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MAPS PRESERVING THE LOCAL

SPECTRUM OF SOME MATRIX PRODUCTS
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(Communicated by E. Poon)

Abstract. Let Mn(C) denote the algebra of all n×n complex matrices, and x0 a nonzero vector
in C

n . For two fixed scalars μ and ν in C for which (μ ,ν) �= (0,0) , we characterize all maps
ϕ on Mn(C) satisfying

σμST ∗S+νT ∗S(x0) = σμϕ(S)ϕ(T )∗ϕ(S)+νϕ(T )∗ϕ(S)(x0), (S, T ∈ Mn(C)).

This provides, in particular, a complete description of all maps on Mn(C) preserving the local
spectrum of the skew double product “TS∗ ” or the skew triple product “TS∗T ” of matrices. It
also unifies and extends several known results on local spectrum preservers.

1. Introduction

Recently, linear and nonlinear local spectra preserver problems attracted the at-
tention of a number of authors. Mainly, several authors described maps on matrices
or operators that preserve local spectrum, local spectral radius and local inner spec-
tral radius; see for instance [9, 11, 12, 13, 14, 15, 17, 21] and the references therein.
In [11, 12], nonlinear surjective maps on Banach space operators preserving the local
spectrum of the product or the triple product of operators have been investigated. In
[1], the authors described all surjective maps on the algebra B(H ) of all bounded lin-
ear operators on a complex Hilbert space H that preserve the local spectrum of skew
double or skew triple products of Hilbert space operators.

In what follows, let Mn(C) denote the algebra of all n×n complex matrices and
let x0 be a nonzero vector in Cn . For any matrix T ∈ Mn(C) , let σT (x0) denote the
local spectrum of T ∈ Mn(C) at x0 , and T ∗ stands, as usual, for its adjoint. For two
fixed scalars μ and ν in C with (μ ,ν) �= (0,0) we describe all maps ϕ on Mn(C)
satisfying

σμST ∗S+νT ∗S(x0) = σμϕ(S)ϕ(T )∗ϕ(S)+νϕ(T )∗ϕ(S)(x0), (S, T ∈ Mn(C)).

This provides, in particular, a complete description of all maps on Mn(C) preserving
the local spectrum of the skew double product TS∗ or the skew triple product TS∗T
of matrices. This seems to be new and extends the main results of [1] to the finite di-
mensional setting without any restriction or additional condition on the map ϕ such as
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surjectivity. It also unifies and extends the main results of [5, 6] where maps preserving
the local spectrum of the product and the triple product of matrices have been char-
acterized. Furthermore, we characterize maps on Mn(C) preserving the skew Jordan
product ST ∗ +T∗S of matrices. We thus provide a variant of the main result of [9].

2. Main result

Throughout this paper, let μ and ν be two scalars such that (μ ,ν) �= (0,0) , and
define a map θ from Mn(C)×Mn(C) to Mn(C) by

θ (S,T ) := μSTS+ νTS, (S, T ∈ Mn(C)).

Recall that the local resolvent set, ρT (x) , of a bounded linear operator T on a complex
Banach space X at a point x ∈ X is the union of all open subsets U of C for which
there is an analytic function f :U → X such that (T −λ ) f (λ ) = x , (λ ∈U) . The local
spectrum of T at x is defined by

σT (x) := C\ρT (x).

It is a (possibly empty) closed subset of σ(T ) , the spectrum of T . Our references are
the books [2] by P. Aiena and [26] by K. B. Laursen, M. M. Neumann which provide an
excellent exposition as well as a rich bibliography of the local spectral theory. However
the local spectra of matrices is well understood and can be found, for instance, in [14].

The study of linear and nonlinear local spectra preserver problems was initiated
by A. Bourhim and T. J. Ransford in [15], and continued by several authors; see for
instance the survey article [13] and the references therein. In [8, 11, 12], nonlinear
surjective maps on Banach space operators preserving the local spectrum of the product,
the triple product and Jordan product of operators have been investigated. In [5, 6, 9],
nonlinear maps on Mn(C) preserving the local spectrum of the product, the triple
product and Jordan product of matrices have been characterized. In [1], the current
authors described all surjective maps ϕ on B(H ) , the algebra of all bounded linear
operators on a complex Hilbert space H , that preserve the local spectrum of skew
double and triple products of operators. The aim of this paper is to characterize the
form of all maps (not supposed to be surjective or even linear) on Mn(C) that preserve
the local spectrum of skew double and triple products of matrices.

THEOREM 2.1. Let x0 be a nonzero vector in Cn . A map ϕ on Mn(C) satisfies

σθ(S,T ∗)(x0) = σθ(ϕ(S),ϕ(T )∗)(x0), (S, T ∈ Mn(C)) (1)

if and only if there are two unitary matrices U and V in Mn(C) and a scalar α ∈ C

such that Ux0 = αx0 and

ϕ(T ) =

{
UTU∗ if μ �= 0

VTU if μ = 0
(T ∈ Mn(C)) . (2)
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This theorem shows, in particular, that the main results of [1] remain valid without
any additional assumption on the map ϕ such as the surjectivity. Its proof uses some
arguments influenced by ideas from several papers including [9] but it requires new in-
gredients which will be established in sections 3 and 4. It is also somehow simpler than
and different from the proofs of the main results of [5, 6] wherein the characterization
of rank one nilpotent operators is employed. Although our aim is to specialize the main
results of [1] from the context of Hilbert space operators to the case of complex square
matrices. It is worth to mention that, with no extra efforts, a variant of Theorem 2.1 can
be obtained characterizing all maps ϕ on Mn(C) satisfying

σθ(S,T )(x0) = σθ(ϕ(S),ϕ(T ))(x0), (S, T ∈ Mn(C)).

This variant unifies and extends the main results of [5, 6] and shows that their proofs
could be combined and simplified.

3. Preliminaries and auxiliary results

In this section, we collect some lemmas and introduce some concepts and notions
needed for the proof of our main result. For a bounded linear operator T on a com-
plex Banach space X and a point x ∈ X , the nonzero local spectrum introduced by A.
Bourhim and J. Mashreghi in [11, 12] is defined by

σ∗
T (x) :=

{{0} if σT (x) = {0};
σT (x)\ {0} if σT (x) �= {0}.

For a matrix T ∈Mn(C) , let Tr(T ) , Ttr and T ∗ denote the trace, the transpose, and the
adjoint of T , respectively. For two nonzero vectors x,y ∈ Cn , let x⊗y be the matrix of
rank at most one defined by x⊗ y = xytr , thus (x⊗ y)(z) := 〈z,y〉x , where 〈z,y〉 = ztry ,
for all z ∈ Cn .

The first lemma is an elementary result that describes the nonzero local spectrum
of rank one matrices, and can be found in [15].

LEMMA 3.1. For any vectors x0, x, y ∈ Cn , we have

σ∗
x⊗y(x0) :=

{{〈y,x〉} if 〈y,x0〉 �= 0;

{0} if 〈y,x0〉 = 0.

The second lemma is a local spectral identity principle that provides necessary
and sufficient conditions for two matrices to be the same. Before stating it, let us
introduce a few more notations and recall some useful facts. Let GLn be the set of
all invertible matrices in Mn(C) and denote by In the identity matrix. Recall that
Newburgh’s theorem tells us that the spectrum function is continuous on Mn(C) ; see
[4, Corollary 3.4.5]. While the local spectrum is not continuous on Mn(C) but it is
lower semi-continuous on Mn(C) ; see [20, Corollary 2.3]. That is, if x0 is a fixed
vector in Cn and (Tk)k�1 ⊂ Mn(C) is a converging sequence to a matrix T ∈ Mn(C) ,
then σT (x0) ⊂ liminf

k→∞
σTk (x0) .
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LEMMA 3.2. Let x0 ∈ Cn be a nonzero vector, and A,B ∈ Mn(C) be two matri-
ces. Then A = B if and only if σθ(S,A∗)(x0) = σθ(S,B∗)(x0) for all S ∈ GLn .

Proof. Since ‘only if ’ part is trivial, we only have to prove the ‘if ’ part. So, assume
that

σθ(S,A∗)(x0) = σθ(S,B∗)(x0), S ∈ GLn, (3)

and let us show that A = B .
In view of [9, Lemma 5.1], we may and shall assume that ν �= 0 and let us show

that 〈A∗x,y〉 = 〈B∗x,y〉 for all x, y ∈ Cn . Fix two nonzero vectors x and y in Cn , and
set S := x⊗ y . Note that, since GLn is dense in Mn(C) , there is a sequence (Sk)k of
invertible matrices that converges to S . Since

θ (S,A∗) = [μ〈A∗x,y〉x+ νA∗x]⊗ y,

and
θ (S,B∗) = [μ〈B∗x,y〉x+ νB∗x]⊗ y,

we have

σ(θ (S,A∗)) = {0, 〈A∗x,y〉[μ〈x,y〉+ ν]}
σ(θ (S,B∗)) = {0, 〈B∗x,y〉[μ〈x,y〉+ ν]} .

(4)

Now, for any integer k , we have

σθ(Sk,A∗)(x0) = σθ(Sk,B∗)(x0) ⊂ σ(θ (Sk,A
∗))∩σ(θ (Sk,B

∗)).

This together with the continuity of the spectrum and the lower semi-continuity of the
local spectrum imply that

σθ(S,A∗)(x0) ⊂ σ(θ (S,A∗))∩σ(θ (S,B∗))

and
σθ(S,B∗)(x0) ⊂ σ(θ (S,A∗))∩σ(θ (S,B∗)).

Therefore,

σ∗
θ(S,A∗)(x0)∪σ∗

θ(S,B∗)(x0) ⊂ σ(θ (S,A∗))∩σ(θ (S,B∗)). (5)

If 〈x0,y〉 �= 0, then (4), (5) and Lemma 3.1 entail that

〈A∗x,y〉[μ〈x,y〉+ ν] = 〈B∗x,y〉[μ〈x,y〉+ ν]. (6)

If necessary, take a nonzero real scalar t such that tμ〈x,y〉+ ν �= 0 and replace x by
tx in (6) to get that 〈A∗x,y〉 = 〈B∗x,y〉 . If, however, 〈x0,y〉 = 0, take a nonzero vector
z such that 〈x0,z〉 �= 0 so that 〈x0,y+ z〉 �= 0. What has been proved previously shows
that 〈A∗x,z〉 = 〈B∗x,z〉 and 〈A∗x,(y+ z)〉 = 〈B∗x,(y+ z)〉 , and thus 〈A∗x,y〉 = 〈B∗x,y〉
in this case too. This shows that A = B , and completes the proof. �
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As in [9, 14, 21], let us consider the set

Sn,x0 = {T ∈ Mn(C) : |σ(T )| = n and T is cyclic with cyclic vector x0} ,

where |S | denotes the cardinal of any subset set S ⊂ C . It is well known that Sn,x0

is an open dense subset of Mn(C) and

σT (x0) = σ(T ), (T ∈ Sn,x0). (7)

LEMMA 3.3. If O is a nonempty open subset of Mn(C) , then
{

μS2 + νS : S ∈ O
}

is a spanning set of Mn(C) .

Proof. Pick a matrix T ∈ Mn(C) and assume that

Tr
(
[μS2 + νS].T

)
= 0

for all S∈O . To show that
{

μS2 + νS : S ∈ O
}

is a spanning set of Mn(C) , it suffices
to prove that T = 0.

Given a matrix S ∈ O , for every R ∈ Mn(C) and real scalar t small enough, we
have S+ tR∈ O and

0 = Tr
(
[μ(S+ tR)2 + ν(S+ tR)]T

)
= Tr

(
[μS2 + νS].T

)
+Tr([μ(RS+SR)+ νR]T)t + μTr

(
R2T

)
t2.

It then follows that Tr([μ(RS+SR)+ νR]T)= 0 and μTr(R2T )= 0 for all R∈Mn(C) .
If μ = 0, then ν �= 0 and Tr(RT ) = 0 for all R ∈ Mn(C) . This clearly implies that
T = 0. If, however, μ �= 0 then Tr(R2T ) = 0 for all R ∈ Mn(C) . Since {R2 : R ∈
Mn(C)} spans Mn(C) , we conclude that T = 0 in this case too. The Lemma is there-
fore proved. �

The following lemma plays a crucial role in the proof of our main result.

LEMMA 3.4. For every T0 ∈GLn , there is S0 ∈GLn and two open neighborhoods
VS0 and Vθ(S0,T ∗) of S0 and θ (S0,T ∗

0 ) such that the mapping θ (.,T ∗
0 ) : S �→ θ (S,T ∗

0 )
is a diffeomorphism from VS0 onto Vθ(S0,T ∗

0 ) .

Proof. Firstly, observe that the partial S -derivative of θ (S,T ∗) is given by

∂Sθ (S,T ∗) ·H = H · (μT ∗S)+ (μS+ νIn)T ∗ ·H, (H ∈ Mn(C)),

and keep in mind that Sylvester’s theorem [28, Theorem 2.4.4.1] tells us that ∂Sθ (S,T ∗)
is an isomorphism provided that

σ (μT ∗S)∩σ (−(μS+ νIn)T ∗) = /0. (8)

Secondly, fix T0 ∈ GLn and let us show that there is a matrix S0 ∈ GLn such that
(8) is satisfied for T = T0 and S = S0 . If μ = 0, then ν �= 0 and (8) is satisfied for any
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S0 ∈ GLn . If μ �= 0, write T ∗
0 = PRP−1 , where P ∈ GLn and R is an upper triangular

matrix with diagonal entries λ1, . . . ,λn . Let t is a positive real number, and Dt be the
diagonal matrix with diagonal entries tμλ1, . . . ,tμλn . Set St := PDtP−1 and note that
St ∈ GLn . Moreover, for t large enough, we have t|μ |2(|λi|2 + |λ j|2)+νλ j �= 0 for all
(i, j) ∈ {1, . . . ,n}2 and then{

μλitμλi : 1 � i � n
}
∩

{
−(μtμλ j + ν)λ j : 1 � j � n

}
= /0.

This tells us that (8) is satisfied for T0 and S0 := St for any t large enough. Therefore
∂Sθ (S0,T0

∗) is an isomorphism; as desired.
Finally, the inverse function Theorem, applied to the function S �→ θ (S,T ∗

0 ) , tells
us that there are two open neighborhoods VS0 and Vθ(S0,T ∗

0 ) of S0 and θ (S0,T ∗
0 ) such

the mapping θ (.,T ∗
0 ) : VS0 → Vθ(S0,T ∗

0 ) is bijective and both θ (.,T ∗
0 ) and its inverse are

continuously differentiable. This proves the lemma. �
We close this section with the following lemma that tells us that a map ϕ on

Mn(C) satisfying (1) is linear on GLn .

LEMMA 3.5. If a map ϕ on Mn(C) satisfies (1), then its restriction on GLn is
equal to a bijective linear mapping L.

Proof. The proof breaks down into two steps.
Step 1. For every T0 ∈ GLn , there is an open neighborhood VT0 of T0 and an

nonempty open set OT0 ⊆ GLn such that

θ (S,T ∗) ∈ Sn,x0 , for all (S,T ) ∈ OT0 ×VT0 .

First, fix an invertible matrix T0 ∈ GLn and let us show that

ΔT0,x0 :=
{
S ∈ GLn : θ (S,T ∗

0 ) ∈ Sn,x0

}
is a nonempty open set. Indeed, by Lemma 3.4, there is S0 ∈ GLn and two open neigh-
borhoods VS0 and Vθ(S0,T ∗

0 ) of S0 and θ (S0,T ∗
0 ) for which θ (.,T ∗

0 ) : S �→ θ (S,T ∗
0 ) is a

diffeomorphism from VS0 onto Vθ(S0,T ∗
0 ) . Since Sn,x0 is an open dense set in Mn(C) ,

we see that Sn,x0 ∩Vθ(S0,T ∗
0 ) is a nonempty open set. As θ (.,T ∗

0 ) is continuous on

Mn(C) , we have θ (.,T ∗
0 )−1

(
Sn,x0 ∩Vθ(S0,T ∗

0 )

)
is a nonempty open set too. Therefore,

by the density of GLn on Mn(C) , we conclude that GLn∩θ (.,T ∗
0 )−1

(
Sn,x0 ∩Vθ(S0,T ∗

0 )

)
is a nonempty open set contained in ΔT0,x0 . Hence ΔT0,x0 is a nonempty open set.

Now, since the map (S,T ) �→ θ (S,T ∗) is continuous from Mn(C)×Mn(C) to
Mn(C) , we obtain that

W :=
{
(S,T ) ∈ GLn ×GLn : θ (S,T ∗) ∈ Sn,x0

}
is an open subset of GLn ×GLn and ΔT0,x0 ×{T0} ⊆W . Thus, there is an open neigh-
borhood VT0 of T0 and an nonempty open set OT0 ⊆ GLn such that OT0 ×VT0 ⊆W ; as
desired.
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Step 2. We show that ϕ restricted on GLn is equal to a bijective linear mapping
L .

We first show that for every T0 ∈ GLn , there is an open neighborhood VT0 ⊆ GLn

of T0 , such that ϕ is agree with an invertible linear mapping LT0 : Mn(C) → Mn(C)
on VT0 . Indeed, choose VT0 and OT0 ⊆ GLn as in Step 1.

From (1) and (7), we see that

σ (θ (S,T ∗)) = σ (θ (ϕ(S),ϕ(T )∗)) and
∣∣σ (θ (S,T ∗))

∣∣ = n,

for all (S,T ) ∈ OT0 ×VT0 . It then follows that

Tr
(
[μS2 + νS]T∗) = Tr

(
[μϕ(S)2 + νϕ(S)]ϕ(T)∗

)
for all (S,T ) ∈OT0 ×VT0 . By Lemma 3.3, the set {μS2 +νS : S ∈OT0} spans Mn(C) ,
and thus it contains a basis of Mn(C) . Now, following the same argument as the one in
the proof of Assertion 1 of [16, Theorem 2.1], one sees that the restriction of ϕ on VT0

is equal to an invertible linear mapping LT0 . Since GLn is arcwise connected, using the
arguments of Assertion 2 of the proof of [16, Theorem 2.1], we conclude that the map
ϕ is equal to a bijective linear map L on GLn , and the proof is complete. �

4. Maps preserving the spectrum of a product of matrices

In this section, we give a characterization of maps ϕ on Mn(C) satisfying

σ(θ (S,T ∗)) = σ(θ (ϕ(S),ϕ(T )∗)), (S,T ∈ Mn(C)). (9)

Such a characterization is new and will serve in the proof of the Theorem 2.1.

PROPOSITION 4.1. A map ϕ on Mn(C) satisfies (9) if and only if there are two
unitary matrices U and V in Mn(C) such that V = U∗ whenever μ �= 0 and either

ϕ(T ) = UTV, (T ∈ Mn(C)), (10)

or
ϕ(T ) = UTtrV, (T ∈ Mn(C)). (11)

Proof. For the “if ” part, we need only to prove that the mapping T �→ Ttr satisfies
(9) since it is obvious that (9) holds provided that ϕ takes the form (10). Indeed, assume
that ϕ(T ) = Ttr for all T ∈ Mn(C) and note that

σ(θ (S,T ∗)) = σ((μS+ ν)T ∗S)
= σ(T ∗S(μS+ ν))
= σ(T ∗(μS+ ν)S)
= σ(ST ∗(μS+ ν))
= σ((ST ∗(μS+ ν))tr)
= σ((μS+ ν)tr(T ∗)trStr)
= σ((μStr + ν)(Ttr)∗Str)
= σ(θ (Str,(Ttr)∗))
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for all S,T ∈ Mn(C) ; as claimed.
Now, assume that ϕ satisfies (9) and let us shows that ϕ has the desired forms.

First, we note that along the same lines as the proof of Lemma 3.5, one shows that ϕ
restricted on GLn is equal to a bijective linear map L : Mn(C) → Mn(C) . Thus, the
continuity of both the spectrum and the linear mapping L implies that

σ(θ (S,T ∗)) = σ(θ (L(S),L(T )∗)) (12)

for all T, S ∈ Mn(C) . Take S = tIn in (12), where t is a nonzero scalar satisfying
μt + ν �= 0, we obtain

σ((μt + ν)tT ∗) = σ((μL(tIn)+ νIn)L(T )∗L(tIn)), T ∈ Mn(C). (13)

Take T = In and plug in (13) to see that L(tIn) and (μL(tIn) + νIn) are invertible
matrices. This together with (13) show L preserves invertible matrices, and thus there
are two invertible matrices M and N in Mn(C) such that L has one of the forms
T �→ MTN or T �→ MTtrN ; see [23].

To show that L takes either the form (10) or (11), we first show that M∗M and NN∗
are scalar matrices. We may and shall assume that L(T ) = MTN for all T ∈ Mn(C)
as the case when L takes the second form is dealt by similarity. Let x, y, h, l ∈ Cn be
four vectors and note that, for T ∗ := y⊗ x and S := h⊗ l , the identity (12) gives

σ
(〈h,x〉[(μ〈y, l〉h+ νy)⊗ l]

)
= σ

(〈M∗Mh,x〉[(μ〈NN∗y, l〉NMh+ νNN∗y)⊗ l]
)
.

Hence,{
0;〈h,x〉〈y, l〉[μ〈h, l〉+ ν]

}
=

{
0;〈M∗Mh,x〉〈NN∗y, l〉[μ〈NMh, l〉+ ν]

}
,

and
〈h,x〉〈y, l〉[μ〈h, l〉+ ν] = 〈M∗Mh,x〉〈NN∗y, l〉[μ〈NMh, l〉+ ν]. (14)

By the way of contradiction, suppose that M∗M is not a scalar matrix so that there
exists a nonzero vector h1 ∈ Cn such that M∗Mh1 and h1 are linearly independent.
Thus, there is a nonzero vector x1 ∈ Cn such that 〈M∗Mh1,x1〉 = 0 and 〈h1,x1〉 = 1.
Then (14) applied to y = h = h1 , x = x1 and l = tx1 for an arbitrary t ∈ C entails that
μt +ν = 0 for all scalars t . This contradicts the fact that (μ ,ν) �= (0,0) and shows that
M∗M is a scalar matrix; as desired. Similarly, we show that NN∗ is a scalar matrix too,
and thus there are two positive scalars α and β such that M∗M = αIn and NN∗ = β In .

Second, we show that αβ = 1 so that U := 1√
α M and V := 1√

β
N are unitary

matrices and

UTV =
1√
αβ

MTN = MTN = L(T ),

for all T ∈ Mn(C) . Indeed, if μ = 0, then (14) trivially implies that αβ = 1. If,
however, μ �= 0, we prove that NM is a scalar matrix. By the way of contradiction,
assume that NM is not a scalar matrix so that there is a nonzero vector h1 ∈Cn such that
NMh1 and h1 are linearly independent. Therefore, for every t ∈ C , there is a nonzero
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l1 ∈ Cn such that 〈NMh1, l1〉 = − ν
μ and 〈h1, l1〉 = t and (14) applied to y = h = h1

and x = l = l1 gives μt + ν = 0. This contradiction shows that NM = γIn for some
nonzero scalar γ ∈ C and (14) becomes

〈h,x〉〈y, l〉[μ〈h, l〉+ ν] = αβ 〈h,x〉〈y, l〉[μγ〈h, l〉+ ν]

for all x, y, h, l ∈ Cn . In particular, when x = h and y = l , we get

(1−αβ γ)μ〈h, l〉+(1−αβ )ν = 0

for all h, l ∈ Cn , and αβ γ = 1 and (1−αβ )ν = 0. This implies that γ is positive too,
and note that, since NM = γIn , M∗M = αIn and NN∗ = β In , we have

γ2In = NN∗M∗M = αβ In.

Hence, γ2In = αβ In , and γ3 = αβ γ = 1. Clearly, γ = 1 and αβ = 1; as desired.
Finally, let us show that ϕ has one of the desired forms. Observe that the map

ϕ ◦L−1 satisfies (9) and thus replacing ϕ by ϕ ◦L−1 , we may and shall assume that
ϕ(T ) = T for all T ∈ GLn , and then prove that ϕ(T ) = T for all T ∈ Mn(C) . Indeed,
for every S ∈ GLn and T ∈ Mn(C) , we have

σ
(
(μS2 + νS)T∗) = σ (S(μS+ νIn)T ∗) = σ ((μS+ νIn)T ∗S)

= σ (θ (S,T ∗)) = σ (θ (ϕ(S),ϕ(T )∗))
= σ (θ (S,ϕ(T )∗)) = σ ((μS+ νIn)ϕ(T )∗S)
= σ

(
(μS2 + νS)ϕ(T )∗

)
.

By the continuity of the spectrum and the density of GLn on Mn(C) , we deduce that

σ
(
(μS2 + νS)T ∗) = σ

(
(μS2 + νS)ϕ(T)∗

)
for all S and T ∈Mn(C) . Now, observe that for every S∈Mn(C) of rank at most one,
each of the matrices (μS2 +νS)T ∗ and (μS2 +νS)ϕ(T )∗ is of rank at most one. Thus

Tr
(
(μS2 + νS)T ∗) = Tr

(
(μS2 + νS)ϕ(T )∗

)
(15)

for all T ∈ Mn(C) and all matrices S ∈ Mn(C) of rank at most one. Note that for
every rank one matrix S ∈ Mn(C) , we have μS2 +νS = (μTr(S)+ν)S . This and (15)
entail that

Tr(ST∗) = Tr(Sϕ(T )∗)

for all T ∈Mn(C) and all matrices S∈Mn(C) of rank at most one such that μTr(S)+
ν �= 0. Now, we can easily show that the set of all matrices S ∈ Mn(C) of rank at most
one for which μTr(S)+ ν �= 0 spans Mn(C) . Hence, Tr(ST∗) = Tr(Sϕ(T )∗) for all
S, T ∈ Mn(C) , and thus ϕ(T ) = T for all T ∈ Mn(C) . This finishes the proof. �
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5. Proof of the main result

Checking the “if ” part is straightforward. For the “only if ” part, assume that ϕ
satisfies (1) and let us show that ϕ has the desired form. By Lemma 3.5, ϕ is a
continuous map and is equal to a bijective linear map L on GLn .

First, we prove that there are two unitary matrices U and V and a nonzero scalar
α ∈ C such that V =U∗ if μ �= 0, Vx0 = αx0 and L(T ) =UTV . Indeed, the identities
(1) and (7) together with the density of Sn,x0 in Mn(C) and the continuity of both the
spectrum and the map L imply that

σ (θ (S,T ∗)) = σ (θ (L(S),L(T )∗)) , (S, T ∈ Mn(C)). (16)

If μ �= 0, Proposition 4.1 tells us that there is a unitary matrix U ∈ Mn(C) such
that either L(T ) = UTU∗ for all T ∈ Mn(C) or L(T ) = UTtrU∗ for all T ∈ Mn(C) .
Choose a scalar t such that μt2 + νt �= 0, in view of (1), we have

σ(μt2+νt)T ∗(x0) = σθ(tIn,T ∗)(x0)

= σθ(ϕ(tIn),ϕ(T )∗)(x0)

= σθ(L(tIn),L(T )∗)(x0)

= σ(μt2+νt)L(T )∗(x0)

for all T ∈ GLn . Hence,
σL(T )∗(x0) = σT ∗(x0)

for all T ∈ GLn , and thus [9, Lemma 3.8 and Lemma 3.9] tell us that Ux0 = αx0 for
some nonzero scalar α and L takes only the form T �→UTU∗ on Mn(C) .

If μ = 0, Proposition 4.1 yields two unitary matrices U and V in Mn(C) such
that either L(T ) = UTV for all T ∈ Mn(C) or L(T ) = UTtrV for all T ∈ Mn(C) .
To show that L cannot take the second form, suppose for the sake of contradiction that
L(T ) = UTtrV for all T ∈ Mn(C) . It then follows from (1) that

σνS(x0) = σθ(S,I∗n )(x0)

= σθ(ϕ(S),ϕ(In)∗)(x0)

= σνL(In)∗L(S)(x0)

= σνV∗StrV (x0)

for all S ∈ GLn . This contradicts [9, Lemma 3.9] and shows that L(T ) = UTV for all
T ∈ Mn(C) . In view of (1), we obtain that

σνS(x0) = σθ(S,I∗n )(x0)

= σνL(In)∗L(S)(x0)

= σνV ∗SV (x0),

for all S ∈ GLn . Hence, by [9, Lemma 3.8], we have Vx0 = αx0 for some nonzero
scalar α ∈ C ; as desired.
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Now, we are in a position to show that ϕ has the asserted form. Keep in mind
that we have shown that ϕ(S) = L(S) for all S ∈ GLn and that there are two unitary
matrices U and V and a nonzero scalar α ∈ C such that V =U∗ if μ �= 0, Vx0 = αx0

and L(T ) = UTV . For every S ∈ GLn and T ∈ Mn(C) , we have

σθ(S,ϕ(T )∗)(x0) = σμSϕ(T )∗S+νϕ(T )∗S(x0)

= σμϕ(U∗SV∗)ϕ(T )∗ϕ(U∗SV∗)+νϕ(T )∗ϕ(U∗SV ∗)(x0)

= σμ(U∗SV∗)T ∗(U∗SV∗)+νT ∗(U∗SV ∗)(x0)

= σμL(U∗SV∗)L(T )∗L(U∗SV∗)+νL(T )∗L(U∗SV ∗)(x0)

= σμSL(T )∗S+νL(T )∗S(x0)

= σθ(S,L(T )∗)(x0).

Thus, using Lemma 3.2, we conclude that ϕ(T ) = L(T ) for all T ∈ Mn(C) , and the
main result is proved; as desired.

6. Concluding remarks and comments

Although our main result “Theorem 2.1” specializes the main results of [1] from
the context of Hilbert space operators to the case of complex square matrices, we would
like to mention that, with no extra efforts, the characterization of all maps ϕ on Mn(C)
satisfying

σθ(S,T )(x0) = σθ(ϕ(S),ϕ(T ))(x0), (S, T ∈ Mn(C)) (17)

can be obtained.

THEOREM 6.1. Let x0 be a nonzero vector in C
n . A map ϕ on Mn(C) satisfies

(17) if and only if there is an invertible matrix A and a complex scalar λ such that
Ax0 = x0 and

ϕ(T ) = λATA−1, (T ∈ Mn(C)), (18)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ 3 = 1 if ν = 0;

λ = ±1 if μ = 0;

λ = 1 if μν �= 0.

(19)

This theorem unifies and extends the main results of [5, 6] and shows that their
proofs could be combined and simplified. Even we left its proof for the reader, we
mention that some variants of the auxiliary results need to be established. In particular,
maps ϕ on Mn(C) satisfying

σ(θ (S,T )) = σ(θ (ϕ(S),ϕ(T ))), (S,T ∈ Mn(C)) (20)

should be characterized. The expectation is that such a map ϕ is either an automor-
phism or an antiautomorphism of Mn(C) multiplied by a scalar λ satisfying (19).
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We close this section by observing that following the same lines of the proof of [9,
Theorem 2.2], the complete characterization of nonlinear maps on Mn(C) preserving
the local spectrum of skew Jordan product ST ∗ +T∗S of matrices can be obtained.

THEOREM 6.2. Let x0 be a nonzero vector in Cn . A map ϕ on Mn(C) satisfies

σϕ(T )ϕ(S)∗+ϕ(S)∗ϕ(T )(x0) = σTS∗+S∗T (x0), (T,S ∈ Mn(C)) (21)

if and only if there is a unimodular scalar γ and a unitary matrix U such that Ux0 = x0

and ϕ(T ) = γUTU
∗

for all T ∈ Mn(C) .

Proof. Checking the “if ” part is straightforward, and we therefore will only deal
with the “only if ” part. Assume that ϕ satisfies (21), and let us show that ϕ has the
desired form. Following the same lines of the proof of [9, Theorem 2.2], one can shows
that the restriction of ϕ on the open dense set Ωn(C) := {A ∈ GLn : σ(A)∩σ(−A) = /0}
is continuous and equals to a bijective linear map L . This together with (21), the conti-
nuity of both L and the spectrum and the density of Ωn(C) in Mn(C) imply, just as in
the proof of [9, Theorem 2.2], that

σ(TS∗ +S∗T ) = σ(L(T )L(S)∗ +L(S)∗L(T )) (22)

for all S and T in Mn(C) . By [19, Theorem 4.1], there is a unitary matrix U and a
scalar λ with |λ | = 1 such that either

L(T ) = λUTU∗, (T ∈ Mn(C)),

or
L(T ) = λUTtrU∗, (T ∈ Mn(C)).

It then follows that

2σT (x0) = σϕ(T )ϕ(In)∗+ϕ(In)∗ϕ(T )(x0) = 2σλL(T )(x0)

for all T ∈ Ωn(C) . This together with [9, Lemma 3.8, Lemma 3.9] show that L takes
only and the only form

L(T ) = λUTU∗,(T ∈ Mn(C)),

and Ux0 = αx0 for some nonzero scalar α ∈ C .
Finally, let us show that ϕ has the asserted form. For every T ∈ Ωn(C) and

S ∈ Mn(C) , we have

σTϕ(S)∗+ϕ(S)∗T (x0) = σϕ(U∗TU)ϕ(S)∗+ϕ(S)∗ϕ(U∗TU)(x0)

= σU∗TUS∗+S∗U∗TU(x0)
= σL(U∗TU)L(S)∗+L(S)∗L(U∗TU)(x0)

= σTL(S)∗+L(S)∗T (x0).



LOCAL SPECTRA PRESERVERS 561

By [9, Lemma 3.3], we get ϕ(T ) = L(T ) = λUTU∗ for all T ∈Mn(C) , and the proof
is therefore complete. �
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