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ON DIFFERENTIABILITY OF A CLASS OF ORTHOGONALLY
INVARIANT FUNCTIONS ON SEVERAL OPERATOR VARIABLES
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(Communicated by F. Hansen)

Abstract. In this work, we study a connection between two classes of orthogonally invariant
functions. Both types of functions are defined on S$"! x ... x §" . The functions in the first

class take their values in S | while those in the second take values in S(Z), where n =
ny+---+n;. Here, S" denotes the set of all n x n symmetric matrices. Using that connection
we establish various smoothness properties of the functions in the first class, using analogous
known results about the functions in the second class.

1. Introduction

Let N,,:={1,...,n}. Denote by S" the space of all n x n symmetric matrices with
inner product (A,B) := Tr(AB). Let O" be the group of n x n orthogonal matrices.
Denote by RY the convex cone in R" of all vectors with non-increasingly ordered
coordinates. Forany A € §", let A(A) € RY be the ordered vector of eigenvalues of A.
Let Diagx be the n x n matrix with x € R" on the main diagonal.

Fix natural numbers ny,...,n; and assume that the k-tuplesin Ny, x ... x N,, are
ordered lexicographically. For any function f : R¥ — R define

FH 8" 5 x ™ — §"" " by
. T
FH(AL .. Ap) = (®F,Uy) (Diagy £ (A, (A1), 4, (40)) (R, Us)

where U; € 0" is such that A; = U;(Diag A (A;))U;" for i € N;. Here, Diag, x; denotes
the diagonal matrix with vector x € R on the main diagonal and / € N,,; x ... X
N, .

Several properties of these functions have been studied. For example operator
monotonicity and operator convexity are extensively studied in [2], [3], [6], [7], [©],
[11], and [12]. In [6], the author shows that, for values m = 1,2, function F¥ is C" at
(At,...,Ay), if the underlying f is C?, where p >m+k/2, at (4, (A1),..., A, (Ar))
forall l € N, x...x Ny, .

To introduce the second class of functions, denote by N,, ; the set of all subsets of
N,, of size k with elements ordered increasingly, where 1 < k < n. The elements of the
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set N, x are ordered lexicographically and used to index the coordinates of vectors in
R®) . Let f : R¥ — R be a symmetric function, that is invariant under permutations of
its arguments. Define f: R"” — R() by

fo(x) := f(xp,s-- 5 %p,)

forall x € R” and all p € N, ;. Finally, let U¥) be the k-th multiplicative compound

matrix of an n x n matrix U. It is known that U®) is orthogonal, whenever U is,

see Section 2 for more details. For any symmetric f : R¥ — R, define a function
F:S"— SG) , called (generated) k-isotropic, by

-

F(A) := U (Diagf(A(A)))(UW)

where U € 0" is such that A = U (Diag A (A))U" .

Function F is well-defined and satisfies F(UAU") = UNF(A)(U U‘))T for any
U € 0" and any A in the domain of F, as shown in [10].

A characterization of C' (generated) k-isotropic functions was obtained in [1] and
that was extended in in [10] to C™ for a larger class, called k-isotropic functions. The
(generated) k-isotropic function F is C™ at A, if and only if the underlying symmetric
function f is C™ at A,(A) forall p € N, ;. Thatresult holds for m =0, 1,... Later on,
[8] showed that, F is analytic at A, if and only if the underlying symmetric function f
is analytic at A,(A) forall p € N, .

The main goal in this work is to connect F# and F, when the underlying function
f is symmetric. This allows us to characterize differentiability of F/ in terms of sym-
metric f, using the corresponding known properties of F'. In addition, we characterize
the analyticity of F/ in terms of f, not necessarily symmetric.

2. Main definition

2.1. Tensor products

Denote by ®§‘=1R”i the tensor product of R", i € N;. This is a linear space
of dimension n; ---n; consisting of formal finite linear combinations of {x; ®...®
xi :x; € R"% i € Ni}, with all necessary identifications made so that the product is
multi-linear. The inner product between u; ® ... @ug and vi ®...® v in ®f.‘:1R"i is
(uy,v1) - {ug,vg). The tensor product A} ® ... ® Ay, between operators A; on R",
i € N, is a linear operator on ®*_|R" defined by

A1®...0A )X ®...0x) = (A1x]) ®...® (Agxx)

and extended by linearity. For short introduction to tensor product and its properties,
see [4, Chapter I].

Denote by {e},...,e!"} the standard orthonormal basis in R" for i € N;. Let
{el HeN, x...x Nnk} denote the standard orthonormal basis in R"!" " . An isometry
TR 5 RN @ ... @R is defined by

ﬂ(el)::e?@...@eﬁf foralll € N, x ... x Ny,.
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Given any n; X n; matrix A; for all i € N and any x € R"""  we have
T (@140)x) = (911,A) (T x),

where on the right-hand side, A; is viewed as an operator on R with respect to the
standard basis for all i € N.

For any A; € §" for all i € Ng, the self-adjoint operator corresponding to the
symmetric matrix F7(Ay,... Ay) is

FHAL.A) =T oFH(A,... Ao T}
= Y (AL A (A (@ i ® (@b,

lean x.,.xN,,k

where U; € 0" is such that A; = U;(DiagA(A;))U;" and uﬁ" denotes the /;-th column
of U; forall i € N.

2.2. Anti-symmetric tensor products

The k-tuples in N, ; are ordered lexicographically and used to index the coordi-

nates of vectors in R(*) and matrices of dimension (%) x (}) - For example, x,, is the

p-th coordinate of a vector x in R(t) and A, ¢ isthe (p,7)-thelementofan (}) x (})
matrix A. Butif x € R", thenlet x, 1= (xp,,...,%p,) € R¥ for any p € N, andif A is
an n X n matrix, let Ap; (without a comma) be the k& x k minor of an A with elements
at the intersections of rows py,...,pr and columns 7,..., 7 forany p,7 € N, ;.

The k-th multiplicative compound matrix of n x n matrix A isan (}) x (}) matrix,

denoted by A®) | such that A,(,If)f :=det(Ap¢) forany p,7 € N, ;. For properties of k-th
multiplicative compound matrix, see for example [5].

For any vectors xp,...,x; € R", their k-th anti-symmetric tensor product (wedge
product) is defined by
A A ! Yy e ®...®
XN NX = = 0Xg(1) W ... O X5 (k)
\/IZ o:N.—N;

where the summation is over all permutations ¢ on N; and &5 is defined to be +1,
if o is even and to be —1, if 0 is odd. The wedge product is multi-linear and anti-
commutative. Denote by AFR” the (Z) -dimensional subspace of @ R" spanned by all
k-th anti-symmetric tensor products with inherited inner product

<u1 ANVAN 7T 1 /\.../\Vk> = det((ui,vj>f-‘7j:1).

If A is an operator on R”, then ®*A keeps the subspace AKR” invariant. Denote by
NFA the restriction of ®FA onto AKR™. Tt is called the k-th anti-symmetric tensor
power (wedge power) of A and satisfies

(AFA) (X1 AL AXE) = (Ax)) A A (Axg).
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For properties of k-th wedge power of A, see [5].
Denote by {e” : p € N, 4} the standard orthonormal basis in R®) . An isometry
w R(E) — AFR” is defined by

W (eP):=eP' A...NePkforall p € N,y
and extended by linearity. The relationship between A®) and AFA is:
# (ARx) = (NFA)(#'x) forany x e RG),

where A is viewed as an operator and a matrix with respect to the standard basis.
For future reference, the self-adjoint operator on AKR”, corresponding to the sym-
metric matrix F(A), is

FA):=WoF(A) oW ' = XN, T (A)) (upy A Atap) @ (tp, A Aup,),
PEN &

where {uy,...,u,} are the columns of U € 0", such that A = U(Diag A (A))U" .

2.3. Operator functions on & variables

We are ready to introduce a class of operator functions on several variables by
restricting (generated) k-isotropic functions to block-diagonal matrices. Henceforth,
we assume that n =nj +...+ng.

Let F*: 8" x ... x % — S() be defined by

F*(Ah...,Ak) = F(A]@...@Ak),

where A & ... & A; denotes the block-diagonal matrix with blocks A;, i € N;. The
corresponding self-adjoint operator is

FX(AL,...,A) =W oF(A®... @A) oW L,

2.4. Note about domains

We assume that the domain of the symmetric function f: R¥ — R, denoted by
dom f C R¥, is a symmetric and open set. Then, it is easy to see that the set dom,, f 1=
{xeR":x, €domf forall p € N, ;} is also symmetric and open. Then, the domain

of a (generated) k-isotropic function F : §* — S () corresponding to f : R¥ — R is
domF :={A e S": A(A) € dom, f}.

It is not too difficult to see that for any [ € Ny, x -+ x Ny, , there is a p € N, 4, such
that Ay (A; @ ... ® Ay) is a permutation of (A, (Ay),...,A; (Ax)). Since the set dom f
is symmetric, we see that A; @ ... @ A; € domF implies that (A1,...,A;) € domF¥.
Hence, the domain of F* is the set of all k-tuples (Ay,...,A;) from §™ x ... x S"% that
satisfy A1 ... ® A € domF, and this set is sufficient for our needs.
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3. Connecting F to F*

3.1. Introducing the linear map I1

We introduce a linear map IT that links the operator functions .#* and .#*, when-
ever both of them are defined in terms of the same symmetric function f : R — R.
Let the linear map IT; : R" — @’j‘.z (R for i € N, be the embedding of R" in
k nj.
& RY:
IMi(u) :=0®...0ud®...40 foranyu e R™,
where u appears in the i-th place of the direct sum.
Let IT: ®]J‘-: (R — /\k(EBIJ‘-: R"/) be a linear map defined by
Ml ©...@e) =T (d) A AT(el) = (' @ ... B0 A A(0B...@eh).
It can be extended by linearity to any vectorin u; ® ... u; € ®§‘=1R"i :
H(u1®...®uk)=H1(u1)/\.../\l_[k(uk). 3.1
Next, we show that IT preserves the inner product.
LEMMA 3.1. For any si,...,5x € Ny with s1 < ... <s¢, let uj €R" and v; €

R™J for j € Ng. Define w:=TI;(u1) A... ATlg(ug) and v :=Tls (vi) A... AT, (vg).
The inner product between u and v is given by

(V) = H’j‘-:1<uj,vj> if s1,...,5; are distinct,
’ 0 otherwise.

Hence, 11 preserves the inner product.

Proof. Case I. If all sy,...,s; are distinct, then s; =i for i € N; and we have
V= Hl(vl)/\.../\l_[k(vk)
with v; € R"% for i € Ni. Calculate (u,v) by

k

(u,v) = det ((TT; (u;), TT;(v 7} D) = [1wv),
j=1
since (IT;(u;),I1;(v;)) =0, whenever i # j.
Case 1. Suppose now that sy, ...,s; are not distinct. Without loss of generality, as-
sume that sz = sy, other cases being analogous. Then, we calculate the inner product
between u and v by

<ll,V> = <H1 (ul) AL, /\Hk_l(uk_l) /\Hk(uk),Hsl (Vl) AL, /\Hskfl(vk_l) /\Hsk(vk»
=(1@..00N.. N0D..Bu_1 BN (0D ... Duy),
I, (vi) A ~~~/\Hsk,1(kal) /\H_yk(vk)>

= det((l'[,-(u,-),nsj(Vj)>ﬁj:1) =0,



716 T. JIANG AND H. SENDOV

since either the (k — 1)-th row or the k-th row of the determinant is zero.
Forany u:=u| ®...®@u,v:=v;®...Qv € ®_ R, we have

k
(V) =1 ® ..U,V ®...Qv) = H(ui,vi> = (I(u),I1(v)),

hence, the linear map IT preserves the inner product. [l

The linear map IT: ®%_ | R" — AF(@% | R"™) is an injection, so we can consider
the inverse map IT~!, defined on the range of II. That is, IT"! o TI(u) = u for any
ue ®i~‘:1R"i .

3.2. Connecting F to F*

Let n:= Eleni andlet A:=A|®... DA, € 5", where A; € §" forall i € Ni. Let
U; € 0" be such that A; = U;(DiagA(A;))U;" for all i € N;. Denote by uﬁ" the [;-th
column of U; and uﬁ" is the eigenvector corresponding to A;,(A4;) for all i € N;. Matrix
A is diagonalized by

A= (U ®...0U;) (Diagh(A)) (U1 ®...0U)", (3.2)

where A(A) := (A(A}),...,A(A;)) is not necessarily ordered. For any ¢ € N,,, the ¢-th
column of U; @ ... ® Uy is denoted by ;. For any such 7, there exist unique i € Ny
and /; € N,,, such that = le;ll nj+1; and

iy = T;(ul"). (3.3)

This notation allows us to obtain the following representation of .7*.

Recall that any symmetric function f : R¥ — R defines a function f: R" — R®
by f,(x) := f(xp) for all x in the domain of f and all p € N,;. Such function f:

R" — R®) s symmetric in the sense of
Diagf(Px) = P*) (Diagf(x)) P¥) (3.4)
for all x € R" and all n X n permutation matrix P, see [1].

PROPOSITION 3.1. Let f:R¥ — R be symmetric. For any A =A@ ... 0 A,
with A; € 8™ for i € Ny, we have

9*(A17...,Ak)= 2 f(ip(A))(ﬁpl/\"‘/\ﬁpk)®(ﬁpl/\"'/\ﬁpk)'
pENn‘k

Proof. Let P be an n x n permutation matrix, such that A(A) = PA(A). Using
(3.2), we obtain

A= (U ®...0U)(Diagh(A) (U1 &...0U)"
=(U1®...0U;) (DiagP ' A(A)) (U &...aUy)"
= (U1 &...0U)P" (DiagA(A))P(U1 &... 0 U
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Let U:=(U;®...©U;)P" andlet f: R" — R() be defined by £, (x) := f(xp) forall
p €N, and all x € R". Such f is symmetric in the sense of (3.4). Then, we have

F*(Ar,...,Ad) = F(A) = (Dlagf(?L(A))) ol
U()(Dlang( )U
= U PH (Diag(i(A)))PH v®"
.

= (uP)M (Diagf(A(4))) (UP)M
= (U &...6U)" (Diagf(A(A) (U1 & ... & U,
where we used (3.4). The rest follows. [

Denote by .# the collection of all p € N,,; satisfying
pi€{(ni+-+n_1)+1,....(m+-+n_1)+n} forallieN,
with the understanding that the sums in the parenthesis are zero when i = 1. Let
M =Ny \ M.

Define the operator .7, by

Ty, A) =Y f(Ap(A)) (g, A ... Nilp,) @ (ipy A Niip,)
pes

and let j*//c(Ah Ak) f*(Al, Ak) j*//(Alw”vAk)'
The relationship between .7 and ZF* is given in the next theorem.

THEOREM 3.2. Then, for any A; € S", i € Ny, the following diagram commutes
®F R ®F R
In I
A (k_ RM) T A A (ek  RM)

Moreover, the operators F*(Ay,...,Ay) and F7,(Ay,...,Ax) coincide on the sub-
space TI(@K_ RM).

Proof. We need to show that for any v:=v; ®@...®@v; € ®_ | R" we have
Mo ZH(Ay,... . A)(v) = F*(Ay,...,A) o TI(v). (3.5)
For the right-hand side, we have

FH(Ar,. . A oTIV) = T (A1, .A) o TI(V) + Fye(Ar, ..., Ap) o TI(V).  (3.6)
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Note that the elements p of .# have the property that for any p; € p, there exists a
unique /; € N, , such that p; = Z’j_:ll nj+1I;. Thus, using (3.3) and (3.1), we obtain

fipy Ao N, = T (YA AT () =TT @ .. ult). 3.7)
With that we express the first term on the right-hand side of (3.6) as

T, (A17 Ak )OH( )
=Y Fp(A) (i, A... Niip,) @ (iip, A ... Niip,) (TTy (Vi) A... ATTe(vy))

pesl
— z/(i,,(A))(ﬁ,,lA...Aﬁ,,k)@,,lA...Aﬁpk,nl(vl)A...Ank(vk»
pe
= Z/(ZP(A))(aplA...Aupk)ml(ul)A AT, T (V) A ATT(v))
pe
k
- f(zp(A))(ﬁpl /\"'/\lzpk)H<uj u
pesd Jj=1
k
= 2 S A, A (A H M) © ... ©uf),
leanx..,xN,,k j=1

where in the last three equalities we used (3.7) and Lemma 3.1.
‘We now turn our attention to the second term on the right-hand side of (3.6). Note
that the elements p of .#Z°¢ have the property that for any p; € p, there exists unique

s;i €Ny and [; € anl, , such that p; = ZS’ 1 nj+1;. The important observation is that the
indexes si,...,s; are not distinct and

~ ~ 1 [
dipy A+ Nilp, = T, (ud )AL AT ().

Sk

With that, we calculate %7, (Ay,...,A;) oTI(v) by
j*//r(Ah... ,Ak) OH(V)

= 2///f(i,,(A))(ﬁ,,lA...Aﬁ,,k)@(ﬁplA...Aﬁpk)(nl(vl)A...Ank(vk))
pe©

= Y Fp(A) g, A N ) (T, (i) A ATTg (), T (vi) A AT ()

where the last equality is obtained using Lemma 3.1.
Combining the results for the two terms on the right-hand side of (3.6), gives

F(Ar,...,Ay) oTI(v)

k
= Y A A (a0 T i@ @ulb).

LEN) X ... XNy Jj=1
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This also shows that .#*(Ay,...,A;) and #7,(Ay,...,A;) are the same map when
restricted to the subspace TI(®% R™).
For the left-hand side of (3.5), we have

Mo ZH(Ay,...,A)(v)
=Moo Y (AL, A (A)(@F i) @ (@ ) (v @ ... @ wy)

leanx.,.ank

=Mo Y [ (A1) A (A (@ il v @ .. @) (@ )

leanx.,.ank

k

=Moo Y A, A A [T vi) ! ... 0 uf)
leanx...ank i=1

L 1

= Y A A A T v @ u).
leanx...xN,,k i=1

This shows that the diagram commutes. [
Theorem 3.2 shows that
FHAL. L A) =TT o Z¥(Ay,... ,Ay) ol
=M 'oZA @...0A)0ll and (3.9)
FA&.. @A) =TToFM(A,... Aol L,

where both sides of the last equality are assumed to be restricted to TT(@*_R").
Thus, one can use (3.8) to infer properties of .Z/ from those of .%

4. Differentiability properties of F

In this section, we study the differentiability properties of F7. We start with those
associated with a symmetric function f : R¥ — R. The following is a special case of
Theorem 5.1 in [10], which was proven for the more general k-isotropic functions.

THEOREM 4.1. Let f:RK — R be symmetric with corresponding (generated) k-
isotropic function F : S" — 5@, Then, F is C™ at A, ifand only if f is C™ at Ay(A)
forany p € N, . Here, m=0,1,...

Theorem 4.1, together with (3.8), allows us to see the following corollary.

COROLLARY 4.1. Let f:RF — R be symmetric with corresponding F™ : §™ x
X S" — "% The function F® is C™ at (Ay,...,Ay), whenever f is C™ at
Ap(A1 @ ... DAy) forany p €N, . Here, m=0,1,...

Proof. Suppose that f is C" at A,(A; @...®Ay) forany p € N, ;. Using The-
orem 4.1, one can obtain that the corresponding (generated) k-isotropic function is C"
at A|@...®Ay. Using (3.8), the corresponding F¥ is C™ at (Ay,...,A;). O
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Restricting F to diagonal matrices, we get the following converse.

COROLLARY 4.2. Let f:RF — R be symmetric with corresponding F : ™ x
. X 8" — §" % The function fis C™ at (A, (A1),..., A, (Ax)) for any 1 € N, x
.. X Ny, whenever F® is C™ at (Ay,...,Ay). Here, m=0,1,...

An inductive formula for the first and higher-order derivatives of k-isotropic func-
tions was the focus of [10]. A formula for just the first derivative of (generated) k-
isotropic functions was obtained in [1]. Thus, at least in theory, one can obtain the
formula for the derivatives of F/ using (3.8).

Now, address the analyticity of F¥ . Here, the symmetricity of f:R¥ — R is not
necessary.

THEOREM 4.2. Let f:R¥ — R be a function with corresponding F™ : S™ x ... x
§™% — §MM%  The function FH is analytic at (Ay,...,Ay), if and only if f is analytic
at (l]l (Al), .. ,Alk(Ak)) forall | €N, x ... % Nnk-

Proof. Suppose f : R — R is analytic. Then, the Cauchy integral representation
of f holds as follows

(Zl7'”7zk)
flxr,.x) = j{ ——dz - dz,
2”’ Iy /0 H, 1(zj —x;)

where T'; is a positively oriented circle in the complex plane enclosing the points x;
for all j € N;. The Dunford-Taylor integral representation of F¥(Ay,...,A;) for any
AJ' e S, jeNg is

F<m,,A>=@lw>m%me Do A (A0)) (@5, U1)

Z1, 5 2%) kot
= (&4 lU) Diag; ——— 23 f f}l (Aj))dzl dzk>(®j=lUJ)

k

-4 .. ) (@5 U

ero g I T @x&l.»
k

. _ T
(Dlang(Zj—lz_,-(Aj)) 1)(®§:1Uj) dzy -+ dz,
=1
where U; € 0" is such that A; = U;(DiagA(A;))U;" and T; is a positively oriented

circle in the complex plane enclosing all eigenvalues {A;;(A;) : l €N, } forall j€N.
Notice that

T _ _
(&*_,U)) (Dlang 1)(®§ZIU,) — (AN ®... 0@l —A)

holds. Thus, we have the integral representation

FH(Ay,... Ay

- (271i)k?§ Tk f(Zla~~~,Zk)((le—A1)71®...®(zk1—Ak)*1)dzl...dzk_
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Since the eigenvalue map A; — A(A;) is a continuous function, the circle I'; encloses
the eigenvalues of all matrices in a small neighbourhood of A; forall j € Ni. Itis easy
to see then, that for each fixed (zj,...,z), the integrand is analytic in (Ay,...,A;), and
sois FH.
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For the other direction, restrict the function F¥ to diagonal matrices. [
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