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Abstract. Let H1,H2 be complex Hilbert spaces and T be a densely defined closed linear oper-
ator (not necessarily bounded). It is proved that for each ε > 0 , there exists a bounded operator
S with ‖S‖ � ε such that T + S is minimum attaining. Further, if T is bounded below, that is
if there exists m > 0 such that ‖Tx‖ � m‖x‖ for every x in the domain of T , then S can be
chosen to be rank one.

1. Introduction

It is well known that the set of all norm attaining operators defined between two
complex Hilbert spaces is norm dense in the space of all bounded linear operators de-
fined between complex Hilbert spaces. This result is even true for operators defined
between Banach spaces, when the domain space is reflexive, which is proved by Lin-
denstrauss [14]. A simple proof of this fact, in the case of Hilbert space operators is
given by Enflo et al. in [6]. Moreover, the authors proved that rank one perturbation of
a bounded operator can be made as norm attaining operator.

Similar to the norm attaining operators, bounded operators that attain their mini-
mum modulus is introduced in [5]. The unbounded case is dealt in [13] and the authors
established basic properties of minimum attaining closed densely defined operators.

It is very natural to ask whether the Lindenstrauss theorem is true in case of min-
imum attaining operators. In this article we answer this question affirmatively. We
show that the set of all minimum attaining densely defined closed operators is dense
in the class of densely defined closed operators with respect to the gap metric. As a
consequence, we can conclude that the same is true for bounded operators with respect
to the operator norm. In a special case, we also show that rank one perturbations lead
to minimum attaining operators. This leads to the perturbations of minimum attaining
operators.

In the second section we recall some basic definitions and results which we need
for proving our main results. In the third section we prove the Lindenstrauss type
theorem for minimum attaining operators.
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2. Notations and preliminaries

Throughout we consider infinite dimensional complex Hilbert spaces which will
be denoted by H,H1,H2 etc. The inner product and the induced norm are denoted by
〈·〉 and ||.|| , respectively. The closure of a subspace M of H is denoted by M . We
denote the unit sphere of M by SM = {x ∈ M : ‖x‖ = 1} .

If M is a closed subspace of a Hilbert space H , then PM denotes the orthogonal
projection PM : H → H with range M .

Let T be a linear operator with domain D(T ) (a subspace of H1 ) and taking values
in H2 . If D(T ) is dense in H1 , then T is called a densely defined operator. The graph
G(T ) of T is defined by G(T ) := {(x,Tx) : x ∈ D(T )} ⊆ H1 ×H2 . If G(T ) is closed,
then T is called a closed operator. Equivalently, T is closed if (xn) is a sequence in
D(T ) such that xn → x ∈ H1 and Txn → y ∈ H2 , then x ∈ D(T ) and Tx = y .

For a densely defined linear operator T , there exists a unique linear operator (in
fact, a closed operator) T ∗ : D(T ∗) → H1 , with

D(T ∗) := {y ∈ H2 : x 	→ 〈Tx,y〉 for allx ∈ D(T ) is continuous} ⊆ H2

satisfying

〈Tx,y〉 = 〈x,T ∗y〉 for all x ∈ D(T ) and y ∈ D(T ∗).

We say T to be bounded if there exists M > 0 such that ‖Tx‖ � M‖x‖ for all
x ∈ D(T ) . Note that if T is densely defined and bounded then T can be extended to
whole of H1 in a unique way.

By the closed graph Theorem, an everywhere defined closed operator is bounded.
Hence the domain of an unbounded closed operator is a proper subspace of a Hilbert
space.

The space of all bounded linear operators between H1 and H2 is denoted by
B(H1,H2) and the class of all closed linear operators between H1 and H2 is denoted
by C (H1,H2) . We write B(H,H) = B(H) and C (H,H) = C (H) .

If T ∈ B(H1,H2) is such that for every bounded sequence (xn) of H1 , (Txn) has
a convergent subsequence in H2 , then T is called a compact operator. Equivalently, T
is compact if and only if for every bounded set B of H1 , T (B) is pre compact in H2 .

If T ∈ C (H1,H2) , then the null space and the range space of T are denoted by
N(T ) and R(T ) , respectively and the space C(T ) := D(T )∩N(T )⊥ is called the carrier
of T . In fact, D(T ) = N(T )⊕⊥C(T ) [3, Page 340]. Here ⊕⊥ denote the orthogonal
direct sum of subspaces.

Let S,T ∈ C (H) be densely defined operators with domains D(S) and D(T ) ,
respectively. Then S + T is an operator with domain D(S + T ) = D(S)∩D(T ) de-
fined by (S + T )(x) = Sx + Tx for all x ∈ D(S + T ) . The operator ST has the do-
main D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)} and is defined as (ST )(x) = S(Tx) for all
x ∈ D(ST ) .
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If S and T are closed operators with the property that D(T ) ⊆ D(S) and Tx = Sx
for all x ∈ D(T ) , then S is called the restriction of T and T is called an extension of
S .

A densely defined operator T ∈ C (H) is said to be

1. normal if T ∗T = TT ∗

2. self-adjoint if T = T ∗

3. positive if T = T ∗ and 〈Tx,x〉 � 0 for all x ∈ D(T ) .

Let V ∈ B(H1,H2) . Then V is called

1. an isometry if ‖Vx‖ = ‖x‖ for all x ∈ H1

2. a partial isometry if V |N(V )⊥ is an isometry. The space N(V )⊥ is called the
initial space or the initial domain and the space R(V ) is called the final space or
the final domain of V .

DEFINITION 2.1. Let T ∈ B(H1,H2) . Then T is said to be norm attaining if
there exists x0 ∈ SH1 ⊆ H1 such that ‖Tx0‖ = ‖T‖ .

An analogous concept to the norm of an operator is the minimum modulus of an
operator. This concept was introduced in [7].

DEFINITION 2.2. [7] Let T ∈ C (H1,H2) be densely defined. Then

m(T ) = inf{‖Tx‖ : x ∈ SD(T )}
is called the minimum modulus of T .

DEFINITION 2.3. Let T ∈ C (H1,H2) be densely defined. Then T is said to be
bounded below if there exists m > 0 such that ‖Tx‖ � m‖x‖ for all x ∈ D(T ) .

REMARK 2.4.

1. This definition of bounded below operators is analogous to the usual definition
given in Functional Analysis books (for example [1, Definition 2.1, Page 69] )
for the case of bounded operators.

2. It is easy to see that T is bounded below if and only if m(T ) > 0. In this case
m(T ) = sup{m > 0 : ‖Tx‖ � m‖x‖, for all x ∈ D(T )} .

3. T is bounded below if and only R(T ) is closed and T is one-to-one.

If T ∈ C (H1,H2) is densely defined and one-to-one, then the inverse operator
is the linear operator from H2 into H1 with D(T−1) = R(T ) and T−1Tx = x for all
x ∈D(T ) . In this case we say T is invertible and R(T−1) = D(T ) (see [20, Page 4] for
details). In particular, if T is one-to-one and onto, then T−1 is defined on whole of H2

and is continuous by the closed graph theorem.
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Note that if T ∈ C (H) is normal, then T has a bounded inverse if and only if
m(T ) > 0.

DEFINITION 2.5. [13, Definition 3.1] Let T ∈ C (H1,H2) be densely defined.
Then we say T to be minimum attaining if there exists x0 ∈ SD(T ) such that ‖Tx0‖ =
m(T ) .

We denote the class of minimum attaining densely defined closed operators be-
tween H1 and H2 by Mc(H1,H2) and Mc(H,H) by Mc(H) .

NOTE 2.6. If T ∈ C (H1,H2) is densely defined and N(T ) = {0} , then m(T ) = 0
and there exists x ∈ SN(T ) such that Tx = 0. Hence T ∈ Mc(H1,H2) .

THEOREM 2.7. [19, Theorem 13.31, Page 369][4, Theorem 4, Page 144] Let T ∈
C (H) be densely defined and positive. Then there exists a unique positive operator S
such that T = S2 . The operator S is called the square root of T and is denoted by
S = T

1
2 .

For T ∈ C (H1,H2) densely defined, the operator |T | := (T ∗T )
1
2 is called the

modulus of T . Moreover, D(|T |) = D(T ), N(|T |) = N(T ) and R(|T |) = R(T ∗) .
As ‖Tx‖ = ‖|T |x‖ for all x ∈ D(T ) , we can conclude that m(T ) = m(|T |) and T ∈
Mc(H1,H2) if and only if |T | ∈ Mc(H1) .

THEOREM 2.8. [4, Theorem 2, Page 184] Let T ∈ C (H1,H2) be densely defined.
Then there exists a unique partial isometry V : H1 → H2 with the initial space R(T ∗)
and the final space R(T ) such that T = V |T | .

DEFINITION 2.9. [19, Definition 13.26, Theorem 13.27, Page 365–366] Let T ∈
C (H) be densely defined. The resolvent of T is defined by

ρ(T ) := {λ ∈ C : T −λ I : D(T ) → H is invertible and (T −λ I)−1 ∈ B(H)}
and

σ(T ) : = C\ρ(T)
σp(T ) : = {λ ∈ C : T −λ I : D(T ) → H is not one-to-one},

are called the spectrum and the point spectrum of T , respectively.

A formula to compute the minimum modulus of a densely defined closed operator
is given as follows.

PROPOSITION 2.10. [13, Proposition 3.3] Let T ∈ C (H) be normal. Then

m(T ) = d(0,σ(T )),

where d(x,A) denote the distance between the point x and the set A.
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REMARK 2.11. If T ∈ C (H) is normal, then σ(T ) is closed (the details can be
found in [20, Proposition 2.6(ii), Page 29]). Hence by Proposition (2.10), it is clear that
there exists a λ ∈ σ(T ) such that |λ | = m(T ) .

DEFINITION 2.12. [20, Definition 8.3 Page 178] Let T = T ∗ ∈ C (H) . Then the
discrete spectrum σd(T ) of T is defined as the set of all eigenvalues of T with finite
multiplicities which are isolated points of the spectrum σ(T ) of T . The complement
set σess(T ) := σ(T )\σd(T ) is called the essential spectrum of T .

The essential spectrum is stable under compact perturbations.

PROPOSITION 2.13. (Weyl’s theorem) [20, Corollary 8.16, Page 182] Let T ∈
C (H) be self-adjoint and C is compact, self-adjoint. Then σess(T +C) = σess(T ) .

LEMMA 2.14. [8, 9, 16] Let T ∈ C (H1,H2) be densely defined. Denote Ť =
(I +T ∗T )−1 and T̂ = (I +TT ∗)−1 . Then

1. Ť ∈ B(H1) , T̂ ∈ B(H2)

2. T̂T ⊆ T Ť , ||T Ť || � 1
2

and ŤT ∗ ⊆ T ∗T̂ , ||T ∗T̂ || � 1
2

3. if g : [0,1] → C is a continuous function, then

(a) T ∗g(T̂ )y = g(Ť )T ∗y for all y ∈ D(T ∗)
(b) Tg(Ť )x = g(T̂ )Tx for all x ∈ D(T ) .

2.1. Gap metric

The gap between closed subspaces M and N of H is defined by θ (M,N) :=
‖PM −PN‖ . This defines a metric on the class of closed subspaces of H , known as the
gap metric. The topology induced by the gap metric is known as the gap topology. We
have the following alternative formula for the gap;

θ (M,N) := max
{
||PM(I−PN)||, ||PN(I−PM)||

}
.

For the details we refer to [2, Page 70].
Let A,B ∈ C (H1,H2) be densely defined. Then G(A) and G(B) are closed sub-

spaces of H1 ×H2 . The gap between A and B is defined as

θ (A,B) = ‖PG(A)−PG(B)‖,
where PM : H1 ×H2 → H1 ×H2 , is an orthogonal projection onto the closed subspace
M of H1 ×H2 . This defines a metric on the class of closed operators and induced
topology is known as the gap topology. The gap topology restricted to the space of
bounded linear operators coincides with the norm topology. Also the convergence with
respect to the gap metric on the set of self-adjoint bounded operators coincide with the
resolvent convergence [18, Chapter VII, Page 235]).

We have the following formula for the gap between two closed operators;
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THEOREM 2.15. [12, Theorem 3.5] Let S,T ∈ C (H1,H2) be densely defined.

Then the operators T̂
1
2 SŠ

1
2 , T Ť

1
2 Š

1
2 , SŠ

1
2 Ť

1
2 and Ŝ

1
2 T Ť

1
2 are bounded and

θ (S,T ) = max
{∥∥∥T Ť

1
2 Š

1
2 − T̂

1
2 SŠ

1
2

∥∥∥ ,
∥∥∥SŠ

1
2 Ť

1
2 − Ŝ

1
2 T Ť

1
2

∥∥∥}
. (2.1)

3. Denseness of minimum attaining operators

In this section we discuss the denseness of minimum attaining operators. First let
us consider the case of functionals:

Let H be a Hilbert space and φ : H → C be a non zero linear functional. Then φ
is continuous (bounded) if and only if φ is closed. Since H is infinite dimensional and
H/N(φ) is isomorphic with C , we can clearly conclude that N(φ) = {0} . Hence φ is
minimum attaining. Thus, the class of minimum attaining bounded linear functionals
coincide with the space of all bounded linear functionals. So in this case, the minimum
attaining functionals are dense. If H is finite dimensional, then clearly every linear
functional is minimum attaining. Hence in this case also the result holds trivially.

In the above discussion we can replace Hilbert space by a Banach space. By a
theorem of James we can conclude that a normed linear space X is reflexive if and only
if every non zero bounded linear functional is norm attaining (see [10, 11] for details
). This is no more true if we replace the norm attaining property of functionals by
minimum attaining property, as we have noted in the above paragraph.

Now we consider the case of densely defined closed operators defined between
two different Hilbert spaces. We prove that the set of all minimum attaining densely
defined closed operators defined between two Hilbert spaces is dense in the class of all
densely defined closed operators with respect to the gap metric. To prove this we need
the following result, which is proved in [17, Remark 3.7, Corollary 3.9] for regular
operators defined between two Hilbert C∗ -modules. For the sake of completeness, we
provide the details here.

THEOREM 3.1. Let S,T ∈C (H1,H2) be densely defined and D(S) = D(T ) . Then

1. the operators T̂
1
2 (T −S)Š

1
2 and Ŝ

1
2 (S−T )Ť

1
2 are bounded and

θ (S,T ) = max
{
‖T̂ 1

2 (T −S)Š
1
2 ‖, ‖Ŝ 1

2 (S−T )Ť
1
2 ‖

}

2. if T −S is bounded, then θ (S,T ) � ‖S−T‖ .

Proof. First we simplify the term T Ť
1
2 Š

1
2 . For x∈H1 , we have that Š

1
2 x∈D(S)=

D(T ) , consequently, T Ť
1
2 Š

1
2 x = T̂

1
2 T Š

1
2 x , by (3) of Lemma 2.14. Thus,

T Ť
1
2 Š

1
2 x− T̂

1
2 SŠ

1
2 x =

(
T̂

1
2 T Š

1
2 − T̂

1
2 SŠ

1
2

)
x (3.1)

= T̂
1
2 (T −S)Š

1
2 x. (3.2)
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With a similar argument we can show that

SŠ
1
2 Ť

1
2 − Ŝ

1
2 TŤ

1
2 = Ŝ

1
2 (S−T )Ť

1
2 .

Now the conclusion follows by Theorem 2.15.
If T −S is bounded, then

‖T̂ 1
2 (T −S)Š

1
2 ‖ � ‖T̂ 1

2 ‖‖T −S‖‖Š 1
2 ‖ � ‖T −S‖. (3.3)

Similarly, we can conclude that ‖Ŝ 1
2 (S−T )Ť

1
2 ‖ � ‖T −S‖ .

Hence by the above two observations the conclusion follows. �

PROPOSITION 3.2. [13, Propositions 3.8, 3.9] Let T ∈ C (H) be positive. Then

1. T ∈ Mc(H) if and only if T
1
2 ∈ Mc(H)

2. T ∈ Mc(H) if and only if m(T ) is an eigenvalue of T .

PROPOSITION 3.3. [13, Proposition 3.5] Let T ∈ C (H) be positive. Then

m(T ) = inf{〈Tx,x〉 : x ∈ SD(T )}.

THEOREM 3.4. Let T ∈ C (H) be positive. Then for each ε > 0 , there exists an
operator S ∈ B(H) such that

1. ‖S‖� ε

2. T +S is minimum attaining

3. θ (S+T,T) � ε .

Moreover, if m(T ) > 0 , then S can be chosen such that rank(S) = 1 and m(T +S) > 0 .

Proof. We prove the results by considering the following three cases which ex-
haust all possibilities.

Case (1): m(T ) > 0
It suffices to prove the assertion for ε ∈ (0,m(T )) . Since, T � 0 and m(T ) =

inf
x∈SD(T )

〈Tx,x〉 by Proposition 3.3, there exists xε ∈ SD(T ) , such that

〈Txε ,xε〉 < m(T )+
ε
2
. (3.4)

Now, define
Cε(x) = ε 〈x,xε 〉xε , for every x ∈ H. (3.5)

Then clearly, Cε is a rank one positive, bounded operator with ‖Cε‖ = ‖Cε(xε)‖ = ε .
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Let Tε = T −Cε . It is easy to see that Tε is a closed densely defined operator with
D(Tε) = D(T ) . Clearly, Tε is self-adjoint. In fact, we show that Tε � 0. To this end,
let x ∈ D(Tε) = D(T ) . Then

〈Tεx,x〉 = 〈Tx,x〉− ε|〈x,xε〉|2
� (m(T )− ε)〈x,x〉 (by Cauchy-Schwarz inequality).

From this we can conclude that Tε � 0 and by Proposition 3.3, we have that m(Tε) �
m(T )− ε > 0.

We claim that Tε ∈ Mc(H) . By Remark 2.11, we have that m(Tε) ∈ σ(Tε) . Next,
we show that m(Tε ) ∈ σd(Tε ) . Assume that m(Tε) ∈ σess(Tε) . Then by the Weyl’s
theorem we have σess(Tε) = σess(T ) . Note as m(T ) ∈ σ(T ) and m(T ) is the smallest
spectral value, we can conclude that m(T ) � m(Tε) .

But we have

m(Tε) � 〈Tεxε ,xε〉 = 〈Txε ,xε 〉− ε < m(T )− ε
2

< m(T ).

Thus our assumption that m(Tε ) ∈ σess(Tε ) is wrong. Consequently m(Tε ) ∈ σd(Tε ) ,
and hence Tε ∈ Mc(H) .

Note that Tε −T = −Cε |D(T ) is a bounded operator with domain D(T ) . By The-
orem 3.1, it follows that

θ (Tε ,T ) � ‖Tε −T‖ = ‖Cε |D(T )‖ � ‖Cε‖ = ε.

Take S = −Cε . Then S satisfies the stated conditions. Note that m(T + S) =
m(Tε) > 0.

Case (2): m(T ) = 0 and T is not one-to-one
Clearly T is minimum attaining. In this case S = 0 satisfy the required properties.
Case (3): m(T ) = 0 and T is one-to-one

We can use case (1) to get the desired operator S . Note that T +
ε
2
I is positive and

m
(
T +

ε
2
I
)

=
ε
2

. Hence by Case (1) above, there exists a positive rank one operator

C with ‖C‖ � ε
2

such that T +
ε
2
I−C is minimum attaining and θ

(
T,T +

ε
2
I−C

)
�∥∥∥ε

2
I−C

∥∥∥ � ε . Let S =
ε
2
I−C . Then S satisfies all the required conditions. �

Now we prove the above result for the general case.

THEOREM 3.5. Let T ∈C (H1,H2) be densely defined. Then for each ε > 0 there
exists an operator S ∈ B(H1,H2) with ‖S‖ � ε such that T +S is minimum attaining
and θ (T +S,T) � ε . Moreover, if m(T ) > 0 then S can be chosen such that rank(S) =
1 and m(T +S) > 0 .

Proof. By Note 2.6, it suffices to consider the case for operators that are injective.
Let T = V |T | be the polar decomposition of T . Applying Theorem 3.4 to |T | , there
exists A ∈ B(H1) with ‖A‖ � ε and |T |+A is minimum attaining.
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Define S = VA . Then S ∈ B(H1,H2) with ‖S‖� ε . Next, we claim that T +S =
V (|T |+A) is minimum attaining. Since T is one-to-one, V is an isometry and T +S is
minimum attaining as |T |+A minimum attaining. Note that m(T +S) = m(|T |+A) .

In case if m(T ) > 0, then by Theorem 3.4, A can be chosen so that rank(A) = 1
and m(|T |+A) > 0. Hence rank(S) = rank(A) = 1 and m(T +S) = m(|T |+A) > 0.

Finally, by Theorem 3.1, we have θ (T +S,T ) � ‖S‖ � ε . �

The following Corollary is an immediate consequence of Theorem 3.5.

COROLLARY 3.6. The set Mc(H1,H2) is dense in the set of all densely defined
operators in C (H1,H2) with respect to the gap topology.

COROLLARY 3.7. The set of all minimum attaining bounded operators is dense
in B(H1,H2) with respect to the norm topology of B(H1,H2) .

Proof. The gap topology restricted to B(H1,H2) coincide with the norm topol-
ogy of B(H1,H2) by [15, Theorem 2.5]. Hence the conclusion follows by Corollary
3.6. �

THEOREM 3.8. Let

G := {T ∈ Mc(H1,H2) : T is bounded below }

and Cb(H1,H2) = {T ∈ C (H1,H2) : T is densely defined and bounded below} . If T ∈
Cb(H1,H2) and ε > 0 , there exists T̃ ∈ G such that θ (T, T̃ ) � ε . In other words, G is
dense in Cb(H1,H2) with respect to the gap metric.

Proof. Let T ∈ Cb(H1,H2) . Since T is bounded below m(T ) > 0. Hence by
Theorem 3.5, there exists S ∈B(H1,H2) such that T +S is minimum attaining, θ (T +
S,T ) � ε , rank(S) = 1 and m(T + S) > 0, that is T + S is bounded below. Take
T̃ = T +S . Then T̃ satisfy all the requirements. �

Recall that A∈B(H1,H2) is bounded below if there exists k > 0 such that ‖Ax‖�
k‖x‖ for all x ∈ H1 . In this case, the minimum modulus

m(A) := inf{‖Ax‖ : x ∈ SH1}

is given by m(A) = sup{k > 0 : ‖Ax‖ � k‖x‖, for all x ∈ H1} .

COROLLARY 3.9. The set

Mb(H1,H2) := {A ∈ B(H1,H2) : A is minimum attaining and bounded below}

is norm dense in Bb(H1,H2) = {A ∈ B(H1,H2) : A is bounded below} .
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Proof. The gap metric and the metric induced by the operator norm are equiva-
lent on B(H1,H2) by [15, Theorem 2.5]. Hence the conclusion follows by Theorem
3.8. �
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