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JOINTLY HYPONORMAL BLOCK TOEPLITZ
PAIRS WITH RATIONAL SYMBOLS

IN SUNG HWANG AND AN-HYUN KIM

(Communicated by I. M. Spitkovsky)

Abstract. In this paper, we are concerned with joint hyponormality of pairs of block Toeplitz
operators acting on the vector-valued Hardy space Hé,, of the unit circle. We give a general
sufficient condition for the matrix-valued rational symbols of the jointly hyponormal pair to have
the same co-analytic inner parts of the coprime factorizations of the symbols and then provide
some results under this sufficient condition.

1. Introduction

Let .7 and .%# be complex Hilbert spaces. Write #(.#,.%") for the set of
bounded linear operators from J# to % and write B(H#) = B(H, ). For A,B €
B(H), we let [A,B] for the commutators of A and B, i.e., [A,B] := AB—BA. An
operator T € A(A) is called normal if [T*,T] =0, is called hyponormal if [T*,T] >
0, and is called subnormal if 7 has a normal extension, i.e., T = N|  , where N is a
normal operator on some Hilbert space .# O ¢ such that ¢ is invariant for N. For
an n-tuple T = (T1,...,T,) of operators on 7, [T*,T| € B(H & --- & ) denotes
the self-commutator of T, defined by

Iy, 0] [T, 1) ... [T, Ti]
IV, 0] [T, 1] ... [T;,T5]

TT=1 . ST
T T (5T . (15T

The self-commutator for n-tuples of operators on a Hilbert space was introduced by A.
Athavale [2]. By analogy with the case n = 1, we say that T is jointly hyponormal (or
simply, iiyponormal) if [T*,T] is a positive operator on 7 & --- @& . On the other
hand, C. Gu, J. Hendricks and D. Rutherford [10] have considered the hyponormality
of block Toeplitz operators and characterized it in terms of their symbols. In particu-
lar they showed that if Ty is a hyponormal block Toeplitz operator on the C”-valued
Hardy space, then its symbol @ is normal, i.e., ®*® = ®dP* . The hyponormality of the
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Toeplitz operator Tg with arbitrary matrix-valued symbol @, though solved in princi-
ple by the criterion due to Gu, Hendricks and Rutherford [10], is in practice very com-
plicated. Explicit criteria for the hyponormality of block Toeplitz operators Tgp with
matrix-valued trigonometric polynomials or rational functions @ were established via
interpolation problems (cf. [10], [11], [12], [13], [5]).

In this paper, we discuss joint hyponormality of pairs of block Toeplitz operators
with matrix-valued rational symbols. In [6], the joint hyponormality of the Toeplitz pair
T = (Ty, Ty) was completely characterized when both symbols ¢ and y are trigono-
metric polynomials. The core of the main result of [6] is that the joint hyponormality
of T= (Typ,Ty) (¢ and y are trigonometric polynomials) forces that the co-analytic
parts of ¢ and W necessarily coincide up to a constant multiple, i.e.,

@ — By c H? forsome B eC. (1.1)

It was shown in [5] that (1.1) is still true for matrix-valued trigonometric polynomials
under some invertibility and commutativity assumptions on the Fourier coefficients of
the symbols. In this paper, we give a general sufficient condition for the matrix-valued
rational symbols of the jointly hyponormal pair to have the same co-analytic inner parts
of the coprime factorizations of the symbols and then provide some results under this
sufficient condition.

2. Preliminaries

To describe our results, we need to review a few essential facts about (block)
Toeplitz operators, and for that we will use [7], [9], [14], and [15]. For an operator
T € (), let kerT and ranT denote the kernel and the range of T, respectively.
Also, write T = JdID for the unit circle (where D denotes the open unit disk in the
complex plane C). Write L?> = L*(T) for the set of square-integrable functions on T
and H? for the corresponding Hardy space. Also L™ = L=(T) for the set of essentially
bounded measurable functions on T. Let H* := L N H?>. Given a function ¢ € L™,
the Toeplitz operator Ty, and the Hankel operator Hy with symbol ¢ on H 2 are defined
by

Tpg:=P(pg) and Hyg:=JP'(pg) (g€H?), 2.1)

where P and P denote the orthogonal projections that map from L? onto H> and
(H?)*, respectively, and J denotes the unitary operator from L?> onto L> defined by
J(f)(z) =Zf(Z) for f € L>. A function @ € L? is said to be of bounded type if there
are functions i, Y, € H” such that

oe) = Y112

for almost all z € T.
v2(2)

We recall [1, Lemma 3] that if ¢ € L™ then

¢ is of bounded type <= kerH, # {0}. (2.2)
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If o € L™, we write
oL =Po € H?> and (0 EWEZHZ.
If ¢ and @ are of bounded type, then by the Beurling’s Theorem, we may write
@_=6pb and ¢, =6,a (a,be H*; 6,6 are inner). (2.3)
By Kronecker’s Lemma [ 14, p. 183], if f € H, then
f is rational <= f = 0b with a finite Blaschke product 6. 2.4)

Let M), denote the set of all n x r complex matrices and write M,, = M,,x,,. For
2" a Hilbert space, let L2 =17 % (T) be the Hilbert space of 2 -valued norm square-
integrable measurable functlons on T and let H? 5 = = H’ 5 (T) be the corresponding
Hardy space. We also let L7 % (T) be the Hilbert space of 2 -valued bounded
measurable functions on T and let H 5 =H3 ('JI‘) L% NH%- . If ® is a matrix-valued
functionin Ly =Ly (T), then Ty : H(c" — H(C" denotes block Toeplitz operator with
symbol @ defined by

Tof == P,(®f) for f € Hz,

where P, is the orthogonal projection of L2, onto HZ,. A block Hankel operator with
symbol ® € Ly is an operator Hg : Hén — Hén defined by

Hof = J,P-(®f) for f € H:,

where P;- is the orthogonal projection of Lén onto (Hén)L and J, denotes the unitary
operator from L%, onto L%, given by J,(f)(z) := zI,f(z) for f € L%,, with I, the
n x n identity matrix. For ® & Llot}nm’ write

D(z) := D*(3).

A matrix-valued function © € Hj}nm is called inner if ©*©® = I,, almost everywhere
on T'. For a matrix-valued function ® = [¢;;] € Ly, we say that @ is of bounded type
if each entry ¢;; is of bounded type, and we say that @ is rational if each entry ¢;; is
a rational function. A matrix-valued trigonometric polynomial @ € Ly; - is of the form

®(z) = i A (Aj e My),

j=m

where Ay and A_,, are called the outer coefficients of ®.

For a matrix-valued function ® € Hf,,nxr, we say that A € Hf,,nxm is a left inner
divisor of @ if A is an inner matrix function such that ® = AA for some A € H,%,,mxr .
We also say that two matrix functions ® € HA2,, and ¥ € HA2,, are left coprime if
the only common left inner divisor of both ® and Yisa umtary constant and that
o c HM,,X, and ¥ € HM are right coprime if @ and VW are left coprime. Two matrix
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functions @ and ¥ in HM are said to be coprime if they are both left and right coprime.
It was known ([4, Lemma 2.1]) that if ®; = 6,1, for an inner function 6; (i € J), then

left-g.c.d.{@;:ieJ} =rightg.c.d.{©;:i € J} = O,I,, where ; = g.c.d.{6;:i€J}
left-l.e.m.{©;:i e J} =rightl.c.l.{®;:i € J} = O41,, where 6; =l.cm.{6;:ie J}:
they are both diagonal-constant inner functions, i.e., diagonal inner functions, constant

along the diagonal. If there is no confusion, we write 6 for 81, for 6 € L.
For @ € Ly, we write

O, :=P,(®) €Hy, and @_:= [P (D)]" € Hy, .

Thus we can write ® = ®* +®, . Suppose ® = [¢;;] € Ly; is such that ®* is of
bounded type. Then we may write ¢;; = 6;;b;;, where 6;; is an inner function and 6;;
and b;; are coprime. Thus if 6 =lc.m.{6;;:i,j=1,2,---,n}, then we can write

D = [(Pij] = [GijEij} = [95,']'} = 0A* (A = [aj,-} S H;,;n) (2.5)

In particular, if ® € L}’";,n is rational then the 6; can be chosen as finite Blaschke prod-
ucts, as we observed in (2.4). By contrast with scalar-valued functions, in (2.5) 61, and
A need not be (right) coprime. If Q = left-g.c.d.{A,601,} in the representation (2.5):

D= A",

then 01, = QQ; and A = QA, for some inner matrix €, (where Q, € Hl%h because
det @1, is notidentically zero) and some A; € H ]%4” . Therefore if ®* € Ly; is of bounded
type then we can write

®=A,"Qy, where Ay and Q, are left coprime. (2.6)
A€ is called the left coprime factorization of ®; similarly, we can write
®=0Q,A, where A, and Q, are right coprime. 22.7)

In this case, QA7 is called the right coprime factorization of ®. As a consequence of
the Beurling-Lax-Halmos Theorem, we can see that ([10, Corollary 2.5]; [4, Remark
2.2])

® = Q,A; (right coprime factorization) <= ker Hp+ = Q,H(%n. (2.8)

Let ® € L;n be such that @ and ®* are of bounded type. Then, in view of (2.7), we
may write
O =0,A" ® =0yB" (rightcoprime factorization),

where 04,0 € Hy; .
For ®,%¥ € Lj; , let

[Tq>, T\}l}p = H\?*Hq) — H&;H\y.



JOINTLY HYPONORMAL BLOCK TOEPLITZ PAIRS 647

Then [Ty, To), is called the pseudo-selfcommutator of Tp. Also Te is said to be
pseudo-hyponormalif [Ty, Te|, is positive semidefinite. Thus if Tg is pseudo-hyponormal
then since

(T3, Top = Hip- Ho — HyHo = Hiy: Hoy, —H, .,

it follows that ||Hg: f]| > [|Ho+ f]| for all f € HZ,, and hence
O H, = kerHe: C kerHe: = OgH. (2.9)

Thus by Corollary IX.2.2 of [8], O is a left inner divisor of @y, i.e., Oy = OO,
for some inner function @; € Hy . Thus, if ® € Ly, is rational function and Ty is
pseudo-hyponormal, then we can write

D, =000A" and ®_ = OyB" (right coprime factorization). (2.10)
For notational convenience we write
Hj :=zHy and () := the set of all zeros of an inner function 6.

On the other hand, we have [3, Lemma 3.3] thatif A € HM and 6 be a finite Blaschke
product, then A(a) is invertible for each o € Z°(0) if and only if A and 61, are
right (or left) coprime. Thus if 6 is a finite Blaschke product then we shall say that
A € Hy; and 01, are coprime whenever they are right or left coprime. Hence if in the
representation (2.10), ©; = 6;I, (i = 1,2) with a finite Blaschke product 6; then we
shall write

D, =60,A" and D_ = 6yB* (coprime), (2.11)

where 6p0; and 6 are called the analytic inner part and the co-analytic inner part of
the coprime factorizations, respectively. If © € Hy; is an inner matrix function, we

write
M = Hy, ©OHy, ;

Ho =Hy, ©Hy; ©.
If ® = 61, for an inner function 6 then /o = #o. If © € Hy; is an inner matrix
functionand A € H 1%/1,1 , then a straightforward calculation shows that ([5, Lemma 4.4])

A€ Ko < OA* € H. (2.12)

NOTATION. For a closed subspace 2~ of Hf,,n, we write Py for the orthogonal

projection from H]@n onto 2°. If @ =@ + @, € Ly and A} and A, are inner
functions in Hj,;n , write

and
A2 = Py (A D7) + PHg (DLA),

where H? = H; and abbreviate
®)y=Dp, and O =0

If A; := &1, for some inner functions &; (i = 1,2), then we have that @, A, = @A
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3. Main results

We begin with:
HYPONORMALITY OF BLOCK TOEPLITZ OPERATORS. ([10]) For each ® €
Ly, let
&(®) = {KeH;;n 1IK]le <1 and ® — KO* eH;}n}.

Then Ty is hyponormal if and only if © is normal and & (®) is nonempty.
We observe that if T = (T, Ty ), then the self-commutator of T can be expressed
as:

* * * . * A * . * A
1] = ([Tgi Ty [qu Tqﬂ) _ (Hinw H(?H(,,f H(fin HILTH% ) GO
(T, Tyl [Ty, Tyl Hiy—Hg — Hg—Hvy— Hy—Hvy — H—Hy—

Pairs of block Toeplitz operators will be called block Toeplitz pairs. For a block Toeplitz
pair T = (To, Ty), the pseudo-commutator of T is defined by

[T°,T), = <[T£,Tq>}p [T;J,Tcp}p> _ (Hay Hoy, —Ho. Hor Ho, Hyy —Hy Ho: )
o T3, T#lp [T, Telp H\?’;Hd)i —Hg Hy+ H\%H‘Pi —Hy. Hy+

Then T = (Tp, Ty) is said to be pseudo-(jointly) hyponormal if [T*,T], > 0. Observe
thatif @ € Ly; then
[T(i;, T(I)} = [T(;;, Tq)]p + Tq)*(l)—(D(D* .

Thus we have
To is hyponormal <= Tg is pseudo-hyponormal and @ is normal;

and (via Theorem 3.3 of [10]) Ty is pseudo-hyponormal if and only if & (®) # 0.
Let @, € Ly be matrix-valued rational functions of the form

D, =0y0,A", ®_=6yB", Y. =6,0;C", ¥Y_=0,D" (coprime). (3.2)

In [5], it was shown that if the pair (Tp,Ty) is pseudo-hyponormal and if 6y and 6,
are not coprime then 6y = 6,. The following question arises at once.

QUESTION A. Let T = (Tp,Ty) be hyponormal, where @ and ¥ are given in
(3.2). If 6y = 6>, does it follow that 6; = 65 ?

However, in [5], it was also shown that the answer to Question A is negative even
for scalar-valued symbols. In this paper, we give a general sufficient condition for
the answer to Question A to be affirmative and then provide some results under the
condition that 8y = 6.

The following two lemmas are needed for our main results.

LEMMA 3.1. [5,Lemma9.13] Let T = (T, Ty) be a pseudo-hyponormal Toeplitz
pair with matrix-valued rational symbols ®,"¥ € Ly;  of the form

D, =00A", O_=6yB*, VY. =00;C", ¥_=0,D" (coprime),
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where 0 :=1l.c.m.(6p,0,). If we let 6 := g.c.d.(01,63), then

T : pseudo-hyponormal <= T := (T1.5, Ty1.5) © pseudo-hyponormal.

LEMMA 3.2. [5, Corollary 9.21] (Hyponormality of Rational Block Toeplitz Pairs)
Let T = (To, Ty) be a block Toeplitz pair, where ®,¥ € Ly, are matrix-valued rational
functions of the form

O, =6)0A", ®_=6,B*, Y, =6,6:C", Y_=06,D" (coprime). (3.3)

Assume that 6y and 6, are not coprime. Assume also that A = B(1%)D(y)~" is a

normal matrix commuting with ®_ and W_ for some y € 2 (0y). Then the pair T is
hyponormal if and only if

(i) ® and Y are normal and ®Y = VYO,
(ii) ®_=ANY_;
(iii) Tyi.a is pseudo-hyponormal with € := 6,0, 0;0A*,
where 6 :=g.c.d.{6y,65} and A :=left-g.c.d.{601,, 8(6:A — 6,CA;)}.

Proof. This follows from a slight variation of the proof of Corollary 9.21 of [5],
in which B(y) and D(yp) are diagonal-constant for some y € Z(6p). O

If the symbols are matrix-valued trigonometric polynomials then the answer to
Question A is indeed affirmative under an assumption on the outer coefficients.

THEOREM 3.3. Let @, € Ly, be matrix-valued trigonometric polynomials of
the form

(2 2 Ajzl and ¥(z 2 Bjz/ (3.4)
Jj=—m j=—t

satisfying
(i) the outer coefficients A_,,,An,B_y and By are invertible;
(ii) A:= A_mB:} is a normal matrix commuting with ®_ and ¥ _.
If T = (To, Ty) is pseudo-hyponormal then N =M.
Proof. Suppose that T is pseudo-hyponormal. Then Tp and Ty are pseudo-

hyponormal so that, by (2.10), m < N and ¢ < m. Thus it follows from Lemma 3.2 that
m = /¢, and hence we may write

@, =7"MA* & =7"B*, ¥, =7"T"C*, ¥_ =7"D* (coprime),
where m > 1, g > 0 and r > 0. By Lemma 3.1, we may also assume that » = 0. Put

A:=left-g.c.d.{Z"I,, A—zZICA"},
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where A :=A_,,BZ}, = B(0)D(0)~!. Then it follows from Lemma 3.2 that Ty« is
pseudo-hyponormal with Q := 7"t9A* . We want to show that g = 0. Assume to the
contrary that ¢ # 0. Since (A —z9CA*)(0) = A(0) = A}, is invertible, it follows that A
is a constant unitary. Observe that

Hunay, =Hp,,

* ]*
+ Y. Q¥)

= HQ\P: = H,aa=c = 0. 3.5)

It thus follows from (2.9) that
Z’"Hén = kerH(\Pl.g)»: D) kerH(\Pm)*+ = Hén7

a contradiction. Therefore we must have ¢ = 0. This comletes the proof. [

Even when the analytic inner parts of the coprime factorizations of the symbols
are not equal for a pseudo-hyponormal pair with rational symbols having the same co-
analytic inner parts, we are interested in finding a general sufficient condition for the
rational symbols @ and W of the pseudo-hyponormal pair T := (Tgp, Ty) to have the
same analytic inner parts.

THEOREM 3.4. Let T = (Tp, Ty) be a block Toeplitz pair with matrix-valued ra-
tional symbols ®,¥ € Ly, = of the form

D =6,0,A", ©_=6yB*, VY. = 0,0;C", ¥_ = 6yD" (coprime).
Suppose A = Ay, := B()D(10) ! is a normal matrix commuting with ®_ and ¥

for some yy € Z(6y). If T is pseudo-hyponormal and & := GCD{6y,63}, then
(016)(650) and 6y are coprime.

Proof. Assume that T is pseudo-hyponormal. By Lemma 3.1, we may assume
that 8; and 65 are coprime. We want to show that 6;6; and 6, are coprime. Write

do ) dy . d; .
OOZHbgLJ,a el:Hbﬁjj7 93:Hb’)/,j (p,,l’l,,i’f’h}l),
j=1 j=1 j=1
where b (z) := f:—%z (A € D). Assume to the contrary that 6;6; and 6y are not co-
prime. Without loss of generality, we may assume that o;; = f3;. Let
= 0901035, ")

Since T is pseudo-hyponormal, it follows from [5, Lemma 9.8] that (Tp,,Ty,) is
pseudo-hyponormal. Write

di
J— _ — nj
b= bﬁl and 6=6,b7" = J.I:|2b/3.j/'
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Observe that
(®0)" = Pyar (BO6:H™ P10} = Py (BSG:H ) = b7 [Py, (865B)].

We thus have .

(@) = b7 [P%,,l (5933)} (coprime).
Similarly, we have the following right coprime factorizations:
oo (B3]
(Wo) =0 [Py, (66:D)]",
(¥o) , =0 [Py, (8O)] "

(q)w)Jr — plp1tm) [pj{,

Now we will show that
A commutes with (®g,)_ and (Wy)_.

Since A is a normal matrix commuting with ®_ and W¥_, it follows from the Fuglede-
Putnam Theorem that A commutes with B and D and hence A commutes with 6 ;B
and 003D. Write

Bl = 5933 —R;{(,,l (5933).

Then B; € bPIH2 . Thus we can write B; = bP'B, for some B, € HM Since A
commutes with 5 933 and 663D, we have that

AR%P[ (063B) +bP'AB, = R%PI (063B) A+ bP'B;A. (3.6)

But since A is a constant matrix, it follows from (2.12) that APy, (063B) and

Py, (863B)A are in % . Thus by (3.6), we have that A commutes with (@)

Similarly, we also have that A commutes with (W)_. Since A is a normal matrix
commuting with ®_ and ¥_, it follows from Lemma 3.2 that ®_ = A*W_ and hence
A= B(B1)D(B1)~". We now apply Lemma 3.2. To do so, let

= left-ge.d {B"' 1, Py, | (6:4) = 1" Py, (SC)A'}.

ny

Put Q := bP1™A* . Since (Top,,Ty,) is pseudo-hyponormal it follows from Lemma
3.2 that Ty is pseudo-hyponormal with Y = (¥,)"*. It thus follows from (2.9) that
n; = 0, a contradiction. This completes the proof. []

‘We now have:

COROLLARY 3.5. Let T = (T, Ty) be a block Toeplitz pair with matrix-valued
rational symbols @, € Ly, = of the form

q)+ = 909114*, o= eoB*, lP+ = 9093C*, Y_ = eoD* (coprime).
Suppose A= Ay, :=B(y)D(1) " is a normal matrix commuting with ®_ and ¥_ for

some Y € Z(60). If T is pseudo-hyponormal and % (0,65) C Z(6y), then 6, = 65.
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Proof. If 6 # 6; and 2°(0,05) C Z°(6p), then 0, 93g.c.d.{91,93}2 and 6y have
a common zero, which is a contradiction by Theorem 3.4. [

If the matrix-valued rational symbols ® and ‘¥ have the same co-analytic and
analytic inner parts of the coprime factorizations, we get a general necessary condition
for the pseudo-hyponormality of the pair T := (Tp, Tip) .

THEOREM 3.6. Let T = (Tp, Ty) be a block Toeplitz pair with matrix-valued ra-
tional symbols ®,"Y € Ly; = of the form

D =6,0,A", ©_= 6B, VY. = 6,0,C", ¥_=6yD" (coprime).

Suppose A = Ay, := B(Y)D(1) " is a normal matrix commuting with ®_ and ¥ _
Sor some Yo € Z(6y). If T is pseudo-hyponormal then

DAY € Hp,.

Proof. By Lemma 3.1, Tg, := (T,

w161, Tyie ) is pseudo-hyponormal. We can
write

d)i’e‘ = 6pA; and ‘1’:9‘ = 60C; (coprime),

where Ag := P-l/eOA and Cp := P-%OC- It follows from Lemma 3.2 that Ty is pseudo-
hyponormal with

* 1,0 ~x* *
Y= Py <‘P+’ 1Q> (Q = ByA"),
where A := left-g.c.d.{6pL,, Ag — CoA*}. We claim that

A= 0pl, (upto aconstant unitary). 3.7

Observe that .
o= (P (Y17Q7)) = P (A°C).
Since Ty is pseudo-hyponormal, it follows from (2.9) that
GOH(%" = kerHy+ = kerHy+ 2 kerHy: = kerHp+c, = AHZ.
which implies (3.7). Also since A is a left inner divisor of A9 — CyA*, it follows that
Ao —CoA™ € 6oHy;, .

Butsince A is a constant matrix and Cy € #j, it follows from (2.12) that CoA* € Ky,
and hence Ay — CoA™ € ¥y, . Therefore,

Ag—CoA" € GOHAZ/IH m‘%()ln - {0}’
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which implies Ag = CoA*. Put A} :=A—Ag,and C; :=C—Cy. Then A,C) € GOH]%,,n .
Thus A; = 6yA, and C; = 6yC, for some Ap,Cr € Hf,,n. Then
q)+—AlP+ = 9091(140 +A ) OOGIA(CS‘FCT)

=000 (A] — ACY) (since A = AC})

= 0061 (BoA3 — B0ACS)

= 0;(A; — A"
We thus have

201 (@, — AY, )" =z(Ay — CA") € HE,

which implies, by (2.12), @ — A¥ € J#g, . Since A is a normal amtrix commuting
with ®_ and ¥_, it follows from Lemma 3.2 that

DAY =D — AV + D, —AY, =D, — AV, € Ky, ,

which proves the theorem. [J]

As we will see in the next result, if the analytic and co-analytic inner parts of the
coprime factorizations of the rational symbols are equal then two symbols coincide up
to a constant matrix under the assumption of pseudo-hyponormality.

COROLLARY 3.7. Let T = (T, Ty) be a block Toeplitz pair with matrix-valued
rational symbols @, € Ly, = of the form

D, =0A", ®_=0B", ¥, =0C", ¥_ =0D" (coprime factorizations),

where 0 is a finite Blaschke product. Suppose A := B(y)D(1)~" is a normal matrix

commuting with ®_ and Y_ for some Y € 2(0). If T is pseudo-hyponormal then

O—-AY eM,.

Proof. Immediate from Theorem 3.6. [J

COROLLARY 3.8. Let @, € Ly; be matrix-valued trigonometric polynomials
of the form

(2 2 Ajzl and ¥(z 2 Bjz/ (3.8)
j=—m j=—t

satisfying

(i) the outer coefficients A_,,,An,B_y and By are invertible;

(ii) A:= A_mB:/lj is a normal matrix commuting with ®_ and ¥ _.
If T := (T, Ty) is pseudo-hyponormal then

q) — A"P S e%/ZanHJ .
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Proof. By Lemma 3.2 and Theorem 3.3, we have N =M and m = ¢. Thus the

result follows from Theorem 3.6. [
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