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Abstract. In this work, we study a connection between two classes of orthogonally invariant
functions. Both types of functions are defined on Sn1 × . . .× Snk . The functions in the first

class take their values in Sn1 ···nk , while those in the second take values in S(n
k) , where n =

n1 + · · ·+ nk . Here, Sn denotes the set of all n× n symmetric matrices. Using that connection
we establish various smoothness properties of the functions in the first class, using analogous
known results about the functions in the second class.

1. Introduction

Let Nn := {1, . . . ,n} . Denote by Sn the space of all n×n symmetric matrices with
inner product 〈A,B〉 := Tr(AB) . Let On be the group of n× n orthogonal matrices.
Denote by R

n
� the convex cone in R

n of all vectors with non-increasingly ordered
coordinates. For any A ∈ Sn , let λ (A) ∈ R

n
� be the ordered vector of eigenvalues of A .

Let Diagx be the n×n matrix with x ∈ R
n on the main diagonal.

Fix natural numbers n1, . . . ,nk and assume that the k -tuples in Nn1 × . . .×Nnk are
ordered lexicographically. For any function f : R

k → R define

FH : Sn1 × . . .×Snk → Sn1···nk by

FH(A1, . . . ,Ak) := (⊗k
i=1Ui)

(
Diagl f (λl1(A1), . . . ,λlk(Ak))

)
(⊗k

i=1Ui)
�
,

where Ui ∈Oni is such that Ai =Ui(Diagλ (Ai))Ui
� for i∈ Nk . Here, Diagl xl denotes

the diagonal matrix with vector x ∈ R
n1···nk on the main diagonal and l ∈ Nn1 × . . .×

Nnk .
Several properties of these functions have been studied. For example operator

monotonicity and operator convexity are extensively studied in [2], [3], [6], [7], [9],
[11], and [12]. In [6], the author shows that, for values m = 1,2, function FH is Cm at
(A1, . . . ,Ak) , if the underlying f is Cp , where p > m+ k/2, at (λl1(A1), . . . ,λlk(Ak))
for all l ∈ Nn1 × . . .×Nnk .

To introduce the second class of functions, denote by Nn,k the set of all subsets of
Nn of size k with elements ordered increasingly, where 1 � k � n . The elements of the
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set Nn,k are ordered lexicographically and used to index the coordinates of vectors in

R(n
k) . Let f : R

k → R be a symmetric function, that is invariant under permutations of

its arguments. Define f : R
n → R

(n
k) by

fρ(x) := f (xρ1 , . . . ,xρk)

for all x ∈ R
n and all ρ ∈ Nn,k . Finally, let U (k) be the k -th multiplicative compound

matrix of an n× n matrix U . It is known that U (k) is orthogonal, whenever U is,
see Section 2 for more details. For any symmetric f : R

k → R , define a function

F : Sn → S(n
k) , called (generated) k -isotropic, by

F(A) := U (k)(Diag f(λ (A))
)
(U (k))

�
,

where U ∈ On is such that A = U
(
Diagλ (A)

)
U� .

Function F is well-defined and satisfies F(UAU�) = U (k)F(A)(U (k))
�

for any
U ∈ On and any A in the domain of F , as shown in [10].

A characterization of C1 (generated) k -isotropic functions was obtained in [1] and
that was extended in in [10] to Cm for a larger class, called k -isotropic functions. The
(generated) k -isotropic function F is Cm at A , if and only if the underlying symmetric
function f is Cm at λρ(A) for all ρ ∈ Nn,k . That result holds for m = 0,1, . . . Later on,
[8] showed that, F is analytic at A , if and only if the underlying symmetric function f
is analytic at λρ(A) for all ρ ∈ Nn,k .

The main goal in this work is to connect FH and F , when the underlying function
f is symmetric. This allows us to characterize differentiability of FH in terms of sym-
metric f , using the corresponding known properties of F . In addition, we characterize
the analyticity of FH in terms of f , not necessarily symmetric.

2. Main definition

2.1. Tensor products

Denote by ⊗k
i=1R

ni the tensor product of R
ni , i ∈ Nk . This is a linear space

of dimension n1 · · ·nk consisting of formal finite linear combinations of {x1 ⊗ . . .⊗
xk : xi ∈ R

ni , i ∈ Nk} , with all necessary identifications made so that the product is
multi-linear. The inner product between u1 ⊗ . . .⊗ uk and v1 ⊗ . . .⊗ vk in ⊗k

i=1R
ni is

〈u1,v1〉 · · · 〈uk,vk〉 . The tensor product A1 ⊗ . . .⊗Ak , between operators Ai on R
ni ,

i ∈ Nk , is a linear operator on ⊗k
i=1R

ni defined by

(A1⊗ . . .⊗Ak)(x1⊗ . . .⊗ xk) := (A1x1)⊗ . . .⊗ (Akxk)

and extended by linearity. For short introduction to tensor product and its properties,
see [4, Chapter I].

Denote by {e1
i , . . . ,e

ni
i } the standard orthonormal basis in R

ni for i ∈ Nk . Let
{el : l ∈Nn1 × . . .×Nnk} denote the standard orthonormal basis in R

n1···nk . An isometry
T : R

n1···nk → R
n1 ⊗ . . .⊗R

nk is defined by

T (el) := el1
1 ⊗ . . .⊗ elk

k for all l ∈ Nn1 × . . .×Nnk .
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Given any ni×ni matrix Ai for all i ∈ Nk and any x ∈ R
n1···nk , we have

T ((⊗k
i=1Ai)x) = (⊗k

i=1Ai)(T x),

where on the right-hand side, Ai is viewed as an operator on R
ni with respect to the

standard basis for all i ∈ Nk .
For any Ai ∈ Sni for all i ∈ Nk , the self-adjoint operator corresponding to the

symmetric matrix FH(A1, . . . ,Ak) is

FH(A1, . . . ,Ak) :=T ◦FH(A1, . . . ,Ak)◦T −1

= ∑
l∈Nn1×...×Nnk

f (λl1(A1), . . . ,λlk(Ak))(⊗k
i=1u

li
i )⊗ (⊗k

i=1u
li
i ),

where Ui ∈ Oni is such that Ai = Ui
(
Diagλ (Ai)

)
Ui

� and uli
i denotes the li -th column

of Ui for all i ∈ Nk .

2.2. Anti-symmetric tensor products

The k -tuples in Nn,k are ordered lexicographically and used to index the coordi-

nates of vectors in R(n
k) and matrices of dimension

(n
k

)× (n
k

)
. For example, xρ is the

ρ -th coordinate of a vector x in R
(n

k) and Aρ ,τ is the (ρ ,τ)-th element of an
(n
k

)× (n
k

)
matrix A . But if x ∈ R

n , then let xρ := (xρ1 , . . . ,xρk) ∈ R
k for any ρ ∈ Nn,k and if A is

an n×n matrix, let Aρτ (without a comma) be the k× k minor of an A with elements
at the intersections of rows ρ1, . . . ,ρk and columns τ1, . . . ,τk for any ρ ,τ ∈ Nn,k .

The k -th multiplicative compoundmatrix of n×n matrix A is an
(n
k

)× (n
k

)
matrix,

denoted by A(k) , such that A(k)
ρ ,τ := det(Aρτ) for any ρ ,τ ∈ Nn,k . For properties of k -th

multiplicative compound matrix, see for example [5].
For any vectors x1, . . . ,xk ∈ R

n , their k -th anti-symmetric tensor product (wedge
product) is defined by

x1∧ . . .∧ xk :=
1√
k!

∑
σ :Nk→Nk

εσ xσ(1)⊗ . . .⊗ xσ(k),

where the summation is over all permutations σ on Nk and εσ is defined to be +1,
if σ is even and to be −1, if σ is odd. The wedge product is multi-linear and anti-
commutative. Denote by ∧k

R
n the

(n
k

)
-dimensional subspace of ⊗k

R
n spanned by all

k -th anti-symmetric tensor products with inherited inner product

〈u1∧ . . .∧uk,v1 ∧ . . .∧ vk〉 = det
(〈ui,v j〉ki, j=1

)
.

If A is an operator on R
n , then ⊗kA keeps the subspace ∧k

R
n invariant. Denote by

∧kA the restriction of ⊗kA onto ∧k
R

n . It is called the k -th anti-symmetric tensor
power (wedge power) of A and satisfies

(∧kA)(x1∧ . . .∧ xk) = (Ax1)∧ . . .∧ (Axk).
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For properties of k -th wedge power of A , see [5].

Denote by {eρ : ρ ∈ Nn,k} the standard orthonormal basis in R
(n

k) . An isometry

W : R
(n

k) →∧k
R

n is defined by

W (eρ) := eρ1 ∧ . . .∧ eρk for all ρ ∈ Nn,k

and extended by linearity. The relationship between A(k) and ∧kA is:

W (A(k)x) = (∧kA)(W x) for any x ∈ R
(n

k),

where A is viewed as an operator and a matrix with respect to the standard basis.
For future reference, the self-adjoint operator on ∧k

R
n , corresponding to the sym-

metric matrix F(A) , is

F (A) := W ◦F(A)◦W −1 = ∑
ρ∈Nn,k

f (λρ(A))(uρ1 ∧ . . .∧uρk)⊗ (uρ1 ∧ . . .∧uρk),

where {u1, . . . ,un} are the columns of U ∈ On , such that A = U(Diagλ (A))U� .

2.3. Operator functions on k variables

We are ready to introduce a class of operator functions on several variables by
restricting (generated) k -isotropic functions to block-diagonal matrices. Henceforth,
we assume that n = n1 + . . .+nk .

Let F∗ : Sn1 × . . .×Snk → S(n
k) be defined by

F∗(A1, . . . ,Ak) := F(A1⊕ . . .⊕Ak),

where A1 ⊕ . . .⊕Ak denotes the block-diagonal matrix with blocks Ai , i ∈ Nk . The
corresponding self-adjoint operator is

F ∗(A1, . . . ,Ak) := W ◦F(A1⊕ . . .⊕Ak)◦W −1.

2.4. Note about domains

We assume that the domain of the symmetric function f : R
k → R , denoted by

dom f ⊆ R
k , is a symmetric and open set. Then, it is easy to see that the set domn f :=

{x ∈ R
n : xρ ∈ dom f for all ρ ∈ Nn,k } is also symmetric and open. Then, the domain

of a (generated) k -isotropic function F : Sn → S(n
k) corresponding to f : R

k → R is

domF := {A ∈ Sn : λ (A) ∈ domn f}.
It is not too difficult to see that for any l ∈ Nn1 × ·· ·×Nnk , there is a ρ ∈ Nn,k , such
that λρ(A1 ⊕ . . .⊕Ak) is a permutation of (λl1(A1), . . . ,λlk(Ak)) . Since the set dom f
is symmetric, we see that A1 ⊕ . . .⊕Ak ∈ domF implies that (A1, . . . ,Ak) ∈ domFH .
Hence, the domain of F∗ is the set of all k -tuples (A1, . . . ,Ak) from Sn1 × . . .×Snk that
satisfy A1⊕ . . .⊕Ak ∈ domF , and this set is sufficient for our needs.
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3. Connecting FH to F∗

3.1. Introducing the linear map Π

We introduce a linear map Π that links the operator functions FH and F ∗ , when-
ever both of them are defined in terms of the same symmetric function f : R

k → R .
Let the linear map Πi : R

ni → ⊕k
j=1R

n j for i ∈ Nk , be the embedding of R
ni in

⊕k
j=1R

n j :

Πi(u) := 0⊕ . . .⊕u⊕ . . .⊕0 for any u ∈ R
ni ,

where u appears in the i-th place of the direct sum.
Let Π : ⊗k

j=1R
n j →∧k(⊕k

j=1R
n j) be a linear map defined by

Π(el1
1 ⊗ . . .⊗ elk

k ) := Π1(e
l1
1 )∧ . . .∧Πk(e

lk
k ) = (el1

1 ⊕ . . .⊕0)∧ . . .∧ (0⊕ . . .⊕ elk
k ).

It can be extended by linearity to any vector in u1⊗ . . .⊗uk ∈⊗k
i=1R

ni :

Π(u1⊗ . . .⊗uk) = Π1(u1)∧ . . .∧Πk(uk). (3.1)

Next, we show that Π preserves the inner product.

LEMMA 3.1. For any s1, . . . ,sk ∈ Nk with s1 � . . . � sk , let u j ∈ R
n j and v j ∈

R
ns j for j ∈ Nk . Define u := Π1(u1)∧ . . .∧Πk(uk) and v := Πs1(v1)∧ . . .∧Πsk(vk) .

The inner product between u and v is given by

〈u,v〉 =
{

∏k
j=1〈u j,v j〉 if s1, . . . ,sk are distinct,

0 otherwise.

Hence, Π preserves the inner product.

Proof. Case I. If all s1, . . . ,sk are distinct, then si = i for i ∈ Nk and we have

v = Π1(v1)∧ . . .∧Πk(vk)

with vi ∈ R
ni for i ∈ Nk . Calculate 〈u,v〉 by

〈u,v〉 = det
(〈Πi(ui),Π j(v j)〉ki, j=1

)
=

k

∏
j=1

〈u j,v j〉,

since 〈Πi(ui),Π j(v j)〉 = 0, whenever i �= j.
Case II. Suppose now that s1, . . . ,sk are not distinct. Without loss of generality, as-

sume that sk−1 = sk , other cases being analogous. Then, we calculate the inner product
between u and v by

〈u,v〉 = 〈Π1(u1)∧ . . .∧Πk−1(uk−1)∧Πk(uk),Πs1(v1)∧ . . .∧Πsk−1(vk−1)∧Πsk(vk)〉
= 〈(u1⊕ . . .⊕0)∧ . . .∧ (0⊕ . . .⊕uk−1⊕0)∧ (0⊕ . . .⊕uk),

Πs1(v1)∧ . . .∧Πsk−1(vk−1)∧Πsk(vk)〉
= det(〈Πi(ui),Πs j (v j)〉ki, j=1) = 0,
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since either the (k−1)-th row or the k -th row of the determinant is zero.
For any u := u1⊗ . . .⊗uk,v := v1⊗ . . .⊗ vk ∈ ⊗k

i=1R
ni , we have

〈u,v〉 = 〈u1⊗ . . .⊗uk,v1 ⊗ . . .⊗ vk〉 =
k

∏
i=1

〈ui,vi〉 = 〈Π(u),Π(v)〉,

hence, the linear map Π preserves the inner product. �
The linear map Π : ⊗k

i=1R
ni → ∧k(⊕k

i=1R
ni) is an injection, so we can consider

the inverse map Π−1 , defined on the range of Π . That is, Π−1 ◦Π(u) = u for any
u ∈⊗k

i=1R
ni .

3.2. Connecting FH to F∗

Let n := ∑k
i=1 ni and let A := A1⊕ . . .⊕Ak ∈ Sn , where Ai ∈ Sni for all i∈ Nk . Let

Ui ∈ Oni be such that Ai = Ui(Diagλ (Ai))Ui
� for all i ∈ Nk . Denote by uli

i the li -th

column of Ui and uli
i is the eigenvector corresponding to λli(Ai) for all i ∈ Nk . Matrix

A is diagonalized by

A = (U1 ⊕ . . .⊕Uk)
(
Diag λ̃ (A)

)
(U1⊕ . . .⊕Uk)

�, (3.2)

where λ̃ (A) := (λ (A1), . . . ,λ (Ak)) is not necessarily ordered. For any t ∈ Nn , the t -th
column of U1 ⊕ . . .⊕Uk is denoted by ũt . For any such t , there exist unique i ∈ Nk

and li ∈ Nni , such that t = ∑i−1
j=1 n j + li and

ũt = Πi(u
li
i ). (3.3)

This notation allows us to obtain the following representation of F ∗ .

Recall that any symmetric function f : R
k → R defines a function f : R

n → R
(n

k)

by fρ(x) := f (xρ ) for all x in the domain of f and all ρ ∈ Nn,k . Such function f :

R
n → R

(n
k) is symmetric in the sense of

Diag f(Px) = P(k)(Diag f(x)
)
P(k)� (3.4)

for all x ∈ R
n and all n×n permutation matrix P , see [1].

PROPOSITION 3.1. Let f : R
k → R be symmetric. For any A := A1 ⊕ . . .⊕Ak

with Ai ∈ Sni for i ∈ Nk , we have

F ∗(A1, . . . ,Ak) = ∑
ρ∈Nn,k

f (λ̃ρ(A))(ũρ1 ∧ . . .∧ ũρk)⊗ (ũρ1 ∧ . . .∧ ũρk).

Proof. Let P be an n× n permutation matrix, such that λ (A) = Pλ̃(A) . Using
(3.2), we obtain

A = (U1⊕ . . .⊕Uk)
(
Diag λ̃(A)

)
(U1 ⊕ . . .⊕Uk)

�

= (U1⊕ . . .⊕Uk)
(
DiagP�λ (A)

)
(U1 ⊕ . . .⊕Uk)

�

= (U1⊕ . . .⊕Uk)P�
(
Diagλ (A)

)
P(U1⊕ . . .⊕Uk)

�.
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Let U := (U1⊕ . . .⊕Uk)P� and let f : R
n → R(n

k) be defined by fρ(x) := f (xρ ) for all
ρ ∈ Nn,k and all x ∈ R

n . Such f is symmetric in the sense of (3.4). Then, we have

F∗(A1, . . . ,Ak) = F(A) = U (k)(Diag f(λ (A))
)
U (k)�

= U (k)(Diag f(Pλ̃(A))
)
U (k)�

= U (k)P(k)(Diag f(λ̃ (A))
)
P(k)�U (k)�

= (UP)(k)
(
Diag f(λ̃(A))

)
(UP)(k)

�

= (U1 ⊕ . . .⊕Uk)(k)
(
Diag f(λ̃(A))

)
(U1⊕ . . .⊕Uk)(k)

�
,

where we used (3.4). The rest follows. �
Denote by M the collection of all ρ ∈ Nn,k satisfying

ρi ∈
{
(n1 + · · ·+ni−1)+1, . . . ,(n1 + · · ·+ni−1)+ni

}
for all i ∈ Nk,

with the understanding that the sums in the parenthesis are zero when i = 1. Let

M c := Nn,k \M .

Define the operator F ∗
M by

F ∗
M (A1, . . . ,Ak) := ∑

ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ . . .∧ ũρk)⊗ (ũρ1 ∧ . . .∧ ũρk)

and let F ∗
M c(A1, . . . ,Ak) := F ∗(A1, . . . ,Ak)−F ∗

M (A1, . . . ,Ak).
The relationship between FH and F ∗ is given in the next theorem.

THEOREM 3.2. Then, for any Ai ∈ Sni , i ∈ Nk , the following diagram commutes

⊗k
i=1R

ni
FH (A1,...,Ak)−−−−−−−−→ ⊗k

i=1R
ni

↓Π ↓Π

∧k(⊕k
i=1R

ni)
F ∗(A1,...,Ak)−−−−−−−→ ∧k(⊕k

i=1R
ni)

Moreover, the operators F ∗(A1, . . . ,Ak) and F ∗
M (A1, . . . ,Ak) coincide on the sub-

space Π(⊗k
i=1R

ni) .

Proof. We need to show that for any v := v1 ⊗ . . .⊗ vk ∈ ⊗k
i=1R

ni , we have

Π◦FH(A1, . . . ,Ak)(v) = F ∗(A1, . . . ,Ak)◦Π(v). (3.5)

For the right-hand side, we have

F ∗(A1, . . . ,Ak)◦Π(v) = F ∗
M (A1, . . . ,Ak)◦Π(v)+F ∗

M c(A1, . . . ,Ak)◦Π(v). (3.6)
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Note that the elements ρ of M have the property that for any ρi ∈ ρ , there exists a
unique li ∈ Nni , such that ρi = ∑i−1

j=1 n j + li . Thus, using (3.3) and (3.1), we obtain

ũρ1 ∧ . . .∧ ũρk = Π1(u
l1
1 )∧ . . .∧Πk(u

lk
k ) = Π(ul1

1 ⊗ . . .⊗ulk
k ). (3.7)

With that we express the first term on the right-hand side of (3.6) as

F ∗
M (A1, . . . ,Ak)◦Π(v)

= ∑
ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ . . .∧ ũρk)⊗ (ũρ1 ∧ . . .∧ ũρk)
(
Π1(v1)∧ . . .∧Πk(vk)

)

= ∑
ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ . . .∧ ũρk)〈ũρ1 ∧ . . .∧ ũρk ,Π1(v1)∧ . . .∧Πk(vk)〉

= ∑
ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ . . .∧ ũρk)〈Π1(u
l1
1 )∧ . . .∧Πk(u

lk
k ),Π1(v1)∧ . . .∧Πk(vk)〉

= ∑
ρ∈M

f (λ̃ρ(A))(ũρ1 ∧ . . .∧ ũρk)
k

∏
j=1

〈ul j
j ,u j〉

= ∑
l∈Nn1×...×Nnk

f (λl1(A1), . . . ,λlk (Ak))
k

∏
j=1

〈ul j
j ,u j〉Π(ul1

1 ⊗ . . .⊗ulk
k ),

where in the last three equalities we used (3.7) and Lemma 3.1.
We now turn our attention to the second term on the right-hand side of (3.6). Note

that the elements ρ of M c have the property that for any ρi ∈ ρ , there exists unique
si ∈ Nk and li ∈ Nnsi

, such that ρi = ∑si−1
j=1 n j + li . The important observation is that the

indexes s1, . . . ,sk are not distinct and

ũρ1 ∧ . . .∧ ũρk = Πs1(u
l1
s1)∧ . . .∧Πsk(u

lk
sk
).

With that, we calculate F ∗
M c(A1, . . . ,Ak)◦Π(v) by

F ∗
M c(A1, . . . ,Ak)◦Π(v)

= ∑
ρ∈M c

f (λ̃ρ(A))(ũρ1 ∧ . . .∧ ũρk)⊗ (ũρ1 ∧ . . .∧ ũρk)
(
Π1(v1)∧ . . .∧Πk(vk)

)

= ∑
ρ∈M c

f (λ̃ρ(A))(ũρ1 ∧ . . .∧ ũρk)〈Πs1(u
l1
s1)∧ . . .∧Πsk(u

lk
sk
),Π1(v1)∧ . . .∧Πk(vk)〉

= 0,

where the last equality is obtained using Lemma 3.1.
Combining the results for the two terms on the right-hand side of (3.6), gives

F ∗(A1, . . . ,Ak)◦Π(v)

= ∑
l∈Nn1×...×Nnk

f (λl1(A1), . . . ,λlk(Ak))
k

∏
j=1

〈ul j
j ,u j〉Π(ul1

1 ⊗ . . .⊗ulk
k ).
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This also shows that F ∗(A1, . . . ,Ak) and F ∗
M (A1, . . . ,Ak) are the same map when

restricted to the subspace Π(⊗k
i=1R

ni) .
For the left-hand side of (3.5), we have

Π◦FH(A1, . . . ,Ak)(v)

= Π◦ ∑
l∈Nn1×...×Nnk

f (λl1(A1), . . . ,λlk(Ak))(⊗k
i=1u

li
i )⊗ (⊗k

i=1u
li
i )(v1 ⊗ . . .⊗ vk)

= Π◦ ∑
l∈Nn1×...×Nnk

f (λl1(A1), . . . ,λlk(Ak))〈⊗k
i=1u

li
i ,v1⊗ . . .⊗ vk〉(⊗k

i=1u
li
i )

= Π◦ ∑
l∈Nn1×...×Nnk

f (λl1(A1), . . . ,λlk(Ak))
k

∏
i=1

〈uli
i ,v j〉(ul1

1 ⊗ . . .⊗ulk
k )

= ∑
l∈Nn1×...×Nnk

f (λl1(A1), . . . ,λlk(Ak))
k

∏
i=1

〈uli
i ,v j〉Π(ul1

1 ⊗ . . .⊗ulk
k ).

This shows that the diagram commutes. �
Theorem 3.2 shows that

FH(A1, . . . ,Ak) = Π−1 ◦F ∗(A1, . . . ,Ak)◦Π

= Π−1 ◦F (A1⊕ . . .⊕Ak)◦Π and (3.8)

F (A1 ⊕ . . .⊕Ak) = Π◦FH(A1, . . . ,Ak)◦Π−1,

where both sides of the last equality are assumed to be restricted to Π(⊗k
i=1R

ni) .
Thus, one can use (3.8) to infer properties of FH from those of F .

4. Differentiability properties of FH

In this section, we study the differentiability properties of FH . We start with those
associated with a symmetric function f : R

k → R . The following is a special case of
Theorem 5.1 in [10], which was proven for the more general k -isotropic functions.

THEOREM 4.1. Let f : R
k → R be symmetric with corresponding (generated) k -

isotropic function F : Sn → S(n
k) . Then, F is Cm at A, if and only if f is Cm at λρ(A)

for any ρ ∈ Nn,k . Here, m = 0,1, . . .

Theorem 4.1, together with (3.8), allows us to see the following corollary.

COROLLARY 4.1. Let f : R
k → R be symmetric with corresponding FH : Sn1 ×

. . .× Snk → Sn1···nk . The function FH is Cm at (A1, . . . ,Ak) , whenever f is Cm at
λρ(A1 ⊕ . . .⊕Ak) for any ρ ∈ Nn,k . Here, m = 0,1, . . .

Proof. Suppose that f is Cm at λρ(A1 ⊕ . . .⊕Ak) for any ρ ∈ Nn,k . Using The-
orem 4.1, one can obtain that the corresponding (generated) k -isotropic function is Cm

at A1⊕ . . .⊕Ak . Using (3.8), the corresponding FH is Cm at (A1, . . . ,Ak) . �
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Restricting FH to diagonal matrices, we get the following converse.

COROLLARY 4.2. Let f : R
k → R be symmetric with corresponding FH : Sn1 ×

. . .× Snk → Sn1···nk . The function f is Cm at (λl1(A1), . . . ,λlk(Ak)) for any l ∈ Nn1 ×

. . .×Nnk , whenever FH is Cm at (A1, . . . ,Ak) . Here, m = 0,1, . . .

An inductive formula for the first and higher-order derivatives of k -isotropic func-
tions was the focus of [10]. A formula for just the first derivative of (generated) k -
isotropic functions was obtained in [1]. Thus, at least in theory, one can obtain the
formula for the derivatives of FH using (3.8).

Now, address the analyticity of FH . Here, the symmetricity of f : R
k → R is not

necessary.

THEOREM 4.2. Let f : R
k →R be a function with corresponding FH : Sn1 × . . .×

Snk → Sn1···nk . The function FH is analytic at (A1, . . . ,Ak) , if and only if f is analytic
at (λl1(A1), . . . ,λlk (Ak)) for all l ∈ Nn1 × . . .×Nnk .

Proof. Suppose f : R
k → R is analytic. Then, the Cauchy integral representation

of f holds as follows

f (x1, . . . ,xk) =
1

(2π i)k

∮
Γk

· · ·
∮

Γ1

f (z1, . . . ,zk)

∏k
j=1(z j − x j)

dz1 · · ·dzk,

where Γ j is a positively oriented circle in the complex plane enclosing the points x j

for all j ∈ Nk . The Dunford-Taylor integral representation of FH(A1, . . . ,Ak) for any
Aj ∈ Snj , j ∈ Nk is

FH(A1, . . . ,Ak) = (⊗k
i=1Ui)

(
Diagl f (λl1(A1), . . . ,λlk(Ak))

)
(⊗k

i=1Ui)
�

= (⊗k
j=1Uj)

(
Diagl

1
(2π i)k

∮
Γk

· · ·
∮

Γ1

f (z1, . . . ,zk)

∏k
j=1(z j −λl j(Aj))

dz1 · · ·dzk

)
(⊗k

j=1Uj)
�

=
1

(2π i)k

∮
Γk

· · ·
∮

Γ1

f (z1, . . . ,zk)(⊗k
j=1Uj)

(
Diagl

k

∏
j=1

(z j −λl j(Aj))−1
)
(⊗k

j=1Uj)
�
dz1 · · ·dzk,

where Uj ∈ Onj is such that Aj = Uj
(
Diagλ (Aj)

)
Uj

� and Γ j is a positively oriented
circle in the complex plane enclosing all eigenvalues {λl j(Aj) : l j ∈Nn j} for all j ∈Nk .
Notice that

(⊗k
j=1Uj)

(
Diagl

k

∏
j=1

(z j −λl j(Aj))−1
)
(⊗k

j=1Uj)
�

= (z1I−A1)−1⊗ . . .⊗ (zkI−Ak)−1,

holds. Thus, we have the integral representation

FH(A1, . . . ,Ak)

=
1

(2π i)k

∮
Γk

· · ·
∮

Γ1

f (z1, . . . ,zk)
(
(z1I−A1)−1⊗ . . .⊗ (zkI−Ak)−1)dz1 · · ·dzk.
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Since the eigenvalue map Aj �→ λ (Aj) is a continuous function, the circle Γ j encloses
the eigenvalues of all matrices in a small neighbourhood of Aj for all j ∈ Nk . It is easy
to see then, that for each fixed (z1, . . . ,zk) , the integrand is analytic in (A1, . . . ,Ak) , and
so is FH .

For the other direction, restrict the function FH to diagonal matrices. �
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