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REMARKS ON NEARLY EQUIVALENT OPERATORS

EUNGIL KO AND MEE-JUNG LEE

(Communicated by K. Veselić)

Abstract. An operator S ∈ L (H ) is said to be nearly equivalent to T if there exists an invert-
ible operator V ∈L (H ) such that S∗S = V−1T ∗TV . In this paper, we study several properties
of nearly equivalent operators, and investigate their local spectral properties and invariant sub-
spaces.

1. Introduction

Let H be a separable complex Hilbert space and let L (H ) denote the algebra
of all bounded linear operators on H . As usual, we write σ(T ) , σp(T ) , and σap(T )
for the spectrum, the point spectrum, and the approximate point spectrum of T , respec-
tively.

A subspace M of H is called an invariant subspace for an operator T ∈L (H )
if TM ⊂ M . An operator T in L (H ) has the unique polar decomposition T =
U |T | , where |T |= (T ∗T )

1
2 and U is the appropriate partial isometry satisfying ker(U)

= ker(|T |) = ker(T ) and ker(U∗) = ker(T ∗). Associated with T is a related operator

|T | 1
2U |T | 1

2 called the Aluthge transform of T , denoted throughout this paper by T̃ (see
[6] for more details).

An operator T ∈ L (H ) is said to be a p-hyponormal operator if (T ∗T )p �
(TT ∗)p , where 0 < p < ∞ . If p = 1, T is called hyponormal. An operator X in
L (H ) is called a quasiaffinity if it has trivial kernel and dense range. An operator T
in L (H ) is said to be a quasiaffine transform of an operator S in L (H ) if there is a
quasiaffinity X in L (H ) such that XT = SX , and this relation of S and T is denoted
by T ≺ S . If both T ≺ S and S ≺ T , then we say that S and T are quasisimilar .

An operator S ∈ L (H ) is said to be nearly equivalent to T if there exists an
invertible operator V ∈ L (H ) such that S∗S = V−1T ∗TV (see Example 1). In this
paper, we study several properties of nearly equivalent operators, and investigate their
local spectral properties and invariant subspaces.
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2. Preliminaries

An operator T ∈ L (H ) is said to have the single-valued extension property,
abbreviated SVEP, if for every open subset G of C and any analytic function f : G →
H such that (T − z) f (z) ≡ 0 on G , we have f (z) ≡ 0 on G . For an operator T ∈
L (H ) and x ∈ H , the resolvent set ρT (x) of T at x is defined to consist of z0 in C

such that there exists an analytic function f (z) on a neighborhood of z0 , with values
in H , which verifies (T − z) f (z) ≡ x . The local spectrum of T at x is given by
σT (x) = C\ρT (x) . Using local spectra, we define the local spectral subspace of T by
HT (F) = {x ∈ H : σT (x) ⊂ F} , where F is a subset of C . An operator T ∈ L (H )
is said to have Dunford’s property (C) if HT (F) is closed for each closed subset F of
C . An operator T ∈ L (H ) is said to have Bishop’s property (β ) if for every open
subset G of C and every sequence fn : G → H of H -valued analytic functions such
that (T − z) fn(z) converges uniformly to 0 in norm on compact subsets of G , then
fn(z) converges uniformly to 0 in norm on compact subsets of G . It is well known
from [8] that

Bishop’s property (β ) ⇒ Dunford’s property (C) ⇒ SVEP.

It can be shown that the converse implications do not hold in general as can be seen
from [5] and [8]. For an operator T ∈ L (H ) , we define a spectral maximal space of
T to be a closed T -invariant subspace M of H with the property that M contains
any closed T -invariant subspace N of H such that σ(T |N )⊂ σ(T |M ) , where T |M
denotes the restriction of T to M . An operator T ∈L (H ) is said to be decomposable
if for every finite open covering {U1, · · · ,Un} of C there exists a system {X1, · · · ,Xn}
of spectral maximal subspaces of T such that H = X1 + · · ·+Xn and σ(T |Xi)⊂Ui for
every 1 � i � n .

3. Main results

Let S and T be in L (H ) . Recall that S ∈L (H ) is said to be nearly equivalent
to T if there exists an invertible operator V ∈ L (H ) such that S∗S = V−1T ∗TV , or
equivalently, S∗S = |S|2 and T ∗T = |T |2 are unitarily equivalent, i.e., W |S|2 = |T |2W
for some unitary operator W on H . Since |S| and |T | are positive operators, W |S|α =
|T |αW holds for some α ∈ (0,1] with the same W .

EXAMPLE 1. Let T =
(

0 A
B 0

)
and S =

(|A| 0
0 |B|

)
be in L (H ⊕H ) where |R|=

(R∗R)
1
2 . Then S∗S = W ∗T ∗TW where W =

(
0 I
I 0

)
is unitary. Hence S and T are

nearly equivalent.

Let {en}∞
n=1 be an orthonormal basis for H and let {αn}∞

n=1 be a bounded se-
quence of complex numbers. An operator W ∈ L (H ) is called a unilateral weighted
shift with weights {αn} if Wen = αnen+1 for all positive integers n .
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EXAMPLE 2. Let S and T be the unilateral weighted shifts in L (H ) with the
weight sequences {αn}∞

n=1 and {eiθnαn}∞
n=1 , respectively. Then S and T are nearly

equivalent. Indeed, S∗S = W ∗T ∗TW where W is a unitary operator defined by Wen =
γnen , where γn = eiθn for all n � 1.

REMARK 1. We note that W |T | in Theorem 1 is not the polar decomposition U |T |
of T and |T | 1

2W |T | 1
2 is not the Aluthge transform T̃ of T , i.e., T̃ 
= |T | 1

2W |T | 1
2 .

We next give an example about Remark 1.

EXAMPLE 3. Let T =
(

0 A
B 0

)
∈ L (H ⊕H ) where A = VA|A| and B = VB|B|

are the polar decompositions of A and B , respectively, A,B 
= 0, I , and let S =
(|A| 0

0 |B|
)

∈ L (H ⊕H ) . Then T ∗T =
(|B|2 0

0 |A|2
)

. Hence S is nearly equivalent to T =(
0 A
B 0

)
. In fact, S∗S = W ∗T ∗TW where W =

(
0 I
I 0

)
is unitary. Let T = VT |T | be

the polar decomposition of T . Then |T | =
(|B| 0

0 |A|
)

and VT =
(

0 VA

VB 0

)
. On the

other hand, W |T | =
(

0 I
I 0

)(|B| 0
0 |A|

)
=
(

0 |A|
|B| 0

)

= T . Hence W |T | is not the polar

decomposition of T . Similarly, the Aluthge transform T̃ of T is

T̃ = |T | 1
2VT |T | 1

2 =

(
0 |B| 1

2VA|A| 1
2

|A| 1
2VB|B| 1

2 0

)
.

On the other hand,

|T | 1
2W |T | 1

2 =

(
0 |B| 1

2 |A| 1
2

|A| 1
2 |B| 1

2 0

)
.

Hence T̃ 
= |T | 1
2W |T | 1

2 , in general.

We next state some properties about nearly equivalent operators.

PROPOSITION 1. Let S and T be in L (H ) . Suppose that S is nearly equivalent

to T such that S∗S = W ∗T ∗TW for some unitary W . If |S| � |T | , then |T | 1
2W |T | 1

2 is

hyponormal. In particular, if |S| = |T | , then |T | 1
2W |T | 1

2 is normal. Conversely, if

|T | 1
2W |T | 1

2 is hyponormal and ran |T | 1
2 is dense in H , then |S| � W |T |W ∗ .
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Proof. Since S∗S =W ∗T ∗TW , |S|=W ∗|T |W . Since |S|� |T | , W ∗|T |W � |T |�
W |T |W ∗ . Thus

(|T | 1
2W |T | 1

2 )∗(|T | 1
2W |T | 1

2 ) = |T | 1
2W ∗|T |U |T | 1

2

� |T | 1
2W |T |W ∗|T | 1

2

= (|T | 1
2W |T | 1

2 )(|T | 1
2W |T | 1

2 )∗.

Hence |T | 1
2W |T | 1

2 is hyponormal. In particular, if |S| = |T | , then

W ∗|T |W = |T | = W |T |W ∗.

Hence |T | 1
2W |T | 1

2 is normal. Conversely, if |T | 1
2W |T | 1

2 is hyponormal, then

|T | 1
2 (W ∗|T |W −W |T |W ∗)|T | 1

2 � 0.

Since ran |T | 1
2 is dense on H , |S| =W ∗|T |W � W |T |W ∗ . �

We turn now to the intimate connection between invariant subspaces of operators
|T | 1

2W |T | 1
2 and W |S| .

LEMMA 1. Let S and T be in L (H ) . Suppose that S is nearly equivalent to T

such that S∗S = W ∗T ∗TW for some unitary W and |T | 1
2 is a quasiaffinity. If M is

a nontrivial invariant subspace for |T | 1
2W |T | 1

2 , then |T | 1
2 M is a nontrivial invariant

subspace for W |S| . Moreover, if N is a nontrivial invariant subspace for W |S| , then

|T | 1
2WN is a nontrivial invariant subspace for |T | 1

2W |T | 1
2 .

Proof. If |T | 1
2 is a quasiaffinity, then |S| is a quasiaffinity. Since |S| = W ∗|T |W

and W is unitary,

W |S|(|T | 1
2 M ) = W (W ∗|T |W )|T | 1

2 M

= |T | 1
2 (|T | 1

2W |T | 1
2 M )

⊆ |T | 1
2 M .

Hence W |S|(|T | 1
2 M ) ⊆ |T | 1

2 M . Since |T | 1
2 is a quasiaffinity and M is nontrivial,

|T | 1
2 M is a nontrivial invariant subspace for W |S| . Moreover, if N is a nontrivial

invariant subspace for W |S| , then |T |WN ⊆ N since W |S| = WW ∗|T |W = |T |W .
Hence

|T | 1
2W |T | 1

2 (|T | 1
2WN ) = |T | 1

2W (|T |WN ) ⊆ |T | 1
2WN .

Thus |T | 1
2W |T | 1

2 (|T | 1
2WN ) ⊆ |T | 1

2WN . Since |T | 1
2 is a quasiaffinity, U is unitary,

and N is nontrivial, |T | 1
2WN is nontrivial �

As some applications of Lemma 1, we get the following theorem.
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THEOREM 1. Let S and T be in L (H ) . Suppose that S is nearly equivalent to
T such that S∗S = W ∗T ∗TW for a unitary operator W . Then the following statements
hold.

(i) If |T | 1
2W |T | 1

2 has a nontrivial invariant subspace, then so does W |S| .
(ii) If |S| � |T | , then there exists a positive integer K such that for all positive

integers k � K , (W |S|)k has a nontrivial invariant subspace.

Proof. (i) If W |S| is not a quasiaffinity, then 0 ∈ σp(W |S|)∪σp(|S|W∗) . Hence
W |S| has a nontrivial invariant subspace. If W |S| is a quasiaffinity, then |S| is a quasi-
affinity since W is unitary. Since |S| = W ∗|T |W , |T | is also quasiaffinity. If M is

a nontrivial invariant subspace for |T | 1
2W |T | 1

2 , then |T | 1
2 M is a nontrivial invariant

subspace for W |S| from Lemma 1.
(ii) If W |S| is not a quasiaffinity, then 0 ∈ σp(W |S|)∪σp(|S|W ∗) . Hence W |S|

has a nontrivial invariant subspace. Then (W |S|)k has a nontrivial invariant subspace.

Assume W |S| is a quasiaffinity. If |S| � |T | , then |T | 1
2W |T | 1

2 is hyponormal for a
unitary operator W from Proposition 1. By C. Berger’s theorem(see [3]), there exists
a positive integers K such that for all positive integers k � K , (|T | 1

2W |T | 1
2 )k has a

nontrivial invariant subspace M . Since |S|= W ∗|T |W and W is unitary,

(W |S|)k|T | 1
2 M = (W |S|)k−1|T | 1

2 (|T | 1
2W |T | 1

2 M )
⊆ (W |S|)k−1|T | 1

2 M .

By induction, we get that (W |S|)k|T | 1
2 M ⊆ |T | 1

2 M . Hence (W |S|)k(|T | 1
2 M )⊆ |T | 1

2 M .

Since W |S| is a quasiaffinity and M is nontrivial, |T | 1
2 M is a nontrivial invariant sub-

space for (W |S|)k . �
As some applications of Theorem 1, we get the following corollary.

COROLLARY 1. Under the same hypotheses with Theorem 1, the following state-
ments hold.

(i) If |S|= |T | , then W |S| has a nontrivial invariant subspace.

(ii) If |S| � |T | and σ(|T | 1
2W |T | 1

2 ) has nonempty interior, then W |S| has a non-
trivial invariant subspace.

Proof. (i) Since |T | 1
2W |T | 1

2 is normal from Proposition 1, |T | 1
2W |T | 1

2 has a non-
trivial invariant subspace. Hence W |S| has a nontrivial invariant subspace from Theo-
rem 1.

(ii) Since |T | 1
2W |T | 1

2 is hyponormal from Proposition 1 and σ(|T | 1
2W |T | 1

2 ) has

nonempty interior in C , |T | 1
2W |T | 1

2 has a nontrivial invariant subspace from theorem
of S. Brown([4]). Thus W |S| has a nontrivial invariant subspace from Theorem 1. �

The operator W |S| = |T |W and |T | 1
2W |T | 1

2 are of the form AB and BA with

A = |T | 1
2 and B = |T | 1

2U where W is a unitary operator. From now on, we consider
properties of AB and BA . We begin with the following elementary lemma.
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LEMMA 2. Let X be a vector space and let A,B,C : X → X be linear mappings
where C commutes with A and B.

(i) If C is injective, then AB+C is injective if and only if BA+C is injective.
(ii) If C is surjective, then AB+C is surjective if and only if BA+C is surjective.
(iii) If C is bijective, then AB+C is bijective if and only if BA+C is bijective.

Proof. (i) Let AB+C be injective. If x∈ X with (BA+C)x = 0, then 0 = A(BA+
C)x = (AB+C)Ax and hence Ax = 0. Thus BAx= 0. As C is injective we obtain x = 0.
The converse is obtained by interchanging the role of A and B .

(ii) is obtained by applying (i) to the algebraic transposed operators and (iii) fol-
lows from (i) and (ii). �

Recall an operator T ∈ L (H ) has the single valued extension property, respec-
tively, Bishop’s property (β ) modulo a closed set S⊂C if for all open subsets V ⊆C\S
the mapping

O(V,H ) → O(V,H ), f → (T − z) f

is injective, respectively injective with closed range on the space O(V,H ) of all an-
alytic functions on V with values in H . If these conditions are satisfied with S = /0 ,
the T will be said to possess the single valued extension property or Bishop’s property
(β ), respectively. We say that T has property (δ ) modulo S if for every open cover
{U,V} of C , the decomposition H = HT (V )+HT (C\U) holds for S ⊂U ⊂U ⊂V .

By means of Lemma 2, one now obtains the following results:

PROPOSITION 2. Let T1 and T2 be in L (H ) . If S⊂C is a closed set, then T1T2

has the single valued extension property modulo S if and only if T2T1 has this property.

Proof. Assume that T1T2 has the single valued extension property modulo S . Let
open set V ⊆ C\ S and let f be a sequence in O(V,H ) with the mapping

O(V,H ) → O(V,H ), f → (T2T1 − z) f

is injective, i.e.,
(T2T1 − z) f (z) ≡ 0 (1)

in O(V,H ) . Multiplying both sides by T1 , we get that

(T1T2− z)T1 f (z) ≡ 0

in O(V,H ) . Since T1T2 has the single valued extension property modulo S , we have
that

T1 f (z) ≡ 0

in O(V,H ) . By (1), z f (z) ≡ 0 in O(V,H ) . Hence T2T1 has the single valued exten-
sion property modulo S . The converse implication is similar. �

PROPOSITION 3. Let T1 and T2 be in L (H ) . If S⊂C is a closed set, then T1T2

has the Bishop’s property (β ) modulo S if and only if T2T1 has this property.
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Proof. Fix an arbitrary open set V ⊆ C \ S and let now X be the quotient of the
space w(N,O(V,H )) of all sequences in O(V,H ) modulo the subspace
c0(N,O(V,H )) of all sequences that tend to 0 in O(V,E) . Let { fn}∞

n=1 be a sequence
in O(V,H ) . We can choice the following maps

A : ( fn)+ c0(N,O(V,H )) → (T1 fn)+ c0(N,O(V,H )),
B : ( fn)+ c0(N,O(V,H )) → (T2 fn)+ c0(N,O(V,H )),
C : ( fn)+ c0(N,O(V,H )) → (z fn)+ c0(N,O(V,H )). (2)

Assume that T1T2 has the Bishop’s property (β ) modulo S . Let open set V ⊆C\S
and let { fn}∞

n=1 be a sequence in O(V,H ) with

lim
n→∞

(T2T1− z) fn(z) = 0. (3)

Then limn→∞(T1T2− z)T1 fn(z) = 0 in O(V,H ) . Since T1T2 has the Bishop’s property
(β ) modulo S , we have that

lim
n→∞

T1 fn(z) = 0

in O(V,H ) . By (3), limn→∞z fn(z) = 0 in O(V,H ) . Hence T2T1 has the Bishop’s
property (β ) modulo S . The converse implication is similar. �

By Theorems 8 and 21 in [2], a bounded linear operator T ∈L (H ) is decompos-
able modulo a closed set S⊆C if and only if T and its adjoint T ∗ ∈L (H ∗) both have
the Bishop’s property (β ) modulo S . Hence we get from Proposition 2 the following
corollary.

COROLLARY 2. If S ⊂ C is a closed set, then T1T2 is decomposable modulo S
if and only if T2T1 is decomposable modulo S . In particular, if S = /0 , then T1T2 is
decomposable in sense of Foia̧s if and only if T2T1 is decomposable.

Proof. By Theorems 8 in [2], both T1T2 has the Bishop’s property (β ) modulo S
and T1T2 has the property (δ ) modulo S . From Proposition 2, T2T1 has the Bishop’s
property (β ) modulo S . Since T1T2 has the property (δ ) modulo S , adjoint of T1T2

has the Bishop’s property (β ) modulo S by Theorems 21 in [2]. Hence adjoint of T2T1

has the Bishop’s property (β ) modulo S by Proposition 3. Thus T2T1 is decomposable
modulo S . The converse implication is similar. �

The following corollary is an immediate consequences of Proposition 2, 3, and
Corollary 2. The proofs follow with appropriate choices of T1 and T2 in these two
propositions and the corollary.

COROLLARY 3. Let P and V be in L (H ) with P � 0 . For 0 � α � 1 , we write
T̃α := PαVP1−α . If S ⊂ C is a closed set, then the following statements hold.

(i) T̃α has the single valued extension property modulo S for some α ∈ [0,1] if
and only if T̃α has this property for all α ∈ [0,1] .

(ii) T̃α has the Bishop’s property (β ) modulo S for some α ∈ [0,1] if and only if
T̃α has this property for all α ∈ [0,1] .
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(iii) T̃α is decomposable modulo S for some α ∈ [0,1] if and only if T̃α is decom-
posable modulo S for all α ∈ [0,1] .

From Corollary 3, we observe that this result includes and improves Theorem 1.1,
Corollary 1.13, and Theorem 1.14 in [7].

Recall that given x ∈ H and T ∈ L (H ) , rT (x) = limsupn→∞||Tnx|| 1
n is called

the local spectral radius of T at x . As some applications, we get the following corol-
laries.

COROLLARY 4. Let S ⊂C be a closed set. If T2T1 has the Bishop’s property (β )
modulo S , then the following statements hold.

(i) T1T2 has the Dunford’s property (C) modulo S and the single-valued extension
property modulo S .

(ii) rT1T2(x) = limn→∞ ‖(T1T2)nx‖ 1
n for all x ∈ H .

(iii) HT1T2(E) is the spectral maximal space of T1T2 and σ(T1T2|HT1T2
(E)) ⊂

σ(T1T2)∩E for any closed subset E in C\ S .

Proof. (i) Since T1T2 has the Bishop’s property (β ) modulo S by Proposition 3,
the proof follows from [1, Theorem 2.77 and Theorem 6.18].

(ii) The proof follows from Proposition 3 and [8, Proposition 3.3.17].
(iii) Since T1T2 has the Bishop’s property (β ) modulo S by Proposition 3, HT1T2(E)

is closed for any closed set E in C \ S . Hence the proof follows from [2, Lemma
1]. �

COROLLARY 5. Let S ⊂ C be a closed set. If T1T2 has the single-valued exten-
sion property modulo S , then the following statements hold.

(i) σT1T2(T1x) ⊂ σT2T1(x) and σT2T1(T2x) ⊂ σT1T2(x) .
(ii) T1HT2T1(E) ⊂ HT1T2(E) and T2HT1T2(E) ⊂ HT2T1(E) for any closed subset

E in C\ S .

Proof. (i) Let open set V ⊆ C \ S . If λ 
∈ σT2T1(x) , then there exists an analytic
function f in O(V,H ) such that

(T2T1−λ ) f (λ ) ≡ x.

Multiplying both sides by T1 , we get that

T1x ≡ T1(T2T1 −λ ) f (λ ) = (T1T2−λ )T1 f (λ ). (4)

Hence λ 
∈ σT1T2(T1x) . Thus σT1T2(T1x) ⊂ σT2T1(x) .
Similarly, if λ 
∈ σT1T2(x) , then there exists an analytic function f in O(V,H )

such that
(T1T2−λ ) f (λ ) ≡ x.

Multiplying both sides by T2 , we get that

T2x ≡ (T1T2 −λ )T2 f (λ ). (5)
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Hence λ 
∈ σT1T2(T2x) . Thus σT1T2(T2x) ⊂ σT2T1(x) .
(ii) If x ∈ HT1T2(E) for any closed set E ⊂ C \ S , then σT1T2(x) ⊂ E . Since

σT2T1(T2x) ⊂ σT1T2(x) from (i), we have that σT2T1(T2x) ⊂ E , i.e., T2x ∈ HT2T1(E) .
Hence T2HT1T2(E) ⊂ HT2T1(E) .

Similarly, if x ∈ HT2T1(E) , then σT2T1(x) ⊂ E . Since σT1T2(T1x) ⊂ σT2T1(x) from
(i), we have that σT1T2(T1x)⊂E , i.e., T1x∈HT1T2(E) . Hence T1HT2T1(E)⊂HT1T2(E) .

�

COROLLARY 6. Let T1 and T2 be in L (H ) and let S ⊂ C be a closed set.
Suppose that T1 is nearly equivalent to T2 such that T ∗

1 T1 = W ∗T ∗
2 T2W for a unitary

operator W . If |T1| � |T2| , then W |T1| has the Bishop’s property (β ) modulo S .

Proof. If |T1| � |T2| , then |T2| 1
2W |T2| 1

2 is hyponormal from Proposition 1. Hence

|T2| 1
2W |T2| 1

2 has the Bishop’s property (β ) modulo S . Let the operator |T2| 1
2W |T2| 1

2 be

of the form AB with A = |T2| 1
2W and B = |T2| 1

2 . Hence W |T1| = BA has the Bishop’s
property (β ) modulo S by Proposition 3. �

Let T1 and T2 in L (H ) . It is well known that σ(T1T2) \ {0} = σ(T2T1) \ {0} ,
σap(T1T2)\ {0}= σap(T2T1)\ {0} , and σp(T1T2)\ {0}= σp(T2T1)\ {0} . Using these

facts, we give some spectral relations between |T | 1
2W |T | 1

2 and W |S| .

PROPOSITION 4. Let S and T be in L (H ) . If S and T are nearly equivalent

such that S∗S =W ∗T ∗TW for a unitary operator W , then σ(|T | 1
2W |T | 1

2 ) = σ(W |S|) ,
σap(|T | 1

2W |T | 1
2 ) = σap(W |S|) , and σp(|T | 1

2W |T | 1
2 ) = σp(W |S|) .

Proof. Since W |S| = |T |W and (|T | 1
2W )|T | 1

2 = |T | 1
2 (|T | 1

2W ) , σ(|T | 1
2W |T | 1

2 ) \
{0}= σ(|T |W )\{0} , σap(|T | 1

2W |T | 1
2 )\{0}= σap(W |S|)\{0} , and σp(|T | 1

2W |T | 1
2 )\

{0} = σp(W |S|)\ {0} hold. So it suffices to show that the equalities hold about 0.

If |T | 1
2W |T | 1

2 is invertible, then |T | 1
2 is invertible. Since |T | 1

2 (|T | 1
2W |T | 1

2 )|T |− 1
2

= |T |W = W |S| , it follows that |T | 1
2W |T | 1

2 and W |S| are similar. Hence W |S| is

invertible, i.e., σ(W |S|)⊆ σ(|T | 1
2W |T | 1

2 ) . By the similar argument, σ(|T | 1
2W |T | 1

2 ) ⊆
σ(W |S|) . Thus σ(|T | 1

2W |T | 1
2 ) = σ(W |S|) .

If there exists a sequence {xn} with unit vectors in H such that

lim
n→∞

‖|T |Wxn‖ = 0,

then
lim
n→∞

‖(|T | 1
2W |T | 1

2 )(|T | 1
2Wxn)‖ = 0.

If {|T | 1
2Wxn} does not tend to zero in norm, 0 ∈ σap(|T | 1

2W |T | 1
2 ) . Otherwise,

{|T | 1
2Wxn} tends to zero in norm. Hence limn→∞ ‖(|T | 1

2W |T | 1
2 )Wxn‖ = 0. Since

{Wxn} cannot converge to zero in norm, 0 ∈ σap(|T | 1
2W |T | 1

2 ) .
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If there exists a sequence {yn} with unit vectors in H such that

lim
n→∞

‖|T | 1
2W |T | 1

2 yn‖ = 0,

then

0 = lim
n→∞

‖|T |W (|T | 1
2 yn)‖ = lim

n→∞
‖W |S|(|T | 1

2 yn)‖,

which gives 0 ∈ σap(W |S|) if {|T | 1
2 yn} does not tend to zero in norm. Otherwise,

{|T | 1
2 yn} tends to zero in norm. Hence

lim
n→∞

‖W |S|W∗yn‖ = lim
n→∞

‖|T |WW ∗yn‖ = lim
n→∞

‖|T |yn‖
= lim

n→∞
‖|T | 1

2 (|T | 1
2 yn)‖ = 0.

Since {W ∗yn} cannot converge to zero in norm, 0 ∈ σap(W |S|) .
The same argument hold for the point spectrum σp(·) . �
Let us recall that an operator T is said to be isoloid if for any λ ∈ iso σ(T ) , λ ∈C

is an eigenvalue of T , where iso σ(T ) denotes the set of all isolated points of σ(T )
(i.e., iso σ(T ) ⊆ σp(T )) .

COROLLARY 7. Let S and T be in L (H ) and S is nearly equivalent to T such
that S∗S = W ∗T ∗TW for a unitary operator W. If |S|� |T | , then W |S| is isoloid.

Proof. If |S| � |T | , then |T | 1
2W |T | 1

2 is hyponormal from Proposition 1. Since

|T | 1
2W |T | 1

2 is isoloid, iso σ(|T | 1
2W |T | 1

2 ) ⊆ σp(|T | 1
2W |T | 1

2 ) . Since σ(|T | 1
2W |T | 1

2 ) =
σ(W |S|) and σp(|T | 1

2W |T | 1
2 ) = σp(W |S|) from Proposition 4, W |S| is isoloid. �
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