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Abstract. In this paper we consider power series method which is also member of the class of
all continuous summability methods. We study a Korovkin type approximation theorem for a
sequence of positive linear operators acting from a weighted space Cρ1 into a weighted space
Bρ2 with the use of the power series method which includes both Abel and Borel methods. We
also consider the rates of convergence of these operators.

1. Introduction

In the development of the theory of approximation by positive linear operators,
the Korovkin theory has big importance. The classical Korovkin type theorems provide
conditions for whether a given sequence of positive linear operators converges to the
identity operator in the space of continuous functions on a compact interval [1, 11]. Ko-
rovkin type theorems have also been studied in Lp spaces [3, 8, 14, 15]. This theory has
been extended with the use of summability methods since they provide a nonconvergent
sequence to converge [2, 6, 7, 10, 12, 13, 16]. This is the motivation behind Fejer’s fa-
mous theorem showing Cesàro method being effective in making the Fourier series of
continuous periodic function to converge [4]. In this paper we consider power series
method which is also member of the class of all continuous summability methods. This
paper has two main goals. The first one is to investigate a Korovkin type approximation
theorem for a sequence of positive linear operators acting from a weighted space Cρ1

into a weighted space Bρ2 with the use of the power series method which includes Abel
method and Borel method. The second is to focus on the rate of convergence of these
operators. The main purpose of using summability theory has always been to make a
nonconvergent sequence to converge.

First of all, we recall some basic definitions and notations used in the paper. The
function ρ is called a weight function if it is continuous on R with non-increasing on
(−∞,0) , non-decreasing on (0,+∞)

lim
|x|→∞

ρ(x) = ∞ and ρ(0) = 1.
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Then the space of real valued functions f defined on R and satisfying for all x ∈ R ,
| f (x)| � Mf ρ(x) is called weighted space and denoted by Bρ , where Mf is a constant
depending on the function f . The subspace Cρ of Bρ is given by

Cρ := { f ∈ Bρ : f is continuous over R}
The spaces Bρ and Cρ are Banach spaces with the norm

‖ f‖ρ := sup
x∈R

| f (x)|
ρ(x)

.

Now let ρ1 and ρ2 be two weight functions. Assume also that the condition

lim
|x|→∞

ρ1(x)
ρ2(x)

= 0 (1)

holds. It is clear that Cρ1 ⊂Cρ2 and Bρ1 ⊂ Bρ2 . If {Ln} is a sequence of positive linear
operators from Cρ1 into Bρ2 then the operator norm is given by

‖L‖Cρ1→Bρ2
:= sup

‖ f‖ρ1=1

‖L f‖ρ2 = ‖L(ρ1)‖ρ2 .

Let (pn) be real sequence with p0 > 0 and pn � 0 (n ∈ N) , and such that the
corresponding power series p(t) := ∑∞

n=0 pntn has radius of convergence R with 0 <
R � ∞ . If, for all t ∈ (0,R) ,

lim
t→R−

1
p(t)

∞

∑
n=0

xnpnt
n = L

then we say that x = (xn) is convergent in the sense of power series method. Note that
the power series method is regular if and only if

lim
t→R−

pntn

p(t)
= 0, for each n ∈ N (2)

holds [5]. Let {Ln} be a sequence of positive linear operators from Cρ1 into Bρ2 such
that for every f ∈Cρ1

sup
0<t<R

1
p(t)

∞

∑
n=0

‖Ln(ρ1)‖ρ1 pnt
n < ∞ (3)

holds. Throughout the paper, the operators fulfill conditions (2) and (3). Consider the
operator Vt from Cρ1 into Bρ2 defined by

Vt{( f (y);x)} :=
1

p(t)

∞

∑
n=0

Ln( f (y);x)pnt
n

for each t ∈ (0,R). In this study we present a Korovkin type theorem in weighted spaces
via power series method.
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2. Korovkin type theorem in weighted spaces

In this section we give a Korovkin type approximation of a function f by means
of a sequence of positive linear operators from a weighted space Cρ1 into a weighted
space Bρ2 with the use of the power series method. Now we can give our main theorem.

THEOREM 1. If

lim
t→R− ‖VtFi−Fi‖ρ1 = 0, i = 0,1,2, (4)

where Fi(x) = xiρ1(x)
1+x2 then we have for any f ∈Cρ1

lim
t→R− ‖Vt f − f‖ρ2 = 0.

REMARK 1. Notice that Vt(Fi) = Vt(Fi)−Fi + Fi and Fi ∈ Bρ1 for i = 0,1,2,
then by the hypothesis (4) one can get Vt(Fi)−Fi ∈ Bρ1 which gives Vt(Fi) ∈ Bρ1 .
Since ρ1 = F0 +F2 , we have Vt(ρ1) ∈ Bρ1 . Also by condition (3) we can write, for
a given f ∈ Cρ1 that ‖Vt f‖ρ1 � sup0<t<R ‖Vt‖Cρ1→Bρ1

‖ f‖ρ1 � M1‖ f‖ρ1 . This im-
plies Vt( f ) ∈ Bρ1 . Therefore we obtain Vt(Cρ1) ⊂ Bρ1 . Using (1) and the fact that
sup0<t<R ‖Vt‖Cρ1→Bρ2

= sup0<t<R ‖Vt(ρ1)‖ρ2 � M2 < ∞ we observe that Vt{(.);x} is
also a positive linear operator from Cρ1 into Bρ2 .

We need a lemma which is used in the proof of the main theorem.

LEMMA 1. Under the assumptions of Theorem 1, we have for any s > 0, for any
f ∈Cρ1

lim
t→R− ‖Vt f − f‖ρ2,[−s,s] := lim

t→R− sup
|x|�s

|Vt( f ;x)− f (x)|
ρ2(x)

= 0.

Proof. Let f ∈ Cρ1 and s > 0. For given ε > 0 there exists δ > 0 such that for
any y ∈ R and |x| � s

| f (y)− f (x)| < ε +(y− x)2F0(y)Kρ1(x,δ ) (5)

where Kρ1(x,δ ) := 4Mf ρ1(x)( 1+x2

δ 2 +1). Observe that

|Vt( f (y);x)− f (x)| � Vt(| f (y)− f (x)|;x)+ | f (x)||Vt(1;x)−1|.
By (5) we obtain

|Vt( f (y);x)− f (x)| � ε +Kρ1(x,δ )|Vt((y− x)2F0(y);x)|+(ε + | f (x)|)|Vt(1;x)−1|.
Also observe that

|Vt((y− x)2F0(y);x)| � |Vt(F2(y);x)−F2(x)|+2|x||Vt(F1(y);x)−F1(x)|
+x2|Vt(F0(y);x)−F0(x)|
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and

F0(x)|Vt(1;x)−1|� |Vt(F0(y);x)−F0(x)|+Vt(|F0(y)−F0(x)|;x).

Then we get

‖Vt f − f‖ρ2,[−s,s] � M(ε +
2

∑
i=0

‖VtFi−Fi‖ρ1)

for all t ∈ (0,R) and for some M > 0. Taking limit as t → R− we obtain the desired
result. �

Now we are ready to prove our main result.

Proof of Theorem 1. For given ε > 0, pick an s0 such that ρ1(x) � ερ2(x) for all
|x| > s0. We may write for f ∈Cρ1 ,

‖Vt f − f‖ρ2 � sup
|x|�s0

|Vt( f ;x)− f (x)|
ρ2

+ sup
|x|>s0

|Vt( f ;x)− f (x)|
ρ2

� ‖Vt f − f‖ρ2,[−s0,0] + ε‖Vt f − f‖ρ1

� ‖Vt f − f‖ρ2,[−s0,s0] + ε(‖Vt( f )‖ρ1 +‖ f‖ρ1)

and using the lemma and remark, we complete the proof. �

3. Rate of convergence

Throughout this section we assume that ρ1(x) = 1+ x2. Also we consider the fol-
lowing weighted modulus of continuity [9]

wρ1( f ;δ ) = sup
|x−y|�δ

| f (y)− f (x)|
ρ1(x)+ ρ1(y)

where δ is a constant and f ∈Cρ1 .
It is known that for all f ∈Cρ1 ,

| f (y)− f (x)| � {ρ1(x)+ ρ1(y)}wρ1( f ;δ )
(
2+

|y− x|
δ

)

which implies

| f (y)− f (x)| � 4ρ1(x)ρ1(y)wρ1( f ;δ )
(
1+

(y− x)2

δ 2

)
.
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Using the linearity and positivity of Vt for all t ∈ (0,R) , we have for any δ � 0
and all f ∈Cρ1

|Vt( f (y);x)− f (x)| � Vt(| f (y)− f (x)|;x)+ | f (x)||(Vt (F0(y);x)−F0(x))|

� 4ρ1(x)wρ1( f ;δ )Vt

(
ρ1(y)+ ρ1(y)

(y− x)2

δ 2

)
+| f (x)||Vt(F0(y);x)−F0(x)|

� 4ρ1(x)wρ1( f ;δ )[|Vt (ρ1(y);x)−ρ1(x)|+ ρ1(x)

+
1

δ 2Vt(ρ1(y)(y− x)2;x)]+ | f (x)||Vt(F0(y);x)−F0(x)|.

Now we obtain that

‖Vt f − f‖ρ2
2

� 4‖ρ1‖ρ2wρ1( f ;δ )
{
‖Vt(ρ1)−ρ1‖ρ2 +‖ρ1‖ρ2 +

1
δ 2 ‖Vt(ρ1ϕx)‖ρ2

}
+‖ρ1‖ρ2‖ f‖ρ2‖Vt(1)−1‖ρ1

provided that Vt(ρ1ϕx) ∈ Bρ2 . For example if we consider Vt from Cρ2 into Bρ2 and
assume ρ1ϕx ∈ Bρ2 then one can guarantee that Vt(ρ1ϕx) ∈ Bρ2 . In this case putting
δ := α(t) =

√‖Vt(ϕx)‖ρ2 and combining the above inequalities, we conclude,

‖Vt f − f‖ρ2
2

� 4‖ρ1‖ρ2wρ1( f ;δ ){‖Vt(ρ1)−ρ1‖ρ2 +‖ρ1‖ρ2 +1}
+‖ρ1‖ρ2‖ f‖ρ2‖Vt(1)−1‖ρ1.

REMARK 2. Let ρ1(x) = 1 + x2 and ρ2(x) = 1 + x4 . In this case the test func-
tions Fi become Fi(x) = xi , i = 0,1,2. Consider the following classical Bernstein-
Kantorovich operator {Ln} which is defined by

Ln( f ;x) :=
n

∑
k=0

(
n
k

)
xk(1− x)n−k(n+1)

k+1
n+1∫
k

n+1

f (t)dt.

Using the operators {Ln f} define the sequence of positive linear operators U := {Un}
as follows:

Un( f ;x) = (1+ sn)Ln( f ;x), for f ∈Cρ1 ,

where sn = 1, n is square and 0 otherwise. Also let R = 1, p(t) = 1
1−t and for n � 0,

pn = 1. In this case the power series method coincides with Abel method. Note that
{sn} is convergent to 0 in the sense of power series method. It is easy to see that

Un(F0;x) = 1+ sn

Un(F1;x) = (1+ sn)
{

nx
n+1

+
1

2(n+1)

}
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Un(F2;x) = (1+ sn)
{

n(n−1)x2

(n+1)2 +
2nx

(n+1)2 +
1

3(n+1)2

}
.

Furthermore, since

Un(ρ1;x) = 1+ sn +(1+ sn)
{

n(n−1)x2

(n+1)2 +
2nx

(n+1)2 +
1

3(n+1)2

}

= 1+ sn

{
1+

n(n−1)x2

(n+1)2 +
2nx

(n+1)2 +
1

3(n+1)2

}

< 6ρ2(x),

sup0<t<R ‖Vt‖Cρ1→Bρ2
< H < ∞ holds where

Vt{( f (y);x)} :=
1

p(t)

∞

∑
n=0

Un( f (y);x)pnt
n.

Since all conditions of our main theorem holds for all f ∈Cρ1 , limt→R− ‖Vt f − f‖ρ2 =
0. However {sn} is not convergent to zero it is clear that the classical theorem does not
hold.

It is noteworthy that

• in the case of R = 1, p(t)=
1

1− t
and for n � 0, pn = 1 the power series method

coincides with Abel method which is a sequence-to-function transformation,

• in the case of R = ∞ , p(t) = et and for n � 0, pn =
1
n!

the power series method

coincides with Borel method.

We can therefore give all of the theorems of this paper for Abel and Borel conver-
gences.
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