JOINTLY HYPONORMAL BLOCK TOEPLITZ PAIRS WITH RATIONAL SYMBOLS

IN SUNG HWANG AND AN-HYUN KIM

(Communicated by I. M. Spitkovsky)

Abstract. In this paper, we are concerned with joint hyponormality of pairs of block Toeplitz operators acting on the vector-valued Hardy space $H_{\mathbb{C}^n}^2$ of the unit circle. We give a general sufficient condition for the matrix-valued rational symbols of the jointly hyponormal pair to have the same co-analytic inner parts of the coprime factorizations of the symbols and then provide some results under this sufficient condition.

1. Introduction

Let \mathscr{H} and \mathscr{K} be complex Hilbert spaces. Write $\mathscr{B}(\mathscr{H}, \mathscr{K})$ for the set of bounded linear operators from \mathscr{H} to \mathscr{K} and write $\mathscr{B}(\mathscr{H}) \equiv \mathscr{B}(\mathscr{H}, \mathscr{H})$. For $A, B \in \mathscr{B}(\mathscr{H})$, we let [A, B] for the commutators of A and B, i.e., [A, B] := AB - BA. An operator $T \in \mathscr{B}(\mathscr{H})$ is called normal if $[T^*, T] = 0$, is called hyponormal if $[T^*, T] \ge 0$, and is called subnormal if T has a normal extension, i.e., $T = N|_{\mathscr{H}}$, where N is a normal operator on some Hilbert space $\mathscr{K} \supseteq \mathscr{H}$ such that \mathscr{H} is invariant for N. For an n-tuple $\mathbf{T} \equiv (T_1, \ldots, T_n)$ of operators on \mathscr{H} , $[\mathbf{T}^*, \mathbf{T}] \in \mathscr{B}(\mathscr{H} \oplus \cdots \oplus \mathscr{H})$ denotes the *self-commutator* of \mathbf{T} , defined by

$$[\mathbf{T}^*, \mathbf{T}] := \begin{pmatrix} [T_1^*, T_1] & [T_2^*, T_1] & \dots & [T_n^*, T_1] \\ [T_1^*, T_2] & [T_2^*, T_2] & \dots & [T_n^*, T_2] \\ \vdots & \vdots & \ddots & \vdots \\ [T_1^*, T_n] & [T_2^*, T_n] & \dots & [T_n^*, T_n] \end{pmatrix}.$$

The self-commutator for *n*-tuples of operators on a Hilbert space was introduced by A. Athavale [2]. By analogy with the case n = 1, we say that **T** is *jointly hyponormal* (or simply, *hyponormal*) if $[\mathbf{T}^*, \mathbf{T}]$ is a positive operator on $\mathscr{H} \oplus \cdots \oplus \mathscr{H}$. On the other hand, C. Gu, J. Hendricks and D. Rutherford [10] have considered the hyponormality of block Toeplitz operators and characterized it in terms of their symbols. In particular they showed that if T_{Φ} is a hyponormal block Toeplitz operator on the \mathbb{C}^n -valued Hardy space, then its symbol Φ is normal, i.e., $\Phi^*\Phi = \Phi\Phi^*$. The hyponormality of the

Keywords and phrases: Block Toeplitz operators, hyponormal, jointly hyponormal, rational functions.

Mathematics subject classification (2010): Primary 47B20, 47B35, 47A13.

Toeplitz operator T_{Φ} with arbitrary matrix-valued symbol Φ , though solved in principle by the criterion due to Gu, Hendricks and Rutherford [10], is in practice very complicated. Explicit criteria for the hyponormality of block Toeplitz operators T_{Φ} with matrix-valued trigonometric polynomials or rational functions Φ were established via interpolation problems (cf. [10], [11], [12], [13], [5]).

In this paper, we discuss joint hyponormality of pairs of block Toeplitz operators with matrix-valued rational symbols. In [6], the joint hyponormality of the Toeplitz pair $\mathbf{T} \equiv (T_{\varphi}, T_{\psi})$ was completely characterized when both symbols φ and ψ are trigonometric polynomials. The core of the main result of [6] is that the joint hyponormality of $\mathbf{T} \equiv (T_{\varphi}, T_{\psi})$ (φ and ψ are trigonometric polynomials) forces that the co-analytic parts of φ and ψ necessarily coincide up to a constant multiple, i.e.,

$$\varphi - \beta \psi \in H^2 \text{ for some } \beta \in \mathbb{C}.$$
 (1.1)

It was shown in [5] that (1.1) is still true for matrix-valued trigonometric polynomials under some invertibility and commutativity assumptions on the Fourier coefficients of the symbols. In this paper, we give a general sufficient condition for the matrix-valued rational symbols of the jointly hyponormal pair to have the same co-analytic inner parts of the coprime factorizations of the symbols and then provide some results under this sufficient condition.

2. Preliminaries

To describe our results, we need to review a few essential facts about (block) Toeplitz operators, and for that we will use [7], [9], [14], and [15]. For an operator $T \in \mathscr{B}(\mathscr{H})$, let ker T and ran T denote the kernel and the range of T, respectively. Also, write $\mathbb{T} \equiv \partial \mathbb{D}$ for the unit circle (where \mathbb{D} denotes the open unit disk in the complex plane \mathbb{C}). Write $L^2 \equiv L^2(\mathbb{T})$ for the set of square-integrable functions on \mathbb{T} and H^2 for the corresponding Hardy space. Also $L^{\infty} \equiv L^{\infty}(\mathbb{T})$ for the set of essentially bounded measurable functions on \mathbb{T} . Let $H^{\infty} := L^{\infty} \cap H^2$. Given a function $\varphi \in L^{\infty}$, the *Toeplitz operator* T_{φ} and the *Hankel operator* H_{φ} with symbol φ on H^2 are defined by

$$T_{\varphi}g := P(\varphi g) \quad \text{and} \quad H_{\varphi}g := JP^{\perp}(\varphi g) \qquad (g \in H^2),$$

$$(2.1)$$

where P and P^{\perp} denote the orthogonal projections that map from L^2 onto H^2 and $(H^2)^{\perp}$, respectively, and J denotes the unitary operator from L^2 onto L^2 defined by $J(f)(z) = \overline{z}f(\overline{z})$ for $f \in L^2$. A function $\varphi \in L^2$ is said to be of *bounded type* if there are functions ψ_1 , $\psi_2 \in H^{\infty}$ such that

$$\varphi(z) = \frac{\psi_1(z)}{\psi_2(z)}$$
 for almost all $z \in \mathbb{T}$.

We recall [1, Lemma 3] that if $\varphi \in L^{\infty}$ then

$$\varphi$$
 is of bounded type $\iff \ker H_{\varphi} \neq \{0\}.$ (2.2)

If $\varphi \in L^{\infty}$, we write

$$\varphi_+ \equiv P \varphi \in H^2$$
 and $\varphi_- \equiv \overline{P^\perp \varphi} \in z H^2$.

If φ and $\overline{\varphi}$ are of bounded type, then by the Beurling's Theorem, we may write

$$\varphi_{-} = \theta_0 \overline{b}$$
 and $\varphi_{+} = \theta_1 \overline{a} \ (a, b \in H^2; \ \theta_0, \theta_1 \text{ are inner}).$ (2.3)

By Kronecker's Lemma [14, p. 183], if $f \in H^{\infty}$, then

$$\overline{f}$$
 is rational $\iff f = \theta \overline{b}$ with a finite Blaschke product θ . (2.4)

Let $M_{n \times r}$ denote the set of all $n \times r$ complex matrices and write $M_n \equiv M_{n \times n}$. For \mathscr{X} a Hilbert space, let $L^2_{\mathscr{X}} \equiv L^2_{\mathscr{X}}(\mathbb{T})$ be the Hilbert space of \mathscr{X} -valued norm squareintegrable measurable functions on \mathbb{T} and let $H^2_{\mathscr{X}} \equiv H^2_{\mathscr{X}}(\mathbb{T})$ be the corresponding Hardy space. We also let $L^{\infty}_{\mathscr{X}} \equiv L^{\infty}_{\mathscr{X}}(\mathbb{T})$ be the Hilbert space of \mathscr{X} -valued bounded measurable functions on \mathbb{T} and let $H^{\infty}_{\mathscr{X}} \equiv H^{\infty}_{\mathscr{X}}(\mathbb{T}) = L^{\infty}_{\mathscr{X}} \cap H^2_{\mathscr{X}}$. If Φ is a matrix-valued function in $L^{\infty}_{M_n} \equiv L^{\infty}_{M_n}(\mathbb{T})$, then $T_{\Phi}: H^2_{\mathbb{C}^n} \to H^2_{\mathbb{C}^n}$ denotes *block Toeplitz operator* with *symbol* Φ defined by

$$T_{\Phi}f := P_n(\Phi f) \quad \text{for } f \in H^2_{\mathbb{C}^n},$$

where P_n is the orthogonal projection of $L^2_{\mathbb{C}^n}$ onto $H^2_{\mathbb{C}^n}$. A block Hankel operator with symbol $\Phi \in L^{\infty}_{M_n}$ is an operator $H_{\Phi}: H^2_{\mathbb{C}^n} \to H^2_{\mathbb{C}^n}$ defined by

$$H_{\Phi}f := J_n P_n^{\perp}(\Phi f) \quad \text{for } f \in H^2_{\mathbb{C}^n},$$

where P_n^{\perp} is the orthogonal projection of $L_{\mathbb{C}^n}^2$ onto $(H_{\mathbb{C}^n}^2)^{\perp}$ and J_n denotes the unitary operator from $L_{\mathbb{C}^n}^2$ onto $L_{\mathbb{C}^n}^2$ given by $J_n(f)(z) := \overline{z}I_nf(\overline{z})$ for $f \in L_{\mathbb{C}^n}^2$, with I_n the $n \times n$ identity matrix. For $\Phi \in L_{M_{n \times m}}^\infty$, write

$$\Phi(z) := \Phi^*(\overline{z}).$$

A matrix-valued function $\Theta \in H^{\infty}_{M_n \times m}$ is called *inner* if $\Theta^* \Theta = I_m$ almost everywhere on \mathbb{T} . For a matrix-valued function $\Phi \equiv [\varphi_{ij}] \in L^{\infty}_{M_n}$, we say that Φ is of *bounded type* if each entry φ_{ij} is of bounded type, and we say that Φ is *rational* if each entry φ_{ij} is a rational function. A matrix-valued trigonometric polynomial $\Phi \in L^{\infty}_{M_n}$ is of the form

$$\Phi(z) = \sum_{j=-m}^{N} A_j z^j \ (A_j \in M_n),$$

where A_N and A_{-m} are called the *outer* coefficients of Φ .

For a matrix-valued function $\Phi \in H^2_{M_{n\times r}}$, we say that $\Delta \in H^2_{M_{n\times m}}$ is a *left inner divisor* of Φ if Δ is an inner matrix function such that $\Phi = \Delta A$ for some $A \in H^2_{M_{m\times r}}$. We also say that two matrix functions $\Phi \in H^2_{M_{n\times r}}$ and $\Psi \in H^2_{M_{n\times m}}$ are *left coprime* if the only common left inner divisor of both Φ and Ψ is a unitary constant and that $\Phi \in H^2_{M_{n\times r}}$ and $\Psi \in H^2_{M_{m\times r}}$ are *right coprime* if $\widetilde{\Phi}$ and $\widetilde{\Psi}$ are left coprime. Two matrix functions Φ and Ψ in $H^2_{M_n}$ are said to be *coprime* if they are both left and right coprime. It was known ([4, Lemma 2.1]) that if $\Theta_i = \theta_i I_n$ for an inner function θ_i ($i \in J$), then

left-g.c.d. $\{\Theta_i : i \in J\}$ = right g.c.d. $\{\Theta_i : i \in J\} = \theta_d I_n$, where θ_d = g.c.d. $\{\theta_i : i \in J\}$ left-l.c.m. $\{\Theta_i : i \in J\}$ = right l.c.l. $\{\Theta_i : i \in J\} = \theta_d I_n$, where θ_d = l.c.m. $\{\theta_i : i \in J\}$:

they are both *diagonal-constant* inner functions, i.e., diagonal inner functions, constant along the diagonal. If there is no confusion, we write δ for δI_n for $\delta \in L^{\infty}$.

For $\Phi \in L^{\infty}_{M_n}$ we write

$$\Phi_+ := P_n(\Phi) \in H^2_{M_n}$$
 and $\Phi_- := \left[P_n^{\perp}(\Phi)\right]^* \in H^2_{M_n}$

Thus we can write $\Phi = \Phi_{-}^* + \Phi_{+}$. Suppose $\Phi = [\varphi_{ij}] \in L_{M_n}^{\infty}$ is such that Φ^* is of bounded type. Then we may write $\varphi_{ij} = \theta_{ij}\overline{b}_{ij}$, where θ_{ij} is an inner function and θ_{ij} and b_{ij} are coprime. Thus if $\theta \equiv 1.\text{c.m.} \{\theta_{ij} : i, j = 1, 2, \dots, n\}$, then we can write

$$\Phi = [\varphi_{ij}] = [\theta_{ij}\overline{b}_{ij}] = [\theta\overline{a}_{ij}] \equiv \theta A^* \quad (A \equiv [a_{ji}] \in H^{\infty}_{M_n}).$$
(2.5)

In particular, if $\Phi \in L_{M_n}^{\infty}$ is rational then the θ_i can be chosen as finite Blaschke products, as we observed in (2.4). By contrast with scalar-valued functions, in (2.5) θI_n and A need not be (right) coprime. If $\Omega = \text{left-g.c.d.} \{A, \theta I_n\}$ in the representation (2.5):

$$\Phi = \theta A^*$$

then $\theta I_n = \Omega \Omega_\ell$ and $A = \Omega A_\ell$ for some inner matrix Ω_ℓ (where $\Omega_\ell \in H^2_{M_n}$ because det θI_n is not identically zero) and some $A_l \in H^2_{M_n}$. Therefore if $\Phi^* \in L^{\infty}_{M_n}$ is of bounded type then we can write

$$\Phi = A_{\ell}^* \Omega_{\ell}$$
, where A_{ℓ} and Ω_{ℓ} are left coprime. (2.6)

 $A_{\ell}^*\Omega_{\ell}$ is called the *left coprime factorization* of Φ ; similarly, we can write

$$\Phi = \Omega_r A_r^*$$
, where A_r and Ω_r are right coprime. (2.7)

In this case, $\Omega_r A_r^*$ is called the *right coprime factorization* of Φ . As a consequence of the Beurling-Lax-Halmos Theorem, we can see that ([10, Corollary 2.5]; [4, Remark 2.2])

$$\Phi = \Omega_r A_r^* \text{ (right coprime factorization)} \iff \ker H_{\Phi^*} = \Omega_r H_{\mathbb{C}^n}^2.$$
(2.8)

Let $\Phi \in L^{\infty}_{M_n}$ be such that Φ and Φ^* are of bounded type. Then, in view of (2.7), we may write

 $\Phi = \Theta_{+}A^{*}, \ \Phi^{*} = \Theta_{0}B^{*}$ (right coprime factorization),

where $\Theta_+, \Theta_0 \in H^{\infty}_{M_n}$. For $\Phi, \Psi \in L^{\infty}_{M_n}$, let

$$[T_{\Phi}, T_{\Psi}]_p := H_{\Psi^*}^* H_{\Phi} - H_{\Phi^*}^* H_{\Psi}.$$

Then $[T_{\Phi}^*, T_{\Phi}]_p$ is called the *pseudo-selfcommutator* of T_{Φ} . Also T_{Φ} is said to be *pseudo-hyponormal* if $[T_{\Phi}^*, T_{\Phi}]_p$ is positive semidefinite. Thus if T_{Φ} is pseudo-hyponormal then since

$$[T_{\Phi}^*, T_{\Phi}]_p = H_{\Phi^*}^* H_{\Phi^*} - H_{\Phi}^* H_{\Phi} = H_{\Phi_+^*}^* H_{\Phi_+^*} - H_{\Phi_-}^* H_{\Phi_-},$$

it follows that $||H_{\Phi^*_+}f|| \ge ||H_{\Phi^*_-}f||$ for all $f \in H^2_{\mathbb{C}^n}$, and hence

$$\Theta_{+}H^{2}_{\mathbb{C}^{n}} = \ker H_{\Phi^{*}_{+}} \subseteq \ker H_{\Phi^{*}_{-}} = \Theta_{0}H^{2}_{\mathbb{C}^{n}}.$$
(2.9)

Thus by Corollary IX.2.2 of [8], Θ_0 is a left inner divisor of Θ_0 , i.e., $\Theta_+ = \Theta_0 \Theta_1$ for some inner function $\Theta_1 \in H^{\infty}_{M_n}$. Thus, if $\Phi \in L^{\infty}_{M_n}$ is rational function and T_{Φ} is pseudo-hyponormal, then we can write

$$\Phi_+ = \Theta_0 \Theta_1 A^*$$
 and $\Phi_- = \Theta_0 B^*$ (right coprime factorization). (2.10)

For notational convenience we write

$$H_0^2 := z H_{M_n}^2$$
 and $\mathscr{Z}(\theta) :=$ the set of all zeros of an inner function θ .

On the other hand, we have [3, Lemma 3.3] that if $A \in H_{M_n}^{\infty}$ and θ be a finite Blaschke product, then $A(\alpha)$ is invertible for each $\alpha \in \mathscr{Z}(\theta)$ if and only if A and θI_n are right (or left) coprime. Thus if θ is a finite Blaschke product then we shall say that $A \in H_{M_n}^{\infty}$ and θI_n are *coprime* whenever they are right or left coprime. Hence if in the representation (2.10), $\Theta_i = \theta_i I_n$ (i = 1, 2) with a finite Blaschke product θ_i then we shall write

$$\Phi_+ = \theta_0 \theta_1 A^*$$
 and $\Phi_- = \theta_0 B^*$ (coprime), (2.11)

where $\theta_0 \theta_1$ and θ_0 are called the *analytic inner part* and the *co-analytic inner part* of the coprime factorizations, respectively. If $\Theta \in H^{\infty}_{M_n}$ is an inner matrix function, we write

$$\mathscr{H}_{\Theta} := H^2_{M_n} \ominus \Theta H^2_{M_n};$$

 $\mathscr{K}_{\Theta} := H^2_{M_n} \ominus H^2_{M_n} \Theta.$

If $\Theta = \theta I_n$ for an inner function θ then $\mathscr{H}_{\Theta} = \mathscr{H}_{\Theta}$. If $\Theta \in H^{\infty}_{M_n}$ is an inner matrix function and $A \in H^2_{M_n}$, then a straightforward calculation shows that ([5, Lemma 4.4])

$$A \in \mathscr{K}_{\Theta} \Longleftrightarrow \Theta A^* \in H_0^2.$$
(2.12)

NOTATION. For a closed subspace \mathscr{X} of $H^2_{M_n}$, we write $P_{\mathscr{X}}$ for the orthogonal projection from $H^2_{M_n}$ onto \mathscr{X} . If $\Phi = \Phi^*_- + \Phi_+ \in L^{\infty}_{M_n}$ and Δ_1 and Δ_2 are inner functions in $H^{\infty}_{M_n}$, write

$$\Phi_{\Delta_1,\Delta_2} := P_{H^{2\perp}}(\Phi_-^*\Delta_1) + P_{H^2_0}(\Delta_2^*\Phi_+)$$

and

$$\Phi^{\Delta_1,\Delta_2} := P_{H^{2\perp}}(\Delta_1 \Phi^*_-) + P_{H^2_0}(\Phi_+ \Delta^*_2),$$

where $H^2 \equiv H^2_{M_n}$ and abbreviate

$$\Phi_{\Delta} \equiv \Phi_{\Delta,\Delta}$$
 and $\Phi^{\Delta} \equiv \Phi^{\Delta,\Delta}$.

If $\Delta_i := \delta_i I_n$ for some inner functions δ_i (i = 1, 2), then we have that $\Phi_{\Delta_1, \Delta_2} = \Phi^{\Delta_1, \Delta_2}$.

3. Main results

We begin with:

Hyponormality of Block Toeplitz Operators. ([10]) For each $\Phi \in L^{\infty}_{M_n}$, let

$$\mathscr{E}(\Phi) := \left\{ K \in H_{M_n}^{\infty} : ||K||_{\infty} \leqslant 1 \text{ and } \Phi - K\Phi^* \in H_{M_n}^{\infty} \right\}.$$

Then T_{Φ} is hyponormal if and only if Φ is normal and $\mathscr{E}(\Phi)$ is nonempty.

We observe that if $\mathbf{T} \equiv (T_{\varphi}, T_{\psi})$, then the self-commutator of \mathbf{T} can be expressed as:

$$[\mathbf{T}^{*},\mathbf{T}] = \begin{pmatrix} [T_{\varphi}^{*},T_{\varphi}] \ [T_{\psi}^{*},T_{\varphi}] \\ [T_{\varphi}^{*},T_{\psi}] \ [T_{\psi}^{*},T_{\psi}] \end{pmatrix} = \begin{pmatrix} H_{\overline{\varphi_{+}}}^{*}H_{\overline{\varphi_{+}}} - H_{\overline{\varphi_{-}}}^{*}H_{\overline{\varphi_{-}}} \\ H_{\overline{\psi_{+}}}^{*}H_{\overline{\varphi_{+}}} - H_{\overline{\psi_{-}}}^{*}H_{\overline{\psi_{-}}} \\ H_{\overline{\psi_{+}}}^{*}H_{\overline{\varphi_{+}}} - H_{\overline{\psi_{-}}}^{*}H_{\overline{\psi_{+}}} \\ H_{\overline{\psi_{+}}}^{*}H_{\overline{\psi_{-}}} H_{\overline{\psi_{-}}} \\ H_{\overline{\psi_{+}}}^{*}H_{\overline{\psi_{-}}} \\ H_{\overline{\psi_{+}}}^{*}H_{\overline{\psi_{-}}} \\ H_{\overline{\psi_{+}}}^{*}H_{\overline{\psi_{-}}} \\ H_{\overline{\psi_{+}}}^{*}H_{\overline{\psi_{-}}} \\ H_{\overline{\psi_{+}}}^{*}H_{\overline{\psi_{+}}} \\ H_{\overline{$$

Pairs of block Toeplitz operators will be called *block Toeplitz pairs*. For a block Toeplitz pair $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$, the *pseudo-commutator* of \mathbf{T} is defined by

$$[\mathbf{T}^*,\mathbf{T}]_p := \begin{pmatrix} [T_{\Phi}^*,T_{\Phi}]_p \ [T_{\Psi}^*,T_{\Phi}]_p \\ [T_{\Phi}^*,T_{\Psi}]_p \ [T_{\Psi}^*,T_{\Psi}]_p \end{pmatrix} = \begin{pmatrix} H_{\Phi_+^*}^*H_{\Phi_+^*} - H_{\Phi_-^*}^*H_{\Phi_-^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Phi_-^*}^*H_{\Psi_-^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Phi_-^*}^*H_{\Psi_-^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Phi_-^*}^*H_{\Psi_-^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Phi_-^*}^*H_{\Psi_-^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Phi_-^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Psi_+^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Phi_-^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Psi_+^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Phi_+^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Psi_+^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Phi_+^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Phi_+^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^*}^*H_{\Phi_+^*} - H_{\Psi_+^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^*}^*H_{\Psi_+^*} - H_{\Psi_+^*}^*H_{\Psi_+^*} \\ H_{\Psi_+^$$

Then $\mathbf{T} = (T_{\Phi}, T_{\Psi})$ is said to be *pseudo-(jointly) hyponormal* if $[\mathbf{T}^*, \mathbf{T}]_p \ge 0$. Observe that if $\Phi \in L^{\infty}_{M_n}$ then

$$[T_{\Phi}^*, T_{\Phi}] = [T_{\Phi}^*, T_{\Phi}]_p + T_{\Phi^*\Phi - \Phi\Phi^*}.$$

Thus we have

 T_{Φ} is hyponormal $\iff T_{\Phi}$ is pseudo-hyponormal and Φ is normal;

and (via Theorem 3.3 of [10]) T_{Φ} is pseudo-hyponormal if and only if $\mathscr{E}(\Phi) \neq \emptyset$. Let $\Phi, \Psi \in L^{\infty}_{M_n}$ be matrix-valued rational functions of the form

$$\Phi_{+} = \theta_{0}\theta_{1}A^{*}, \ \Phi_{-} = \theta_{0}B^{*}, \ \Psi_{+} = \theta_{2}\theta_{3}C^{*}, \ \Psi_{-} = \theta_{2}D^{*} \quad \text{(coprime)}.$$
(3.2)

In [5], it was shown that if the pair (T_{Φ}, T_{Ψ}) is pseudo-hyponormal and if θ_0 and θ_2 are not coprime then $\theta_0 = \theta_2$. The following question arises at once.

QUESTION A. Let $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$ be hyponormal, where Φ and Ψ are given in (3.2). If $\theta_0 = \theta_2$, does it follow that $\theta_1 = \theta_3$?

However, in [5], it was also shown that the answer to Question A is negative even for scalar-valued symbols. In this paper, we give a general sufficient condition for the answer to Question A to be affirmative and then provide some results under the condition that $\theta_0 = \theta_2$.

The following two lemmas are needed for our main results.

LEMMA 3.1. [5, Lemma 9.13] Let $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$ be a pseudo-hyponormal Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L^{\infty}_{M_n}$ of the form

$$\Phi_+ = \theta \theta_1 A^*, \ \Phi_- = \theta_0 B^*, \ \Psi_+ = \theta \theta_3 C^*, \ \Psi_- = \theta_2 D^*$$
 (coprime),

where $\theta := 1.c.m.(\theta_0, \theta_2)$. If we let $\delta := g.c.d.(\theta_1, \theta_3)$, then

T: pseudo-hyponormal \iff **T**_{Δ} := $(T_{\Phi^{1,\delta}}, T_{\Psi^{1,\delta}})$: pseudo-hyponormal.

LEMMA 3.2. [5, Corollary 9.21] (Hyponormality of Rational Block Toeplitz Pairs) Let $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$ be a block Toeplitz pair, where $\Phi, \Psi \in L^{\infty}_{M_n}$ are matrix-valued rational functions of the form

$$\Phi_{+} = \theta_{0}\theta_{1}A^{*}, \ \Phi_{-} = \theta_{0}B^{*}, \ \Psi_{+} = \theta_{2}\theta_{3}C^{*}, \ \Psi_{-} = \theta_{2}D^{*}$$
 (coprime). (3.3)

Assume that θ_0 and θ_2 are not coprime. Assume also that $\Lambda := B(\gamma_0)D(\gamma_0)^{-1}$ is a normal matrix commuting with Φ_- and Ψ_- for some $\gamma_0 \in \mathscr{Z}(\theta_0)$. Then the pair **T** is hyponormal if and only if

- (*i*) Φ and Ψ are normal and $\Phi \Psi = \Psi \Phi$;
- (*ii*) $\Phi_{-} = \Lambda^{*} \Psi_{-};$
- (iii) $T_{\Psi^{1,\Omega}}$ is pseudo-hyponormal with $\Omega := \theta_0 \theta_1 \theta_3 \overline{\theta} \Delta^*$,

where $\theta := \text{g.c.d.} \{\theta_1, \theta_3\}$ and $\Delta := \text{left-g.c.d.} \{\theta_0 \theta I_n, \overline{\theta}(\theta_3 A - \theta_1 C \Lambda^*_{\gamma_0})\}.$

Proof. This follows from a slight variation of the proof of Corollary 9.21 of [5], in which $B(\gamma_0)$ and $D(\gamma_0)$ are diagonal-constant for some $\gamma_0 \in \mathscr{Z}(\theta_0)$. \Box

If the symbols are matrix-valued trigonometric polynomials then the answer to Question A is indeed affirmative under an assumption on the outer coefficients.

THEOREM 3.3. Let $\Phi, \Psi \in L^{\infty}_{M_n}$ be matrix-valued trigonometric polynomials of the form

$$\Phi(z) := \sum_{j=-m}^{N} A_j z^j \quad and \quad \Psi(z) := \sum_{j=-\ell}^{M} B_j z^j$$
(3.4)

satisfying

- (i) the outer coefficients A_{-m} , A_N , $B_{-\ell}$ and B_M are invertible;
- (ii) $\Lambda := A_{-m}B_{-\ell}^{-1}$ is a normal matrix commuting with Φ_{-} and Ψ_{-} .

If $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$ is pseudo-hyponormal then N = M.

Proof. Suppose that **T** is pseudo-hyponormal. Then T_{Φ} and T_{Ψ} are pseudo-hyponormal so that, by (2.10), $m \leq N$ and $\ell \leq m$. Thus it follows from Lemma 3.2 that $m = \ell$, and hence we may write

$$\Phi_+ = z^{m+q}A^*, \ \Phi_- = z^mB^*, \ \Psi_+ = z^{m+r}C^*, \ \Psi_- = z^mD^*$$
 (coprime),

where $m \ge 1$, $q \ge 0$ and $r \ge 0$. By Lemma 3.1, we may also assume that r = 0. Put

$$\Delta := \text{left-g.c.d.} \{ z^m I_n, A - z^q C \Lambda^* \},$$

where $\Lambda := A_{-m}B_{-m}^{-1} = B(0)D(0)^{-1}$. Then it follows from Lemma 3.2 that $T_{\Psi^{1,\Omega}}$ is pseudo-hyponormal with $\Omega := z^{m+q}\Delta^*$. We want to show that q = 0. Assume to the contrary that $q \neq 0$. Since $(A - z^q C \Lambda^*)(0) = A(0) = A_N^*$ is invertible, it follows that Δ is a constant unitary. Observe that

$$H_{(\Psi^{1,\Omega})^{*}_{+}} = H_{[P_{H^{2}_{0}(\Psi_{+}\Omega^{*})}]^{*}} = H_{\Omega\Psi^{*}_{+}} = H_{\mathcal{Z}^{q}\Delta^{*}C} = 0.$$
(3.5)

It thus follows from (2.9) that

$$z^{m}H^{2}_{\mathbb{C}_{n}} = \ker H_{(\Psi^{1,\Omega})^{*}_{-}} \supseteq \ker H_{(\Psi^{1,\Omega})^{*}_{+}} = H^{2}_{\mathbb{C}^{n}}$$

a contradiction. Therefore we must have q = 0. This comletes the proof. \Box

Even when the analytic inner parts of the coprime factorizations of the symbols are not equal for a pseudo-hyponormal pair with rational symbols having the same coanalytic inner parts, we are interested in finding a general sufficient condition for the rational symbols Φ and Ψ of the pseudo-hyponormal pair $\mathbf{T} := (T_{\Phi}, T_{\Psi})$ to have the same analytic inner parts.

THEOREM 3.4. Let $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$ be a block Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L^{\infty}_{M_n}$ of the form

$$\Phi_+ = \theta_0 \theta_1 A^*, \quad \Phi_- = \theta_0 B^*, \quad \Psi_+ = \theta_0 \theta_3 C^*, \quad \Psi_- = \theta_0 D^* \quad \text{(coprime)}.$$

Suppose $\Lambda \equiv \Lambda_{\gamma_0} := B(\gamma_0)D(\gamma_0)^{-1}$ is a normal matrix commuting with Φ_- and Ψ_- for some $\gamma_0 \in \mathscr{Z}(\theta_0)$. If **T** is pseudo-hyponormal and $\delta := \text{GCD}\{\theta_1, \theta_3\}$, then $(\theta_1 \overline{\delta})(\theta_3 \overline{\delta})$ and θ_0 are coprime.

Proof. Assume that **T** is pseudo-hyponormal. By Lemma 3.1, we may assume that θ_1 and θ_3 are coprime. We want to show that $\theta_1\theta_3$ and θ_0 are coprime. Write

$$\theta_0 = \prod_{j=1}^{d_0} b_{\alpha_j}^{p_j}, \ \theta_1 = \prod_{j=1}^{d_1} b_{\beta_j}^{n_j}, \ \theta_3 = \prod_{j=1}^{d_3} b_{\gamma_j}^{m_j} \qquad (p_j, n_j, m_j \ge 1)$$

where $b_{\lambda}(z) := \frac{z-\lambda}{1-\overline{\lambda}z}$ ($\lambda \in \mathbb{D}$). Assume to the contrary that $\theta_1 \theta_3$ and θ_0 are not coprime. Without loss of generality, we may assume that $\alpha_1 = \beta_1$. Let

$$\omega := \theta_0 \theta_1 \theta_3 b_{\beta_1}^{-(p_1+n_1)}$$

Since **T** is pseudo-hyponormal, it follows from [5, Lemma 9.8] that $(T_{\Phi_{\omega}}, T_{\Psi_{\omega}})$ is pseudo-hyponormal. Write

$$b \equiv b_{\beta_1}$$
 and $\delta \equiv \theta_1 b^{-n_1} = \prod_{j=2}^{d_1} b_{\beta_j}^{n_j}$

Observe that

$$(\Phi_{\omega})_{-}^{*} = P_{H^{2\perp}} \left(B\theta_{1}\theta_{3}b^{-(p_{1}+n_{1})} \right) = P_{H^{2\perp}} \left(B\delta\theta_{3}b^{-p_{1}} \right) = b^{-p_{1}} \left[P_{\mathcal{K}_{b^{p_{1}}}}(\delta\theta_{3}B) \right].$$

We thus have

$$(\Phi_{\omega})_{-} = b^{p_1} \left[P_{\mathscr{K}_b^{p_1}} \left(\delta \theta_3 B \right) \right]^* \quad \text{(coprime)}.$$

Similarly, we have the following right coprime factorizations:

$$\begin{split} \left(\Phi_{\omega} \right)_{+} &= b^{(p_{1}+n_{1})} \left[P_{\mathscr{K}_{b}(p_{1}+n_{1})}(\theta_{3}A) \right]^{*}, \\ \left(\Psi_{\omega} \right)_{-} &= b^{p_{1}} \left[P_{\mathscr{K}_{b}p_{1}}(\delta\theta_{3}D) \right]^{*}, \\ \left(\Psi_{\omega} \right)_{+} &= b^{p_{1}} \left[P_{\mathscr{K}_{b}p_{1}}(\delta C) \right]^{*}. \end{split}$$

Now we will show that

 Λ commutes with $(\Phi_{\omega})_{-}$ and $(\Psi_{\omega})_{-}$.

Since Λ is a normal matrix commuting with Φ_{-} and Ψ_{-} , it follows from the Fuglede-Putnam Theorem that Λ commutes with B and D and hence Λ commutes with $\delta \theta_3 B$ and $\delta \theta_3 D$. Write

$$B_1 \equiv \delta \theta_3 B - P_{\mathcal{K}_{\mu} p_1} \left(\delta \theta_3 B \right).$$

Then $B_1 \in b^{p_1} H^2_{M_n}$. Thus we can write $B_1 = b^{p_1} B_2$ for some $B_2 \in H^2_{M_n}$. Since Λ commutes with $\delta \theta_3 B$ and $\delta \theta_3 D$, we have that

$$\Lambda P_{\mathscr{K}_{b^{p_{1}}}}\left(\delta\theta_{3}B\right) + b^{p_{1}}\Lambda B_{2} = P_{\mathscr{K}_{b^{p_{1}}}}\left(\delta\theta_{3}B\right)\Lambda + b^{p_{1}}B_{2}\Lambda.$$
(3.6)

But since Λ is a constant matrix, it follows from (2.12) that $\Lambda P_{\mathscr{K}_b p_1}(\delta \theta_3 B)$ and $P_{\mathscr{K}_b p_1}(\delta \theta_3 B) \Lambda$ are in $\mathscr{K}_b p_1$. Thus by (3.6), we have that Λ commutes with $(\Phi_{\omega})_-$. Similarly, we also have that Λ commutes with $(\Psi_{\omega})_-$. Since Λ is a normal matrix commuting with Φ_- and Ψ_- , it follows from Lemma 3.2 that $\Phi_- = \Lambda^* \Psi_-$ and hence $\Lambda = B(\beta_1)D(\beta_1)^{-1}$. We now apply Lemma 3.2. To do so, let

$$\Delta := \operatorname{left-g.c.d.} \{ b^{p_1} I_n, P_{\mathscr{K}_{b^{(p_1+n_1)}}}(\theta_3 A) - b^{n_1} P_{\mathscr{K}_{b^{p_1}}}(\delta C) \Lambda^* \}.$$

Put $\Omega := b^{p_1+n_1}\Delta^*$. Since $(T_{\Phi_{\omega}}, T_{\Psi_{\omega}})$ is pseudo-hyponormal it follows from Lemma 3.2 that T_{Γ} is pseudo-hyponormal with $\Gamma = (\Psi_{\omega})^{1,\Omega}$. It thus follows from (2.9) that $n_1 = 0$, a contradiction. This completes the proof. \Box

We now have:

COROLLARY 3.5. Let $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$ be a block Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L^{\infty}_{M_{\pi}}$ of the form

$$\Phi_+ = \theta_0 \theta_1 A^*, \quad \Phi_- = \theta_0 B^*, \quad \Psi_+ = \theta_0 \theta_3 C^*, \quad \Psi_- = \theta_0 D^* \quad \text{(coprime)}.$$

Suppose $\Lambda \equiv \Lambda_{\gamma_0} := B(\gamma_0)D(\gamma_0)^{-1}$ is a normal matrix commuting with Φ_- and Ψ_- for some $\gamma_0 \in \mathscr{Z}(\theta_0)$. If **T** is pseudo-hyponormal and $\mathscr{Z}(\theta_1 \theta_3) \subseteq \mathscr{Z}(\theta_0)$, then $\theta_1 = \theta_3$.

Proof. If $\theta_1 \neq \theta_3$ and $\mathscr{Z}(\theta_1 \theta_3) \subseteq \mathscr{Z}(\theta_0)$, then $\theta_1 \theta_3 \overline{\text{g.c.d.} \{\theta_1, \theta_3\}}^2$ and θ_0 have a common zero, which is a contradiction by Theorem 3.4. \Box

If the matrix-valued rational symbols Φ and Ψ have the same co-analytic and analytic inner parts of the coprime factorizations, we get a general necessary condition for the pseudo-hyponormality of the pair $\mathbf{T} := (T_{\Phi}, T_{\Psi})$.

THEOREM 3.6. Let $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$ be a block Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L^{\infty}_{M_n}$ of the form

$$\Phi_+ = \theta_0 \theta_1 A^*, \ \Phi_- = \theta_0 B^*, \ \Psi_+ = \theta_0 \theta_1 C^*, \ \Psi_- = \theta_0 D^* \quad \text{(coprime)}.$$

Suppose $\Lambda \equiv \Lambda_{\gamma_0} := B(\gamma_0)D(\gamma_0)^{-1}$ is a normal matrix commuting with Φ_- and Ψ_- for some $\gamma_0 \in \mathscr{Z}(\theta_0)$. If **T** is pseudo-hyponormal then

$$\Phi - \Lambda \Psi \in \mathscr{K}_{z\theta_1}.$$

Proof. By Lemma 3.1, $\mathbf{T}_{\Theta_1} := (T_{\Phi^{1,\theta_1}}, T_{\Psi^{1,\theta_1}})$ is pseudo-hyponormal. We can write

$$\Phi^{1,\theta_1}_+ = \theta_0 A_0^*$$
 and $\Psi^{1,\theta_1}_+ = \theta_0 C_0^*$ (coprime),

where $A_0 := P_{\mathscr{K}_{\theta_0}}A$ and $C_0 := P_{\mathscr{K}_{\theta_0}}C$. It follows from Lemma 3.2 that T_{Υ} is pseudo-hyponormal with

$$\Upsilon := \Psi_{-}^{*} + P_{H_{0}^{2}}\left(\Psi_{+}^{1,\theta_{1}}\Omega^{*}\right) \quad (\Omega := \theta_{0}\Delta^{*}),$$

where $\Delta := \text{left-g.c.d.} \{ \theta_0 I_n, A_0 - C_0 \Lambda^* \}$. We claim that

$$\Delta = \theta_0 I_n \quad \text{(up to a constant unitary)}. \tag{3.7}$$

Observe that

$$\Gamma_{+}^{*} = \left(P_{H_{0}^{2}}\left(\Psi_{+}^{1,\theta_{1}}\Omega^{*}\right)\right)^{*} = P_{H^{2\perp}}(\Delta^{*}C_{0}).$$

Since T_{Υ} is pseudo-hyponormal, it follows from (2.9) that

$$\theta_0 H_{\mathbb{C}_n}^2 = \ker H_{\Psi_-^*} = \ker H_{\Upsilon_-^*} \supseteq \ker H_{\Upsilon_+^*} = \ker H_{\Delta^* C_0} = \Delta H_{\mathbb{C}^n}^2,$$

which implies (3.7). Also since Δ is a left inner divisor of $A_0 - C_0 \Lambda^*$, it follows that

$$A_0 - C_0 \Lambda^* \in \theta_0 H^2_{M_n}.$$

But since Λ is a constant matrix and $C_0 \in \mathscr{K}_{\theta_0}$ it follows from (2.12) that $C_0\Lambda^* \in \mathscr{K}_{\theta_0}$, and hence $A_0 - C_0\Lambda^* \in \mathscr{K}_{\theta_0}$. Therefore,

$$A_0 - C_0 \Lambda^* \in heta_0 H^2_{M_n} igcap \mathscr{K}_{ heta_0 I_n} = \{0\},$$

which implies $A_0 = C_0 \Lambda^*$. Put $A_1 := A - A_0$, and $C_1 := C - C_0$. Then $A_1, C_1 \in \theta_0 H^2_{M_n}$. Thus $A_1 = \theta_0 A_2$ and $C_1 = \theta_0 C_2$ for some $A_2, C_2 \in H^2_{M_n}$. Then

$$\begin{split} \Phi_{+} - \Lambda \Psi_{+} &= \theta_{0} \theta_{1} (A_{0}^{*} + A_{1}^{*}) - \theta_{0} \theta_{1} \Lambda (C_{0}^{*} + C_{1}^{*}) \\ &= \theta_{0} \theta_{1} (A_{1}^{*} - \Lambda C_{1}^{*}) \quad (\text{since } A_{0}^{*} = \Lambda C_{0}^{*}) \\ &= \theta_{0} \theta_{1} (\overline{\theta_{0}} A_{2}^{*} - \overline{\theta_{0}} \Lambda C_{2}^{*}) \\ &= \theta_{1} (A_{2} - C_{2} \Lambda^{*})^{*}. \end{split}$$

We thus have

$$z\theta_1(\Phi_+ - \Lambda \Psi_+)^* = z(A_2 - C_2\Lambda^*) \in H^2_0$$

which implies, by (2.12), $\Phi_+ - \Lambda \Psi_+ \in \mathscr{K}_{z\theta_1}$. Since Λ is a normal amtrix commuting with Φ_- and Ψ_- , it follows from Lemma 3.2 that

$$\Phi - \Lambda \Psi = \Phi_{-}^{*} - \Lambda \Psi_{-}^{*} + \Phi_{+} - \Lambda \Psi_{+} = \Phi_{+} - \Lambda \Psi_{+} \in \mathscr{K}_{z\theta_{1}},$$

which proves the theorem. \Box

As we will see in the next result, if the analytic and co-analytic inner parts of the coprime factorizations of the rational symbols are equal then two symbols coincide up to a constant matrix under the assumption of pseudo-hyponormality.

COROLLARY 3.7. Let $\mathbf{T} \equiv (T_{\Phi}, T_{\Psi})$ be a block Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L^{\infty}_{M_n}$ of the form

$$\Phi_+ = \theta A^*, \ \Phi_- = \theta B^*, \ \Psi_+ = \theta C^*, \ \Psi_- = \theta D^*$$
 (coprime factorizations),

where θ is a finite Blaschke product. Suppose $\Lambda := B(\gamma_0)D(\gamma_0)^{-1}$ is a normal matrix commuting with Φ_- and Ψ_- for some $\gamma_0 \in \mathscr{Z}(\theta)$. If **T** is pseudo-hyponormal then

$$\Phi - \Lambda \Psi \in M_n$$
.

Proof. Immediate from Theorem 3.6. \Box

COROLLARY 3.8. Let $\Phi, \Psi \in L^{\infty}_{M_n}$ be matrix-valued trigonometric polynomials of the form

$$\Phi(z) := \sum_{j=-m}^{N} A_j z^j \quad and \quad \Psi(z) := \sum_{j=-\ell}^{M} B_j z^j$$
(3.8)

satisfying

(i) the outer coefficients $A_{-m}, A_N, B_{-\ell}$ and B_M are invertible;

(ii) $\Lambda := A_{-m}B_{-\ell}^{-1}$ is a normal matrix commuting with Φ_{-} and Ψ_{-} .

If $\mathbf{T} := (T_{\Phi}, T_{\Psi})$ is pseudo-hyponormal then

$$\Phi - \Lambda \Psi \in \mathscr{K}_{\mathbb{Z}^{N-m+1}}.$$

Proof. By Lemma 3.2 and Theorem 3.3, we have N = M and $m = \ell$. Thus the result follows from Theorem 3.6. \Box

Acknowledgement. The work of the first named author was supported by NRF (Korea) grant No. NRF-2016R1A2B4012378. The work of the second author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A3A01016258).

REFERENCES

- M. B. ABRAHAMSE, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597–604.
- [2] A. ATHAVALE, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), 417–423.
- [3] R. E. CURTO, I. S. HWANG AND W. Y. LEE, Which subnormal Toeplitz operators are either normal or analytic?, J. Funct. Anal. 263 (8) (2012), 2333–2354.
- [4] R. E. CURTO, I. S. HWANG AND W. Y. LEE, Hyponormality and subnormality of block Toeplitz operators, Adv. Math. 230 (2012), 2094–2151.
- [5] R. E. CURTO, I. S. HWANG AND W. Y. LEE, Matrix functions of bounded type: An interplay between function theory and operator theory, Memoirs Amer. Math. Soc. (to appear), x+106 pp., Amer. Math. Soc., Providence (in press) (arXiv:1611.06462).
- [6] R. E. CURTO AND W. Y. LEE, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. 712, Amer. Math. Soc., Providence, 2001.
- [7] R. G. DOUGLAS, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- [8] C. FOIAŞ AND A. FRAZHO, The commutant lifting approach to interpolation problems, Oper. Th. Adv. Appl. vol. 44, Birkhäuser, Boston, 1993.
- [9] I. GOHBERG, S. GOLDBERG, AND M. A. KAASHOEK, *Classes of Linear Operators*, vol. II, Basel, Birkhäuser, 1993.
- [10] C. GU, J. HENDRICKS AND D. RUTHERFORD, Hyponormality of block Toeplitz operators, Pacific J. Math. 223 (2006), 95–111.
- [11] I. S. HWANG AND W. Y. LEE, Block Toeplitz Operators with rational symbols, J. Phys. A: Math. Theor. 41 (18) (2008), 185–207.
- [12] I. S. HWANG AND W. Y. LEE, Block Toeplitz Operators with rational symbols (II), J. Phys. A: Math. Theor. 41 (38) (2008), 185–206.
- [13] I. S. HWANG AND W. Y. LEE, Joint hyponormality of rational Toeplitz pairs, Integral Equations Operator Theory 65 (2009), 387–403, erratum 69 (2011), 445–446.
- [14] N. K. NIKOLSKII, Treatise on the Shift Operator, Springer, New York, 1986.
- [15] V. V. PELLER, Hankel Operators and Their Applications, Springer, New York, 2003.

(Received November 15, 2017)

In Sung Hwang Department of Mathematics Sungkyunkwan University Suwon 440-746, Korea e-mail: ihwang@skku.edu

An-Hyun Kim Department of Mathematics Changwon National University Changwon 641–773, Korea e-mail: ahkim@changwon.ac.kr