ON DIFFERENTIABILITY OF A CLASS OF ORTHOGONALLY INVARIANT FUNCTIONS ON SEVERAL OPERATOR VARIABLES

Tianpei Jiang and Hristo Sendov

（Communicated by F．Hansen）

Abstract

In this work，we study a connection between two classes of orthogonally invariant functions．Both types of functions are defined on $S^{n_{1}} \times \ldots \times S^{n_{k}}$ ．The functions in the first class take their values in $S^{n_{1} \cdots n_{k}}$ ，while those in the second take values in $S_{k}^{(n)}$ ，where $n=$ $n_{1}+\cdots+n_{k}$ ．Here，S^{n} denotes the set of all $n \times n$ symmetric matrices．Using that connection we establish various smoothness properties of the functions in the first class，using analogous known results about the functions in the second class．

1．Introduction

Let $\mathbb{N}_{n}:=\{1, \ldots, n\}$ ．Denote by S^{n} the space of all $n \times n$ symmetric matrices with inner product $\langle A, B\rangle:=\operatorname{Tr}(A B)$ ．Let O^{n} be the group of $n \times n$ orthogonal matrices． Denote by $\mathbb{R}_{\geqslant}^{n}$ the convex cone in \mathbb{R}^{n} of all vectors with non－increasingly ordered coordinates．For any $A \in S^{n}$ ，let $\lambda(A) \in \mathbb{R}_{\geqslant}^{n}$ be the ordered vector of eigenvalues of A ． Let $\operatorname{Diag} x$ be the $n \times n$ matrix with $x \in \mathbb{R}^{n}$ on the main diagonal．

Fix natural numbers n_{1}, \ldots, n_{k} and assume that the k－tuples in $\mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}$ are ordered lexicographically．For any function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ define

$$
\begin{aligned}
& F^{H}: S^{n_{1}} \times \ldots \times S^{n_{k}} \rightarrow S^{n_{1} \cdots n_{k}} \text { by } \\
& F^{H}\left(A_{1}, \ldots, A_{k}\right):=\left(\otimes_{i=1}^{k} U_{i}\right)\left(\operatorname{Diag}_{l} f\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right)\right)\left(\otimes_{i=1}^{k} U_{i}\right)^{\top},
\end{aligned}
$$

where $U_{i} \in O^{n_{i}}$ is such that $A_{i}=U_{i}\left(\operatorname{Diag} \lambda\left(A_{i}\right)\right) U_{i}^{\top}$ for $i \in \mathbb{N}_{k}$ ．Here， $\operatorname{Diag}_{l} \mathbf{x}_{l}$ denotes the diagonal matrix with vector $\mathbf{x} \in \mathbb{R}^{n_{1} \cdots n_{k}}$ on the main diagonal and $l \in \mathbb{N}_{n_{1}} \times \ldots \times$ $\mathbb{N}_{n_{k}}$ ．

Several properties of these functions have been studied．For example operator monotonicity and operator convexity are extensively studied in［2］，［3］，［6］，［7］，［9］， ［11］，and［12］．In［6］，the author shows that，for values $m=1,2$ ，function F^{H} is C^{m} at $\left(A_{1}, \ldots, A_{k}\right)$ ，if the underlying f is C^{p} ，where $p>m+k / 2$ ，at $\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right)$ for all $l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}$ ．

To introduce the second class of functions，denote by $\mathbb{N}_{n, k}$ the set of all subsets of \mathbb{N}_{n} of size k with elements ordered increasingly，where $1 \leqslant k \leqslant n$ ．The elements of the

[^0]set $\mathbb{N}_{n, k}$ are ordered lexicographically and used to index the coordinates of vectors in $\mathbb{R}^{\binom{n}{k}}$. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a symmetric function, that is invariant under permutations of its arguments. Define $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\binom{n}{k}}$ by
$$
\mathbf{f}_{\rho}(x):=f\left(x_{\rho_{1}}, \ldots, x_{\rho_{k}}\right)
$$
for all $x \in \mathbb{R}^{n}$ and all $\rho \in \mathbb{N}_{n, k}$. Finally, let $U^{(k)}$ be the k-th multiplicative compound matrix of an $n \times n$ matrix U. It is known that $U^{(k)}$ is orthogonal, whenever U is, see Section 2 for more details. For any symmetric $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$, define a function $F: S^{n} \rightarrow S^{\binom{n}{k}}$, called (generated) k-isotropic, by
$$
F(A):=U^{(k)}(\operatorname{Diag} \mathbf{f}(\lambda(A)))\left(U^{(k)}\right)^{\top}
$$
where $U \in O^{n}$ is such that $A=U(\operatorname{Diag} \lambda(A)) U^{\top}$.
Function F is well-defined and satisfies $F\left(U A U^{\top}\right)=U^{(k)} F(A)\left(U^{(k)}\right)^{\top}$ for any $U \in O^{n}$ and any A in the domain of F, as shown in [10].

A characterization of C^{1} (generated) k-isotropic functions was obtained in [1] and that was extended in in [10] to C^{m} for a larger class, called k-isotropic functions. The (generated) k-isotropic function F is C^{m} at A, if and only if the underlying symmetric function f is C^{m} at $\lambda_{\rho}(A)$ for all $\rho \in \mathbb{N}_{n, k}$. That result holds for $m=0,1, \ldots$ Later on, [8] showed that, F is analytic at A, if and only if the underlying symmetric function f is analytic at $\lambda_{\rho}(A)$ for all $\rho \in \mathbb{N}_{n, k}$.

The main goal in this work is to connect F^{H} and F, when the underlying function f is symmetric. This allows us to characterize differentiability of F^{H} in terms of symmetric f, using the corresponding known properties of F. In addition, we characterize the analyticity of F^{H} in terms of f, not necessarily symmetric.

2. Main definition

2.1. Tensor products

Denote by $\otimes_{i=1}^{k} \mathbb{R}^{n_{i}}$ the tensor product of $\mathbb{R}^{n_{i}}, i \in \mathbb{N}_{k}$. This is a linear space of dimension $n_{1} \cdots n_{k}$ consisting of formal finite linear combinations of $\left\{x_{1} \otimes \ldots \otimes\right.$ $\left.x_{k}: x_{i} \in \mathbb{R}^{n_{i}}, i \in \mathbb{N}_{k}\right\}$, with all necessary identifications made so that the product is multi-linear. The inner product between $u_{1} \otimes \ldots \otimes u_{k}$ and $v_{1} \otimes \ldots \otimes v_{k}$ in $\otimes_{i=1}^{k} \mathbb{R}^{n_{i}}$ is $\left\langle u_{1}, v_{1}\right\rangle \cdots\left\langle u_{k}, v_{k}\right\rangle$. The tensor product $A_{1} \otimes \ldots \otimes A_{k}$, between operators A_{i} on $\mathbb{R}^{n_{i}}$, $i \in \mathbb{N}_{k}$, is a linear operator on $\otimes_{i=1}^{k} \mathbb{R}^{n_{i}}$ defined by

$$
\left(A_{1} \otimes \ldots \otimes A_{k}\right)\left(x_{1} \otimes \ldots \otimes x_{k}\right):=\left(A_{1} x_{1}\right) \otimes \ldots \otimes\left(A_{k} x_{k}\right)
$$

and extended by linearity. For short introduction to tensor product and its properties, see [4, Chapter I].

Denote by $\left\{e_{i}^{1}, \ldots, e_{i}^{n_{i}}\right\}$ the standard orthonormal basis in $\mathbb{R}^{n_{i}}$ for $i \in \mathbb{N}_{k}$. Let $\left\{\mathbf{e}^{l}: l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}\right\}$ denote the standard orthonormal basis in $\mathbb{R}^{n_{1} \cdots n_{k}}$. An isometry $\mathscr{T}: \mathbb{R}^{n_{1} \cdots n_{k}} \rightarrow \mathbb{R}^{n_{1}} \otimes \ldots \otimes \mathbb{R}^{n_{k}}$ is defined by

$$
\mathscr{T}\left(\mathbf{e}^{l}\right):=e_{1}^{l_{1}} \otimes \ldots \otimes e_{k}^{l_{k}} \quad \text { for all } l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}
$$

Given any $n_{i} \times n_{i}$ matrix A_{i} for all $i \in \mathbb{N}_{k}$ and any $\mathbf{x} \in \mathbb{R}^{n_{1} \cdots n_{k}}$, we have

$$
\mathscr{T}\left(\left(\otimes_{i=1}^{k} A_{i}\right) \mathbf{x}\right)=\left(\otimes_{i=1}^{k} A_{i}\right)(\mathscr{T} \mathbf{x})
$$

where on the right-hand side, A_{i} is viewed as an operator on $\mathbb{R}^{n_{i}}$ with respect to the standard basis for all $i \in \mathbb{N}_{k}$.

For any $A_{i} \in S^{n_{i}}$ for all $i \in \mathbb{N}_{k}$, the self-adjoint operator corresponding to the symmetric matrix $F^{H}\left(A_{1}, \ldots, A_{k}\right)$ is

$$
\begin{aligned}
\mathscr{F}^{H}\left(A_{1}, \ldots, A_{k}\right) & :=\mathscr{T} \circ F^{H}\left(A_{1}, \ldots, A_{k}\right) \circ \mathscr{T}^{-1} \\
& =\sum_{l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}} f\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right)\left(\otimes_{i=1}^{k} u_{i}^{l_{i}}\right) \otimes\left(\otimes_{i=1}^{k} u_{i}^{l_{i}}\right),
\end{aligned}
$$

where $U_{i} \in O^{n_{i}}$ is such that $A_{i}=U_{i}\left(\operatorname{Diag} \lambda\left(A_{i}\right)\right) U_{i}^{\top}$ and $u_{i}^{l_{i}}$ denotes the l_{i}-th column of U_{i} for all $i \in \mathbb{N}_{k}$.

2.2. Anti-symmetric tensor products

The k-tuples in $\mathbb{N}_{n, k}$ are ordered lexicographically and used to index the coordinates of vectors in $\mathbb{R}^{\binom{n}{k}}$ and matrices of dimension $\binom{n}{k} \times\binom{ n}{k}$. For example, \mathbf{x}_{ρ} is the ρ-th coordinate of a vector \mathbf{x} in $\mathbb{R}^{\binom{n}{k}}$ and $\mathbf{A}_{\rho, \tau}$ is the (ρ, τ)-th element of an $\binom{n}{k} \times\binom{ n}{k}$ matrix \mathbf{A}. But if $x \in \mathbb{R}^{n}$, then let $x_{\rho}:=\left(x_{\rho_{1}}, \ldots, x_{\rho_{k}}\right) \in \mathbb{R}^{k}$ for any $\rho \in \mathbb{N}_{n, k}$ and if A is an $n \times n$ matrix, let $A_{\rho \tau}$ (without a comma) be the $k \times k$ minor of an A with elements at the intersections of rows $\rho_{1}, \ldots, \rho_{k}$ and columns $\tau_{1}, \ldots, \tau_{k}$ for any $\rho, \tau \in \mathbb{N}_{n, k}$.

The k-th multiplicative compound matrix of $n \times n$ matrix A is an $\binom{n}{k} \times\binom{ n}{k}$ matrix, denoted by $A^{(k)}$, such that $A_{\rho, \tau}^{(k)}:=\operatorname{det}\left(A_{\rho \tau}\right)$ for any $\rho, \tau \in \mathbb{N}_{n, k}$. For properties of k-th multiplicative compound matrix, see for example [5].

For any vectors $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$, their k-th anti-symmetric tensor product (wedge product) is defined by

$$
x_{1} \wedge \ldots \wedge x_{k}:=\frac{1}{\sqrt{k!}} \sum_{\sigma: \mathbb{N}_{k} \rightarrow \mathbb{N}_{k}} \varepsilon_{\sigma} x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(k)},
$$

where the summation is over all permutations σ on \mathbb{N}_{k} and ε_{σ} is defined to be +1 , if σ is even and to be -1 , if σ is odd. The wedge product is multi-linear and anticommutative. Denote by $\wedge^{k} \mathbb{R}^{n}$ the $\binom{n}{k}$-dimensional subspace of $\otimes^{k} \mathbb{R}^{n}$ spanned by all k-th anti-symmetric tensor products with inherited inner product

$$
\left\langle u_{1} \wedge \ldots \wedge u_{k}, v_{1} \wedge \ldots \wedge v_{k}\right\rangle=\operatorname{det}\left(\left\langle u_{i}, v_{j}\right\rangle_{i, j=1}^{k}\right) .
$$

If A is an operator on \mathbb{R}^{n}, then $\otimes^{k} A$ keeps the subspace $\wedge^{k} \mathbb{R}^{n}$ invariant. Denote by $\wedge^{k} A$ the restriction of $\otimes^{k} A$ onto $\wedge^{k} \mathbb{R}^{n}$. It is called the k-th anti-symmetric tensor power (wedge power) of A and satisfies

$$
\left(\wedge^{k} A\right)\left(x_{1} \wedge \ldots \wedge x_{k}\right)=\left(A x_{1}\right) \wedge \ldots \wedge\left(A x_{k}\right)
$$

For properties of k-th wedge power of A, see [5].
Denote by $\left\{\mathbf{e}^{\rho}: \rho \in \mathbb{N}_{n, k}\right\}$ the standard orthonormal basis in $\mathbb{R}^{\binom{n}{k}}$. An isometry $\mathscr{W}: \mathbb{R}^{\binom{n}{k}} \rightarrow \wedge^{k} \mathbb{R}^{n}$ is defined by

$$
\mathscr{W}\left(\mathbf{e}^{\rho}\right):=e^{\rho_{1}} \wedge \ldots \wedge e^{\rho_{k}} \text { for all } \rho \in \mathbb{N}_{n, k}
$$

and extended by linearity. The relationship between $A^{(k)}$ and $\wedge^{k} A$ is:

$$
\mathscr{W}\left(A^{(k)} \mathbf{x}\right)=\left(\wedge^{k} A\right)(\mathscr{W} \mathbf{x}) \quad \text { for any } \mathbf{x} \in \mathbb{R}^{\binom{n}{k}}
$$

where A is viewed as an operator and a matrix with respect to the standard basis.
For future reference, the self-adjoint operator on $\wedge^{k} \mathbb{R}^{n}$, corresponding to the symmetric matrix $F(A)$, is

$$
\mathscr{F}(A):=\mathscr{W} \circ F(A) \circ \mathscr{W}^{-1}=\sum_{\rho \in \mathbb{N}_{n, k}} f\left(\lambda_{\rho}(A)\right)\left(u_{\rho_{1}} \wedge \ldots \wedge u_{\rho_{k}}\right) \otimes\left(u_{\rho_{1}} \wedge \ldots \wedge u_{\rho_{k}}\right)
$$

where $\left\{u_{1}, \ldots, u_{n}\right\}$ are the columns of $U \in O^{n}$, such that $A=U(\operatorname{Diag} \lambda(A)) U^{\top}$.

2.3. Operator functions on k variables

We are ready to introduce a class of operator functions on several variables by restricting (generated) k-isotropic functions to block-diagonal matrices. Henceforth, we assume that $n=n_{1}+\ldots+n_{k}$.

Let $F^{*}: S^{n_{1}} \times \ldots \times S^{n_{k}} \rightarrow S^{\binom{n}{k}}$ be defined by

$$
F^{*}\left(A_{1}, \ldots, A_{k}\right):=F\left(A_{1} \oplus \ldots \oplus A_{k}\right)
$$

where $A_{1} \oplus \ldots \oplus A_{k}$ denotes the block-diagonal matrix with blocks $A_{i}, i \in \mathbb{N}_{k}$. The corresponding self-adjoint operator is

$$
\mathscr{F}^{*}\left(A_{1}, \ldots, A_{k}\right):=\mathscr{W} \circ F\left(A_{1} \oplus \ldots \oplus A_{k}\right) \circ \mathscr{W}^{-1}
$$

2.4. Note about domains

We assume that the domain of the symmetric function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$, denoted by $\operatorname{dom} f \subseteq \mathbb{R}^{k}$, is a symmetric and open set. Then, it is easy to see that the set $\operatorname{dom}_{n} f:=$ $\left\{x \in \mathbb{R}^{n}: x_{\rho} \in \operatorname{dom} f\right.$ for all $\left.\rho \in \mathbb{N}_{n, k}\right\}$ is also symmetric and open. Then, the domain of a (generated) k-isotropic function $\left.F: S^{n} \rightarrow S^{n} \begin{array}{l}n \\ k\end{array}\right)$ corresponding to $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is

$$
\operatorname{dom} F:=\left\{A \in S^{n}: \lambda(A) \in \operatorname{dom}_{n} f\right\}
$$

It is not too difficult to see that for any $l \in \mathbb{N}_{n_{1}} \times \cdots \times \mathbb{N}_{n_{k}}$, there is a $\rho \in \mathbb{N}_{n, k}$, such that $\lambda_{\rho}\left(A_{1} \oplus \ldots \oplus A_{k}\right)$ is a permutation of $\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right)$. Since the set $\operatorname{dom} f$ is symmetric, we see that $A_{1} \oplus \ldots \oplus A_{k} \in \operatorname{dom} F$ implies that $\left(A_{1}, \ldots, A_{k}\right) \in \operatorname{dom} F^{H}$. Hence, the domain of F^{*} is the set of all k-tuples $\left(A_{1}, \ldots, A_{k}\right)$ from $S^{n_{1}} \times \ldots \times S^{n_{k}}$ that satisfy $A_{1} \oplus \ldots \oplus A_{k} \in \operatorname{dom} F$, and this set is sufficient for our needs.

3. Connecting F^{H} to F^{*}

3.1. Introducing the linear map $П$

We introduce a linear map Π that links the operator functions \mathscr{F}^{H} and \mathscr{F}^{*}, whenever both of them are defined in terms of the same symmetric function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$.

Let the linear map $\Pi_{i}: \mathbb{R}^{n_{i}} \rightarrow \oplus_{j=1}^{k} \mathbb{R}^{n_{j}}$ for $i \in \mathbb{N}_{k}$, be the embedding of $\mathbb{R}^{n_{i}}$ in $\oplus_{j=1}^{k} \mathbb{R}^{n_{j}}:$

$$
\Pi_{i}(u):=0 \oplus \ldots \oplus u \oplus \ldots \oplus 0 \quad \text { for any } u \in \mathbb{R}^{n_{i}},
$$

where u appears in the i-th place of the direct sum.
Let $\Pi: \otimes_{j=1}^{k} \mathbb{R}^{n_{j}} \rightarrow \wedge^{k}\left(\oplus_{j=1}^{k} \mathbb{R}^{n_{j}}\right)$ be a linear map defined by

$$
\Pi\left(e_{1}^{l_{1}} \otimes \ldots \otimes e_{k}^{l_{k}}\right):=\Pi_{1}\left(e_{1}^{l_{1}}\right) \wedge \ldots \wedge \Pi_{k}\left(e_{k}^{l_{k}}\right)=\left(e_{1}^{l_{1}} \oplus \ldots \oplus 0\right) \wedge \ldots \wedge\left(0 \oplus \ldots \oplus e_{k}^{l_{k}}\right)
$$

It can be extended by linearity to any vector in $u_{1} \otimes \ldots \otimes u_{k} \in \otimes_{i=1}^{k} \mathbb{R}^{n_{i}}$:

$$
\begin{equation*}
\Pi\left(u_{1} \otimes \ldots \otimes u_{k}\right)=\Pi_{1}\left(u_{1}\right) \wedge \ldots \wedge \Pi_{k}\left(u_{k}\right) \tag{3.1}
\end{equation*}
$$

Next, we show that Π preserves the inner product.
Lemma 3.1. For any $s_{1}, \ldots, s_{k} \in \mathbb{N}_{k}$ with $s_{1} \leqslant \ldots \leqslant s_{k}$, let $u_{j} \in \mathbb{R}^{n_{j}}$ and $v_{j} \in$ $\mathbb{R}^{n_{s_{j}}}$ for $j \in \mathbb{N}_{k}$. Define $\mathbf{u}:=\Pi_{1}\left(u_{1}\right) \wedge \ldots \wedge \Pi_{k}\left(u_{k}\right)$ and $\mathbf{v}:=\Pi_{s_{1}}\left(v_{1}\right) \wedge \ldots \wedge \Pi_{s_{k}}\left(v_{k}\right)$. The inner product between \mathbf{u} and \mathbf{v} is given by

$$
\langle\mathbf{u}, \mathbf{v}\rangle= \begin{cases}\prod_{j=1}^{k}\left\langle u_{j}, v_{j}\right\rangle & \text { if } s_{1}, \ldots, s_{k} \text { are distinct }, \\ 0 & \text { otherwise } .\end{cases}
$$

Hence, Π preserves the inner product.
Proof. Case I. If all s_{1}, \ldots, s_{k} are distinct, then $s_{i}=i$ for $i \in \mathbb{N}_{k}$ and we have

$$
\mathbf{v}=\Pi_{1}\left(v_{1}\right) \wedge \ldots \wedge \Pi_{k}\left(v_{k}\right)
$$

with $v_{i} \in \mathbb{R}^{n_{i}}$ for $i \in \mathbb{N}_{k}$. Calculate $\langle\mathbf{u}, \mathbf{v}\rangle$ by

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\operatorname{det}\left(\left\langle\Pi_{i}\left(u_{i}\right), \Pi_{j}\left(v_{j}\right)\right\rangle_{i, j=1}^{k}\right)=\prod_{j=1}^{k}\left\langle u_{j}, v_{j}\right\rangle,
$$

since $\left\langle\Pi_{i}\left(u_{i}\right), \Pi_{j}\left(v_{j}\right)\right\rangle=0$, whenever $i \neq j$.
Case II. Suppose now that s_{1}, \ldots, s_{k} are not distinct. Without loss of generality, assume that $s_{k-1}=s_{k}$, other cases being analogous. Then, we calculate the inner product between \mathbf{u} and \mathbf{v} by

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{v}\rangle= & \left\langle\Pi_{1}\left(u_{1}\right) \wedge \ldots \wedge \Pi_{k-1}\left(u_{k-1}\right) \wedge \Pi_{k}\left(u_{k}\right), \Pi_{s_{1}}\left(v_{1}\right) \wedge \ldots \wedge \Pi_{s_{k-1}}\left(v_{k-1}\right) \wedge \Pi_{s_{k}}\left(v_{k}\right)\right\rangle \\
= & \left\langle\left(u_{1} \oplus \ldots \oplus 0\right) \wedge \ldots \wedge\left(0 \oplus \ldots \oplus u_{k-1} \oplus 0\right) \wedge\left(0 \oplus \ldots \oplus u_{k}\right),\right. \\
& \left.\quad \Pi_{s_{1}}\left(v_{1}\right) \wedge \ldots \wedge \Pi_{s_{k-1}}\left(v_{k-1}\right) \wedge \Pi_{s_{k}}\left(v_{k}\right)\right\rangle \\
= & \operatorname{det}\left(\left\langle\Pi_{i}\left(u_{i}\right), \Pi_{s_{j}}\left(v_{j}\right)\right\rangle_{i, j=1}^{k}\right)=0,
\end{aligned}
$$

since either the $(k-1)$-th row or the k-th row of the determinant is zero.
For any $u:=u_{1} \otimes \ldots \otimes u_{k}, v:=v_{1} \otimes \ldots \otimes v_{k} \in \otimes_{i=1}^{k} \mathbb{R}^{n_{i}}$, we have

$$
\langle u, v\rangle=\left\langle u_{1} \otimes \ldots \otimes u_{k}, v_{1} \otimes \ldots \otimes v_{k}\right\rangle=\prod_{i=1}^{k}\left\langle u_{i}, v_{i}\right\rangle=\langle\Pi(u), \Pi(v)\rangle,
$$

hence, the linear map Π preserves the inner product.
The linear map $\Pi: \otimes_{i=1}^{k} \mathbb{R}^{n_{i}} \rightarrow \wedge^{k}\left(\oplus_{i=1}^{k} \mathbb{R}^{n_{i}}\right)$ is an injection, so we can consider the inverse map Π^{-1}, defined on the range of Π. That is, $\Pi^{-1} \circ \Pi(u)=u$ for any $u \in \otimes_{i=1}^{k} \mathbb{R}^{n_{i}}$.

3.2. Connecting F^{H} to F^{*}

Let $n:=\sum_{i=1}^{k} n_{i}$ and let $A:=A_{1} \oplus \ldots \oplus A_{k} \in S^{n}$, where $A_{i} \in S^{n_{i}}$ for all $i \in \mathbb{N}_{k}$. Let $U_{i} \in O^{n_{i}}$ be such that $A_{i}=U_{i}\left(\operatorname{Diag} \lambda\left(A_{i}\right)\right) U_{i}^{\top}$ for all $i \in \mathbb{N}_{k}$. Denote by $u_{i}^{l_{i}}$ the l_{i}-th column of U_{i} and $u_{i}^{l_{i}}$ is the eigenvector corresponding to $\lambda_{l_{i}}\left(A_{i}\right)$ for all $i \in \mathbb{N}_{k}$. Matrix A is diagonalized by

$$
\begin{equation*}
A=\left(U_{1} \oplus \ldots \oplus U_{k}\right)(\operatorname{Diag} \tilde{\lambda}(A))\left(U_{1} \oplus \ldots \oplus U_{k}\right)^{\top} \tag{3.2}
\end{equation*}
$$

where $\tilde{\lambda}(A):=\left(\lambda\left(A_{1}\right), \ldots, \lambda\left(A_{k}\right)\right)$ is not necessarily ordered. For any $t \in \mathbb{N}_{n}$, the t-th column of $U_{1} \oplus \ldots \oplus U_{k}$ is denoted by \tilde{u}_{t}. For any such t, there exist unique $i \in \mathbb{N}_{k}$ and $l_{i} \in \mathbb{N}_{n_{i}}$, such that $t=\sum_{j=1}^{i-1} n_{j}+l_{i}$ and

$$
\begin{equation*}
\tilde{u}_{t}=\Pi_{i}\left(u_{i}^{l_{i}}\right) . \tag{3.3}
\end{equation*}
$$

This notation allows us to obtain the following representation of \mathscr{F}^{*}.
Recall that any symmetric function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ defines a function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\binom{n}{k}}$ by $\mathbf{f}_{\rho}(x):=f\left(x_{\rho}\right)$ for all x in the domain of f and all $\rho \in \mathbb{N}_{n, k}$. Such function \mathbf{f} : $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{(n} \begin{array}{l}n \\ k\end{array}\right)$ is symmetric in the sense of

$$
\begin{equation*}
\operatorname{Diag} \mathbf{f}(P x)=P^{(k)}(\operatorname{Diag} \mathbf{f}(x)) P^{(k)^{\top}} \tag{3.4}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and all $n \times n$ permutation matrix P, see [1].
Proposition 3.1. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be symmetric. For any $A:=A_{1} \oplus \ldots \oplus A_{k}$ with $A_{i} \in S^{n_{i}}$ for $i \in \mathbb{N}_{k}$, we have

$$
\mathscr{F}^{*}\left(A_{1}, \ldots, A_{k}\right)=\sum_{\rho \in \mathbb{N}_{n, k}} f\left(\tilde{\lambda}_{\rho}(A)\right)\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right) \otimes\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right) .
$$

Proof. Let P be an $n \times n$ permutation matrix, such that $\lambda(A)=P \tilde{\lambda}(A)$. Using (3.2), we obtain

$$
\begin{aligned}
A & =\left(U_{1} \oplus \ldots \oplus U_{k}\right)(\operatorname{Diag} \tilde{\lambda}(A))\left(U_{1} \oplus \ldots \oplus U_{k}\right)^{\top} \\
& =\left(U_{1} \oplus \ldots \oplus U_{k}\right)\left(\operatorname{Diag} P^{\top} \lambda(A)\right)\left(U_{1} \oplus \ldots \oplus U_{k}\right)^{\top} \\
& =\left(U_{1} \oplus \ldots \oplus U_{k}\right) P^{\top}(\operatorname{Diag} \lambda(A)) P\left(U_{1} \oplus \ldots \oplus U_{k}\right)^{\top} .
\end{aligned}
$$

Let $U:=\left(U_{1} \oplus \ldots \oplus U_{k}\right) P^{\top}$ and let $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\binom{n}{k}}$ be defined by $\mathbf{f}_{\rho}(x):=f\left(x_{\rho}\right)$ for all $\rho \in \mathbb{N}_{n, k}$ and all $x \in \mathbb{R}^{n}$. Such \mathbf{f} is symmetric in the sense of (3.4). Then, we have

$$
\begin{aligned}
F^{*}\left(A_{1}, \ldots, A_{k}\right) & =F(A)=U^{(k)}(\operatorname{Diag} \mathbf{f}(\lambda(A))) U^{(k)^{\top}} \\
& =U^{(k)}(\operatorname{Diag} \mathbf{f}(P \tilde{\lambda}(A))) U^{(k)^{\top}} \\
& =U^{(k)} P^{(k)}(\operatorname{Diag} \mathbf{f}(\tilde{\lambda}(A))) P^{(k)^{\top}} U^{(k)^{\top}} \\
& =(U P)^{(k)}(\operatorname{Diag} \mathbf{f}(\tilde{\lambda}(A)))(U P)^{(k)^{\top}} \\
& =\left(U_{1} \oplus \ldots \oplus U_{k}\right)^{(k)}(\operatorname{Diag} \mathbf{f}(\tilde{\lambda}(A)))\left(U_{1} \oplus \ldots \oplus U_{k}\right)^{(k)^{\top}},
\end{aligned}
$$

where we used (3.4). The rest follows.
Denote by \mathscr{M} the collection of all $\rho \in \mathbb{N}_{n, k}$ satisfying

$$
\rho_{i} \in\left\{\left(n_{1}+\cdots+n_{i-1}\right)+1, \ldots,\left(n_{1}+\cdots+n_{i-1}\right)+n_{i}\right\} \quad \text { for all } i \in \mathbb{N}_{k},
$$

with the understanding that the sums in the parenthesis are zero when $i=1$. Let

$$
\mathscr{M}^{c}:=\mathbb{N}_{n, k} \backslash \mathscr{M} .
$$

Define the operator $\mathscr{F}_{\mathscr{M}}^{*}$ by

$$
\mathscr{F}_{\mathscr{M}}^{*}\left(A_{1}, \ldots, A_{k}\right):=\sum_{\rho \in \mathscr{M}} f\left(\tilde{\lambda}_{\rho}(A)\right)\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right) \otimes\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right)
$$

and let $\mathscr{F}_{\mathscr{M}^{c}}^{*}\left(A_{1}, \ldots, A_{k}\right):=\mathscr{F}^{*}\left(A_{1}, \ldots, A_{k}\right)-\mathscr{F}_{\mathscr{M}}^{*}\left(A_{1}, \ldots, A_{k}\right)$.
The relationship between \mathscr{F}^{H} and \mathscr{F}^{*} is given in the next theorem.
THEOREM 3.2. Then, for any $A_{i} \in S^{n_{i}}, i \in \mathbb{N}_{k}$, the following diagram commutes

$$
\begin{array}{cc}
\otimes_{i=1}^{k} \mathbb{R}^{n_{i}} & \xrightarrow{\mathscr{F}^{H}\left(A_{1}, \ldots, A_{k}\right)}
\end{array} \otimes_{i=1}^{k} \mathbb{R}^{n_{i}}
$$

Moreover, the operators $\mathscr{F}^{*}\left(A_{1}, \ldots, A_{k}\right)$ and $\mathscr{F}_{\mathscr{M}}^{*}\left(A_{1}, \ldots, A_{k}\right)$ coincide on the subspace $\Pi\left(\otimes_{i=1}^{k} \mathbb{R}^{n_{i}}\right)$.

Proof. We need to show that for any $v:=v_{1} \otimes \ldots \otimes v_{k} \in \otimes_{i=1}^{k} \mathbb{R}^{n_{i}}$, we have

$$
\begin{equation*}
\Pi \circ \mathscr{F}^{H}\left(A_{1}, \ldots, A_{k}\right)(v)=\mathscr{F}^{*}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi(v) . \tag{3.5}
\end{equation*}
$$

For the right-hand side, we have

$$
\begin{equation*}
\mathscr{F}^{*}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi(v)=\mathscr{F}_{\mathscr{M}}^{*}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi(v)+\mathscr{F}_{\mathscr{M}^{c}}^{*}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi(v) . \tag{3.6}
\end{equation*}
$$

Note that the elements ρ of \mathscr{M} have the property that for any $\rho_{i} \in \rho$, there exists a unique $l_{i} \in \mathbb{N}_{n_{i}}$, such that $\rho_{i}=\sum_{j=1}^{i-1} n_{j}+l_{i}$. Thus, using (3.3) and (3.1), we obtain

$$
\begin{equation*}
\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}=\Pi_{1}\left(u_{1}^{l_{1}}\right) \wedge \ldots \wedge \Pi_{k}\left(u_{k}^{l_{k}}\right)=\Pi\left(u_{1}^{l_{1}} \otimes \ldots \otimes u_{k}^{l_{k}}\right) . \tag{3.7}
\end{equation*}
$$

With that we express the first term on the right-hand side of (3.6) as

$$
\begin{aligned}
& \mathscr{F}_{\mathscr{M}}^{*}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi(v) \\
& =\sum_{\rho \in \mathscr{M}} f\left(\tilde{\lambda}_{\rho}(A)\right)\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right) \otimes\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right)\left(\Pi_{1}\left(v_{1}\right) \wedge \ldots \wedge \Pi_{k}\left(v_{k}\right)\right) \\
& =\sum_{\rho \in \mathscr{M}} f\left(\tilde{\lambda}_{\rho}(A)\right)\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right)\left\langle\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}, \Pi_{1}\left(v_{1}\right) \wedge \ldots \wedge \Pi_{k}\left(v_{k}\right)\right\rangle \\
& =\sum_{\rho \in \mathscr{M}} f\left(\tilde{\lambda}_{\rho}(A)\right)\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right)\left\langle\Pi_{1}\left(u_{1}^{l_{1}}\right) \wedge \ldots \wedge \Pi_{k}\left(u_{k}^{l_{k}}\right), \Pi_{1}\left(v_{1}\right) \wedge \ldots \wedge \Pi_{k}\left(v_{k}\right)\right\rangle \\
& =\sum_{\rho \in \mathscr{M}} f\left(\tilde{\lambda}_{\rho}(A)\right)\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right) \prod_{j=1}^{k}\left\langle u_{j}^{l_{j}}, u_{j}\right\rangle \\
& =\sum_{l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}} f\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right) \prod_{j=1}^{k}\left\langle u_{j}^{l_{j}}, u_{j}\right\rangle \Pi\left(u_{1}^{l_{1}} \otimes \ldots \otimes u_{k}^{l_{k}}\right)
\end{aligned}
$$

where in the last three equalities we used (3.7) and Lemma 3.1.
We now turn our attention to the second term on the right-hand side of (3.6). Note that the elements ρ of \mathscr{M}^{c} have the property that for any $\rho_{i} \in \rho$, there exists unique $s_{i} \in \mathbb{N}_{k}$ and $l_{i} \in \mathbb{N}_{n_{s_{i}}}$, such that $\rho_{i}=\sum_{j=1}^{s_{i}-1} n_{j}+l_{i}$. The important observation is that the indexes s_{1}, \ldots, s_{k} are not distinct and

$$
\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}=\Pi_{s_{1}}\left(u_{s_{1}}^{l_{1}}\right) \wedge \ldots \wedge \Pi_{s_{k}}\left(u_{s_{k}}^{l_{k}}\right) .
$$

With that, we calculate $\mathscr{F}_{\mathscr{M}^{c}}^{*}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi(v)$ by

$$
\begin{aligned}
& \mathscr{F}_{\mathscr{M}^{c}}^{*}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi(v) \\
& =\sum_{\rho \in \mathscr{M}^{c}} f\left(\tilde{\lambda}_{\rho}(A)\right)\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right) \otimes\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right)\left(\Pi_{1}\left(v_{1}\right) \wedge \ldots \wedge \Pi_{k}\left(v_{k}\right)\right) \\
& =\sum_{\rho \in \mathscr{M}^{c}} f\left(\tilde{\lambda}_{\rho}(A)\right)\left(\tilde{u}_{\rho_{1}} \wedge \ldots \wedge \tilde{u}_{\rho_{k}}\right)\left\langle\Pi_{s_{1}}\left(u_{s_{1}}^{l_{1}}\right) \wedge \ldots \wedge \Pi_{s_{k}}\left(u_{s_{k}}^{l_{k}}\right), \Pi_{1}\left(v_{1}\right) \wedge \ldots \wedge \Pi_{k}\left(v_{k}\right)\right\rangle \\
& =0
\end{aligned}
$$

where the last equality is obtained using Lemma 3.1.
Combining the results for the two terms on the right-hand side of (3.6), gives

$$
\begin{aligned}
& \mathscr{F}^{*}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi(v) \\
& =\sum_{l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}} f\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right) \prod_{j=1}^{k}\left\langle u_{j}^{l_{j}}, u_{j}\right\rangle \Pi\left(u_{1}^{l_{1}} \otimes \ldots \otimes u_{k}^{l_{k}}\right) .
\end{aligned}
$$

This also shows that $\mathscr{F}^{*}\left(A_{1}, \ldots, A_{k}\right)$ and $\mathscr{F}_{\mathscr{A}}^{*}\left(A_{1}, \ldots, A_{k}\right)$ are the same map when restricted to the subspace $\Pi\left(\otimes_{i=1}^{k}, \mathbb{R}^{n_{i}}\right)$.

For the left-hand side of (3.5), we have

$$
\begin{aligned}
& \Pi \circ \mathscr{F}^{H}\left(A_{1}, \ldots, A_{k}\right)(v) \\
& =\Pi \circ \sum_{l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}} f\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right)\left(\otimes_{i=1}^{k} u_{i}^{l_{i}}\right) \otimes\left(\otimes_{i=1}^{k} u_{i}^{l_{i}}\right)\left(v_{1} \otimes \ldots \otimes v_{k}\right) \\
& =\Pi \circ \sum_{l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}} f\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right)\left\langle\otimes_{i=1}^{k} u_{i}^{l_{i}}, v_{1} \otimes \ldots \otimes v_{k}\right\rangle\left(\otimes_{i=1}^{k} u_{i}^{l_{i}}\right) \\
& =\Pi \circ \sum_{l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}} f\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right) \prod_{i=1}^{k}\left\langle u_{i}^{l_{i}}, v_{j}\right\rangle\left(u_{1}^{l_{1}} \otimes \ldots \otimes u_{k}^{l_{k}}\right) \\
& =\sum_{l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}} f\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right) \prod_{i=1}^{k}\left\langle u_{i}^{l_{i}}, v_{j}\right\rangle \Pi\left(u_{1}^{l_{1}} \otimes \ldots \otimes u_{k}^{l_{k}}\right) .
\end{aligned}
$$

This shows that the diagram commutes.
Theorem 3.2 shows that

$$
\begin{align*}
\mathscr{F}^{H}\left(A_{1}, \ldots, A_{k}\right) & =\Pi^{-1} \circ \mathscr{F}^{*}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi \\
& =\Pi^{-1} \circ \mathscr{F}\left(A_{1} \oplus \ldots \oplus A_{k}\right) \circ \Pi \quad \text { and } \tag{3.8}\\
\mathscr{F}\left(A_{1} \oplus \ldots \oplus A_{k}\right) & =\Pi \circ \mathscr{F}^{H}\left(A_{1}, \ldots, A_{k}\right) \circ \Pi^{-1}
\end{align*}
$$

where both sides of the last equality are assumed to be restricted to $\Pi\left(\otimes_{i=1}^{k} \mathbb{R}^{n_{i}}\right)$.
Thus, one can use (3.8) to infer properties of \mathscr{F}^{H} from those of \mathscr{F}.

4. Differentiability properties of F^{H}

In this section, we study the differentiability properties of F^{H}. We start with those associated with a symmetric function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$. The following is a special case of Theorem 5.1 in [10], which was proven for the more general k-isotropic functions.

THEOREM 4.1. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be symmetric with corresponding (generated) k isotropic function $F: S^{n} \rightarrow S^{\binom{n}{k}}$. Then, F is C^{m} at A, if and only if f is C^{m} at $\lambda_{\rho}(A)$ for any $\rho \in \mathbb{N}_{n, k}$. Here, $m=0,1, \ldots$

Theorem 4.1, together with (3.8), allows us to see the following corollary.
Corollary 4.1. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be symmetric with corresponding $F^{H}: S^{n_{1}} \times$ $\ldots \times S^{n_{k}} \rightarrow S^{n_{1} \cdots n_{k}}$. The function F^{H} is C^{m} at $\left(A_{1}, \ldots, A_{k}\right)$, whenever f is C^{m} at $\lambda_{\rho}\left(A_{1} \oplus \ldots \oplus A_{k}\right)$ for any $\rho \in \mathbb{N}_{n, k}$. Here, $m=0,1, \ldots$

Proof. Suppose that f is C^{m} at $\lambda_{\rho}\left(A_{1} \oplus \ldots \oplus A_{k}\right)$ for any $\rho \in \mathbb{N}_{n, k}$. Using Theorem 4.1, one can obtain that the corresponding (generated) k-isotropic function is C^{m} at $A_{1} \oplus \ldots \oplus A_{k}$. Using (3.8), the corresponding F^{H} is C^{m} at $\left(A_{1}, \ldots, A_{k}\right)$.

Restricting F^{H} to diagonal matrices, we get the following converse.
COROLLARY 4.2. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be symmetric with corresponding $F^{H}: S^{n_{1}} \times$ $\ldots \times S^{n_{k}} \rightarrow S^{n_{1} \cdots n_{k}}$. The function f is C^{m} at $\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right)$ for any $l \in \mathbb{N}_{n_{1}} \times$ $\ldots \times \mathbb{N}_{n_{k}}$, whenever F^{H} is C^{m} at $\left(A_{1}, \ldots, A_{k}\right)$. Here, $m=0,1, \ldots$

An inductive formula for the first and higher-order derivatives of k-isotropic functions was the focus of [10]. A formula for just the first derivative of (generated) k isotropic functions was obtained in [1]. Thus, at least in theory, one can obtain the formula for the derivatives of F^{H} using (3.8).

Now, address the analyticity of F^{H}. Here, the symmetricity of $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is not necessary.

THEOREM 4.2. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a function with corresponding $F^{H}: S^{n_{1}} \times \ldots \times$ $S^{n_{k}} \rightarrow S^{n_{1} \cdots n_{k}}$. The function F^{H} is analytic at $\left(A_{1}, \ldots, A_{k}\right)$, if and only if f is analytic at $\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right)$ for all $l \in \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{k}}$.

Proof. Suppose $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is analytic. Then, the Cauchy integral representation of f holds as follows

$$
f\left(x_{1}, \ldots, x_{k}\right)=\frac{1}{(2 \pi i)^{k}} \oint_{\Gamma_{k}} \cdots \oint_{\Gamma_{1}} \frac{f\left(z_{1}, \ldots, z_{k}\right)}{\prod_{j=1}^{k}\left(z_{j}-x_{j}\right)} d z_{1} \cdots d z_{k}
$$

where Γ_{j} is a positively oriented circle in the complex plane enclosing the points x_{j} for all $j \in \mathbb{N}_{k}$. The Dunford-Taylor integral representation of $F^{H}\left(A_{1}, \ldots, A_{k}\right)$ for any $A_{j} \in S^{n_{j}}, j \in \mathbb{N}_{k}$ is

$$
\begin{aligned}
& F^{H}\left(A_{1}, \ldots, A_{k}\right)=\left(\otimes_{i=1}^{k} U_{i}\right)\left(\operatorname{Diag}_{l} f\left(\lambda_{l_{1}}\left(A_{1}\right), \ldots, \lambda_{l_{k}}\left(A_{k}\right)\right)\right)\left(\otimes_{i=1}^{k} U_{i}\right)^{\top} \\
& =\left(\otimes_{j=1}^{k} U_{j}\right)\left(\operatorname{Diag}_{l} \frac{1}{(2 \pi i)^{k}} \oint_{\Gamma_{k}} \cdots \oint_{\Gamma_{1}} \frac{f\left(z_{1}, \ldots, z_{k}\right)}{\prod_{j=1}^{k}\left(z_{j}-\lambda_{l_{j}}\left(A_{j}\right)\right)} d z_{1} \cdots d z_{k}\right)\left(\otimes_{j=1}^{k} U_{j}\right)^{\top} \\
& =\frac{1}{(2 \pi i)^{k}} \oint_{\Gamma_{k}} \ldots \oint_{\Gamma_{1}} f\left(z_{1}, \ldots, z_{k}\right)\left(\otimes_{j=1}^{k} U_{j}\right) \\
& \quad\left(\operatorname{Diag}_{l} \prod_{j=1}^{k}\left(z_{j}-\lambda_{l_{j}}\left(A_{j}\right)\right)^{-1}\right)\left(\otimes_{j=1}^{k} U_{j}\right)^{\top} d z_{1} \cdots d z_{k},
\end{aligned}
$$

where $U_{j} \in O^{n_{j}}$ is such that $A_{j}=U_{j}\left(\operatorname{Diag} \lambda\left(A_{j}\right)\right) U_{j}^{\top}$ and Γ_{j} is a positively oriented circle in the complex plane enclosing all eigenvalues $\left\{\lambda_{l_{j}}\left(A_{j}\right): l_{j} \in \mathbb{N}_{n_{j}}\right\}$ for all $j \in \mathbb{N}_{k}$. Notice that

$$
\left(\otimes_{j=1}^{k} U_{j}\right)\left(\operatorname{Diag}_{l} \prod_{j=1}^{k}\left(z_{j}-\lambda_{l_{j}}\left(A_{j}\right)\right)^{-1}\right)\left(\otimes_{j=1}^{k} U_{j}\right)^{\top}=\left(z_{1} I-A_{1}\right)^{-1} \otimes \ldots \otimes\left(z_{k} I-A_{k}\right)^{-1}
$$

holds. Thus, we have the integral representation

$$
\begin{aligned}
& F^{H}\left(A_{1}, \ldots, A_{k}\right) \\
& =\frac{1}{(2 \pi i)^{k}} \oint_{\Gamma_{k}} \cdots \oint_{\Gamma_{1}} f\left(z_{1}, \ldots, z_{k}\right)\left(\left(z_{1} I-A_{1}\right)^{-1} \otimes \ldots \otimes\left(z_{k} I-A_{k}\right)^{-1}\right) d z_{1} \cdots d z_{k}
\end{aligned}
$$

Since the eigenvalue map $A_{j} \mapsto \lambda\left(A_{j}\right)$ is a continuous function, the circle Γ_{j} encloses the eigenvalues of all matrices in a small neighbourhood of A_{j} for all $j \in \mathbb{N}_{k}$. It is easy to see then, that for each fixed $\left(z_{1}, \ldots, z_{k}\right)$, the integrand is analytic in $\left(A_{1}, \ldots, A_{k}\right)$, and so is F^{H}.

For the other direction, restrict the function F^{H} to diagonal matrices.

REFERENCES

[1] B. Ames and H. Sendov, Derivatives of compound matrix valued functions, J. Math. Anal. Appl. 433 (2016), pp. 1459-1485.
[2] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), pp. 2075-2084.
[3] J. AuJLa, Matrix convexity of functions of two variables, Linear Algebra Appl. 194 (1993), pp. 149160.
[4] R. Bhatia, Matrix analysis, vol. 169, Springer Science \& Business Media, 2013.
[5] M. FIEDLER, Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices, Czechoslovak Math. J. 24 (1974), pp. 392-402.
[6] F. Hansen, Operator convex functions of several variables, Publ. Res. Inst. Math. Sci. 33 (1997), pp. 443-463.
[7] F. Hansen, Operator monotone functions of several variables, Math. Inequal. Appl. 6 (2003), pp. 17.
[8] T. Jiang, M. Mousavi, and S. Sendov, On the analyticity of k-isotropic functions, Submitted, (2017).
[9] A. Korányi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc. (1961), pp. 520-554.
[10] S. Mousavi and H. Sendov, A unified approach to spectral and isotropic functions, Submitted, (2016).
[11] M. Singh and H. Vasudeva, Monotone matrix functions of two variables, Linear Algebra Appl. 328 (2001), pp. 131-152.
[12] Z. Zhang, Some operator convex functions of several variables, Linear Algebra Appl. 463 (2014), pp. 1-9.

[^0]: Mathematics subject classification（2010）：Primary 15A18，47A56，49R50，Secondary 05A05，47A75．
 The second author was partially supported by the Natural Sciences and Engineering Research Council（NSERC）of Canada．

