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EIGENVALUE INTERLACING FOR FIRST ORDER

DIFFERENTIAL SYSTEMS WITH PERIODIC 2× 2 MATRIX

POTENTIALS AND QUASI–PERIODIC BOUNDARY CONDITIONS

SONJA CURRIE, THOMAS T. ROTH AND BRUCE A. WATSON

(Communicated by J. Behrndt)

Abstract. The self-adjoint first order system, JY ′+QY = λY , with locally integrable, real, sym-

metric, π -periodic, 2×2 matrix potential Q is considered, where J =
(

0 1
−1 0

)
. By means of

a unitary transformation applied to the boundary value problem considered in [6], it is shown that
all eigenvalues to the above equation with boundary conditions Y (π) =±R(θ )Y(0) , where R(θ )

is the rotation matrix

(
cosθ sinθ
−sinθ cosθ

)
, occur when the discriminant Δθ = Tr(Y(π)T R(θ )) is

equal to ±2 . Here Y is the solution of the first order system obeying the initial condition
Y(0) = I . In addition, an expression for the λ -derivative of the discriminant Δθ is given and
some monotonicity results are obtained. Interlacing/indexing properties for the eigenvalues of
various operator eigenvalue problems are proved.

1. Introduction

Quasiperiodic eigenvalue problems fall into the following two categories:
(i) The potential is quasiperiodic, see [1, 7].
(ii) The boundary conditions are quasiperiodic, see [11, 12].
The problems that are investigated in this work are of the second type. In [8]

eigenvalue problems with quasiperiodic boundary conditions were studied. In partic-
ular, boundary conditions of the form y(π) = ωy(0) with |ω | = 1 and arg(ω) �= kπ ,
were considered. We note that periodic and antiperiodic boundary value problems are
in fact special cases of these. Quasiperiodic boundary value problems have in addition
been referred to as ω -twisted boundary value problems, see [4, p. 21]. For recent work
done in this area see [2, 13, 14, 16].

Here we consider the differential equation

�Y := JY ′ +QY = λY, (1.1)
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where J =
(

0 1
−1 0

)
and Q =

(
q1 q
q q2

)
. Here q,q1,q2 are real valued, integrable and

π -periodic.

Let Y = [Y1 Y2] =
[

y11 y21

y12 y22

]
be the solution of (1.1) obeying the initial condition

Y(0) = I . The λ -intervals on the real line for which all solutions are bounded will be
called the intervals of stability while the intervals for which at least one solutions is
unbounded will be called instability intervals.

In Section 2 we define a unitary transformation which enables us to obtain the
following (as a direct application of this unitary transformation to the boundary value
problem considered in [6]):

(i) The eigenvalues of (1.1) with boundary conditions Y (π) = ±R(θ )Y (0) occur
precisely where Δθ := Tr(Y(π)T R(θ )) = ±2.

(ii) An explicit form for the λ -derivative of Δθ .
(iii) Monotonicity results concerning the first and second λ -derivatives of Δθ .
Section 3 contains the main results, namely an interlacing structure for the eigen-

values of (1.1) with certain separated boundary conditions. This relates to the indexing
of eigenvalues and hence also to [6, 9, 11, 12, 15].

2. Unitary transformation

Let Y be a solution of (1.1) obeying the boundary conditions Y (π) =±R(θ )Y (0) .
If the unitary transformation V of Y is defined as follows

V (x) =
(

cos θx
π −sin θx

π
sin θx

π cos θx
π

)
Y (x), (2.1)

for x ∈ [0,π ] , then V is a solution of the boundary value problem

JV ′ + Q̃V =
(

λ +
θ
π

)
V, (2.2)

satisfying V (π) = ±V (0) . Here

Q̃(x) =
(

cos θx
π −sin θx

π
sin θx

π cos θx
π

)
Q(x)

(
cos θx

π sin θx
π

−sin θx
π cos θx

π

)
. (2.3)

Let V = [V1 V2] =
[

v11 v21

v12 v22

]
be the solution of (2.2) obeying the initial condition

V(0) = I . Note that [v11v22− v21v12](π) = 1.
Then, from [6, Section 3],

Δθ = v11(π ,λ )+ v22(π ,λ )
= y11(π)cosθ − y12(π)sinθ + y21(π)sinθ + y22(π)cosθ .

For each λ ∈ C consider the problem of solving

V (π) = ρθ (λ )V (0), (2.4)
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where V is a non-trivial solution of (2.2) and ρθ (λ ) ∈ C . This results in ρθ (λ ) being
multivalued and V can be represented as V = V(x)c , for some c ∈ C2 \ {0} . Thus
solving (2.4) is equivalent to solving

(V(π)−ρθ(λ )I)c = 0 (2.5)

for c∈ C
2 \{0} and ρθ (λ ) ∈ C . A necessary and sufficient condition for the existence

of solutions c ∈ C2 \ {0} of (2.5) is det(V(π)−ρθ I) = 0. This can be expressed as

ρ2
θ −ρθ Δθ +1 = 0. (2.6)

Hence Δθ is called the R(θ )-discriminant of (1.1) and

ρ±
θ =

Δθ ±
√

Δ2
θ −4

2
, (2.7)

are called the Floquet multipiers of (1.1). Note that ρ+
θ ρ−

θ = 1. It thus follows that
λ is an eigenvalue of (1.1) with boundary condition Y (π) = R(θ )Y (0) if and only if
Δθ (λ )= 2 and λ is an eigenvalue of (1.1) with boundary condition Y (π)=−R(θ )Y (0)
if and only if Δθ (λ ) = −2. The eigenvalue problems under consideration are self-
adjoint, so we can restrict our attention to λ ∈R and these eigenvalues are the boundary
points of the sets ±Δθ � 2.

Let

Σθ := {λ ∈ R : |Δθ (λ )| � 2}. (2.8)

The maximally connected subsets of Σθ are referred to as regions of R(θ )-instability
and the maximally connected subsets of R \Σθ are referred to as regions of R(θ )-
stability. The R(0)-instability intervals and the R(0)-discriminant were studied in [6].

We now focus our attention on the discriminant Δθ . Note that for real λ , Y has
real entries and hence Δθ is real valued.

THEOREM 2.1. Let λ ∈ R . The λ -derivative of Δθ is given by

dΔθ
dλ

= (y21(π)cosθ − y22(π)sinθ )
∫ π

0
YT

1 Y1 dt

+[(y22(π)− y11(π))cosθ +(y12(π)+ y21(π))sinθ ]
∫ π

0
YT

1 Y2 dt

+(−y11(π)sinθ − y12(π)cosθ )
∫ π

0
YT

2 Y2 dt, (2.9)

which can expressed as

dΔθ
dλ

= −(y11(π)sinθ + y12(π)cosθ )
{
‖Y2 −AY1‖2

2 +B‖Y1‖2
2

}
, (2.10)

for y11(π)sinθ + y12(π)cosθ �= 0,

dΔθ
dλ

= −(−y21(π)cosθ + y22(π)sinθ )
{
‖Y1−CY2‖2

2 +D‖Y2‖2
2

}
, (2.11)

for y21(π)cosθ − y22(π)sinθ �= 0.
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where

A =
(y22(π)− y11(π))cosθ +(y12(π)+ y21(π))sinθ

2(y11(π)sinθ + y12(π)cosθ )
,

B =
4−Δ2

θ
4(y11(π)sinθ + y12(π)cosθ )2 ,

C =
(y22(π)− y11(π))cosθ +(y12(π)+ y21(π))sinθ

2(y22(π)sinθ − y21(π)cosθ )
,

D =
4−Δ2

θ
4(y21(π)cosθ − y22(π)sinθ )2 .

Proof. From [6, Lemma 3.2] we obtain that the λ -derivative of Δθ is given by

dΔθ
dλ

= v21(π)
∫ π

0
VT

1 V1dt +(v22(π)− v11(π))
∫ π

0
VT

1 V2 dt− v12(π)
∫ π

0
VT

2 V2 dt

(2.12)
which can also be expressed as

dΔθ
dλ

= v12(π)

{
Δ2

θ −4

4v2
12(π)

‖V1‖2
2−

∥∥∥∥V2− v22(π)− v11(π)
2v12(π)

V1

∥∥∥∥
2

2

}
, v12(π) �= 0, (2.13)

dΔθ
dλ

= v21(π)

{∥∥∥∥V1 +
v22(π)− v11(π)

2v21(π)
v2

∥∥∥∥
2

2
− Δ2

θ −4

4v2
21(π)

‖V2‖2
2

}
, v21(π) �= 0. (2.14)

Using the transformation

Vi(x) =
(

cos θx
π −sin θx

π
sin θx

π cos θx
π

)
Yi(x),

for i = 1,2 we obtain, by means of straightforward calculations, equations (2.9), (2.10)
and (2.11). �

As a consequence of the above theorem we obtain the following three corollaries.

COROLLARY 2.2. If Δθ (λ ) = ±2 and dΔθ
dλ (λ ) = 0 then y11(π) = ±cosθ =

y22(π) and ± d2Δθ
d2λ (λ ) < 0 .

Proof. Again directly from [6, Lemma 3.2] we have that if Δθ (λ ) = ±2 and
dΔθ
dλ (λ ) = 0 then ∓ d2Δθ

dλ 2 (λ ) > 0 and v12(π) = 0 = v21(π) . Thus

y11(π)sinθ + y12(π)cosθ = 0 = y21(π)cosθ − y22(π)sinθ .

The above equations together with [y11y22−y21y12](π)= 1 and Δθ =±2 give y21(π)=
±sinθ , y12(π) = ∓sinθ and y11(π) = ±cosθ = y22(π) so that Y(π) = ±R(θ ) . �
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COROLLARY 2.3. If |Δθ | � 2 then for y11(π)sinθ + y12(π)cosθ �= 0

1
y11(π)sinθ + y12(π)cosθ

dΔθ
dλ

< 0, (2.15)

and for −y21(π)cosθ + y22(π)sinθ �= 0

1
−y21(π)cosθ + y22(π)sinθ

dΔθ
dλ

< 0. (2.16)

Proof. If |Δθ | � 2 then by [6, Lemma 3.2]

1
v12(π)

dΔθ
dλ

< 0, for v12(π) �= 0, (2.17)

1
v21(π)

dΔθ
dλ

> 0, for v21(π) �= 0. (2.18)

Since v12(π) = y11(π)sinθ + y12(π)cosθ and v21(π) = −y21(π)cosθ + y22(π)sinθ
the result follows. �

COROLLARY 2.4. If sinθy11(π)+cosθy12(π)= 0 or cosθy21(π)−sinθy22(π)=
0 , then Δθ · sgn(cosθy11(π)− sinθy12(π)) � 2 .

Proof. The determinant of V being 1 gives, v11(π)v22(π) = 1, so that Δθ =
v11(π)+ 1

v11(π) . Thus if v11(π) > 0 then Δθ � 2 and if v11(π) < 0 then Δθ � −2. The

results follows since v11(π) = cosθy11(π)− sinθy12(π) . �

3. Interlacing of eigenvalues

Let H = L2(0,π)×L2(0,π) be the Hilbert space with inner product

〈Y,Z〉 =
∫ π

0
Y (t)T Z(t)dt for Y,Z ∈ H,

and norm ‖Y‖2 :=
√〈Y,Y 〉 . The Wronskian of Y and Z is given by [Y,Z]W =YT R(θ )Z .

We consider the self-adjoint operator eigenvalue problems

LiY = λY, (3.1)

where Li = �|D(Li) and

D(Li) = {Y ∈ H : Y ∈ AC, �Y ∈ H,Y obeys (BCi)} ,
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for i = 1, . . . ,8. Here

Y (0) = Y (π), (BC1)
Y (0) = −Y (π), (BC2)

y1(0) = 0 = y1(π), (BC3)
y2(0) = 0 = y2(π), (BC4)
R(θ )Y (0) = Y (π), (BC5)

−R(θ )Y (0) = Y (π), (BC6)
y1(0) = 0 = y2(π), (BC7)
y2(0) = 0 = y1(π). (BC8)

For λ ,γ ∈ R , let Ψ(x) =
(

ψ1(x)
ψ2(x)

)
be the solution of (1.1) satisfying the initial

condition

(
ψ1(0)
ψ2(0)

)
=

(
cosγ
sinγ

)
. Here ψ1 and ψ2 are real valued. Define P(x,λ ,γ)

and ϕ(x,λ ,γ) by

Ψ(x) =
(

P(x,λ ,γ)cosϕ(x,λ ,γ)
P(x,λ ,γ)sinϕ(x,λ ,γ)

)
, (3.2)

where P(x,λ ,γ) > 0 and ϕ(x,λ ,γ) is a continuous function of x with ϕ(0,λ ,γ) = γ .
From now on ϕ will be referred to as the angular part of Ψ . The function P(x,λ ,γ)
is differentiable in x,λ ,γ, and ϕ(x,λ ,γ) is real analytic in λ and γ for fixed x , and
differentiable in x for fixed λ and γ . Here ϕ(x,λ ,γ) is the solution to a first order
initial value problem

ϕ ′ = λ −qsin2ϕ −q1 cos2 ϕ −q2 sin2 ϕ , (3.3)

ϕ(0) = γ. (3.4)

where ϕ ′ = ∂ϕ
∂x . This initial value problem obeys the conditions of [10, Section 69.1],

from which it follows that ϕ(x,λ ,γ) is jointly continuous in (x,λ ,γ) . Moreover, for
fixed x > 0, ϕ(x,λ ,γ) is strictly increasing in γ and λ , see Weidmann [15, p. 242],
with ϕ(x,λ ,γ) →±∞ as λ →±∞ , see [3]. Thus the eigenvalues, νn , μn , βn and ζn ,
n ∈ Z , of L3 , L4 , L7 and L8 , respectively, are simple and determined uniquely by the
equations

ϕ(π ,νn,π/2) = nπ +
π
2

, n ∈ Z, (3.5)

ϕ(π ,μn,0) = nπ , n ∈ Z. (3.6)

ϕ(π ,βn,π/2) = (n+1)π , n ∈ Z, (3.7)

ϕ(π ,ζn,0) = nπ +
π
2

, n ∈ Z. (3.8)

As a consequence of the above observation it follows that μn,νn,βn,ζn →±∞ as n →
±∞ .
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For Σ0 , as defined in equations (2.8), it has been shown, [6], that

Σ0 =
∞⋃

k=−∞
[λ2k−1,λ2k]∪ [λ ′

2k−1,λ
′
2k]. (3.9)

Here λn and λ ′
n are the eigenvalues of the periodic and anti-periodic eigenvalue prob-

lems with suitable indexing, see [6]. Also from [6] we have that:

max{μn,νn} < min{μn+1,νn+1}, n ∈ Z; (3.10)

(−1)nΔ′
0(λ ) < 0, for λ ∈ (min{νn,μn},max{νn+1,μn+1}) with |Δ0(λ )| � 2;(3.11)

the set |Δ0(λ )|� 2 consists of a countable union of disjoint closed finite intervals, each
of which contains precisely one of the sets {νn,μn},n ∈ Z . The end points of these
intervals as the only points at which |Δ0(λ )| = 2.

We can now prove the following interlacing results for 0 < θ � π
2 :

THEOREM 3.1. For each n ∈ Z ,

νn+1,μn+1 ∈ (max{βn,ζn},min{βn+1,ζn+1}), (3.12)

βn,ζn ∈ (max{μn,νn},min{μn+1,νn+1}). (3.13)

Proof. Since ϕ(x,λ ,γ) is strictly increasing in λ we have

ϕ
(

π ,βn,
π
2

)
= (n+1)π

< (n+1)π +
π
2

= ϕ
(

π ,νn+1,
π
2

)
< (n+2)π = ϕ

(
π ,βn+1,

π
2

)
,

giving
βn < νn+1 < βn+1, (3.14)

furthermore

ϕ(π ,ζn,0) = nπ +
π
2

< (n+1)π = ϕ(π ,μn+1,0)

< (n+1)π +
π
2

= ϕ(π ,ζn+1,0),

showing that
ζn < μn+1 < ζn+1. (3.15)

Suppose βn � μn+1 , then from the monotonicity of ϕ in the eigenparameter and
initial value we have

(n+1)π = ϕ(π ,μn+1,0) � ϕ(π ,βn,0) < ϕ
(

π ,βn,
π
2

)
= (n+1)π ,
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a contradiction, so βn < μn+1 . Suppose βn+1 � μn+1 , then

(n+2)π = ϕ
(

π ,βn+1,
π
2

)
� ϕ

(
π ,μn+1,

π
2

)
< ϕ(π ,μn+1,π) = (n+2)π ,

a contradiction, so βn+1 > μn+1 and thus

βn < μn+1 < βn+1. (3.16)

Suppose ζn � νn+1 from the monotonicity of ϕ in the eigenparameter and initial
condition we have

(n+1)π +
π
2

= ϕ
(

π ,νn+1,
π
2

)
� ϕ

(
π ,ζn,

π
2

)
< ϕ(π ,ζn,π) = (n+1)π +

π
2

,

a contradiction, so ζn < νn+1 . Suppose νn+1 � ζn+1 , then

(n+1)π +
π
2

= ϕ(π ,ζn+1,0) � ϕ(π ,νn+1,0) < ϕ
(

π ,ζn+1,
π
2

)
= (n+1)π +

π
2

,

so νn+1 < ζn+1 and thus
ζn < νn+1 < ζn+1. (3.17)

Combining (3.14), (3.15), (3.16) and (3.17) gives (3.12) from which (3.13) follows. �

THEOREM 3.2. If λ ∈ (min{μn+1,νn+1},max{βn+1,ζn+1}) and |Δθ (λ )|� 2 then

(−1)n dΔθ
dλ

(λ ) > 0. (3.18)

Proof. From the monotonicity of ϕ(π ,λ , π
2 ) in λ , we have for λ ∈ (βn,βn+1)

that

(n+1)π = ϕ
(

π ,βn,
π
2

)
< ϕ

(
π ,λ ,

π
2

)
< ϕ

(
π ,βn+1,

π
2

)
= (n+2)π ,

thus

(−1)ny22(π ,λ ) = (−1)nP
(

π ,λ ,
π
2

)
sinϕ

(
π ,λ ,

π
2

)
< 0. (3.19)

While for λ ∈ (νn+1,νn+2) we have that

(n+1)π + π
2 = ϕ

(
π ,νn+1,

π
2

)
< ϕ

(
π ,λ , π

2

)
< ϕ

(
π ,νn+2,

π
2

)
= (n+2)π + π

2 ,

and so

(−1)ny21(π ,λ ) = (−1)nP
(

π ,λ ,
π
2

)
cosϕ

(
π ,λ ,

π
2

)
> 0. (3.20)

Thus for λ ∈ (βn,βn+1)∩(νn,νn+1) = (νn+1,βn+1) and |Δθ � 2| we have by Corollary
2.3 that (−1)n dΔθ

dλ (λ ) > 0.
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Moreover for λ ∈ (ζn,ζn+1) we have

nπ + π
2 = ϕ(π ,ζn,0) < ϕ(π ,λ ,0) < ϕ(π ,ζn+1,0) = (n+1)π + π

2 ,

thus

(−1)ny11(π ,λ ) = (−1)nP(π ,λ ,0)cosϕ(π ,λ ,0) < 0. (3.21)

Lastly, for λ ∈ (μn+1,μn+2) we have

(n+1)π = ϕ(π ,μn+1,0) < ϕ(π ,λ ,0) < ϕ(π ,μn+2,0) = (n+2)π ,

resulting in

(−1)ny12(π ,λ ) = (−1)nP(π ,λ ,0)sinϕ(π ,λ ,0) < 0. (3.22)

So for λ ∈ (ζn,ζn+1)∩ (μn,μn+1) = (μn+1,ζn+1) and |Δθ � 2| we have by Corollary
2.3 that (−1)n dΔθ

dλ (λ ) > 0.
Now, (νn+1,βn+1)∩(μn+1,ζn+1) = (max{μn+1,νn+1},min{ζn+1,βn+1}) �= φ , by

Theorem 3.1. Therefore for

λ ∈ (νn+1,βn+1)∪ (μn+1,ζn+1)
= (min{μn+1,νn+1},max{βn+1,ζn+1}),

with |Δθ (λ )| � 2 we have that (−1)n dΔθ
dλ is positive. �

THEOREM 3.3. For λ ∈ (max{βn,ζn},min{μn+1,νn+1}) �= φ , (−1)nΔθ (λ ) < 0
and Δθ has precisely one zero in [min{μn,νn},max{βn,ζn}] .

For λ ∈ (max{βn,ζn},min{βn+1,ζn+1}), (−1)nΔ0(λ ) < 0 and Δ0 has precisely
one zero in [min{βn,ζn},max{βn,ζn}] .

Proof. From (3.22) for λ ∈ (μn,μn+1) we have

(−1)ny12(π ,λ ) > 0. (3.23)

Similarly from (3.20) for λ ∈ (νn,νn+1) we have

(−1)ny21(π ,λ ) < 0. (3.24)

Combining (3.10), (3.19), (3.21), (3.23) and(3.24),

(−1)nΔθ (λ ) < 0, (3.25)

for λ ∈ (max{βn,ζn},min{μn+1,νn+1}) . Thus there must be at least one zero of Δθ in
[min{μn,νn},max{βn,ζn}] . Combining Theorems 3.1 and 3.2 shows that there is no
more than one zero of Δθ in [min{μn,νn},max{βn,ζn}] .

Using (3.19), (3.21) and (3.13), for

λ ∈ (max{βn,ζn},min{βn+1,ζn+1}), (3.26)

we have that (−1)nΔ0 < 0. Hence Δ0 has at least one zero in [min{βn,ζn},max{βn,ζn}] .
Now Theorem 3.1 and (3.11) show that Δ0 has at most one zero in

[min{βn,ζn},max{βn,ζn} ⊂ (min{μn,νn},max{μn+1,νn+1})]. �
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THEOREM 3.4. The set Σ′
θ := {λ ∈ R : |Δθ | � 2sinθ} consists of a countable

union of disjoint closed finite intervals, each of which contains precisely one zero of
Δ0 . The zeros of Δ0 and Δθ interlace each other.

Proof. Since Δθ is continuous, Σ′
θ consists of closed intervals. If λ0 is a zero

of Δ0 then y11(π)+ y22(π) = 0. Since y11y22 − y12y21 = 1 we have y12(π)y21(π) =
−(1+ y2

22(π)) which gives y12(π)y21(π) < −1. If y12(π) > 0 then y21(π) < 0 and

y21(π) <−1/y12(π) so Δθ (λ ) = (y21(π)−y12(π))sinθ <−
(
y12(π)+ 1

y12(π)

)
sinθ <

−2sinθ , while if y12(π) < 0 then y21(π) > 0 and y12(π) < −1/y21(π) so Δθ (λ ) =
(y21(π)− y12(π))sinθ >

(
y21(π)+ 1

y21(π)

)
sinθ > 2sinθ . Thus λ0 ∈ Σ′

θ . Let n be

such that λ0 ∈ [min{βn,ζn},max{βn,ζn}] .
Now by Theorem 3.2 for λ ∈ (max{μn,νn},min{βn,ζn}) with |Δθ (λ )| � 2 we

have that dΔθ
dλ has constant sign. Therefore (min{μn,νn},max{βn,ζn})∩Σ′

θ consists
of at most one interval, on which |Δθ | � 2sinθ , but then λ0 is in such an interval so
there is precisely one such interval and λ0 is in this interval. We now show that there is
exactly one zero of Δ0 in each maximal connected subset of Σ′

θ . Let J be a maximal
connected subset of Σ′

θ and suppose that there are c,d ∈ J with c < d,Δ0(c) = 0 =
Δ0(d) and Δ0(λ ) �= 0 for all λ ∈ (c,d) . Given the above there is an n ∈ Z with

min{βn,ζn} � c � max{βn,ζn} < min{βn+1,ζn+1} � d � max{βn+1,ζn+1},
since the zeros of Δ0 are in the intervals [min{β j,ζ j},max{β j,ζ j}], j ∈ Z, with pre-
cisely one in each such interval. But (−1)nΔθ (c) < 0 and (−1)n+1Δθ (d) < 0 so Δθ
has a zero in (c,d) contradicting the definition of J . Thus there is precisely one zero
of Δ0 in J .

To show the interlacing of the zeros of Δ0 and Δθ we consider when Δ0(λ ) = 0.
In this case y11 =−y22 and from this together with the fact that y11y22−y12y21 = 1 we
can conclude that y21 and y12 have opposite signs. Thus, since Δθ (λ ) = sinθ (y21 −
y12) when Δ0(λ ) = 0, we have that Δθ (λ ) takes the sign of y21 . Now for λ ∈
(min{βn,ζn},max{βn+1,ζn+1}) we have that (−1)ny21 < 0 and hence (−1)nΔθ (λ ) <
0. However, from Theorem 3.3 above, (−1)nΔθ (λ ) > 0 for λ ∈ (max{βn−1,ζn−1},
min{μn,νn}) . Thus Δθ has already changed sign before the zero of Δ0 . Giving that
the zeros of Δθ and Δ0 interlace each other. �

COROLLARY 3.5. The zeros of Δ0 are contained within Σ′
θ , with each component

of Σ′
θ containing exactly one zero of Δ0 and exactly one of the sets {βn,ζn} , n ∈ Z .

Proof. If Δ0(λ ) = 0, then from Theorem 3.4, λ ∈ Σ′
θ and every component of

Σ′
θ contains precisely one zero of Δ0 and conversely each zero Δ0 lies in precisely one

of the components of Σ′
θ . Furthermore, each zero of Δ0 lies in precisely one of the

intervals [min{β j,ζ j},max{β j,ζ j}], j ∈ Z, and each such interval contains a zero of
Δ0 . Note that Δθ does not change sign of this interval and can only obey the equality
|Δθ | = 2sinθ at at most one point of this interval. However Δθ (λ ) = −2(−1)n for
λ = βn,ζn giving that [min{βn,ζn},max{βn,ζn}] ⊂ Σ′

θ ,n ∈ Z from which the result
follows. �
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30 (1978), 90–101.

[12] T. V. MISYURA, Characterization of the spectra of the periodic and antiperiodic boundary value
problems that are generated by the Dirac operator II, Teor. Funktsiĭ Funktsional. Anal. i Prolozhen.,
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[14] A. SÜTÖ, The spectrum of a quasiperiodic Schrödinger operator, Commun. Math. Phys. 111 (1987),
409–415.

[15] J. WEIDMANN, Spectral theory of ordinary differential operators, Lecture notes in Mathematics 1258,
Springer-Verlag, 1987.

[16] C.-F. YANG, X.-P. YANG, Some Ambarzumyan-type theorems for Dirac operators, Inverse Problems,
23 (2007), 2565–2574.

(Received November 28, 2017) Sonja Currie
School of Mathematics

University of the Witwatersrand
Private Bag 3, P O WITS 2050, South Africa

Thomas T. Roth
School of Mathematics

University of the Witwatersrand
Private Bag 3, P O WITS 2050, South Africa

Bruce A. Watson
School of Mathematics

University of the Witwatersrand
Private Bag 3, P O WITS 2050, South Africa

Operators and Matrices
www.ele-math.com
oam@ele-math.com


