JOINTLY HYPONORMAL BLOCK TOEPLITZ PAIRS WITH RATIONAL SYMBOLS

In Sung Hwang and An-Hyun Kim

(Communicated by I. M. Spitkovsky)

Abstract

In this paper, we are concerned with joint hyponormality of pairs of block Toeplitz operators acting on the vector-valued Hardy space $H_{\mathbb{C}^{n}}^{2}$ of the unit circle. We give a general sufficient condition for the matrix-valued rational symbols of the jointly hyponormal pair to have the same co-analytic inner parts of the coprime factorizations of the symbols and then provide some results under this sufficient condition.

1. Introduction

Let \mathscr{H} and \mathscr{K} be complex Hilbert spaces. Write $\mathscr{B}(\mathscr{H}, \mathscr{K})$ for the set of bounded linear operators from \mathscr{H} to \mathscr{K} and write $\mathscr{B}(\mathscr{H}) \equiv \mathscr{B}(\mathscr{H}, \mathscr{H})$. For $A, B \in$ $\mathscr{B}(\mathscr{H})$, we let $[A, B]$ for the commutators of A and B, i.e., $[A, B]:=A B-B A$. An operator $T \in \mathscr{B}(\mathscr{H})$ is called normal if $\left[T^{*}, T\right]=0$, is called hyponormal if $\left[T^{*}, T\right] \geqslant$ 0 , and is called subnormal if T has a normal extension, i.e., $T=\left.N\right|_{\mathscr{H}}$, where N is a normal operator on some Hilbert space $\mathscr{K} \supseteq \mathscr{H}$ such that \mathscr{H} is invariant for N. For an n-tuple $\mathbf{T} \equiv\left(T_{1}, \ldots, T_{n}\right)$ of operators on $\mathscr{H},\left[\mathbf{T}^{*}, \mathbf{T}\right] \in \mathscr{B}(\mathscr{H} \oplus \cdots \oplus \mathscr{H})$ denotes the self-commutator of \mathbf{T}, defined by

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]:=\left(\begin{array}{cccc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} & \ldots & {\left[T_{n}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]} & \ldots & {\left[T_{n}^{*}, T_{2}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[T_{1}^{*}, T_{n}\right]} & {\left[T_{2}^{*}, T_{n}\right]} & \ldots & {\left[T_{n}^{*}, T_{n}\right]}
\end{array}\right)
$$

The self-commutator for n-tuples of operators on a Hilbert space was introduced by A. Athavale [2]. By analogy with the case $n=1$, we say that \mathbf{T} is jointly hyponormal (or simply, hyponormal) if $\left[\mathbf{T}^{*}, \mathbf{T}\right]$ is a positive operator on $\mathscr{H} \oplus \cdots \oplus \mathscr{H}$. On the other hand, C. Gu, J. Hendricks and D. Rutherford [10] have considered the hyponormality of block Toeplitz operators and characterized it in terms of their symbols. In particular they showed that if T_{Φ} is a hyponormal block Toeplitz operator on the \mathbb{C}^{n}-valued Hardy space, then its symbol Φ is normal, i.e., $\Phi^{*} \Phi=\Phi \Phi^{*}$. The hyponormality of the

Keywords and phrases: Block Toeplitz operators, hyponormal, jointly hyponormal, rational functions.

Toeplitz operator T_{Φ} with arbitrary matrix-valued symbol Φ, though solved in principle by the criterion due to Gu , Hendricks and Rutherford [10], is in practice very complicated. Explicit criteria for the hyponormality of block Toeplitz operators T_{Φ} with matrix-valued trigonometric polynomials or rational functions Φ were established via interpolation problems (cf. [10], [11], [12], [13], [5]).

In this paper, we discuss joint hyponormality of pairs of block Toeplitz operators with matrix-valued rational symbols. In [6], the joint hyponormality of the Toeplitz pair $\mathbf{T} \equiv\left(T_{\varphi}, T_{\psi}\right)$ was completely characterized when both symbols φ and ψ are trigonometric polynomials. The core of the main result of [6] is that the joint hyponormality of $\mathbf{T} \equiv\left(T_{\varphi}, T_{\psi}\right)$ (φ and ψ are trigonometric polynomials) forces that the co-analytic parts of φ and ψ necessarily coincide up to a constant multiple, i.e.,

$$
\begin{equation*}
\varphi-\beta \psi \in H^{2} \text { for some } \beta \in \mathbb{C} \tag{1.1}
\end{equation*}
$$

It was shown in [5] that (1.1) is still true for matrix-valued trigonometric polynomials under some invertibility and commutativity assumptions on the Fourier coefficients of the symbols. In this paper, we give a general sufficient condition for the matrix-valued rational symbols of the jointly hyponormal pair to have the same co-analytic inner parts of the coprime factorizations of the symbols and then provide some results under this sufficient condition.

2. Preliminaries

To describe our results, we need to review a few essential facts about (block) Toeplitz operators, and for that we will use [7], [9], [14], and [15]. For an operator $T \in \mathscr{B}(\mathscr{H})$, let $\operatorname{ker} T$ and $\operatorname{ran} T$ denote the kernel and the range of T, respectively. Also, write $\mathbb{T} \equiv \partial \mathbb{D}$ for the unit circle (where \mathbb{D} denotes the open unit disk in the complex plane \mathbb{C}). Write $L^{2} \equiv L^{2}(\mathbb{T})$ for the set of square-integrable functions on \mathbb{T} and H^{2} for the corresponding Hardy space. Also $L^{\infty} \equiv L^{\infty}(\mathbb{T})$ for the set of essentially bounded measurable functions on \mathbb{T}. Let $H^{\infty}:=L^{\infty} \cap H^{2}$. Given a function $\varphi \in L^{\infty}$, the Toeplitz operator T_{φ} and the Hankel operator H_{φ} with symbol φ on H^{2} are defined by

$$
\begin{equation*}
T_{\varphi} g:=P(\varphi g) \quad \text { and } \quad H_{\varphi} g:=J P^{\perp}(\varphi g) \quad\left(g \in H^{2}\right) \tag{2.1}
\end{equation*}
$$

where P and P^{\perp} denote the orthogonal projections that map from L^{2} onto H^{2} and $\left(H^{2}\right)^{\perp}$, respectively, and J denotes the unitary operator from L^{2} onto L^{2} defined by $J(f)(z)=\bar{z} f(\bar{z})$ for $f \in L^{2}$. A function $\varphi \in L^{2}$ is said to be of bounded type if there are functions $\psi_{1}, \psi_{2} \in H^{\infty}$ such that

$$
\varphi(z)=\frac{\psi_{1}(z)}{\psi_{2}(z)} \quad \text { for almost all } z \in \mathbb{T}
$$

We recall [1, Lemma 3] that if $\varphi \in L^{\infty}$ then

$$
\begin{equation*}
\varphi \text { is of bounded type } \Longleftrightarrow \operatorname{ker} H_{\varphi} \neq\{0\} \tag{2.2}
\end{equation*}
$$

If $\varphi \in L^{\infty}$, we write

$$
\varphi_{+} \equiv P \varphi \in H^{2} \quad \text { and } \quad \varphi_{-} \equiv \overline{P^{\perp} \varphi} \in z H^{2}
$$

If φ and $\bar{\varphi}$ are of bounded type, then by the Beurling's Theorem, we may write

$$
\begin{equation*}
\varphi_{-}=\theta_{0} \bar{b} \quad \text { and } \quad \varphi_{+}=\theta_{1} \bar{a} \quad\left(a, b \in H^{2} ; \theta_{0}, \theta_{1} \text { are inner }\right) . \tag{2.3}
\end{equation*}
$$

By Kronecker's Lemma [14, p. 183], if $f \in H^{\infty}$, then

$$
\begin{equation*}
\bar{f} \text { is rational } \Longleftrightarrow f=\theta \bar{b} \text { with a finite Blaschke product } \theta \text {. } \tag{2.4}
\end{equation*}
$$

Let $M_{n \times r}$ denote the set of all $n \times r$ complex matrices and write $M_{n} \equiv M_{n \times n}$. For \mathscr{X} a Hilbert space, let $L_{\mathscr{X}}^{2} \equiv L_{\mathscr{X}}^{2}(\mathbb{T})$ be the Hilbert space of \mathscr{X}-valued norm squareintegrable measurable functions on \mathbb{T} and let $H_{\mathscr{X}}^{2} \equiv H_{\mathscr{X}}^{2}(\mathbb{T})$ be the corresponding Hardy space. We also let $L_{\mathscr{X}}^{\infty} \equiv L_{\mathscr{X}}^{\infty}(\mathbb{T})$ be the Hilbert space of \mathscr{X}-valued bounded measurable functions on \mathbb{T} and let $H_{\mathscr{X}}^{\infty} \equiv H_{\mathscr{X}}^{\infty}(\mathbb{T})=L_{\mathscr{X}}^{\infty} \cap H_{\mathscr{X}}^{2}$. If Φ is a matrix-valued function in $L_{M_{n}}^{\infty} \equiv L_{M_{n}}^{\infty}(\mathbb{T})$, then $T_{\Phi}: H_{\mathbb{C}^{n}}^{2} \rightarrow H_{\mathbb{C}^{n}}^{2}$ denotes block Toeplitz operator with symbol Φ defined by

$$
T_{\Phi} f:=P_{n}(\Phi f) \quad \text { for } f \in H_{\mathbb{C}^{n}}^{2}
$$

where P_{n} is the orthogonal projection of $L_{\mathbb{C}^{n}}^{2}$ onto $H_{\mathbb{C}^{n}}^{2}$. A block Hankel operator with symbol $\Phi \in L_{M_{n}}^{\infty}$ is an operator $H_{\Phi}: H_{\mathbb{C}^{n}}^{2} \rightarrow H_{\mathbb{C}^{n}}^{2}$ defined by

$$
H_{\Phi} f:=J_{n} P_{n}^{\perp}(\Phi f) \quad \text { for } f \in H_{\mathbb{C}^{n}}^{2}
$$

where P_{n}^{\perp} is the orthogonal projection of $L_{\mathbb{C}^{n}}^{2}$ onto $\left(H_{\mathbb{C}^{n}}^{2}\right)^{\perp}$ and J_{n} denotes the unitary operator from $L_{\mathbb{C}^{n}}^{2}$ onto $L_{\mathbb{C}^{n}}^{2}$ given by $J_{n}(f)(z):=\bar{z} I_{n} f(\bar{z})$ for $f \in L_{\mathbb{C}^{n}}^{2}$, with I_{n} the $n \times n$ identity matrix. For $\Phi \in L_{M_{n \times m}}^{\infty}$, write

$$
\widetilde{\Phi}(z):=\Phi^{*}(\bar{z})
$$

A matrix-valued function $\Theta \in H_{M_{n \times m}}^{\infty}$ is called inner if $\Theta^{*} \Theta=I_{m}$ almost everywhere on \mathbb{T}. For a matrix-valued function $\Phi \equiv\left[\varphi_{i j}\right] \in L_{M_{n}}^{\infty}$, we say that Φ is of bounded type if each entry $\varphi_{i j}$ is of bounded type, and we say that Φ is rational if each entry $\varphi_{i j}$ is a rational function. A matrix-valued trigonometric polynomial $\Phi \in L_{M_{n}}^{\infty}$ is of the form

$$
\Phi(z)=\sum_{j=-m}^{N} A_{j} z^{j}\left(A_{j} \in M_{n}\right)
$$

where A_{N} and A_{-m} are called the outer coefficients of Φ.
For a matrix-valued function $\Phi \in H_{M_{n \times r}}^{2}$, we say that $\Delta \in H_{M_{n \times m}}^{2}$ is a left inner divisor of Φ if Δ is an inner matrix function such that $\Phi=\Delta A$ for some $A \in H_{M_{m \times r}}^{2}$. We also say that two matrix functions $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{n \times m}}^{2}$ are left coprime if the only common left inner divisor of both Φ and Ψ is a unitary constant and that $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{m \times r}}^{2}$ are right coprime if $\widetilde{\Phi}$ and $\widetilde{\Psi}$ are left coprime. Two matrix
functions Φ and Ψ in $H_{M_{n}}^{2}$ are said to be coprime if they are both left and right coprime. It was known ([4, Lemma 2.1]) that if $\Theta_{i}=\theta_{i} I_{n}$ for an inner function $\theta_{i}(i \in J)$, then left-g.c.d. $\left\{\Theta_{i}: i \in J\right\}=$ right g.c.d. $\left\{\Theta_{i}: i \in J\right\}=\theta_{d} I_{n}$, where $\theta_{d}=$ g.c.d. $\left\{\theta_{i}: i \in J\right\}$ left-1.c.m. $\left\{\Theta_{i}: i \in J\right\}=$ right 1.c.l. $\left\{\Theta_{i}: i \in J\right\}=\theta_{d} I_{n}$, where $\theta_{d}=$ l.c.m. $\left\{\theta_{i}: i \in J\right\}$:
they are both diagonal-constant inner functions, i.e., diagonal inner functions, constant along the diagonal. If there is no confusion, we write δ for δI_{n} for $\delta \in L^{\infty}$.

For $\Phi \in L_{M_{n}}^{\infty}$ we write

$$
\Phi_{+}:=P_{n}(\Phi) \in H_{M_{n}}^{2} \quad \text { and } \quad \Phi_{-}:=\left[P_{n}^{\perp}(\Phi)\right]^{*} \in H_{M_{n}}^{2}
$$

Thus we can write $\Phi=\Phi_{-}^{*}+\Phi_{+}$. Suppose $\Phi=\left[\varphi_{i j}\right] \in L_{M_{n}}^{\infty}$ is such that Φ^{*} is of bounded type. Then we may write $\varphi_{i j}=\theta_{i j} \bar{b}_{i j}$, where $\theta_{i j}$ is an inner function and $\theta_{i j}$ and $b_{i j}$ are coprime. Thus if $\theta \equiv$ 1.c.m. $\left\{\theta_{i j}: i, j=1,2, \cdots, n\right\}$, then we can write

$$
\begin{equation*}
\Phi=\left[\varphi_{i j}\right]=\left[\theta_{i j} \bar{b}_{i j}\right]=\left[\theta \bar{a}_{i j}\right] \equiv \theta A^{*} \quad\left(A \equiv\left[a_{j i}\right] \in H_{M_{n}}^{\infty}\right) \tag{2.5}
\end{equation*}
$$

In particular, if $\Phi \in L_{M_{n}}^{\infty}$ is rational then the θ_{i} can be chosen as finite Blaschke products, as we observed in (2.4). By contrast with scalar-valued functions, in (2.5) θI_{n} and A need not be (right) coprime. If $\Omega=$ left-g.c.d. $\left\{A, \theta I_{n}\right\}$ in the representation (2.5):

$$
\Phi=\theta A^{*}
$$

then $\theta I_{n}=\Omega \Omega_{\ell}$ and $A=\Omega A_{\ell}$ for some inner matrix Ω_{ℓ} (where $\Omega_{\ell} \in H_{M_{n}}^{2}$ because $\operatorname{det} \theta I_{n}$ is not identically zero) and some $A_{l} \in H_{M_{n}}^{2}$. Therefore if $\Phi^{*} \in L_{M_{n}}^{\infty}$ is of bounded type then we can write

$$
\begin{equation*}
\Phi=A_{\ell}{ }^{*} \Omega_{\ell}, \quad \text { where } A_{\ell} \text { and } \Omega_{\ell} \text { are left coprime. } \tag{2.6}
\end{equation*}
$$

$A_{\ell}^{*} \Omega_{\ell}$ is called the left coprime factorization of Φ; similarly, we can write

$$
\begin{equation*}
\Phi=\Omega_{r} A_{r}^{*}, \quad \text { where } A_{r} \text { and } \Omega_{r} \text { are right coprime. } \tag{2.7}
\end{equation*}
$$

In this case, $\Omega_{r} A_{r}^{*}$ is called the right coprime factorization of Φ. As a consequence of the Beurling-Lax-Halmos Theorem, we can see that ([10, Corollary 2.5]; [4, Remark 2.2])

$$
\begin{equation*}
\Phi=\Omega_{r} A_{r}^{*} \text { (right coprime factorization) } \Longleftrightarrow \operatorname{ker} H_{\Phi^{*}}=\Omega_{r} H_{\mathbb{C}^{n}}^{2} \tag{2.8}
\end{equation*}
$$

Let $\Phi \in L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type. Then, in view of (2.7), we may write

$$
\Phi=\Theta_{+} A^{*}, \quad \Phi^{*}=\Theta_{0} B^{*} \quad \text { (right coprime factorization) }
$$

where $\Theta_{+}, \Theta_{0} \in H_{M_{n}}^{\infty}$.
For $\Phi, \Psi \in L_{M_{n}}^{\infty}$, let

$$
\left[T_{\Phi}, T_{\Psi}\right]_{p}:=H_{\Psi^{*}}^{*} H_{\Phi}-H_{\Phi^{*}}^{*} H_{\Psi} .
$$

Then $\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}$ is called the pseudo-selfcommutator of T_{Φ}. Also T_{Φ} is said to be pseudo-hyponormal if $\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}$ is positive semidefinite. Thus if T_{Φ} is pseudo-hyponormal then since

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}=H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}=H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}-H_{\Phi_{-}}^{*} H_{\Phi_{-}}
$$

it follows that $\left\|H_{\Phi_{+}^{*}} f\right\| \geqslant\left\|H_{\Phi_{-}^{*}} f\right\|$ for all $f \in H_{\mathbb{C}^{n}}^{2}$, and hence

$$
\begin{equation*}
\Theta_{+} H_{\mathbb{C}^{n}}^{2}=\operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}}=\Theta_{0} H_{\mathbb{C}^{n}}^{2} \tag{2.9}
\end{equation*}
$$

Thus by Corollary IX.2.2 of [8], Θ_{0} is a left inner divisor of Θ_{0}, i.e., $\Theta_{+}=\Theta_{0} \Theta_{1}$ for some inner function $\Theta_{1} \in H_{M_{n}}^{\infty}$. Thus, if $\Phi \in L_{M_{n}}^{\infty}$ is rational function and T_{Φ} is pseudo-hyponormal, then we can write

$$
\begin{equation*}
\Phi_{+}=\Theta_{0} \Theta_{1} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{0} B^{*} \quad \text { (right coprime factorization). } \tag{2.10}
\end{equation*}
$$

For notational convenience we write

$$
H_{0}^{2}:=z H_{M_{n}}^{2} \quad \text { and } \quad \mathscr{Z}(\theta):=\text { the set of all zeros of an inner function } \theta .
$$

On the other hand, we have [3, Lemma 3.3] that if $A \in H_{M_{n}}^{\infty}$ and θ be a finite Blaschke product, then $A(\alpha)$ is invertible for each $\alpha \in \mathscr{Z}(\theta)$ if and only if A and θI_{n} are right (or left) coprime. Thus if θ is a finite Blaschke product then we shall say that $A \in H_{M_{n}}^{\infty}$ and θI_{n} are coprime whenever they are right or left coprime. Hence if in the representation (2.10), $\Theta_{i}=\theta_{i} I_{n}(i=1,2)$ with a finite Blaschke product θ_{i} then we shall write

$$
\begin{equation*}
\Phi_{+}=\theta_{0} \theta_{1} A^{*} \quad \text { and } \quad \Phi_{-}=\theta_{0} B^{*} \quad \text { (coprime) } \tag{2.11}
\end{equation*}
$$

where $\theta_{0} \theta_{1}$ and θ_{0} are called the analytic inner part and the co-analytic inner part of the coprime factorizations, respectively. If $\Theta \in H_{M_{n}}^{\infty}$ is an inner matrix function, we write

$$
\begin{aligned}
\mathscr{H}_{\Theta} & :=H_{M_{n}}^{2} \ominus \Theta H_{M_{n}}^{2} \\
\mathscr{K}_{\Theta} & :=H_{M_{n}}^{2} \ominus H_{M_{n}}^{2} \Theta
\end{aligned}
$$

If $\Theta=\theta I_{n}$ for an inner function θ then $\mathscr{H}_{\Theta}=\mathscr{K}_{\Theta}$. If $\Theta \in H_{M_{n}}^{\infty}$ is an inner matrix function and $A \in H_{M_{n}}^{2}$, then a straightforward calculation shows that ([5, Lemma 4.4])

$$
\begin{equation*}
A \in \mathscr{K}_{\Theta} \Longleftrightarrow \Theta A^{*} \in H_{0}^{2} \tag{2.12}
\end{equation*}
$$

Notation. For a closed subspace \mathscr{X} of $H_{M_{n}}^{2}$, we write $P_{\mathscr{X}}$ for the orthogonal projection from $H_{M_{n}}^{2}$ onto \mathscr{X}. If $\Phi=\Phi_{-}^{*}+\Phi_{+} \in L_{M_{n}}^{\infty}$ and Δ_{1} and Δ_{2} are inner functions in $H_{M_{n}}^{\infty}$, write

$$
\Phi_{\Delta_{1}, \Delta_{2}}:=P_{H^{2} \perp}\left(\Phi_{-}^{*} \Delta_{1}\right)+P_{H_{0}^{2}}\left(\Delta_{2}^{*} \Phi_{+}\right)
$$

and

$$
\Phi^{\Delta_{1}, \Delta_{2}}:=P_{H^{2} \perp}\left(\Delta_{1} \Phi_{-}^{*}\right)+P_{H_{0}^{2}}\left(\Phi_{+} \Delta_{2}^{*}\right)
$$

where $H^{2} \equiv H_{M_{n}}^{2}$ and abbreviate

$$
\Phi_{\Delta} \equiv \Phi_{\Delta, \Delta} \quad \text { and } \quad \Phi^{\Delta} \equiv \Phi^{\Delta, \Delta}
$$

If $\Delta_{i}:=\delta_{i} I_{n}$ for some inner functions $\delta_{i}(i=1,2)$, then we have that $\Phi_{\Delta_{1}, \Delta_{2}}=\Phi^{\Delta_{1}, \Delta_{2}}$.

3. Main results

We begin with:
Hyponormality of Block Toeplitz Operators. ([10]) For each $\Phi \in$ $L_{M_{n}}^{\infty}$, let

$$
\mathscr{E}(\Phi):=\left\{K \in H_{M_{n}}^{\infty}:\|K\|_{\infty} \leqslant 1 \text { and } \Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}\right\} .
$$

Then T_{Φ} is hyponormal if and only if Φ is normal and $\mathscr{E}(\Phi)$ is nonempty.
We observe that if $\mathbf{T} \equiv\left(T_{\varphi}, T_{\psi}\right)$, then the self-commutator of \mathbf{T} can be expressed as:

$$
\begin{equation*}
\left[\mathbf{T}^{*}, \mathbf{T}\right]=\binom{\left[T_{\varphi}^{*}, T_{\varphi}\right]\left[T_{\psi}^{*}, T_{\varphi}\right]}{\left[T_{\varphi}^{*}, T_{\psi}\right]\left[T_{\psi}^{*}, T_{\psi}\right]}=\binom{H_{\overline{\varphi_{+}}}^{*} H_{\overline{\varphi_{+}}}-H_{\overline{\varphi_{-}}}^{*} H_{\overline{\varphi_{-}}} H_{\overline{\varphi_{+}}}^{*} H_{\overline{\psi_{+}}}-H_{\overline{\psi_{-}}}^{*} H_{\overline{\varphi_{-}}}}{H_{\overline{\psi_{+}}}^{*} H_{\overline{\varphi_{+}}}-H_{\overline{\varphi_{-}}}^{*} H_{\overline{\psi_{-}}}^{*} H_{\overline{\psi_{+}}}^{*} H_{\overline{\psi_{+}}}-H_{\overline{\psi_{-}}}^{*} H_{\overline{\psi_{-}}}} . \tag{3.1}
\end{equation*}
$$

Pairs of block Toeplitz operators will be called block Toeplitz pairs. For a block Toeplitz pair $\mathbf{T} \equiv\left(T_{\Phi}, T_{\Psi}\right)$, the pseudo-commutator of \mathbf{T} is defined by

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]_{p}:=\binom{\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}\left[T_{\Psi}^{*}, T_{\Phi}\right]_{p}}{\left[T_{\Phi}^{*}, T_{\Psi}\right]_{p}\left[T_{\Psi}^{*}, T_{\Psi}\right]_{p}}=\binom{H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}-H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}} H_{\Phi_{+}^{*}}^{*} H_{\Psi_{+}^{*}}^{*}-H_{\Psi_{-}^{*}}^{*} H_{\Phi_{-}^{*}}}{H_{\Psi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}-H_{\Phi_{-}^{*}}^{*} H_{\Psi_{-}^{*}} H_{\Psi_{+}^{*}}^{*} H_{\Psi_{+}^{*}}-H_{\Psi_{-}^{*}}^{*} H_{\Psi_{-}^{*}}} .
$$

Then $\mathbf{T}=\left(T_{\Phi}, T_{\Psi}\right)$ is said to be pseudo-(jointly) hyponormal if $\left[\mathbf{T}^{*}, \mathbf{T}\right]_{p} \geqslant 0$. Observe that if $\Phi \in L_{M_{n}}^{\infty}$ then

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]=\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}+T_{\Phi^{*} \Phi-\Phi \Phi^{*}}
$$

Thus we have
T_{Φ} is hyponormal $\Longleftrightarrow T_{\Phi}$ is pseudo-hyponormal and Φ is normal;
and (via Theorem 3.3 of [10]) T_{Φ} is pseudo-hyponormal if and only if $\mathscr{E}(\Phi) \neq \emptyset$.
Let $\Phi, \Psi \in L_{M_{n}}^{\infty}$ be matrix-valued rational functions of the form

$$
\begin{equation*}
\left.\Phi_{+}=\theta_{0} \theta_{1} A^{*}, \quad \Phi_{-}=\theta_{0} B^{*}, \quad \Psi_{+}=\theta_{2} \theta_{3} C^{*}, \quad \Psi_{-}=\theta_{2} D^{*} \quad \text { (coprime }\right) . \tag{3.2}
\end{equation*}
$$

In [5], it was shown that if the pair $\left(T_{\Phi}, T_{\Psi}\right)$ is pseudo-hyponormal and if θ_{0} and θ_{2} are not coprime then $\theta_{0}=\theta_{2}$. The following question arises at once.

Question A. Let $\mathbf{T} \equiv\left(T_{\Phi}, T_{\Psi}\right)$ be hyponormal, where Φ and Ψ are given in (3.2). If $\theta_{0}=\theta_{2}$, does it follow that $\theta_{1}=\theta_{3}$?

However, in [5], it was also shown that the answer to Question A is negative even for scalar-valued symbols. In this paper, we give a general sufficient condition for the answer to Question A to be affirmative and then provide some results under the condition that $\theta_{0}=\theta_{2}$.

The following two lemmas are needed for our main results.
Lemma 3.1. [5, Lemma 9.13] Let $\mathbf{T} \equiv\left(T_{\Phi}, T_{\Psi}\right)$ be a pseudo-hyponormal Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L_{M_{n}}^{\infty}$ of the form

$$
\left.\Phi_{+}=\theta \theta_{1} A^{*}, \quad \Phi_{-}=\theta_{0} B^{*}, \quad \Psi_{+}=\theta \theta_{3} C^{*}, \quad \Psi_{-}=\theta_{2} D^{*} \quad \text { (coprime }\right)
$$

where $\theta:=$ l.c.m. $\left(\theta_{0}, \theta_{2}\right)$. If we let $\delta:=$ g.c.d. $\left(\theta_{1}, \theta_{3}\right)$, then
$\mathbf{T}:$ pseudo-hyponormal $\Longleftrightarrow \mathbf{T}_{\Delta}:=\left(T_{\Phi^{1, \delta}}, T_{\Psi^{1, \delta}}\right)$: pseudo-hyponormal.
Lemma 3.2. [5, Corollary 9.21] (Hyponormality of Rational Block Toeplitz Pairs) Let $\mathbf{T} \equiv\left(T_{\Phi}, T_{\Psi}\right)$ be a block Toeplitz pair, where $\Phi, \Psi \in L_{M_{n}}^{\infty}$ are matrix-valued rational functions of the form

$$
\begin{equation*}
\left.\Phi_{+}=\theta_{0} \theta_{1} A^{*}, \quad \Phi_{-}=\theta_{0} B^{*}, \quad \Psi_{+}=\theta_{2} \theta_{3} C^{*}, \quad \Psi_{-}=\theta_{2} D^{*} \quad \text { (coprime }\right) . \tag{3.3}
\end{equation*}
$$

Assume that θ_{0} and θ_{2} are not coprime. Assume also that $\Lambda:=B\left(\gamma_{0}\right) D\left(\gamma_{0}\right)^{-1}$ is a normal matrix commuting with Φ_{-}and Ψ_{-}for some $\gamma_{0} \in \mathscr{Z}\left(\theta_{0}\right)$. Then the pair \mathbf{T} is hyponormal if and only if
(i) Φ and Ψ are normal and $\Phi \Psi=\Psi \Phi$;
(ii) $\Phi_{-}=\Lambda^{*} \Psi_{-}$;
(iii) $T_{\Psi^{1}, \Omega}$ is pseudo-hyponormal with $\Omega:=\theta_{0} \theta_{1} \theta_{3} \bar{\theta} \Delta^{*}$, where $\theta:=$ g.c.d. $\left\{\theta_{1}, \theta_{3}\right\}$ and $\Delta:=$ left-g.c.d. $\left\{\theta_{0} \theta I_{n}, \bar{\theta}\left(\theta_{3} A-\theta_{1} C \Lambda_{\gamma_{0}}^{*}\right)\right\}$.

Proof. This follows from a slight variation of the proof of Corollary 9.21 of [5], in which $B\left(\gamma_{0}\right)$ and $D\left(\gamma_{0}\right)$ are diagonal-constant for some $\gamma_{0} \in \mathscr{Z}\left(\theta_{0}\right)$.

If the symbols are matrix-valued trigonometric polynomials then the answer to Question A is indeed affirmative under an assumption on the outer coefficients.

THEOREM 3.3. Let $\Phi, \Psi \in L_{M_{n}}^{\infty}$ be matrix-valued trigonometric polynomials of the form

$$
\begin{equation*}
\Phi(z):=\sum_{j=-m}^{N} A_{j} z^{j} \quad \text { and } \quad \Psi(z):=\sum_{j=-\ell}^{M} B_{j} z^{j} \tag{3.4}
\end{equation*}
$$

satisfying
(i) the outer coefficients $A_{-m}, A_{N}, B_{-\ell}$ and B_{M} are invertible;
(ii) $\Lambda:=A_{-m} B_{-\ell}^{-1}$ is a normal matrix commuting with Φ_{-}and Ψ_{-}.

If $\mathbf{T} \equiv\left(T_{\Phi}, T_{\Psi}\right)$ is pseudo-hyponormal then $N=M$.

Proof. Suppose that \mathbf{T} is pseudo-hyponormal. Then T_{Φ} and T_{Ψ} are pseudohyponormal so that, by (2.10), $m \leqslant N$ and $\ell \leqslant m$. Thus it follows from Lemma 3.2 that $m=\ell$, and hence we may write

$$
\Phi_{+}=z^{m+q} A^{*}, \quad \Phi_{-}=z^{m} B^{*}, \quad \Psi_{+}=z^{m+r} C^{*}, \quad \Psi_{-}=z^{m} D^{*} \quad \text { (coprime) }
$$

where $m \geqslant 1, q \geqslant 0$ and $r \geqslant 0$. By Lemma 3.1, we may also assume that $r=0$. Put

$$
\Delta:=\text { left-g.c.d. }\left\{z^{m} I_{n}, A-z^{q} C \Lambda^{*}\right\}
$$

where $\Lambda:=A_{-m} B_{-m}^{-1}=B(0) D(0)^{-1}$. Then it follows from Lemma 3.2 that $T_{\Psi^{1, \Omega}}$ is pseudo-hyponormal with $\Omega:=z^{m+q} \Delta^{*}$. We want to show that $q=0$. Assume to the contrary that $q \neq 0$. Since $\left(A-z^{q} C \Lambda^{*}\right)(0)=A(0)=A_{N}^{*}$ is invertible, it follows that Δ is a constant unitary. Observe that

$$
\begin{equation*}
H_{\left(\Psi^{1, \Omega}\right)_{+}^{*}}=H_{\left[P_{H_{0}^{2}\left(\Psi_{+} \Omega^{*}\right)^{*}}\right]^{*}}=H_{\Omega \Psi_{+}^{*}}=H_{z^{q} \Delta^{*} C}=0 . \tag{3.5}
\end{equation*}
$$

It thus follows from (2.9) that

$$
z^{m} H_{\mathbb{C}_{n}}^{2}=\operatorname{ker} H_{\left(\Psi^{1, \Omega}\right)_{-}^{*}} \supseteq \operatorname{ker} H_{\left(\Psi^{1, \Omega}\right)_{+}^{*}}=H_{\mathbb{C}^{n}}^{2}
$$

a contradiction. Therefore we must have $q=0$. This comletes the proof.
Even when the analytic inner parts of the coprime factorizations of the symbols are not equal for a pseudo-hyponormal pair with rational symbols having the same coanalytic inner parts, we are interested in finding a general sufficient condition for the rational symbols Φ and Ψ of the pseudo-hyponormal pair $\mathbf{T}:=\left(T_{\Phi}, T_{\Psi}\right)$ to have the same analytic inner parts.

THEOREM 3.4. Let $\mathbf{T} \equiv\left(T_{\Phi}, T_{\Psi}\right)$ be a block Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L_{M_{n}}^{\infty}$ of the form

$$
\Phi_{+}=\theta_{0} \theta_{1} A^{*}, \quad \Phi_{-}=\theta_{0} B^{*}, \quad \Psi_{+}=\theta_{0} \theta_{3} C^{*}, \quad \Psi_{-}=\theta_{0} D^{*} \quad \text { (coprime) }
$$

Suppose $\Lambda \equiv \Lambda_{\gamma_{0}}:=B\left(\gamma_{0}\right) D\left(\gamma_{0}\right)^{-1}$ is a normal matrix commuting with Φ_{-}and Ψ_{-} for some $\gamma_{0} \in \mathscr{Z}\left(\theta_{0}\right)$. If \mathbf{T} is pseudo-hyponormal and $\delta:=\operatorname{GCD}\left\{\theta_{1}, \theta_{3}\right\}$, then $\left(\theta_{1} \bar{\delta}\right)\left(\theta_{3} \bar{\delta}\right)$ and θ_{0} are coprime.

Proof. Assume that T is pseudo-hyponormal. By Lemma 3.1, we may assume that θ_{1} and θ_{3} are coprime. We want to show that $\theta_{1} \theta_{3}$ and θ_{0} are coprime. Write

$$
\theta_{0}=\prod_{j=1}^{d_{0}} b_{\alpha_{j}}^{p_{j}}, \quad \theta_{1}=\prod_{j=1}^{d_{1}} b_{\beta_{j}}^{n_{j}}, \quad \theta_{3}=\prod_{j=1}^{d_{3}} b_{\gamma_{j}}^{m_{j}} \quad\left(p_{j}, n_{j}, m_{j} \geqslant 1\right)
$$

where $b_{\lambda}(z):=\frac{z-\lambda}{1-\bar{\lambda} z}(\lambda \in \mathbb{D})$. Assume to the contrary that $\theta_{1} \theta_{3}$ and θ_{0} are not coprime. Without loss of generality, we may assume that $\alpha_{1}=\beta_{1}$. Let

$$
\omega:=\theta_{0} \theta_{1} \theta_{3} b_{\beta_{1}}^{-\left(p_{1}+n_{1}\right)}
$$

Since \mathbf{T} is pseudo-hyponormal, it follows from [5, Lemma 9.8] that $\left(T_{\Phi_{\omega}}, T_{\Psi_{\omega}}\right)$ is pseudo-hyponormal. Write

$$
b \equiv b_{\beta_{1}} \quad \text { and } \quad \delta \equiv \theta_{1} b^{-n_{1}}=\prod_{j=2}^{d_{1}} b_{\beta_{j}}^{n_{j}}
$$

Observe that

$$
\left(\Phi_{\omega}\right)_{-}^{*}=P_{H^{2 \perp}}\left(B \theta_{1} \theta_{3} b^{-\left(p_{1}+n_{1}\right)}\right)=P_{H^{2 \perp}}\left(B \delta \theta_{3} b^{-p_{1}}\right)=b^{-p_{1}}\left[P_{\mathscr{K}_{b} p_{1}}\left(\delta \theta_{3} B\right)\right]
$$

We thus have

$$
\left(\Phi_{\omega}\right)_{-}=b^{p_{1}}\left[P_{\mathscr{K}_{b} p_{1}}\left(\delta \theta_{3} B\right)\right]^{*} \quad(\text { coprime })
$$

Similarly, we have the following right coprime factorizations:

$$
\begin{aligned}
\left(\Phi_{\omega}\right)_{+} & =b^{\left(p_{1}+n_{1}\right)}\left[P_{\mathscr{K}_{b}\left(p_{1}+n_{1}\right)}\left(\theta_{3} A\right)\right]^{*} \\
\left(\Psi_{\omega}\right)_{-} & =b^{p_{1}}\left[P_{\mathscr{K}_{b_{1}}}\left(\delta \theta_{3} D\right)\right]^{*} \\
\left(\Psi_{\omega}\right)_{+} & =b^{p_{1}}\left[P_{\mathscr{K}_{b} p_{1}}(\delta C)\right]^{*}
\end{aligned}
$$

Now we will show that

$$
\Lambda \text { commutes with }\left(\Phi_{\omega}\right)_{-} \text {and }\left(\Psi_{\omega}\right)_{-}
$$

Since Λ is a normal matrix commuting with Φ_{-}and Ψ_{-}, it follows from the FugledePutnam Theorem that Λ commutes with B and D and hence Λ commutes with $\delta \theta_{3} B$ and $\delta \theta_{3} D$. Write

$$
B_{1} \equiv \delta \theta_{3} B-P_{\mathscr{K}_{b} p_{1}}\left(\delta \theta_{3} B\right)
$$

Then $B_{1} \in b^{p_{1}} H_{M_{n}}^{2}$. Thus we can write $B_{1}=b^{p_{1}} B_{2}$ for some $B_{2} \in H_{M_{n}}^{2}$. Since Λ commutes with $\delta \theta_{3} B$ and $\delta \theta_{3} D$, we have that

$$
\begin{equation*}
\Lambda P_{\mathscr{K}_{b^{p_{1}}}}\left(\delta \theta_{3} B\right)+b^{p_{1}} \Lambda B_{2}=P_{\mathscr{K}_{b} p_{1}}\left(\delta \theta_{3} B\right) \Lambda+b^{p_{1}} B_{2} \Lambda \tag{3.6}
\end{equation*}
$$

But since Λ is a constant matrix, it follows from (2.12) that $\Lambda P_{\mathscr{K}_{b} p_{1}}\left(\delta \theta_{3} B\right)$ and $P_{\mathscr{K}_{b} p_{1}}\left(\delta \theta_{3} B\right) \Lambda$ are in $\mathscr{K}_{b p_{1}}$. Thus by (3.6), we have that Λ commutes with $\left(\Phi_{\omega}\right)_{-}$. Similarly, we also have that Λ commutes with $\left(\Psi_{\omega}\right)_{-}$. Since Λ is a normal matrix commuting with Φ_{-}and Ψ_{-}, it follows from Lemma 3.2 that $\Phi_{-}=\Lambda^{*} \Psi_{-}$and hence $\Lambda=B\left(\beta_{1}\right) D\left(\beta_{1}\right)^{-1}$. We now apply Lemma 3.2. To do so, let

$$
\Delta:=\text { left-g.c.d. }\left\{b^{p_{1}} I_{n}, P_{\mathscr{K}_{(}\left(p_{1}+n_{1}\right)}\left(\theta_{3} A\right)-b^{n_{1}} P_{\mathscr{K}_{b} p_{1}}(\delta C) \Lambda^{*}\right\}
$$

Put $\Omega:=b^{p_{1}+n_{1}} \Delta^{*}$. Since $\left(T_{\Phi_{\omega}}, T_{\Psi_{\omega}}\right)$ is pseudo-hyponormal it follows from Lemma 3.2 that T_{Υ} is pseudo-hyponormal with $\Upsilon=\left(\Psi_{\omega}\right)^{1, \Omega}$. It thus follows from (2.9) that $n_{1}=0$, a contradiction. This completes the proof.

We now have:
Corollary 3.5. Let $\mathbf{T} \equiv\left(T_{\Phi}, T_{\Psi}\right)$ be a block Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L_{M_{n}}^{\infty}$ of the form

$$
\left.\Phi_{+}=\theta_{0} \theta_{1} A^{*}, \quad \Phi_{-}=\theta_{0} B^{*}, \quad \Psi_{+}=\theta_{0} \theta_{3} C^{*}, \quad \Psi_{-}=\theta_{0} D^{*} \quad \text { (coprime }\right)
$$

Suppose $\Lambda \equiv \Lambda_{\gamma_{0}}:=B\left(\gamma_{0}\right) D\left(\gamma_{0}\right)^{-1}$ is a normal matrix commuting with Φ_{-}and Ψ_{-}for some $\gamma_{0} \in \mathscr{Z}\left(\theta_{0}\right)$. If \mathbf{T} is pseudo-hyponormal and $\mathscr{Z}\left(\theta_{1} \theta_{3}\right) \subseteq \mathscr{Z}\left(\theta_{0}\right)$, then $\theta_{1}=\theta_{3}$.

Proof. If $\theta_{1} \neq \theta_{3}$ and $\mathscr{Z}\left(\theta_{1} \theta_{3}\right) \subseteq \mathscr{Z}\left(\theta_{0}\right)$, then $\theta_{1} \theta_{3} \overline{\text { g.c.d. }\left\{\theta_{1}, \theta_{3}\right\}}{ }^{2}$ and θ_{0} have a common zero, which is a contradiction by Theorem 3.4.

If the matrix-valued rational symbols Φ and Ψ have the same co-analytic and analytic inner parts of the coprime factorizations, we get a general necessary condition for the pseudo-hyponormality of the pair $\mathbf{T}:=\left(T_{\Phi}, T_{\Psi}\right)$.

THEOREM 3.6. Let $\mathbf{T} \equiv\left(T_{\Phi}, T_{\Psi}\right)$ be a block Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L_{M_{n}}^{\infty}$ of the form

$$
\left.\Phi_{+}=\theta_{0} \theta_{1} A^{*}, \quad \Phi_{-}=\theta_{0} B^{*}, \quad \Psi_{+}=\theta_{0} \theta_{1} C^{*}, \quad \Psi_{-}=\theta_{0} D^{*} \quad \text { (coprime }\right)
$$

Suppose $\Lambda \equiv \Lambda_{\gamma_{0}}:=B\left(\gamma_{0}\right) D\left(\gamma_{0}\right)^{-1}$ is a normal matrix commuting with Φ_{-}and Ψ_{-} for some $\gamma_{0} \in \mathscr{Z}\left(\theta_{0}\right)$. If \mathbf{T} is pseudo-hyponormal then

$$
\Phi-\Lambda \Psi \in \mathscr{K}_{z \theta_{1}}
$$

Proof. By Lemma 3.1, $\mathbf{T}_{\Theta_{1}}:=\left(T_{\Phi^{1, \theta_{1}}}, T_{\Psi^{1, \theta_{1}}}\right)$ is pseudo-hyponormal. We can write

$$
\Phi_{+}^{1, \theta_{1}}=\theta_{0} A_{0}^{*} \quad \text { and } \quad \Psi_{+}^{1, \theta_{1}}=\theta_{0} C_{0}^{*} \quad(\text { coprime })
$$

where $A_{0}:=P_{\mathscr{K}_{\theta_{0}}} A$ and $C_{0}:=P_{\mathscr{K}_{\theta_{0}}} C$. It follows from Lemma 3.2 that T_{Υ} is pseudohyponormal with

$$
\Upsilon:=\Psi_{-}^{*}+P_{H_{0}^{2}}\left(\Psi_{+}^{1, \theta_{1}} \Omega^{*}\right) \quad\left(\Omega:=\theta_{0} \Delta^{*}\right)
$$

where $\Delta:=$ left-g.c.d. $\left\{\theta_{0} I_{n}, A_{0}-C_{0} \Lambda^{*}\right\}$. We claim that

$$
\begin{equation*}
\Delta=\theta_{0} I_{n} \quad(\text { up to a constant unitary }) \tag{3.7}
\end{equation*}
$$

Observe that

$$
\Upsilon_{+}^{*}=\left(P_{H_{0}^{2}}\left(\Psi_{+}^{1, \theta_{1}} \Omega^{*}\right)\right)^{*}=P_{H^{2 \perp}}\left(\Delta^{*} C_{0}\right)
$$

Since T_{Υ} is pseudo-hyponormal, it follows from (2.9) that

$$
\theta_{0} H_{\mathbb{C}_{n}}^{2}=\operatorname{ker} H_{\Psi_{-}^{*}}=\operatorname{ker} H_{\Upsilon_{-}^{*}} \supseteq \operatorname{ker} H_{\Upsilon_{+}^{*}}=\operatorname{ker} H_{\Delta^{*} C_{0}}=\Delta H_{\mathbb{C}^{n}}^{2}
$$

which implies (3.7). Also since Δ is a left inner divisor of $A_{0}-C_{0} \Lambda^{*}$, it follows that

$$
A_{0}-C_{0} \Lambda^{*} \in \theta_{0} H_{M_{n}}^{2}
$$

But since Λ is a constant matrix and $C_{0} \in \mathscr{K}_{\theta_{0}}$ it follows from (2.12) that $C_{0} \Lambda^{*} \in \mathscr{K}_{\theta_{0}}$, and hence $A_{0}-C_{0} \Lambda^{*} \in \mathscr{K}_{\theta_{0}}$. Therefore,

$$
A_{0}-C_{0} \Lambda^{*} \in \theta_{0} H_{M_{n}}^{2} \bigcap \mathscr{K}_{\theta_{0} I_{n}}=\{0\}
$$

which implies $A_{0}=C_{0} \Lambda^{*}$. Put $A_{1}:=A-A_{0}$, and $C_{1}:=C-C_{0}$. Then $A_{1}, C_{1} \in \theta_{0} H_{M_{n}}^{2}$. Thus $A_{1}=\theta_{0} A_{2}$ and $C_{1}=\theta_{0} C_{2}$ for some $A_{2}, C_{2} \in H_{M_{n}}^{2}$. Then

$$
\begin{aligned}
\Phi_{+}-\Lambda \Psi_{+} & =\theta_{0} \theta_{1}\left(A_{0}^{*}+A_{1}^{*}\right)-\theta_{0} \theta_{1} \Lambda\left(C_{0}^{*}+C_{1}^{*}\right) \\
& =\theta_{0} \theta_{1}\left(A_{1}^{*}-\Lambda C_{1}^{*}\right) \quad\left(\text { since } A_{0}^{*}=\Lambda C_{0}^{*}\right) \\
& =\theta_{0} \theta_{1}\left(\overline{\theta_{0}} A_{2}^{*}-\overline{\theta_{0}} \Lambda C_{2}^{*}\right) \\
& =\theta_{1}\left(A_{2}-C_{2} \Lambda^{*}\right)^{*}
\end{aligned}
$$

We thus have

$$
z \theta_{1}\left(\Phi_{+}-\Lambda \Psi_{+}\right)^{*}=z\left(A_{2}-C_{2} \Lambda^{*}\right) \in H_{0}^{2}
$$

which implies, by (2.12), $\Phi_{+}-\Lambda \Psi_{+} \in \mathscr{K}_{z \theta_{1}}$. Since Λ is a normal amtrix commuting with Φ_{-}and Ψ_{-}, it follows from Lemma 3.2 that

$$
\Phi-\Lambda \Psi=\Phi_{-}^{*}-\Lambda \Psi_{-}^{*}+\Phi_{+}-\Lambda \Psi_{+}=\Phi_{+}-\Lambda \Psi_{+} \in \mathscr{K}_{z \theta_{1}}
$$

which proves the theorem.
As we will see in the next result, if the analytic and co-analytic inner parts of the coprime factorizations of the rational symbols are equal then two symbols coincide up to a constant matrix under the assumption of pseudo-hyponormality.

Corollary 3.7. Let $\mathbf{T} \equiv\left(T_{\Phi}, T_{\Psi}\right)$ be a block Toeplitz pair with matrix-valued rational symbols $\Phi, \Psi \in L_{M_{n}}^{\infty}$ of the form

$$
\Phi_{+}=\theta A^{*}, \quad \Phi_{-}=\theta B^{*}, \quad \Psi_{+}=\theta C^{*}, \quad \Psi_{-}=\theta D^{*} \quad \text { (coprime factorizations) }
$$

where θ is a finite Blaschke product. Suppose $\Lambda:=B\left(\gamma_{0}\right) D\left(\gamma_{0}\right)^{-1}$ is a normal matrix commuting with Φ_{-}and Ψ_{-}for some $\gamma_{0} \in \mathscr{Z}(\theta)$. If \mathbf{T} is pseudo-hyponormal then

$$
\Phi-\Lambda \Psi \in M_{n}
$$

Proof. Immediate from Theorem 3.6.
Corollary 3.8. Let $\Phi, \Psi \in L_{M_{n}}^{\infty}$ be matrix-valued trigonometric polynomials of the form

$$
\begin{equation*}
\Phi(z):=\sum_{j=-m}^{N} A_{j} z^{j} \quad \text { and } \quad \Psi(z):=\sum_{j=-\ell}^{M} B_{j} z^{j} \tag{3.8}
\end{equation*}
$$

satisfying
(i) the outer coefficients $A_{-m}, A_{N}, B_{-\ell}$ and B_{M} are invertible;
(ii) $\Lambda:=A_{-m} B_{-\ell}^{-1}$ is a normal matrix commuting with Φ_{-}and Ψ_{-}.

If $\mathbf{T}:=\left(T_{\Phi}, T_{\Psi}\right)$ is pseudo-hyponormal then

$$
\Phi-\Lambda \Psi \in \mathscr{K}_{z^{N-m+1}}
$$

Proof. By Lemma 3.2 and Theorem 3.3, we have $N=M$ and $m=\ell$. Thus the result follows from Theorem 3.6.

Acknowledgement. The work of the first named author was supported by NRF (Korea) grant No. NRF-2016R1A2B4012378. The work of the second author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A3A01016258).

REFERENCES

[1] M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597-604.
[2] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), 417-423.
[3] R. E. Curto, I. S. Hwang and W. Y. Lee, Which subnormal Toeplitz operators are either normal or analytic?, J. Funct. Anal. 263 (8) (2012), 2333-2354.
[4] R. E. Curto, I. S. Hwang and W. Y. Lee, Hyponormality and subnormality of block Toeplitz operators, Adv. Math. 230 (2012), 2094-2151.
[5] R. E. Curto, I. S. Hwang and W. Y. Lee, Matrix functions of bounded type: An interplay between function theory and operator theory, Memoirs Amer. Math. Soc. (to appear), x+106 pp., Amer. Math. Soc., Providence (in press) (arXiv:1611.06462).
[6] R. E. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. 712, Amer. Math. Soc., Providence, 2001.
[7] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
[8] C. Foiaş and A. Frazho, The commutant lifting approach to interpolation problems, Oper. Th. Adv. Appl. vol. 44, Birkhäuser, Boston, 1993.
[9] I. Gohberg, S. Goldberg, and M. A. KaAshoek, Classes of Linear Operators, vol. II, Basel, Birkhäuser, 1993.
[10] C. Gu, J. Hendricks and D. Rutherford, Hyponormality of block Toeplitz operators, Pacific J. Math. 223 (2006), 95-111.
[11] I. S. Hwang and W. Y. Lee, Block Toeplitz Operators with rational symbols, J. Phys. A: Math. Theor. 41 (18) (2008), 185-207.
[12] I. S. Hwang and W. Y. Lee, Block Toeplitz Operators with rational symbols (II), J. Phys. A: Math. Theor. 41 (38) (2008), 185-206.
[13] I. S. HWang and W. Y. Lee, Joint hyponormality of rational Toeplitz pairs, Integral Equations Operator Theory 65 (2009), 387-403, erratum 69 (2011), 445-446.
[14] N. K. Nikolski, Treatise on the Shift Operator, Springer, New York, 1986.
[15] V. V. Peller, Hankel Operators and Their Applications, Springer, New York, 2003.

> In Sung Hwang
> Department of Mathematics Sungkyunkwan University Suwon 440-746, Korea
> e-mail: ihwang@skku. edu
> An-Hyun Kim
> Department of Mathematics
> Changwon National University Changwon 641-773, Korea
> e-mail: ahkim@changwon. ac. kr

