REMARKS ON NEARLY EQUIVALENT OPERATORS

Eungil Ko and Mee-Jung Lee

(Communicated by K. Veselić)

Abstract

An operator $S \in \mathscr{L}(\mathscr{H})$ is said to be nearly equivalent to T if there exists an invertible operator $V \in \mathscr{L}(\mathscr{H})$ such that $S^{*} S=V^{-1} T^{*} T V$. In this paper, we study several properties of nearly equivalent operators, and investigate their local spectral properties and invariant subspaces.

1. Introduction

Let \mathscr{H} be a separable complex Hilbert space and let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded linear operators on \mathscr{H}. As usual, we write $\sigma(T), \sigma_{p}(T)$, and $\sigma_{a p}(T)$ for the spectrum, the point spectrum, and the approximate point spectrum of T, respectively.

A subspace \mathscr{M} of \mathscr{H} is called an invariant subspace for an operator $T \in \mathscr{L}(\mathscr{H})$ if $T \mathscr{M} \subset \mathscr{M}$. An operator T in $\mathscr{L}(\mathscr{H})$ has the unique polar decomposition $T=$ $U|T|$, where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$ and U is the appropriate partial isometry satisfying $\operatorname{ker}(U)$ $=\operatorname{ker}(|T|)=\operatorname{ker}(T)$ and $\operatorname{ker}\left(U^{*}\right)=\operatorname{ker}\left(T^{*}\right)$. Associated with T is a related operator $|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ called the Aluthge transform of T, denoted throughout this paper by \tilde{T} (see [6] for more details).

An operator $T \in \mathscr{L}(\mathscr{H})$ is said to be a p-hyponormal operator if $\left(T^{*} T\right)^{p} \geqslant$ $\left(T T^{*}\right)^{p}$, where $0<p<\infty$. If $p=1, T$ is called hyponormal. An operator X in $\mathscr{L}(\mathscr{H})$ is called a quasiaffinity if it has trivial kernel and dense range. An operator T in $\mathscr{L}(\mathscr{H})$ is said to be a quasiaffine transform of an operator S in $\mathscr{L}(\mathscr{H})$ if there is a quasiaffinity X in $\mathscr{L}(\mathscr{H})$ such that $X T=S X$, and this relation of S and T is denoted by $T \prec S$. If both $T \prec S$ and $S \prec T$, then we say that S and T are quasisimilar.

An operator $S \in \mathscr{L}(\mathscr{H})$ is said to be nearly equivalent to T if there exists an invertible operator $V \in \mathscr{L}(\mathscr{H})$ such that $S^{*} S=V^{-1} T^{*} T V$ (see Example 1). In this paper, we study several properties of nearly equivalent operators, and investigate their local spectral properties and invariant subspaces.

[^0]
2. Preliminaries

An operator $T \in \mathscr{L}(\mathscr{H})$ is said to have the single-valued extension property, abbreviated SVEP, if for every open subset G of \mathbb{C} and any analytic function $f: G \rightarrow$ \mathscr{H} such that $(T-z) f(z) \equiv 0$ on G, we have $f(z) \equiv 0$ on G. For an operator $T \in$ $\mathscr{L}(\mathscr{H})$ and $x \in \mathscr{H}$, the resolvent set $\rho_{T}(x)$ of T at x is defined to consist of z_{0} in \mathbb{C} such that there exists an analytic function $f(z)$ on a neighborhood of z_{0}, with values in \mathscr{H}, which verifies $(T-z) f(z) \equiv x$. The local spectrum of T at x is given by $\sigma_{T}(x)=\mathbb{C} \backslash \rho_{T}(x)$. Using local spectra, we define the local spectral subspace of T by $\mathscr{H}_{T}(F)=\left\{x \in \mathscr{H}: \sigma_{T}(x) \subset F\right\}$, where F is a subset of \mathbb{C}. An operator $T \in \mathscr{L}(\mathscr{H})$ is said to have Dunford's property (C) if $\mathscr{H}_{T}(F)$ is closed for each closed subset F of \mathbb{C}. An operator $T \in \mathscr{L}(\mathscr{H})$ is said to have Bishop's property (β) if for every open subset G of \mathbb{C} and every sequence $f_{n}: G \rightarrow \mathscr{H}$ of \mathscr{H}-valued analytic functions such that $(T-z) f_{n}(z)$ converges uniformly to 0 in norm on compact subsets of G, then $f_{n}(z)$ converges uniformly to 0 in norm on compact subsets of G. It is well known from [8] that

$$
\text { Bishop's property }(\beta) \Rightarrow \text { Dunford's property }(C) \Rightarrow \text { SVEP. }
$$

It can be shown that the converse implications do not hold in general as can be seen from [5] and [8]. For an operator $T \in \mathscr{L}(\mathscr{H})$, we define a spectral maximal space of T to be a closed T-invariant subspace \mathscr{M} of \mathscr{H} with the property that \mathscr{M} contains any closed T-invariant subspace \mathscr{N} of \mathscr{H} such that $\sigma\left(\left.T\right|_{\mathscr{N}}\right) \subset \sigma\left(\left.T\right|_{\mathscr{M}}\right)$, where $\left.T\right|_{\mathscr{M}}$ denotes the restriction of T to \mathscr{M}. An operator $T \in \mathscr{L}(\mathscr{H})$ is said to be decomposable if for every finite open covering $\left\{U_{1}, \cdots, U_{n}\right\}$ of \mathbb{C} there exists a system $\left\{X_{1}, \cdots, X_{n}\right\}$ of spectral maximal subspaces of T such that $\mathscr{H}=X_{1}+\cdots+X_{n}$ and $\sigma\left(\left.T\right|_{X_{i}}\right) \subset U_{i}$ for every $1 \leqslant i \leqslant n$.

3. Main results

Let S and T be in $\mathscr{L}(\mathscr{H})$. Recall that $S \in \mathscr{L}(\mathscr{H})$ is said to be nearly equivalent to T if there exists an invertible operator $V \in \mathscr{L}(\mathscr{H})$ such that $S^{*} S=V^{-1} T^{*} T V$, or equivalently, $S^{*} S=|S|^{2}$ and $T^{*} T=|T|^{2}$ are unitarily equivalent, i.e., $W|S|^{2}=|T|^{2} W$ for some unitary operator W on \mathscr{H}. Since $|S|$ and $|T|$ are positive operators, $W|S|^{\alpha}=$ $|T|^{\alpha} W$ holds for some $\alpha \in(0,1]$ with the same W.

EXAMPLE 1. Let $T=\left(\begin{array}{cc}0 & A \\ B & 0\end{array}\right)$ and $S=\left(\begin{array}{cc}|A| & 0 \\ 0 & |B|\end{array}\right)$ be in $\mathscr{L}(\mathscr{H} \oplus \mathscr{H})$ where $|R|=$ $\left(R^{*} R\right)^{\frac{1}{2}}$. Then $S^{*} S=W^{*} T^{*} T W$ where $W=\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)$ is unitary. Hence S and T are nearly equivalent.

Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis for \mathscr{H} and let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of complex numbers. An operator $W \in \mathscr{L}(\mathscr{H})$ is called a unilateral weighted shift with weights $\left\{\alpha_{n}\right\}$ if $W e_{n}=\alpha_{n} e_{n+1}$ for all positive integers n.

Example 2. Let S and T be the unilateral weighted shifts in $\mathscr{L}(\mathscr{H})$ with the weight sequences $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{e^{i \theta_{n}} \alpha_{n}\right\}_{n=1}^{\infty}$, respectively. Then S and T are nearly equivalent. Indeed, $S^{*} S=W^{*} T^{*} T W$ where W is a unitary operator defined by $W e_{n}=$ $\gamma_{n} e_{n}$, where $\gamma_{n}=e^{i \theta_{n}}$ for all $n \geqslant 1$.

REMARK 1. We note that $W|T|$ in Theorem 1 is not the polar decomposition $U|T|$ of T and $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is not the Aluthge transform \tilde{T} of T, i.e., $\tilde{T} \neq|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$.

We next give an example about Remark 1.

Example 3. Let $T=\left(\begin{array}{ll}0 & A \\ B & 0\end{array}\right) \in \mathscr{L}(\mathscr{H} \oplus \mathscr{H})$ where $A=V_{A}|A|$ and $B=V_{B}|B|$ are the polar decompositions of A and B, respectively, $A, B \neq 0, I$, and let $S=\left(\begin{array}{cc}|A| & 0 \\ 0 & |B|\end{array}\right)$ $\in \mathscr{L}(\mathscr{H} \oplus \mathscr{H})$. Then $T^{*} T=\left(\begin{array}{cc}|B|^{2} & 0 \\ 0 & |A|^{2}\end{array}\right)$. Hence S is nearly equivalent to $T=$ $\left(\begin{array}{cc}0 & A \\ B & 0\end{array}\right)$. In fact, $S^{*} S=W^{*} T^{*} T W$ where $W=\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right)$ is unitary. Let $T=V_{T}|T|$ be the polar decomposition of T. Then $|T|=\left(\begin{array}{cc}|B| & 0 \\ 0 & |A|\end{array}\right)$ and $V_{T}=\left(\begin{array}{cc}0 & V_{A} \\ V_{B} & 0\end{array}\right)$. On the other hand, $W|T|=\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right)\left(\begin{array}{cc}|B| & 0 \\ 0 & |A|\end{array}\right)=\left(\begin{array}{cc}0 & |A| \\ |B| & 0\end{array}\right) \neq T$. Hence $W|T|$ is not the polar decomposition of T. Similarly, the Aluthge transform \tilde{T} of T is

$$
\tilde{T}=|T|^{\frac{1}{2}} V_{T}|T|^{\frac{1}{2}}=\left(\begin{array}{cc}
0 & |B|^{\frac{1}{2}} V_{A}|A|^{\frac{1}{2}} \\
|A|^{\frac{1}{2}} V_{B}|B|^{\frac{1}{2}} & 0
\end{array}\right)
$$

On the other hand,

$$
|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}=\left(\begin{array}{cc}
0 & |B|^{\frac{1}{2}}|A|^{\frac{1}{2}} \\
|A|^{\frac{1}{2}}|B|^{\frac{1}{2}} & 0
\end{array}\right)
$$

Hence $\tilde{T} \neq|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$, in general.

We next state some properties about nearly equivalent operators.

Proposition 1. Let S and T be in $\mathscr{L}(\mathscr{H})$. Suppose that S is nearly equivalent to T such that $S^{*} S=W^{*} T^{*} T W$ for some unitary W. If $|S| \geqslant|T|$, then $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is hyponormal. In particular, if $|S|=|T|$, then $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is normal. Conversely, if $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is hyponormal and ran $|T|^{\frac{1}{2}}$ is dense in \mathscr{H}, then $|S| \geqslant W|T| W^{*}$.

Proof. Since $S^{*} S=W^{*} T^{*} T W,|S|=W^{*}|T| W$. Since $|S| \geqslant|T|, W^{*}|T| W \geqslant|T| \geqslant$ $W|T| W^{*}$. Thus

$$
\begin{aligned}
\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)^{*}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right) & =|T|^{\frac{1}{2}} W^{*}|T| U|T|^{\frac{1}{2}} \\
& \geqslant|T|^{\frac{1}{2}} W|T| W^{*}|T|^{\frac{1}{2}} \\
& =\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)^{*}
\end{aligned}
$$

Hence $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is hyponormal. In particular, if $|S|=|T|$, then

$$
W^{*}|T| W=|T|=W|T| W^{*}
$$

Hence $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is normal. Conversely, if $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is hyponormal, then

$$
|T|^{\frac{1}{2}}\left(W^{*}|T| W-W|T| W^{*}\right)|T|^{\frac{1}{2}} \geqslant 0
$$

Since $\operatorname{ran}|T|^{\frac{1}{2}}$ is dense on $\mathscr{H},|S|=W^{*}|T| W \geqslant W|T| W^{*}$.
We turn now to the intimate connection between invariant subspaces of operators $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ and $W|S|$.

Lemma 1. Let S and T be in $\mathscr{L}(\mathscr{H})$. Suppose that S is nearly equivalent to T such that $S^{*} S=W^{*} T^{*} T W$ for some unitary W and $|T|^{\frac{1}{2}}$ is a quasiaffinity. If \mathscr{M} is a nontrivial invariant subspace for $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$, then $\overline{|T|^{\frac{1}{2}} \mathscr{M}}$ is a nontrivial invariant subspace for $W|S|$. Moreover, if \mathscr{N} is a nontrivial invariant subspace for $W|S|$, then $\overline{|T|^{\frac{1}{2}} W \mathscr{N}}$ is a nontrivial invariant subspace for $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$.

Proof. If $|T|^{\frac{1}{2}}$ is a quasiaffinity, then $|S|$ is a quasiaffinity. Since $|S|=W^{*}|T| W$ and W is unitary,

$$
\begin{aligned}
W|S|\left(|T|^{\frac{1}{2}} \mathscr{M}\right) & =W\left(W^{*}|T| W\right)|T|^{\frac{1}{2}} \mathscr{M} \\
& =|T|^{\frac{1}{2}}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}} \mathscr{M}\right) \\
& \subseteq|T|^{\frac{1}{2}} \mathscr{M} .
\end{aligned}
$$

Hence $\left.W|S| \overline{\left(|T|^{\frac{1}{2}} \mathscr{M}\right.}\right) \subseteq \overline{|T|^{\frac{1}{2}} \mathscr{M}}$. Since $|T|^{\frac{1}{2}}$ is a quasiaffinity and \mathscr{M} is nontrivial, $\overline{|T|^{\frac{1}{2}} \mathscr{M}}$ is a nontrivial invariant subspace for $W|S|$. Moreover, if \mathscr{N} is a nontrivial invariant subspace for $W|S|$, then $|T| W \mathscr{N} \subseteq \mathscr{N}$ since $W|S|=W W^{*}|T| W=|T| W$. Hence

$$
|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\left(|T|^{\frac{1}{2}} W \mathscr{N}\right)=|T|^{\frac{1}{2}} W(|T| W \mathscr{N}) \subseteq|T|^{\frac{1}{2}} W \mathscr{N} .
$$

Thus $\left.|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}} \overline{\left(|T|^{\frac{1}{2}} W \mathscr{N}\right.}\right) \subseteq \overline{|T|^{\frac{1}{2}} W \mathscr{N}}$. Since $|T|^{\frac{1}{2}}$ is a quasiaffinity, U is unitary, and \mathscr{N} is nontrivial, $|T|^{\frac{1}{2}} W \mathscr{N}$ is nontrivial

As some applications of Lemma 1, we get the following theorem.

Theorem 1. Let S and T be in $\mathscr{L}(\mathscr{H})$. Suppose that S is nearly equivalent to T such that $S^{*} S=W^{*} T^{*} T W$ for a unitary operator W. Then the following statements hold.
(i) If $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ has a nontrivial invariant subspace, then so does $W|S|$.
(ii) If $|S| \geqslant|T|$, then there exists a positive integer K such that for all positive integers $k \geqslant K,(W|S|)^{k}$ has a nontrivial invariant subspace.

Proof. (i) If $W|S|$ is not a quasiaffinity, then $0 \in \sigma_{p}(W|S|) \cup \sigma_{p}\left(|S| W^{*}\right)$. Hence $W|S|$ has a nontrivial invariant subspace. If $W|S|$ is a quasiaffinity, then $|S|$ is a quasiaffinity since W is unitary. Since $|S|=W^{*}|T| W,|T|$ is also quasiaffinity. If \mathscr{M} is a nontrivial invariant subspace for $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$, then $\overline{|T|^{\frac{1}{2}} \mathscr{M}}$ is a nontrivial invariant subspace for $W|S|$ from Lemma 1.
(ii) If $W|S|$ is not a quasiaffinity, then $0 \in \sigma_{p}(W|S|) \cup \sigma_{p}\left(|S| W^{*}\right)$. Hence $W|S|$ has a nontrivial invariant subspace. Then $(W|S|)^{k}$ has a nontrivial invariant subspace. Assume $W|S|$ is a quasiaffinity. If $|S| \geqslant|T|$, then $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is hyponormal for a unitary operator W from Proposition 1. By C. Berger's theorem(see [3]), there exists a positive integers K such that for all positive integers $k \geqslant K$, $\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)^{k}$ has a nontrivial invariant subspace \mathscr{M}. Since $|S|=W^{*}|T| W$ and W is unitary,

$$
\begin{aligned}
(W|S|)^{k}|T|^{\frac{1}{2}} \mathscr{M} & =(W|S|)^{k-1}|T|^{\frac{1}{2}}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}} \mathscr{M}\right) \\
& \subseteq(W|S|)^{k-1}|T|^{\frac{1}{2}} \mathscr{M}
\end{aligned}
$$

By induction, we get that $(W|S|)^{k}|T|^{\frac{1}{2}} \mathscr{M} \subseteq|T|^{\frac{1}{2}} \mathscr{M}$. Hence $(W|S|)^{k}\left(|T|^{\frac{1}{2}} \mathscr{M}\right) \subseteq \overline{|T|^{\frac{1}{2}} \mathscr{M}}$. Since $W|S|$ is a quasiaffinity and \mathscr{M} is nontrivial, $\overline{|T|^{\frac{1}{2}} \mathscr{M}}$ is a nontrivial invariant subspace for $(W|S|)^{k}$.

As some applications of Theorem 1, we get the following corollary.
COROLLARY 1. Under the same hypotheses with Theorem 1, the following statements hold.
(i) If $|S|=|T|$, then $W|S|$ has a nontrivial invariant subspace.
(ii) If $|S| \geqslant|T|$ and $\sigma\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)$ has nonempty interior, then $W|S|$ has a nontrivial invariant subspace.

Proof. (i) Since $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is normal from Proposition 1, $\left.|T|^{\frac{1}{2}} W\right|^{\frac{1}{2}}$ has a nontrivial invariant subspace. Hence $W|S|$ has a nontrivial invariant subspace from Theorem 1.
(ii) Since $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is hyponormal from Proposition 1 and $\sigma\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)$ has nonempty interior in $\mathbb{C},|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ has a nontrivial invariant subspace from theorem of S. Brown([4]). Thus $W|S|$ has a nontrivial invariant subspace from Theorem 1.

The operator $W|S|=|T| W$ and $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ are of the form $A B$ and $B A$ with $A=|T|^{\frac{1}{2}}$ and $B=|T|^{\frac{1}{2}} U$ where W is a unitary operator. From now on, we consider properties of $A B$ and $B A$. We begin with the following elementary lemma.

Lemma 2. Let X be a vector space and let $A, B, C: X \rightarrow X$ be linear mappings where C commutes with A and B.
(i) If C is injective, then $A B+C$ is injective if and only if $B A+C$ is injective.
(ii) If C is surjective, then $A B+C$ is surjective if and only if $B A+C$ is surjective.
(iii) If C is bijective, then $A B+C$ is bijective if and only if $B A+C$ is bijective.

Proof. (i) Let $A B+C$ be injective. If $x \in X$ with $(B A+C) x=0$, then $0=A(B A+$ $C) x=(A B+C) A x$ and hence $A x=0$. Thus $B A x=0$. As C is injective we obtain $x=0$. The converse is obtained by interchanging the role of A and B.
(ii) is obtained by applying (i) to the algebraic transposed operators and (iii) follows from (i) and (ii).

Recall an operator $T \in \mathscr{L}(\mathscr{H})$ has the single valued extension property, respectively, Bishop's property (β) modulo a closed set $S \subset \mathbb{C}$ if for all open subsets $V \subseteq \mathbb{C} \backslash S$ the mapping

$$
\mathscr{O}(V, \mathscr{H}) \rightarrow \mathscr{O}(V, \mathscr{H}), \quad f \mapsto(T-z) f
$$

is injective, respectively injective with closed range on the space $\mathscr{O}(V, \mathscr{H})$ of all analytic functions on V with values in \mathscr{H}. If these conditions are satisfied with $S=\emptyset$, the T will be said to possess the single valued extension property or Bishop's property (β), respectively. We say that T has property (δ) modulo S if for every open cover $\{U, V\}$ of \mathbb{C}, the decomposition $\mathscr{H}=H_{T}(\bar{V})+H_{T}(\mathbb{C} \backslash U)$ holds for $S \subset U \subset \bar{U} \subset V$.

By means of Lemma 2, one now obtains the following results:
Proposition 2. Let T_{1} and T_{2} be in $\mathscr{L}(\mathscr{H})$. If $S \subset \mathbb{C}$ is a closed set, then $T_{1} T_{2}$ has the single valued extension property modulo S if and only if $T_{2} T_{1}$ has this property.

Proof. Assume that $T_{1} T_{2}$ has the single valued extension property modulo S. Let open set $V \subseteq \mathbb{C} \backslash S$ and let f be a sequence in $\mathscr{O}(V, \mathscr{H})$ with the mapping

$$
\mathscr{O}(V, \mathscr{H}) \rightarrow \mathscr{O}(V, \mathscr{H}), \quad f \mapsto\left(T_{2} T_{1}-z\right) f
$$

is injective, i.e.,

$$
\begin{equation*}
\left(T_{2} T_{1}-z\right) f(z) \equiv 0 \tag{1}
\end{equation*}
$$

in $\mathscr{O}(V, \mathscr{H})$. Multiplying both sides by T_{1}, we get that

$$
\left(T_{1} T_{2}-z\right) T_{1} f(z) \equiv 0
$$

in $\mathscr{O}(V, \mathscr{H})$. Since $T_{1} T_{2}$ has the single valued extension property modulo S, we have that

$$
T_{1} f(z) \equiv 0
$$

in $\mathscr{O}(V, \mathscr{H})$. By (1), $z f(z) \equiv 0$ in $\mathscr{O}(V, \mathscr{H})$. Hence $T_{2} T_{1}$ has the single valued extension property modulo S. The converse implication is similar.

Proposition 3. Let T_{1} and T_{2} be in $\mathscr{L}(\mathscr{H})$. If $S \subset \mathbb{C}$ is a closed set, then $T_{1} T_{2}$ has the Bishop's property (β) modulo S if and only if $T_{2} T_{1}$ has this property.

Proof. Fix an arbitrary open set $V \subseteq \mathbb{C} \backslash S$ and let now X be the quotient of the space $w(\mathbb{N}, \mathscr{O}(V, \mathscr{H}))$ of all sequences in $\mathscr{O}(V, \mathscr{H})$ modulo the subspace $c_{0}(\mathbb{N}, \mathscr{O}(V, \mathscr{H}))$ of all sequences that tend to 0 in $\mathscr{O}(V, E)$. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\mathscr{O}(V, \mathscr{H})$. We can choice the following maps

$$
\begin{align*}
& A:\left(f_{n}\right)+c_{0}(\mathbb{N}, \mathscr{O}(V, \mathscr{H})) \mapsto\left(T_{1} f_{n}\right)+c_{0}(\mathbb{N}, \mathscr{O}(V, \mathscr{H})), \\
& B:\left(f_{n}\right)+c_{0}(\mathbb{N}, \mathscr{O}(V, \mathscr{H})) \mapsto\left(T_{2} f_{n}\right)+c_{0}(\mathbb{N}, \mathscr{O}(V, \mathscr{H})), \\
& C:\left(f_{n}\right)+c_{0}(\mathbb{N}, \mathscr{O}(V, \mathscr{H})) \mapsto\left(z f_{n}\right)+c_{0}(\mathbb{N}, \mathscr{O}(V, \mathscr{H})) . \tag{2}
\end{align*}
$$

Assume that $T_{1} T_{2}$ has the Bishop's property (β) modulo S. Let open set $V \subseteq \mathbb{C} \backslash S$ and let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\mathscr{O}(V, \mathscr{H})$ with

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(T_{2} T_{1}-z\right) f_{n}(z)=0 \tag{3}
\end{equation*}
$$

Then $\lim _{n \rightarrow \infty}\left(T_{1} T_{2}-z\right) T_{1} f_{n}(z)=0$ in $\mathscr{O}(V, \mathscr{H})$. Since $T_{1} T_{2}$ has the Bishop's property (β) modulo S, we have that

$$
\lim _{n \rightarrow \infty} T_{1} f_{n}(z)=0
$$

in $\mathscr{O}(V, \mathscr{H})$. By (3), $\lim _{n \rightarrow \infty} z f_{n}(z)=0$ in $\mathscr{O}(V, \mathscr{H})$. Hence $T_{2} T_{1}$ has the Bishop's property (β) modulo S. The converse implication is similar.

By Theorems 8 and 21 in [2], a bounded linear operator $T \in \mathscr{L}(\mathscr{H})$ is decomposable modulo a closed set $S \subseteq \mathbb{C}$ if and only if T and its adjoint $T^{*} \in \mathscr{L}\left(\mathscr{H}^{*}\right)$ both have the Bishop's property (β) modulo S. Hence we get from Proposition 2 the following corollary.

Corollary 2. If $S \subset \mathbb{C}$ is a closed set, then $T_{1} T_{2}$ is decomposable modulo S if and only if $T_{2} T_{1}$ is decomposable modulo S. In particular, if $S=\emptyset$, then $T_{1} T_{2}$ is decomposable in sense of Foiz̧s if and only if $T_{2} T_{1}$ is decomposable.

Proof. By Theorems 8 in [2], both $T_{1} T_{2}$ has the Bishop's property (β) modulo S and $T_{1} T_{2}$ has the property (δ) modulo S. From Proposition $2, T_{2} T_{1}$ has the Bishop's property (β) modulo S. Since $T_{1} T_{2}$ has the property (δ) modulo S, adjoint of $T_{1} T_{2}$ has the Bishop's property (β) modulo S by Theorems 21 in [2]. Hence adjoint of $T_{2} T_{1}$ has the Bishop's property (β) modulo S by Proposition 3. Thus $T_{2} T_{1}$ is decomposable modulo S. The converse implication is similar.

The following corollary is an immediate consequences of Proposition 2, 3, and Corollary 2. The proofs follow with appropriate choices of T_{1} and T_{2} in these two propositions and the corollary.

Corollary 3. Let P and V be in $\mathscr{L}(\mathscr{H})$ with $P \geqslant 0$. For $0 \leqslant \alpha \leqslant 1$, we write $\widetilde{T}_{\alpha}:=P^{\alpha} V P^{1-\alpha}$. If $S \subset \mathbb{C}$ is a closed set, then the following statements hold.
(i) \widetilde{T}_{α} has the single valued extension property modulo S for some $\alpha \in[0,1]$ if and only if \widetilde{T}_{α} has this property for all $\alpha \in[0,1]$.
(ii) \widetilde{T}_{α} has the Bishop's property (β) modulo S for some $\alpha \in[0,1]$ if and only if \widetilde{T}_{α} has this property for all $\alpha \in[0,1]$.
(iii) \widetilde{T}_{α} is decomposable modulo S for some $\alpha \in[0,1]$ if and only if \widetilde{T}_{α} is decomposable modulo S for all $\alpha \in[0,1]$.

From Corollary 3, we observe that this result includes and improves Theorem 1.1, Corollary 1.13, and Theorem 1.14 in [7].

Recall that given $x \in \mathscr{H}$ and $T \in \mathscr{L}(\mathscr{H}), r_{T}(x)=\lim \sup _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}$ is called the local spectral radius of T at x. As some applications, we get the following corollaries.

Corollary 4. Let $S \subset \mathbb{C}$ be a closed set. If $T_{2} T_{1}$ has the Bishop's property (β) modulo S, then the following statements hold.
(i) $T_{1} T_{2}$ has the Dunford's property (C) modulo S and the single-valued extension property modulo S.
(ii) $r_{T_{1} T_{2}}(x)=\lim _{n \rightarrow \infty}\left\|\left(T_{1} T_{2}\right)^{n} x\right\|^{\frac{1}{n}}$ for all $x \in \mathscr{H}$.
(iii) $\mathscr{H}_{T_{1} T_{2}}(E)$ is the spectral maximal space of $T_{1} T_{2}$ and $\sigma\left(\left.T_{1} T_{2}\right|_{\mathscr{H}_{T_{1} T_{2}}}(E)\right) \subset$ $\sigma\left(T_{1} T_{2}\right) \cap E$ for any closed subset E in $\mathbb{C} \backslash S$.

Proof. (i) Since $T_{1} T_{2}$ has the Bishop's property (β) modulo S by Proposition 3, the proof follows from [1, Theorem 2.77 and Theorem 6.18].
(ii) The proof follows from Proposition 3 and [8, Proposition 3.3.17].
(iii) Since $T_{1} T_{2}$ has the Bishop's property (β) modulo S by Proposition 3, $\mathscr{H}_{T_{1} T_{2}}(E)$ is closed for any closed set E in $\mathbb{C} \backslash S$. Hence the proof follows from [2, Lemma $1]$.

Corollary 5. Let $S \subset \mathbb{C}$ be a closed set. If $T_{1} T_{2}$ has the single-valued extension property modulo S, then the following statements hold.
(i) $\sigma_{T_{1} T_{2}}\left(T_{1} x\right) \subset \sigma_{T_{2} T_{1}}(x)$ and $\sigma_{T_{2} T_{1}}\left(T_{2} x\right) \subset \sigma_{T_{1} T_{2}}(x)$.
(ii) $T_{1} \mathscr{H}_{T_{2} T_{1}}(E) \subset \mathscr{H}_{T_{1} T_{2}}(E)$ and $T_{2} \mathscr{H}_{T_{1} T_{2}}(E) \subset \mathscr{H}_{T_{2} T_{1}}(E)$ for any closed subset E in $\mathbb{C} \backslash S$.

Proof. (i) Let open set $V \subseteq \mathbb{C} \backslash S$. If $\lambda \notin \sigma_{T_{2} T_{1}}(x)$, then there exists an analytic function f in $\mathscr{O}(V, \mathscr{H})$ such that

$$
\left(T_{2} T_{1}-\lambda\right) f(\lambda) \equiv x
$$

Multiplying both sides by T_{1}, we get that

$$
\begin{equation*}
T_{1} x \equiv T_{1}\left(T_{2} T_{1}-\lambda\right) f(\lambda)=\left(T_{1} T_{2}-\lambda\right) T_{1} f(\lambda) \tag{4}
\end{equation*}
$$

Hence $\lambda \notin \sigma_{T_{1} T_{2}}\left(T_{1} x\right)$. Thus $\sigma_{T_{1} T_{2}}\left(T_{1} x\right) \subset \sigma_{T_{2} T_{1}}(x)$.
Similarly, if $\lambda \notin \sigma_{T_{1} T_{2}}(x)$, then there exists an analytic function f in $\mathscr{O}(V, \mathscr{H})$ such that

$$
\left(T_{1} T_{2}-\lambda\right) f(\lambda) \equiv x
$$

Multiplying both sides by T_{2}, we get that

$$
\begin{equation*}
T_{2} x \equiv\left(T_{1} T_{2}-\lambda\right) T_{2} f(\lambda) \tag{5}
\end{equation*}
$$

Hence $\lambda \notin \sigma_{T_{1} T_{2}}\left(T_{2} x\right)$. Thus $\sigma_{T_{1} T_{2}}\left(T_{2} x\right) \subset \sigma_{T_{2} T_{1}}(x)$.
(ii) If $x \in \mathscr{H}_{T_{1} T_{2}}(E)$ for any closed set $E \subset \mathbb{C} \backslash S$, then $\sigma_{T_{1} T_{2}}(x) \subset E$. Since $\sigma_{T_{2} T_{1}}\left(T_{2} x\right) \subset \sigma_{T_{1} T_{2}}(x)$ from (i), we have that $\sigma_{T_{2} T_{1}}\left(T_{2} x\right) \subset E$, i.e., $T_{2} x \in \mathscr{H}_{T_{2} T_{1}}(E)$. Hence $T_{2} \mathscr{H}_{T_{1} T_{2}}(E) \subset \mathscr{H}_{T_{2} T_{1}}(E)$.

Similarly, if $x \in \mathscr{H}_{T_{2} T_{1}}(E)$, then $\sigma_{T_{2} T_{1}}(x) \subset E$. Since $\sigma_{T_{1} T_{2}}\left(T_{1} x\right) \subset \sigma_{T_{2} T_{1}}(x)$ from (i), we have that $\sigma_{T_{1} T_{2}}\left(T_{1} x\right) \subset E$, i.e., $T_{1} x \in \mathscr{H}_{T_{1} T_{2}}(E)$. Hence $T_{1} \mathscr{H}_{T_{2} T_{1}}(E) \subset \mathscr{H}_{T_{1} T_{2}}(E)$.

Corollary 6. Let T_{1} and T_{2} be in $\mathscr{L}(\mathscr{H})$ and let $S \subset \mathbb{C}$ be a closed set. Suppose that T_{1} is nearly equivalent to T_{2} such that $T_{1}^{*} T_{1}=W^{*} T_{2}^{*} T_{2} W$ for a unitary operator W. If $\left|T_{1}\right| \geqslant\left|T_{2}\right|$, then $W\left|T_{1}\right|$ has the Bishop's property (β) modulo S.

Proof. If $\left|T_{1}\right| \geqslant\left|T_{2}\right|$, then $\left|T_{2}\right|^{\frac{1}{2}} W\left|T_{2}\right|^{\frac{1}{2}}$ is hyponormal from Proposition 1. Hence $\left|T_{2}\right|^{\frac{1}{2}} W\left|T_{2}\right|^{\frac{1}{2}}$ has the Bishop's property (β) modulo S. Let the operator $\left|T_{2}\right|^{\frac{1}{2}} W\left|T_{2}\right|^{\frac{1}{2}}$ be of the form $A B$ with $A=\left|T_{2}\right|^{\frac{1}{2}} W$ and $B=\left|T_{2}\right|^{\frac{1}{2}}$. Hence $W\left|T_{1}\right|=B A$ has the Bishop's property (β) modulo S by Proposition 3 .

Let T_{1} and T_{2} in $\mathscr{L}(\mathscr{H})$. It is well known that $\left.\sigma\left(T_{1} T_{2}\right) \backslash\{0\}=\sigma_{(} T_{2} T_{1}\right) \backslash\{0\}$, $\sigma_{a p}\left(T_{1} T_{2}\right) \backslash\{0\}=\sigma_{a p}\left(T_{2} T_{1}\right) \backslash\{0\}$, and $\sigma_{p}\left(T_{1} T_{2}\right) \backslash\{0\}=\sigma_{p}\left(T_{2} T_{1}\right) \backslash\{0\}$. Using these facts, we give some spectral relations between $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ and $W|S|$.

Proposition 4. Let S and T be in $\mathscr{L}(\mathscr{H})$. If S and T are nearly equivalent such that $S^{*} S=W^{*} T^{*} T W$ for a unitary operator W, then $\sigma\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)=\sigma(W|S|)$, $\sigma_{a p}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)=\sigma_{a p}(W|S|)$, and $\sigma_{p}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)=\sigma_{p}(W|S|)$.

Proof. Since $W|S|=|T| W$ and $\left(|T|^{\frac{1}{2}} W\right)|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}}\left(|T|^{\frac{1}{2}} W\right), \sigma\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right) \backslash$ $\{0\}=\sigma(|T| W) \backslash\{0\}, \sigma_{a p}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right) \backslash\{0\}=\sigma_{a p}(W|S|) \backslash\{0\}$, and $\sigma_{p}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right) \backslash$ $\{0\}=\sigma_{p}(W|S|) \backslash\{0\}$ hold. So it suffices to show that the equalities hold about 0 .

If $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is invertible, then $|T|^{\frac{1}{2}}$ is invertible. Since $|T|^{\frac{1}{2}}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)|T|^{-\frac{1}{2}}$ $=|T| W=W|S|$, it follows that $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ and $W|S|$ are similar. Hence $W|S|$ is invertible, i.e., $\sigma(W|S|) \subseteq \sigma\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)$. By the similar argument, $\sigma\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right) \subseteq$ $\sigma(W|S|)$. Thus $\sigma\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)=\sigma(W|S|)$.

If there exists a sequence $\left\{x_{n}\right\}$ with unit vectors in \mathscr{H} such that

$$
\lim _{n \rightarrow \infty}\left\||T| W x_{n}\right\|=0
$$

then

$$
\lim _{n \rightarrow \infty}\left\|\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)\left(|T|^{\frac{1}{2}} W x_{n}\right)\right\|=0
$$

If $\left\{|T|^{\frac{1}{2}} W x_{n}\right\}$ does not tend to zero in norm, $0 \in \sigma_{a p}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)$. Otherwise, $\left\{|T|^{\frac{1}{2}} W x_{n}\right\}$ tends to zero in norm. Hence $\lim _{n \rightarrow \infty}\left\|\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right) W x_{n}\right\|=0$. Since $\left\{W x_{n}\right\}$ cannot converge to zero in norm, $0 \in \sigma_{a p}\left(\left.|T|^{\frac{1}{2}} W\right|^{\frac{1}{2}}\right)$.

If there exists a sequence $\left\{y_{n}\right\}$ with unit vectors in \mathscr{H} such that

$$
\lim _{n \rightarrow \infty}\left\||T|^{\frac{1}{2}} W|T|^{\frac{1}{2}} y_{n}\right\|=0
$$

then

$$
0=\lim _{n \rightarrow \infty}\left\||T| W\left(|T|^{\frac{1}{2}} y_{n}\right)\right\|=\lim _{n \rightarrow \infty}\left\|W|S|\left(|T|^{\frac{1}{2}} y_{n}\right)\right\|
$$

which gives $0 \in \sigma_{a p}(W|S|)$ if $\left\{|T|^{\frac{1}{2}} y_{n}\right\}$ does not tend to zero in norm. Otherwise, $\left\{|T|^{\frac{1}{2}} y_{n}\right\}$ tends to zero in norm. Hence

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|W|S| W^{*} y_{n}\right\| & =\lim _{n \rightarrow \infty}\left\||T| W W^{*} y_{n}\right\|=\lim _{n \rightarrow \infty}\left\||T| y_{n}\right\| \\
& =\lim _{n \rightarrow \infty}\left\||T|^{\frac{1}{2}}\left(|T|^{\frac{1}{2}} y_{n}\right)\right\|=0 .
\end{aligned}
$$

Since $\left\{W^{*} y_{n}\right\}$ cannot converge to zero in norm, $0 \in \sigma_{a p}(W|S|)$.
The same argument hold for the point spectrum $\sigma_{p}(\cdot)$.
Let us recall that an operator T is said to be isoloid if for any $\lambda \in$ iso $\sigma(T), \lambda \in \mathbb{C}$ is an eigenvalue of T, where iso $\sigma(T)$ denotes the set of all isolated points of $\sigma(T)$ (i.e., iso $\left.\sigma(T) \subseteq \sigma_{p}(T)\right)$.

Corollary 7. Let S and T be in $\mathscr{L}(\mathscr{H})$ and S is nearly equivalent to T such that $S^{*} S=W^{*} T^{*} T W$ for a unitary operator W. If $|S| \geqslant|T|$, then $W|S|$ is isoloid.

Proof. If $|S| \geqslant|T|$, then $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is hyponormal from Proposition 1. Since $|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}$ is isoloid, iso $\sigma\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right) \subseteq \sigma_{p}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)$. Since $\sigma\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)=$ $\sigma(W|S|)$ and $\sigma_{p}\left(|T|^{\frac{1}{2}} W|T|^{\frac{1}{2}}\right)=\sigma_{p}(W|S|)$ from Proposition 4, $W|S|$ is isoloid.

Acknowledgements. The authors wish to thank the referee for a careful reading and valuable comments and suggestions for the original draft.

REFERENCES

[1] P. AIENA, Fredholm and local spectral theory with applications to multipliers, Kluwer Acad. Pub., 2004.
[2] E. Albrecht and J. Eschmeier, Analytic functional models and local spectral theory, Proc. London Math. Soc. 75 (1997), 323-348.
[3] C. BERGER, Sufficiently high powers of hyponormal operators have rationally invariant subspaces, Inter. Equ. Oper. Th. 1 (1978), 444-447.
[4] S. Brown, Hyponormal operators with thick spectrum have invariant subspaces, Ann. of Math. $\mathbf{1 2 5}$ (1987), 93-103.
[5] I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
[6] I. B. Jung, E. Ko, and C. Pearcy, Aluthge transforms of operators, Inter. Equ. Oper. Th. 37 (2000), 449-456.
[7] E. Ko and M. Kim, Some connections between an operator and its Aluthge transform, Glasgow Math. J. 47 (2005), 167-175.
[8] K. Laursen and M. Neumann, An introduction to local spectral theory, Clarendon Press, Oxford, 2000.
[9] S. I. Othman, Nearly equivalent operators, Math. Bohem. 121 (1996), 133-141.
[10] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, 1973.
[11] D. XiA, Spectral theory of hyponormal operators, Op. Th.: Adv. Appl. 10, Birkhäuser Verlag, Boston, 1983.
(Received March 28, 2016)
Eungil Ko
Department of Mathematics
Ewha Womans University
Seoul, 03760 Korea
e-mail: eiko@ewha.ac.kr
Mee-Jung Lee
Department of Mathematics
Ewha Womans University
Seoul, 03760 Korea
e-mail: meejung@ewhain.net

[^0]: Mathematics subject classification (2010): 47B20, 47A10.
 Keywords and phrases: Nearly equivalent operators, local spectral property, invariant subspace.
 This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (2009-0093827) and was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (2016R1D1A1B03931937).

