎛
⎝ 1

1+
ξ 2
|A|
8

|A|
⎞
⎠+ f

⎛
⎝ 1

1+
ξ 2
|A|
8

|A∗|
⎞
⎠
∥∥∥∥∥∥ ,

where ξ|A| = inf
‖x‖=1

{ 〈(|A|−|A∗|)x,x〉
〈(|A|+|A∗|)x,x〉

}
. Our results refine and generalize earlier inequalities for

hyponormal operator.

1. Introduction

Let (H ,〈·, ·〉) be a complex Hilbert space and B (H ) denote the C∗ -algebra of
all bounded linear operators on H . For A ∈ B (H ) , we denote by |A| the absolute

value operator of A , that is, |A| = (A∗A)
1
2 , where A∗ is the adjoint operator of A . A

continuous real-valued function f defined on an interval I is said to be operator convex
if f (λA+(1−λ )B) � λ f (A)+ (1−λ ) f (B) for all self-adjoint operators A,B with
spectra contained in I and all λ ∈ [0,1] .

The numerical range of an operator A in B (H ) is defined as W (A) = {〈Ax,x〉 :
‖x‖ = 1} . For any A ∈ B (H ) , W (A) is a convex subset of the complex plane con-
taining the spectrum of A (see [5, Chapter 2]).

Recall that ω (A) = sup
‖x‖=1

|〈Ax,x〉| and ‖A‖ = sup
‖x‖=1

‖Ax‖ . It is well-known that

ω (·) defines a norm on B (H ) , which is equivalent to the usual operator norm ‖·‖ .
Namely, for A ∈ B (H ) , we have

1
2
‖A‖ � ω (A) � ‖A‖ . (1.1)

Other facts about the numerical radius that we use can be found in [6].

Mathematics subject classification (2010): Primary 47A12, Secondary 47A30.
Keywords and phrases: Numerical radius, operator norm, hyponormal operator, AM-GM inequality.

c© � � , Zagreb
Paper OaM-12-26

407

http://dx.doi.org/10.7153/oam-2018-12-26


408 M. E. OMIDVAR, H. R. MORADI AND K. SHEBRAWI

The inequalities in (1.1) have been improved considerably by many authors, (see,
e.g., [1, 8, 9, 15, 16, 17]), Kittaneh [12, 14] has shown the following precise estimates
of ω (A) by using several norm inequalities and ingenious techniques:

ω (A) � 1
2

(
‖A‖+

∥∥A2
∥∥ 1

2

)
, (1.2)

and
1
4

∥∥∥|A|2 + |A∗|2
∥∥∥� ω2 (A) � 1

2

∥∥∥|A|2 + |A∗|2
∥∥∥ . (1.3)

In [3], Dragomir gave the following estimate of the numerical radius which refines the
second inequality in (1.1): For every AA ∈ B (H ) ,

ω2 (A) � 1
2

(
ω
(
A2)+‖A‖2

)
.

In this paper, we establish a considerable improvement of the second inequality in (1.3).
We also propose a new upper bound for ω (·) for the hyponormal operators. Next, we
will give a refinement of the first inequality in (1.1).

2. Upper bounds for the numerical radii

The following lemma is known as the mixed Schwarz inequality (see [7, pp. 75–
76]).

LEMMA 2.1. If A ∈ B (H ) , then

|〈Ax,y〉| � 〈|A|x,x〉 1
2 〈|A∗|y,y〉 1

2 ,

for all x,y ∈ H .

The second lemma is a norm inequality for the sum of two positive operators,
which can be found in [13].

LEMMA 2.2. If A and B are positive operators in B (H ) , then

‖A+B‖� max(‖A‖ ,‖B‖)+
∥∥∥A 1

2 B
1
2

∥∥∥ .

The following lemma contains a simple inequality, which will be needed in the sequel.

LEMMA 2.3. For each α � 1 , we have

α −1
α +1

� lnα. (2.1)



SHARPENING SOME CLASSICAL NUMERICAL RADIUS INEQUALITIES 409

Proof. Taking f (α) ≡ lnα − α−1
α+1 , where α � 1. By an elementary computation

we have f ′ (α) � 0, so f (α) is an increasing function for α � 1. On the other hand
f (α) � f (1) = 0. �

Now, we are ready to present our new improvement of the second inequality in
(1.3). Recall that, an operator A defined on a Hilbert space H is said to be hyponormal
if A∗A−AA∗ � 0, or equivalently if ‖A∗x‖ � ‖Ax‖ for every x ∈ H .

THEOREM A. Let A ∈ B (H ) be a hyponormal operator. Then, for all non-
negative non-decreasing operator convex f on [0,∞), we have

f (ω (A)) � 1
2

∥∥∥∥∥∥ f

⎛
⎝ 1

1+
ξ 2
|A|
8

|A|
⎞
⎠+ f

⎛
⎝ 1

1+
ξ 2
|A|
8

|A∗|
⎞
⎠
∥∥∥∥∥∥ , (2.2)

where ξ|A| = inf
‖x‖=1

{ 〈(|A|−|A∗|)x,x〉
〈(|A|+|A∗|)x,x〉

}
.

Proof. Since A is a hyponormal operator we have 1 � 〈|A|x,x〉
〈|A∗|x,x〉 , for each x ∈ H .

On choosing α = 〈|A|x,x〉
〈|A∗|x,x〉 in (2.1) we get

(0 �)
〈(|A|− |A∗|)x,x〉
〈(|A|+ |A∗|)x,x〉 � ln

〈|A|x,x〉
〈|A∗|x,x〉 .

Whence

inf
‖x‖=1

〈(|A|− |A∗|)x,x〉
〈(|A|+ |A∗|)x,x〉 � ln

〈|A|x,x〉
〈|A∗|x,x〉 . (2.3)

We denote the expression on the left-hand side of (2.3) by ξ|A| . On the other hand Zou
et al. in [18] proved that for each a,b > 0,(

1+
(lna− lnb)2

8

)√
ab � a+b

2
.

By taking a = 〈|A|x,x〉 and b = 〈|A∗|x,x〉 and taking into account that ξ|A| � ln 〈|A|x,x〉
〈|A∗|x,x〉 ,

we infer that

√
〈|A|x,x〉 〈|A∗|x,x〉 � 1

2

(
1+

ξ 2
|A|
8

) 〈(|A|+ |A∗|)x,x〉 .

By using Lemma 2.1, we get

|〈Ax,x〉| � 1

2

(
1+

ξ 2
|A|
8

) 〈(|A|+ |A∗|)x,x〉 .
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Now, by taking supremum over x ∈ H ,‖x‖ = 1, we get

ω (A) � 1

2

(
1+

ξ 2
|A|
8

) ‖|A|+ |A∗|‖ .

Therefore,

f (ω (A)) � f

⎛
⎜⎜⎝ 1

2

(
1+

ξ 2
|A|
8

) ‖|A|+ |A∗|‖

⎞
⎟⎟⎠

=

∥∥∥∥∥∥∥∥
f

⎛
⎜⎜⎝ 1

2

(
1+

ξ 2
|A|
8

) |A|+ 1

2

(
1+

ξ 2
|A|
8

) |A∗|

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

� 1
2

∥∥∥∥∥∥ f

⎛
⎝ 1

1+
ξ 2
|A|
8

|A|
⎞
⎠+ f

⎛
⎝ 1

1+
ξ 2
|A|
8

|A∗|
⎞
⎠
∥∥∥∥∥∥ .

This completes the proof. �

REMARK 2.1. Notice that, if A is a normal operator, then ξ|A| = 0.

An important special case of Theorem A, which leads to an improvement and a
generalization of inequality (1.3) for hyponormal operators, can be stated as follows.

COROLLARY 2.1. Let A ∈ B (H ) be a hyponormal operator. Then, for all 1 �
r � 2 we have

ωr (A) � 1

2

(
1+

ξ 2
|A|
8

)r ‖|A|r + |A∗|r‖ ,

where ξ|A| = inf
‖x‖=1

{ 〈(|A|−|A∗|)x,x〉
〈(|A|+|A∗|)x,x〉

}
. In particular,

ω (A) � 1

2

(
1+

ξ 2
|A|
8

) ‖|A|+ |A∗|‖ , (2.4)

and

ω2 (A) � 1

2

(
1+

ξ 2
|A|
8

)2 ‖A∗A+AA∗‖ .
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An operator norm inequality which will be used in next corollary says that for any
positive operators A ,B ∈ B (H ) , we have (see [2])

‖ArBr‖ � ‖AB‖r , for all 0 � r � 1. (2.5)

The following result refines and generalizes inequality (1.2) for hyponormal operators.

COROLLARY 2.2. Let A ∈ B (H ) be a hyponormal operator. Then

ωr (A) � 1

2

(
1+

ξ 2
|A|
8

)r

(
‖A‖r +

∥∥∥|A| r
2 |A∗| r

2

∥∥∥) ,

for all 1 � r � 2 . In particular

ωr (A) � 1

2

(
1+

ξ 2
|A|
8

)r

(
‖A‖r +

∥∥A2
∥∥ r

2
)

,

for 1 � r � 2.

Proof. Applying Corollary 2.1 and Lemma 2.2, we have

ωr (A) � 1

2

(
1+

ξ 2
|A|
8

)r ‖|A|r + |A∗|r‖

� 1

2

(
1+

ξ 2
|A|
8

)r

(
max(‖A‖r,‖A∗‖r)+

∥∥∥|A| r
2 |A∗| r

2

∥∥∥)

=
1

2

(
1+

ξ 2
|A|
8

)r

(
‖A‖r +

∥∥∥|A| r
2 |A∗| r

2

∥∥∥) .

For the particular applying inequality (2.5), we have∥∥∥|A| r
2 |A∗| r

2

∥∥∥� ‖|A| |A∗|‖ r
2 =

∥∥A2
∥∥ r

2 ,

for 1 � r � 2. �
Recently, Kian [11] improved Jensen’s operator inequality via superquadratic func-

tions. As an application, he showed that the following inequality is valid:

LEMMA 2.4. [11, Example 3.6] Let A1, . . . ,An be positive operators, then∥∥∥∥∥
n

∑
i=1

wiAi

∥∥∥∥∥
r

�
∥∥∥∥∥

n

∑
i=1

wiA
r
i

∥∥∥∥∥− inf
‖x‖=1

{
n

∑
i=1

wi

〈∣∣∣∣∣Ai−
n

∑
j=1

wj
〈
Ajx,x

〉∣∣∣∣∣
r

x,x

〉}
, r � 2,

for each w1, . . . ,wn with ∑n
i=1 wi = 1 .
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This, in turn, leads to the following:

THEOREM B. Let A ∈ B (H ) , then

ω2 (A) � 1
2

(∥∥∥|A|2 + |A∗|2
∥∥∥− inf

‖x‖=1
ξ (x)

)
, (2.6)

where ξ (x) =
〈(∣∣|A|− 1

2 〈(|A|+ |A∗|)x,x〉∣∣2 +
∣∣|A∗|− 1

2 〈(|A|+ |A∗|)x,x〉∣∣2)x,x
〉

.

Proof. One can easily see that for each A ∈ B (H ) we have

ω (A) � 1
2
‖|A|+ |A∗|‖ ,

we can also write

ω2 (A) � 1
4
‖|A|+ |A∗|‖2. (2.7)

Choosing n,r = 2, w1 = w2 = 1
2 , A1 = |A| and A2 = |A∗| in Lemma 2.4, we infer

‖|A|+ |A∗|‖2 � 2
(∥∥∥|A|2 + |A∗|2

∥∥∥ − inf
‖x‖=1

{〈∣∣∣∣|A|− 1
2

(〈|A|x,x〉+ 〈|A∗|x,x〉)
∣∣∣∣
2

x,x

〉

+

〈∣∣∣∣|A∗|− 1
2

(〈|A|x,x〉+ 〈|A∗|x,x〉)
∣∣∣∣
2

x,x

〉})
.

It now follows from (2.7) that

ω2 (A) � 1
4
‖|A|+ |A∗|‖2

� 1
2

(∥∥∥|A|2 + |A∗|2
∥∥∥ − inf

‖x‖=1

{〈∣∣∣∣|A|− 1
2

(〈|A|x,x〉+ 〈|A∗|x,x〉)
∣∣∣∣
2

x,x

〉

+

〈∣∣∣∣|A∗|− 1
2

(〈|A|x,x〉+ 〈|A∗|x,x〉)
∣∣∣∣
2

x,x

〉})
.

The validity of this inequality is just Theorem B. �

REMARK 2.2. Notice that

inf
‖x‖=1

ξ (x)> 0 ⇔ 0 /∈W

(∣∣∣∣|A|− 1
2
〈(|A|+ |A∗|)x,x〉

∣∣∣∣
2

+
∣∣∣∣|A∗|− 1

2
〈(|A|+ |A∗|)x,x〉

∣∣∣∣
2
)

.

To make things a bit clearer, we consider the following example:
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EXAMPLE 2.1. Taking A =
(

0 0
3 0

)
. By an easy computation we find that

∣∣∣∣|A|− 1
2
〈(|A|+ |A∗|)x,x〉

∣∣∣∣
2

+
∣∣∣∣|A∗|− 1

2
〈(|A|+ |A∗|)x,x〉

∣∣∣∣
2

=
(

4.5 0
0 4.5

)
.

It is well-known that, A = λ I if and only if W (A) = {λ} (see, e.g., [10, Section 18]).
So we get inf

‖x‖=1
ξ (x) = 4.5 > 0.

This shows that the inequality (2.6) provides an improvement for the second in-
equality in (1.3).

3. Lower bounds for the numerical radii

The next theorem is slightly more intricate.

THEOREM C. Let A ∈ B (H ) , then

‖A‖
(

1− 1
2

∥∥∥∥I− A
‖A‖

∥∥∥∥
2
)

� ω (A) . (3.1)

Proof. It is easy to check that

1− 1
2

∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥

2

� 1
‖x‖‖y‖ |〈x,y〉| , (3.2)

for every x,y ∈ H .
If we choose ‖x‖ = ‖y‖ = 1 in (3.2) we get

1− 1
2
‖x− y‖2 � |〈x,y〉| . (3.3)

This is an interesting inequality in itself as well. Now taking y = Ax
‖Ax‖ in (3.3), we infer

‖Ax‖
(

1− 1
2

∥∥∥∥x− Ax
‖Ax‖

∥∥∥∥
2
)

� |〈Ax,x〉| . (3.4)

Since ‖x‖ = 1, ‖Ax‖ does not exceed ‖A‖ . Hence we get from (3.4) that

‖Ax‖
(

1− 1
2

∥∥∥∥I− A
‖A‖

∥∥∥∥
2
)

� |〈Ax,x〉| .

Now by taking supremum over x ∈ H with ‖x‖ = 1, we deduce the desired inequality
(3.1). �
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REMARK 3.1. It is striking that if ‖A−‖A‖‖ � ‖A‖ , then inequality (3.1) pro-
vides an improvement for the first inequality in (1.1).

EXAMPLE 3.1. Taking A =
(

2 1
0 4

)
. Then ‖A‖� 4.1594 and ‖A−‖A‖‖� 2.3807.

We obtain by easy computation

1
2
‖A‖ � 2.079, ‖A‖

(
1− 1

2

∥∥∥∥I− A
‖A‖

∥∥∥∥
)
� 2.968, ω (A) � 4.118,

whence
1
2
‖A‖ � ‖A‖

(
1− 1

2

∥∥∥∥I− A
‖A‖

∥∥∥∥
)

� ω (A) ,

which shows that if ‖A−‖A‖‖ � ‖A‖ , then inequality (3.1) is really an improvement
of the first inequality in (1.1).

The following basic lemma is essentially known as in [4, Lemma 1], but our ex-
pression is a little bit different from those in [4]. For the sake of convenience, we give
it a slim proof.

LEMMA 3.1. Let x,y,zi, i = 1, . . . ,n be nonzero vectors and
〈
z j,zi

〉 �= 0 , then∣∣∣∣∣
〈

x−∑
i

〈x,zi〉
∑ j

∣∣〈z j,zi
〉∣∣ zi,y

〉∣∣∣∣∣
2

� ‖y‖2

(
‖x‖2−∑

i

|〈x,zi〉|2
∑ j

∣∣〈zi,z j
〉∣∣
)

. (3.5)

Proof. Define

u = x−∑
i

〈x,zi〉
∑ j

∣∣〈z j,zi
〉∣∣ zi.

Whence

‖u‖2 =

∥∥∥∥∥x−∑
i

aizi

∥∥∥∥∥
2

� ‖x‖2 −∑
i

|〈x,zi〉|2
∑ j

∣∣〈zi,z j
〉∣∣ . (3.6)

By multiplying both sides (3.6) by ‖y‖2 and then utilizing the Cauchy Schwarz in-
equality we get

|〈u,y〉|2 � ‖y‖2

(
‖x‖2−∑

i

|〈x,zi〉|2
∑ j

∣∣〈zi,z j
〉∣∣
)

,

which is exactly desired inequality (3.5). �
Finally, we state the last result.

THEOREM D. Let A ∈ B (H ) be an invertible operator, then

inf
‖x‖=1

ξ 2 (x)+ ω2 (A) � ‖A‖2,

where ξ (x) = |〈A2x,x〉−〈Ax,x〉2|
‖A∗x‖ .
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Proof. Simplifying (3.5) for the case n = 1, we find that∣∣∣∣∣〈x,y〉− 〈x,z〉
‖z‖2 〈z,y〉

∣∣∣∣∣
2

+
|〈x,z〉|2
‖z‖2 ‖y‖2 � ‖x‖2‖y‖2.

Apply these considerations to x = Ax , y = A∗x and z = x with ‖x‖ = 1 we deduce

⎛
⎝
∣∣∣〈A2x,x

〉−〈Ax,x〉2
∣∣∣

‖A∗x‖

⎞
⎠

2

+ |〈Ax,x〉|2 � ‖Ax‖2. (3.7)

We denote the first expression on the left-hand side of (3.7) by ξ (x) . Whence (3.7)
implies that

inf
‖x‖=1

ξ 2 (x)+ |〈Ax,x〉|2 � ‖Ax‖2.

Now, the result follows by taking the supremum over all unit vectors in H . �

REMARK 3.2. Of course, if A is a normal operator we must have ξ (x) = 0. In
this regard, we have:

(i) If A is a normal matrix and x is an eigenvector of A with the eigenvalue e , then〈
A2x,x

〉−〈Ax,x〉2 = e2− e2 = 0.

(ii) Let σ (A) and σap (A) be the spectrum and approximate spectrum of A , respec-
tively. It is well-known that the spectrum of a normal operator has a simple struc-
ture. More precisely, if A is normal, then we have σ (A) = σap (A) . If we assume
that e is in the approximate point spectrum of normal operator A , then there is
a sequence xn ∈ H with ‖xn‖ = 1 and 〈Axn,xn〉 → e as n → ∞ . Therefore

lim
n→∞

∣∣∣〈A2xn,xn
〉−〈Axn,xn〉2

∣∣∣= 0.
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