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Abstract. In this paper, we are concerned with joint hyponormality of pairs of block Toeplitz
operators acting on the vector-valued Hardy space H2

Cn of the unit circle. We give a general
sufficient condition for the matrix-valued rational symbols of the jointly hyponormal pair to have
the same co-analytic inner parts of the coprime factorizations of the symbols and then provide
some results under this sufficient condition.

1. Introduction

Let H and K be complex Hilbert spaces. Write B(H ,K ) for the set of
bounded linear operators from H to K and write B(H ) ≡ B(H ,H ) . For A,B ∈
B(H ) , we let [A,B] for the commutators of A and B , i.e., [A,B] := AB−BA . An
operator T ∈ B(H ) is called normal if [T ∗,T ] = 0, is called hyponormal if [T ∗,T ] �
0, and is called subnormal if T has a normal extension, i.e., T = N|H , where N is a
normal operator on some Hilbert space K ⊇ H such that H is invariant for N . For
an n -tuple T ≡ (T1, . . . ,Tn) of operators on H , [T∗,T] ∈ B(H ⊕·· ·⊕H ) denotes
the self-commutator of T , defined by

[T∗,T] :=

⎛⎜⎜⎜⎝
[T ∗

1 ,T1] [T ∗
2 ,T1] . . . [T ∗

n ,T1]
[T ∗

1 ,T2] [T ∗
2 ,T2] . . . [T ∗

n ,T2]
...

...
. . .

...
[T ∗

1 ,Tn] [T ∗
2 ,Tn] . . . [T ∗

n ,Tn]

⎞⎟⎟⎟⎠ .

The self-commutator for n -tuples of operators on a Hilbert space was introduced by A.
Athavale [2]. By analogy with the case n = 1, we say that T is jointly hyponormal (or
simply, hyponormal) if [T∗,T] is a positive operator on H ⊕ ·· ·⊕H . On the other
hand, C. Gu, J. Hendricks and D. Rutherford [10] have considered the hyponormality
of block Toeplitz operators and characterized it in terms of their symbols. In particu-
lar they showed that if TΦ is a hyponormal block Toeplitz operator on the Cn -valued
Hardy space, then its symbol Φ is normal, i.e., Φ∗Φ = ΦΦ∗ . The hyponormality of the
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Toeplitz operator TΦ with arbitrary matrix-valued symbol Φ , though solved in princi-
ple by the criterion due to Gu, Hendricks and Rutherford [10], is in practice very com-
plicated. Explicit criteria for the hyponormality of block Toeplitz operators TΦ with
matrix-valued trigonometric polynomials or rational functions Φ were established via
interpolation problems (cf. [10], [11], [12], [13], [5]).

In this paper, we discuss joint hyponormality of pairs of block Toeplitz operators
with matrix-valued rational symbols. In [6], the joint hyponormality of the Toeplitz pair
T ≡ (Tϕ ,Tψ ) was completely characterized when both symbols ϕ and ψ are trigono-
metric polynomials. The core of the main result of [6] is that the joint hyponormality
of T ≡ (Tϕ ,Tψ) (ϕ and ψ are trigonometric polynomials) forces that the co-analytic
parts of ϕ and ψ necessarily coincide up to a constant multiple, i.e.,

ϕ −β ψ ∈ H2 for some β ∈ C . (1.1)

It was shown in [5] that (1.1) is still true for matrix-valued trigonometric polynomials
under some invertibility and commutativity assumptions on the Fourier coefficients of
the symbols. In this paper, we give a general sufficient condition for the matrix-valued
rational symbols of the jointly hyponormal pair to have the same co-analytic inner parts
of the coprime factorizations of the symbols and then provide some results under this
sufficient condition.

2. Preliminaries

To describe our results, we need to review a few essential facts about (block)
Toeplitz operators, and for that we will use [7], [9], [14], and [15]. For an operator
T ∈ B(H ) , let kerT and ranT denote the kernel and the range of T , respectively.
Also, write T ≡ ∂D for the unit circle (where D denotes the open unit disk in the
complex plane C). Write L2 ≡ L2(T) for the set of square-integrable functions on T

and H2 for the corresponding Hardy space. Also L∞ ≡ L∞(T) for the set of essentially
bounded measurable functions on T . Let H∞ := L∞ ∩H2 . Given a function ϕ ∈ L∞ ,
the Toeplitz operator Tϕ and the Hankel operator Hϕ with symbol ϕ on H2 are defined
by

Tϕg := P(ϕg) and Hϕg := JP⊥(ϕg) (g ∈ H2), (2.1)

where P and P⊥ denote the orthogonal projections that map from L2 onto H2 and
(H2)⊥ , respectively, and J denotes the unitary operator from L2 onto L2 defined by
J( f )(z) = z f (z) for f ∈ L2 . A function ϕ ∈ L2 is said to be of bounded type if there
are functions ψ1, ψ2 ∈ H∞ such that

ϕ(z) =
ψ1(z)
ψ2(z)

for almost all z ∈ T.

We recall [1, Lemma 3] that if ϕ ∈ L∞ then

ϕ is of bounded type ⇐⇒ kerHϕ �= {0} . (2.2)
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If ϕ ∈ L∞ , we write

ϕ+ ≡ Pϕ ∈ H2 and ϕ− ≡ P⊥ϕ ∈ zH2.

If ϕ and ϕ are of bounded type, then by the Beurling’s Theorem, we may write

ϕ− = θ0b and ϕ+ = θ1a (a,b ∈ H2; θ0,θ1 are inner). (2.3)

By Kronecker’s Lemma [14, p. 183], if f ∈ H∞ , then

f is rational ⇐⇒ f = θb with a finite Blaschke product θ . (2.4)

Let Mn×r denote the set of all n× r complex matrices and write Mn ≡ Mn×n . For
X a Hilbert space, let L2

X ≡ L2
X (T) be the Hilbert space of X -valued norm square-

integrable measurable functions on T and let H2
X ≡ H2

X (T) be the corresponding
Hardy space. We also let L∞

X ≡ L∞
X (T) be the Hilbert space of X -valued bounded

measurable functions on T and let H∞
X ≡H∞

X (T) = L∞
X ∩H2

X . If Φ is a matrix-valued
function in L∞

Mn
≡ L∞

Mn
(T) , then TΦ : H2

Cn → H2
Cn denotes block Toeplitz operator with

symbol Φ defined by
TΦ f := Pn(Φ f ) for f ∈ H2

Cn ,

where Pn is the orthogonal projection of L2
Cn onto H2

Cn . A block Hankel operator with
symbol Φ ∈ L∞

Mn
is an operator HΦ : H2

Cn → H2
Cn defined by

HΦ f := JnP
⊥
n (Φ f ) for f ∈ H2

Cn ,

where P⊥
n is the orthogonal projection of L2

Cn onto (H2
Cn)⊥ and Jn denotes the unitary

operator from L2
Cn onto L2

Cn given by Jn( f )(z) := zIn f (z) for f ∈ L2
Cn , with In the

n×n identity matrix. For Φ ∈ L∞
Mn×m

, write

Φ̃(z) := Φ∗(z).

A matrix-valued function Θ ∈ H∞
Mn×m

is called inner if Θ∗Θ = Im almost everywhere
on T . For a matrix-valued function Φ ≡ [ϕi j] ∈ L∞

Mn
, we say that Φ is of bounded type

if each entry ϕi j is of bounded type, and we say that Φ is rational if each entry ϕi j is
a rational function. A matrix-valued trigonometric polynomial Φ ∈ L∞

Mn
is of the form

Φ(z) =
N

∑
j=−m

Ajz
j (Aj ∈ Mn),

where AN and A−m are called the outer coefficients of Φ .
For a matrix-valued function Φ ∈ H2

Mn×r
, we say that Δ ∈ H2

Mn×m
is a left inner

divisor of Φ if Δ is an inner matrix function such that Φ = ΔA for some A ∈ H2
Mm×r

.

We also say that two matrix functions Φ ∈ H2
Mn×r

and Ψ ∈ H2
Mn×m

are left coprime if
the only common left inner divisor of both Φ and Ψ is a unitary constant and that
Φ ∈ H2

Mn×r
and Ψ ∈H2

Mm×r
are right coprime if Φ̃ and Ψ̃ are left coprime. Two matrix
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functions Φ and Ψ in H2
Mn

are said to be coprime if they are both left and right coprime.
It was known ([4, Lemma 2.1]) that if Θi = θiIn for an inner function θi ( i ∈ J) , then

left-g.c.d.{Θi : i ∈ J} = right g.c.d.{Θi : i ∈ J} = θdIn, where θd = g.c.d.{θi : i ∈ J}
left-l.c.m.{Θi : i ∈ J} = right l.c.l.{Θi : i ∈ J} = θdIn, where θd = l.c.m.{θi : i ∈ J} :

they are both diagonal-constant inner functions, i.e., diagonal inner functions, constant
along the diagonal. If there is no confusion, we write δ for δ In for δ ∈ L∞ .

For Φ ∈ L∞
Mn

we write

Φ+ := Pn(Φ) ∈ H2
Mn

and Φ− :=
[
P⊥

n (Φ)
]∗ ∈ H2

Mn
.

Thus we can write Φ = Φ∗− + Φ+ . Suppose Φ = [ϕi j] ∈ L∞
Mn

is such that Φ∗ is of
bounded type. Then we may write ϕi j = θi jbi j , where θi j is an inner function and θi j

and bi j are coprime. Thus if θ ≡ l.c.m.{θi j : i, j = 1,2, · · · ,n} , then we can write

Φ = [ϕi j] = [θi jbi j] = [θai j] ≡ θA∗ (A ≡ [a ji] ∈ H∞
Mn

). (2.5)

In particular, if Φ ∈ L∞
Mn

is rational then the θi can be chosen as finite Blaschke prod-
ucts, as we observed in (2.4). By contrast with scalar-valued functions, in (2.5) θ In and
A need not be (right) coprime. If Ω = left-g.c.d.{A,θ In} in the representation (2.5):

Φ = θA∗ ,

then θ In = ΩΩ� and A = ΩA� for some inner matrix Ω� (where Ω� ∈ H2
Mn

because
detθ In is not identically zero) and some Al ∈H2

Mn
. Therefore if Φ∗ ∈L∞

Mn
is of bounded

type then we can write

Φ = A�
∗Ω�, where A� and Ω� are left coprime. (2.6)

A∗
�Ω� is called the left coprime factorization of Φ ; similarly, we can write

Φ = ΩrA
∗
r , where Ar and Ωr are right coprime. (2.7)

In this case, ΩrA∗
r is called the right coprime factorization of Φ . As a consequence of

the Beurling-Lax-Halmos Theorem, we can see that ([10, Corollary 2.5]; [4, Remark
2.2])

Φ = ΩrA
∗
r (right coprime factorization) ⇐⇒ kerHΦ∗ = ΩrH

2
Cn . (2.8)

Let Φ ∈ L∞
Mn

be such that Φ and Φ∗ are of bounded type. Then, in view of (2.7), we
may write

Φ = Θ+A∗, Φ∗ = Θ0B
∗ (right coprime factorization),

where Θ+,Θ0 ∈ H∞
Mn

.
For Φ,Ψ ∈ L∞

Mn
, let

[TΦ,TΨ]p := H∗
Ψ∗HΦ −H∗

Φ∗HΨ.
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Then [T ∗
Φ,TΦ]p is called the pseudo-selfcommutator of TΦ . Also TΦ is said to be

pseudo-hyponormal if [T ∗
Φ,TΦ]p is positive semidefinite. Thus if TΦ is pseudo-hyponormal

then since
[T ∗

Φ,TΦ]p = H∗
Φ∗HΦ∗ −H∗

ΦHΦ = H∗
Φ∗

+
HΦ∗

+
−H∗

Φ−HΦ− ,

it follows that ||HΦ∗
+

f || � ||HΦ∗− f || for all f ∈ H2
Cn , and hence

Θ+H2
Cn = kerHΦ∗

+
⊆ kerHΦ∗− = Θ0H

2
Cn . (2.9)

Thus by Corollary IX.2.2 of [8], Θ0 is a left inner divisor of Θ0 , i.e., Θ+ = Θ0Θ1

for some inner function Θ1 ∈ H∞
Mn

. Thus, if Φ ∈ L∞
Mn

is rational function and TΦ is
pseudo-hyponormal, then we can write

Φ+ = Θ0Θ1A
∗ and Φ− = Θ0B

∗ (right coprime factorization). (2.10)

For notational convenience we write

H2
0 := zH2

Mn
and Z (θ ) := the set of all zeros of an inner function θ .

On the other hand, we have [3, Lemma 3.3] that if A ∈ H∞
Mn

and θ be a finite Blaschke
product, then A(α) is invertible for each α ∈ Z (θ ) if and only if A and θ In are
right (or left) coprime. Thus if θ is a finite Blaschke product then we shall say that
A ∈ H∞

Mn
and θ In are coprime whenever they are right or left coprime. Hence if in the

representation (2.10), Θi = θiIn (i = 1,2) with a finite Blaschke product θi then we
shall write

Φ+ = θ0θ1A
∗ and Φ− = θ0B

∗ (coprime), (2.11)

where θ0θ1 and θ0 are called the analytic inner part and the co-analytic inner part of
the coprime factorizations, respectively. If Θ ∈ H∞

Mn
is an inner matrix function, we

write
HΘ := H2

Mn
�ΘH2

Mn
;

KΘ := H2
Mn

�H2
Mn

Θ.

If Θ = θ In for an inner function θ then HΘ = KΘ . If Θ ∈ H∞
Mn

is an inner matrix
function and A ∈ H2

Mn
, then a straightforward calculation shows that ([5, Lemma 4.4])

A ∈ KΘ ⇐⇒ ΘA∗ ∈ H2
0 . (2.12)

NOTATION. For a closed subspace X of H2
Mn

, we write PX for the orthogonal
projection from H2

Mn
onto X . If Φ = Φ∗− + Φ+ ∈ L∞

Mn
and Δ1 and Δ2 are inner

functions in H∞
Mn

, write

ΦΔ1,Δ2 := PH2⊥(Φ∗
−Δ1)+PH2

0
(Δ∗

2Φ+)

and
ΦΔ1,Δ2 := PH2⊥(Δ1Φ∗

−)+PH2
0
(Φ+Δ∗

2),

where H2 ≡ H2
Mn

and abbreviate

ΦΔ ≡ ΦΔ,Δ and ΦΔ ≡ ΦΔ,Δ.

If Δi := δiIn for some inner functions δi (i = 1,2) , then we have that ΦΔ1,Δ2 = ΦΔ1,Δ2 .
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3. Main results

We begin with:

HYPONORMALITY OF BLOCK TOEPLITZ OPERATORS. ([10]) For each Φ ∈
L∞

Mn
, let

E (Φ) :=
{

K ∈ H∞
Mn

: ||K||∞ � 1 and Φ−KΦ∗ ∈ H∞
Mn

}
.

Then TΦ is hyponormal if and only if Φ is normal and E (Φ) is nonempty.
We observe that if T ≡ (Tϕ ,Tψ ) , then the self-commutator of T can be expressed

as:

[T∗,T] =
(

[T ∗
ϕ ,Tϕ ] [T ∗

ψ ,Tϕ ]
[T ∗

ϕ ,Tψ ] [T ∗
ψ ,Tψ ]

)
=
(

H∗
ϕ+

Hϕ+ −H∗
ϕ−Hϕ− H∗

ϕ+
Hψ+ −H∗

ψ−Hϕ−
H∗

ψ+
Hϕ+ −H∗

ϕ−Hψ− H∗
ψ+

Hψ+ −H∗
ψ−Hψ−

)
. (3.1)

Pairs of block Toeplitz operators will be called block Toeplitz pairs. For a block Toeplitz
pair T ≡ (TΦ,TΨ) , the pseudo-commutator of T is defined by

[T∗,T]p :=
(

[T ∗
Φ,TΦ]p [T ∗

Ψ,TΦ]p
[T ∗

Φ,TΨ]p [T ∗
Ψ,TΨ]p

)
=

(
H∗

Φ∗
+
HΦ∗

+
−H∗

Φ∗−
HΦ∗− H∗

Φ∗
+
HΨ∗

+
−H∗

Ψ∗−
HΦ∗−

H∗
Ψ∗

+
HΦ∗

+
−H∗

Φ∗−
HΨ∗− H∗

Ψ∗
+
HΨ∗

+
−H∗

Ψ∗−
HΨ∗−

)
.

Then T = (TΦ,TΨ) is said to be pseudo-(jointly) hyponormal if [T∗,T]p � 0. Observe
that if Φ ∈ L∞

Mn
then

[T ∗
Φ,TΦ] = [T ∗

Φ,TΦ]p +TΦ∗Φ−ΦΦ∗ .

Thus we have

TΦ is hyponormal ⇐⇒ TΦ is pseudo-hyponormal and Φ is normal;

and (via Theorem 3.3 of [10]) TΦ is pseudo-hyponormal if and only if E (Φ) �= /0 .
Let Φ,Ψ ∈ L∞

Mn
be matrix-valued rational functions of the form

Φ+ = θ0θ1A
∗, Φ− = θ0B

∗, Ψ+ = θ2θ3C
∗, Ψ− = θ2D

∗ (coprime). (3.2)

In [5], it was shown that if the pair (TΦ,TΨ) is pseudo-hyponormal and if θ0 and θ2

are not coprime then θ0 = θ2 . The following question arises at once.

QUESTION A. Let T ≡ (TΦ,TΨ) be hyponormal, where Φ and Ψ are given in
(3.2). If θ0 = θ2 , does it follow that θ1 = θ3 ?

However, in [5], it was also shown that the answer to Question A is negative even
for scalar-valued symbols. In this paper, we give a general sufficient condition for
the answer to Question A to be affirmative and then provide some results under the
condition that θ0 = θ2 .

The following two lemmas are needed for our main results.

LEMMA 3.1. [5, Lemma 9.13] Let T≡ (TΦ,TΨ) be a pseudo-hyponormalToeplitz
pair with matrix-valued rational symbols Φ,Ψ ∈ L∞

Mn
of the form

Φ+ = θθ1A
∗, Φ− = θ0B

∗, Ψ+ = θθ3C
∗, Ψ− = θ2D

∗ (coprime),
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where θ := l.c.m.(θ0,θ2) . If we let δ := g.c.d.(θ1,θ3) , then

T : pseudo-hyponormal⇐⇒ TΔ := (TΦ1,δ ,TΨ1,δ ) : pseudo-hyponormal.

LEMMA 3.2. [5, Corollary 9.21] (Hyponormality of Rational Block Toeplitz Pairs)
Let T≡ (TΦ,TΨ) be a block Toeplitz pair, where Φ,Ψ∈ L∞

Mn
are matrix-valued rational

functions of the form

Φ+ = θ0θ1A
∗, Φ− = θ0B

∗, Ψ+ = θ2θ3C
∗, Ψ− = θ2D

∗ (coprime). (3.3)

Assume that θ0 and θ2 are not coprime. Assume also that Λ := B(γ0)D(γ0)−1 is a
normal matrix commuting with Φ− and Ψ− for some γ0 ∈ Z (θ0) . Then the pair T is
hyponormal if and only if

(i) Φ and Ψ are normal and ΦΨ = ΨΦ;

(ii) Φ− = Λ∗Ψ− ;

(iii) TΨ1,Ω is pseudo-hyponormal with Ω := θ0θ1θ3θΔ∗ ,

where θ := g.c.d.{θ1,θ3} and Δ := left-g.c.d.
{

θ0θ In, θ (θ3A−θ1CΛ∗
γ0

)
}

.

Proof. This follows from a slight variation of the proof of Corollary 9.21 of [5],
in which B(γ0) and D(γ0) are diagonal-constant for some γ0 ∈ Z (θ0) . �

If the symbols are matrix-valued trigonometric polynomials then the answer to
Question A is indeed affirmative under an assumption on the outer coefficients.

THEOREM 3.3. Let Φ,Ψ ∈ L∞
Mn

be matrix-valued trigonometric polynomials of
the form

Φ(z) :=
N

∑
j=−m

Ajz
j and Ψ(z) :=

M

∑
j=−�

Bjz
j (3.4)

satisfying

(i) the outer coefficients A−m,AN ,B−� and BM are invertible;

(ii) Λ := A−mB−1
−� is a normal matrix commuting with Φ− and Ψ− .

If T ≡ (TΦ,TΨ) is pseudo-hyponormal then N = M.

Proof. Suppose that T is pseudo-hyponormal. Then TΦ and TΨ are pseudo-
hyponormal so that, by (2.10), m � N and � � m . Thus it follows from Lemma 3.2 that
m = � , and hence we may write

Φ+ = zm+qA∗, Φ− = zmB∗, Ψ+ = zm+rC∗, Ψ− = zmD∗ (coprime),

where m � 1, q � 0 and r � 0. By Lemma 3.1, we may also assume that r = 0. Put

Δ := left-g.c.d.{zmIn, A− zqCΛ∗},
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where Λ := A−mB−1
−m = B(0)D(0)−1 . Then it follows from Lemma 3.2 that TΨ1,Ω is

pseudo-hyponormal with Ω := zm+qΔ∗ . We want to show that q = 0. Assume to the
contrary that q �= 0. Since (A− zqCΛ∗)(0) = A(0) = A∗

N is invertible, it follows that Δ
is a constant unitary. Observe that

H(Ψ1,Ω)∗+ = H[P
H2

0 (Ψ+Ω∗)]
∗ = HΩΨ∗

+
= HzqΔ∗C = 0 . (3.5)

It thus follows from (2.9) that

zmH2
Cn

= kerH(Ψ1,Ω)∗−
⊇ kerH(Ψ1,Ω)∗+

= H2
Cn ,

a contradiction. Therefore we must have q = 0. This comletes the proof. �

Even when the analytic inner parts of the coprime factorizations of the symbols
are not equal for a pseudo-hyponormal pair with rational symbols having the same co-
analytic inner parts, we are interested in finding a general sufficient condition for the
rational symbols Φ and Ψ of the pseudo-hyponormal pair T := (TΦ,TΨ) to have the
same analytic inner parts.

THEOREM 3.4. Let T ≡ (TΦ,TΨ) be a block Toeplitz pair with matrix-valued ra-
tional symbols Φ,Ψ ∈ L∞

Mn
of the form

Φ+ = θ0θ1A
∗, Φ− = θ0B

∗, Ψ+ = θ0θ3C
∗, Ψ− = θ0D

∗ (coprime).

Suppose Λ ≡ Λγ0 := B(γ0)D(γ0)−1 is a normal matrix commuting with Φ− and Ψ−
for some γ0 ∈ Z (θ0) . If T is pseudo-hyponormal and δ := GCD{θ1,θ3} , then
(θ1δ )(θ3δ ) and θ0 are coprime.

Proof. Assume that T is pseudo-hyponormal. By Lemma 3.1, we may assume
that θ1 and θ3 are coprime. We want to show that θ1θ3 and θ0 are coprime. Write

θ0 =
d0

∏
j=1

b
pj
α j , θ1 =

d1

∏
j=1

b
nj

β j
, θ3 =

d3

∏
j=1

b
mj
γ j (p j,n j,mj � 1),

where bλ (z) := z−λ
1−λ z

(λ ∈ D) . Assume to the contrary that θ1θ3 and θ0 are not co-

prime. Without loss of generality, we may assume that α1 = β1 . Let

ω := θ0θ1θ3b
−(p1+n1)
β1

.

Since T is pseudo-hyponormal, it follows from [5, Lemma 9.8] that (TΦω ,TΨω ) is
pseudo-hyponormal. Write

b ≡ bβ1
and δ ≡ θ1b

−n1 =
d1

∏
j=2

b
nj

β j
.
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Observe that(
Φω
)∗
− = PH2⊥

(
Bθ1θ3b

−(p1+n1)
)

= PH2⊥
(
Bδθ3b

−p1
)

= b−p1
[
PKbp1

(δθ3B)
]
.

We thus have
(Φω )− = bp1

[
PKbp1

(δθ3B)
]∗

(coprime).

Similarly, we have the following right coprime factorizations:(
Φω
)
+ = b(p1+n1)

[
PK

b(p1+n1)
(θ3A)

]∗
,(

Ψω
)
− = bp1

[
PKbp1

(δθ3D)
]∗

,(
Ψω
)
+ = bp1

[
PKbp1

(δC)
]∗

.

Now we will show that

Λ commutes with (Φω )− and (Ψω)−.

Since Λ is a normal matrix commuting with Φ− and Ψ− , it follows from the Fuglede-
Putnam Theorem that Λ commutes with B and D and hence Λ commutes with δθ3B
and δθ3D . Write

B1 ≡ δθ3B−PKbp1
(δθ3B) .

Then B1 ∈ bp1H2
Mn

. Thus we can write B1 = bp1B2 for some B2 ∈ H2
Mn

. Since Λ
commutes with δθ3B and δθ3D , we have that

ΛPKbp1
(δθ3B)+bp1ΛB2 = PKbp1

(δθ3B)Λ+bp1B2Λ. (3.6)

But since Λ is a constant matrix, it follows from (2.12) that ΛPKbp1
(δθ3B) and

PKbp1
(δθ3B)Λ are in Kbp1 . Thus by (3.6), we have that Λ commutes with (Φω )− .

Similarly, we also have that Λ commutes with (Ψω)− . Since Λ is a normal matrix
commuting with Φ− and Ψ− , it follows from Lemma 3.2 that Φ− = Λ∗Ψ− and hence
Λ = B(β1)D(β1)−1 . We now apply Lemma 3.2. To do so, let

Δ := left-g.c.d.{bp1In, PK
b(p1+n1)

(θ3A)−bn1PKbp1
(δC)Λ∗}.

Put Ω := bp1+n1Δ∗ . Since (TΦω ,TΨω ) is pseudo-hyponormal it follows from Lemma
3.2 that Tϒ is pseudo-hyponormal with ϒ = (Ψω )1,Ω . It thus follows from (2.9) that
n1 = 0, a contradiction. This completes the proof. �

We now have:

COROLLARY 3.5. Let T ≡ (TΦ,TΨ) be a block Toeplitz pair with matrix-valued
rational symbols Φ,Ψ ∈ L∞

Mn
of the form

Φ+ = θ0θ1A
∗, Φ− = θ0B

∗, Ψ+ = θ0θ3C
∗, Ψ− = θ0D

∗ (coprime).

Suppose Λ≡Λγ0 := B(γ0)D(γ0)−1 is a normal matrix commuting with Φ− and Ψ− for
some γ0 ∈ Z (θ0) . If T is pseudo-hyponormal and Z (θ1θ3) ⊆ Z (θ0) , then θ1 = θ3 .
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Proof. If θ1 �= θ3 and Z (θ1θ3)⊆ Z (θ0) , then θ1θ3g.c.d.{θ1,θ3}2
and θ0 have

a common zero, which is a contradiction by Theorem 3.4. �

If the matrix-valued rational symbols Φ and Ψ have the same co-analytic and
analytic inner parts of the coprime factorizations, we get a general necessary condition
for the pseudo-hyponormality of the pair T := (TΦ,TΨ) .

THEOREM 3.6. Let T ≡ (TΦ,TΨ) be a block Toeplitz pair with matrix-valued ra-
tional symbols Φ,Ψ ∈ L∞

Mn
of the form

Φ+ = θ0θ1A
∗, Φ− = θ0B

∗, Ψ+ = θ0θ1C
∗, Ψ− = θ0D

∗ (coprime).

Suppose Λ ≡ Λγ0 := B(γ0)D(γ0)−1 is a normal matrix commuting with Φ− and Ψ−
for some γ0 ∈ Z (θ0) . If T is pseudo-hyponormal then

Φ−ΛΨ ∈ Kzθ1 .

Proof. By Lemma 3.1, TΘ1 := (TΦ1,θ1 ,TΨ1,θ1 ) is pseudo-hyponormal. We can
write

Φ1,θ1
+ = θ0A

∗
0 and Ψ1,θ1

+ = θ0C
∗
0 (coprime) ,

where A0 := PKθ0
A and C0 := PKθ0

C . It follows from Lemma 3.2 that Tϒ is pseudo-
hyponormal with

ϒ := Ψ∗
− +PH2

0

(
Ψ1,θ1

+ Ω∗
)

(Ω := θ0Δ∗),

where Δ := left-g.c.d.{θ0In, A0−C0Λ∗} . We claim that

Δ = θ0In (up to a constant unitary). (3.7)

Observe that

ϒ∗
+ =

(
PH2

0

(
Ψ1,θ1

+ Ω∗
))∗

= PH2⊥(Δ∗C0).

Since Tϒ is pseudo-hyponormal, it follows from (2.9) that

θ0H
2
Cn

= kerHΨ∗− = kerHϒ∗− ⊇ kerHϒ∗
+

= kerHΔ∗C0 = ΔH2
Cn ,

which implies (3.7). Also since Δ is a left inner divisor of A0 −C0Λ∗ , it follows that

A0 −C0Λ∗ ∈ θ0H
2
Mn

.

But since Λ is a constant matrix and C0 ∈Kθ0 it follows from (2.12) that C0Λ∗ ∈Kθ0 ,
and hence A0−C0Λ∗ ∈ Kθ0 . Therefore,

A0−C0Λ∗ ∈ θ0H
2
Mn

⋂
Kθ0In = {0},
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which implies A0 =C0Λ∗ . Put A1 := A−A0 , and C1 :=C−C0 . Then A1,C1 ∈ θ0H2
Mn

.
Thus A1 = θ0A2 and C1 = θ0C2 for some A2,C2 ∈ H2

Mn
. Then

Φ+ −ΛΨ+ = θ0θ1(A∗
0 +A∗

1)−θ0θ1Λ(C∗
0 +C∗

1)
= θ0θ1(A∗

1−ΛC∗
1) (since A∗

0 = ΛC∗
0)

= θ0θ1(θ0A
∗
2 −θ0ΛC∗

2)
= θ1(A2−C2Λ∗)∗.

We thus have
zθ1(Φ+ −ΛΨ+)∗ = z(A2−C2Λ∗) ∈ H2

0 ,

which implies, by (2.12), Φ+ −ΛΨ+ ∈ Kzθ1 . Since Λ is a normal amtrix commuting
with Φ− and Ψ− , it follows from Lemma 3.2 that

Φ−ΛΨ = Φ∗
− −ΛΨ∗

−+ Φ+−ΛΨ+ = Φ+ −ΛΨ+ ∈ Kzθ1 ,

which proves the theorem. �
As we will see in the next result, if the analytic and co-analytic inner parts of the

coprime factorizations of the rational symbols are equal then two symbols coincide up
to a constant matrix under the assumption of pseudo-hyponormality.

COROLLARY 3.7. Let T ≡ (TΦ,TΨ) be a block Toeplitz pair with matrix-valued
rational symbols Φ,Ψ ∈ L∞

Mn
of the form

Φ+ = θA∗, Φ− = θB∗, Ψ+ = θC∗, Ψ− = θD∗ (coprime factorizations),

where θ is a finite Blaschke product. Suppose Λ := B(γ0)D(γ0)−1 is a normal matrix
commuting with Φ− and Ψ− for some γ0 ∈ Z (θ ) . If T is pseudo-hyponormal then

Φ−ΛΨ ∈ Mn.

Proof. Immediate from Theorem 3.6. �

COROLLARY 3.8. Let Φ,Ψ ∈ L∞
Mn

be matrix-valued trigonometric polynomials
of the form

Φ(z) :=
N

∑
j=−m

Ajz
j and Ψ(z) :=

M

∑
j=−�

Bjz
j (3.8)

satisfying

(i) the outer coefficients A−m,AN ,B−� and BM are invertible;

(ii) Λ := A−mB−1
−� is a normal matrix commuting with Φ− and Ψ− .

If T := (TΦ,TΨ) is pseudo-hyponormal then

Φ−ΛΨ ∈ KzN−m+1 .
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Proof. By Lemma 3.2 and Theorem 3.3, we have N = M and m = � . Thus the
result follows from Theorem 3.6. �
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