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LINEAR DIFFERENTIAL OPERATOR WITH AN INVOLUTION

AS A GENERATOR OF AN OPERATOR GROUP

ANATOLY G. BASKAKOV, ILYA A. KRISHTAL AND NATALIA B. USKOVA

(Communicated by F. Gesztesy)

Abstract. We use the method of similar operators to study a mixed problem for a differential
equation with an involution and an operator-valued potential function. The differential operator
defined by the equation is transformed into a similar operator that is an orthogonal direct sum
of simpler operators. The result is used to construct an operator group that describes the mild
solutions of the original problem. It may also serve as a justification for the use of the Fourier
method to solve it.

1. Introduction

Mixed problems with an involution arise in various theoretical and applied re-
search fields such as filtering and prediction theory [25] and the study of subharmonic
oscillations [31, 32]. Some classical geometric problems of Bernoulli and Euler may
also lead to a (finite dimensional) system of differential equations with a simple invo-
lution [40]. In addition, problems with an involution are interesting because of their
relation to the problems with a Dirac operator [9, 11, 29]. In this paper, we study a
mixed problem for a differential equation with an involution and an operator-valued
potential function in the following form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u(t,s)
∂ t = ∂u(t,s)

∂ s −V (s)u(t,ω − s),

u(t,0) = u(t,ω),

u(0,s) = ϕ(s),

t ∈ J , s ∈ [0,ω ],

(1.1)

where J is one of the intervals (−∞,∞) , (−∞,β ] , [α,β ] , or [α,∞) . It is always
assumed that 0 ∈ J .
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We also consider a non-homogeneous problem given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u(t,s)
∂ t = ∂u(t,s)

∂ s −V (s)u(t,ω − s)+ f (t,s),

u(t,0) = u(t,ω),

u(0,s) = ϕ(s),

t ∈ J , s ∈ [0,ω ].

(1.2)

The mixed problems (1.1) and (1.2) and related differential operators have been
studied, for example, in [15, 16, 17, 18, 26, 34] in the case of scalar valued functions
and with a smooth potential V : [0,ω ] → C . For the homogeneous problem (1.1),
the resolvent method and contour integration were used to justify the Fourier method.
The authors of [15, 16, 17] also obtained results on the asymptotics of the eigenvalues
and the equiconvergence of the spectral decompositions of the differential operator L
defined by the problem (1.1). The spectral properties of the operator L for the case of
Cd -valued functions, d ∈ N , were studied in [13]. There, the authors used the method
of similar operators, which will also be the primary tool in this paper. The method was
pioneered by Friedrichs [22] and then extensively developed and used, for example, in
[6, 7, 9, 14]. In this paper, we partially follow the blueprint of [13] to extend some of
the results on the spectral properties of the operator L to the case when the functions
have values in an infinite dimensional Hilbert space. Our primary focus, however, is
describing the group generated by the operator L and studying its spectral properties.

This paper is organized as follows. In Section 2, we introduce the main notions
and notation. In particular, in Subsection 2.1, we carefully define the mixed problems
we study, their classical and mild solutions, and the differential operator L that is asso-
ciated with them. In Subsection 2.2, we define the notion of similarity for unbounded
operators and present some known results about the spectra of similar operators. In
Subsection 2.3, we state the results of this paper. The foundational result is Theorem
2.6, which proves that, under mild conditions on the potential function V , the operator
L is similar to an analogous operator with a Hilbert-Schmidt-valued potential. Our main
contributions are Theorem 2.7, where we describe the spectral properties of the opera-
tor L and Theorem 2.10, where we give a more or less explicit formula for the group
T̃ that is similar to the group T generated by L . Two other important results deal with
the equiconvergence of spectral decompositions (Theorem 2.9) and the approximation
estimates for T in terms of T̃ (Theorem 2.12). Section 3 contains a brief description of
the method of similar operators in an abstract setting. In Sections 4 and 5, we use the
method of similar operators to construct two consecutive similarity transforms for the
differential operator studied in this paper. Section 6 contains the proofs of the results
in Section 2. Finally, Section 7 concludes the paper with an illustrative example that is
intended to help the reader appreciate the method of similar operators, our results, and
the role played by the involution in (1.1).
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2. Main definitions and results

In this section, we provide precise definitions of the mixed problems, their various
solutions, and the differential operator associated with them. We remind the reader of
the relevant facts from the theory of operator semigroups and exhibit basic definitions
needed for the method of similar operators. We conclude the section with the statements
of the main results of this paper.

2.1. Mixed problems and their solutions

To make Problems (1.1) and (1.2) precise, we introduce the following notation.
We let H be a complex Hilbert space and L2 = L2([0,ω ],H) be the Hilbert space of all
(equivalence classes) of square summable Lebesgue measurable H -valued functions.
The inner product on L2 is given by

〈x,y〉 =
1
ω

∫ ω

0
〈x(s),y(s)〉H ds, x,y ∈ L2.

If H = C , we shall write L2[0,ω ] instead of L2([0,ω ],C) .
By W 1

2 = W 1
2 ([0,ω ],H) we denote the Sobolev space of continuous L2 functions

with derivatives in L2 and the inner product 〈x,y〉W 1
2

= 〈x,y〉+ 〈x′,y′〉 , x , y ∈W 1
2 .

For an abstract complex Hilbert space H we denote by B(H ) the Banach alge-
bra of all bounded linear operators in H .

We assume that the function V : [0,ω ]→ B(H) in (1.1) and (1.2) is strongly mea-
surable [20] and the functions s �→ V (s)x : [0,ω ]→H , x∈H , belong to L2([0,ω ],H) .
Thus, the Fourier series of the function V is well defined by

V (s)x = ∑
n∈Z

V̂ (n)xei 2πn
ω s, s ∈ [0,ω ], x ∈ H,

where the Fourier coefficients V̂ (n) ∈ B(H) , n ∈ Z , are given by

V̂ (n)x =
1
ω

∫ ω

0
V (s)xe−i 2πn

ω s ds, x ∈ H.

We note that ‖V (s)x‖2
2 = ∑

n∈Z

‖V̂ (n)x‖2 < ∞ for each x ∈ H and s ∈ [0,ω ] . We shall,

however, always assume two stronger conditions:

∑
n∈Z

‖V̂ (n)‖2 < ∞ (2.1)

and

∑
j,�∈Z

∥∥∥∥∥∑
n 	=�

V̂ ( j +n)V̂ (�+n)
�−n

∥∥∥∥∥
2

< ∞. (2.2)

The nature of the last conditionwill become apparent in Section 4. There, in Proposition
4.5, we shall also provide sufficient conditions for (2.2) to hold. One of those conditions
implies that (2.1) and (2.2) may hold even when the function s �→ ‖V (s)‖ is unbounded.
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By C(J ,L2) we shall denote the linear space of all functions v : J × [0,ω ]→H
such that, for each fixed t ∈ J , the function s �→ v(t,s) belongs to L2 = L2([0,ω ],H)
and the function

ṽ : J → L2, (ṽ(t))(s) = v(t,s), t ∈ J , s ∈ [0,ω ],

is continuous. If J is a finite interval then C(J ,L2) is a Banach space with the norm
‖v‖∞ = max

t∈J
‖ṽ(t)‖2 . We call the function ṽ the associated function to v and frequently

identify the two in the rest of the paper.
The function f : J × [0,ω ] → H in the non-homogeneous problem (1.2) is as-

sumed to belong to the space C(J ,L2) .
Problems (1.1) and (1.2) have the following equivalent formulations in L2 :

ũt = Lũ, ũ(0) = ϕ , (2.3)

ũt = Lũ+ f̃ , ũ(0) = ϕ . (2.4)

The operator L : D(L) ⊂ L2 → L2 in (2.3) and (2.4), is defined by

(Ly)(s) =
dy
ds

(s)−V (s)y(ω − s), s ∈ [0,ω ]. (2.5)

The domain D(L) is given by the periodic boundary conditions

D(L) = {y ∈W 1
2 : y(0) = y(ω)}. (2.6)

In the following two definitions we identify precisely two types of solutions of
problems (1.1) and (1.2).

DEFINITION 2.1. ([1]) By the classical solution of Problem (1.2) we mean a
continuously differentiable function u : J × [0,ω ] → H , which belongs to the space
C(J ,L2) and such that the associated function ũ : J → L2([0,ω ],H) is continuously
differentiable, satisfies ũ(t) ∈ D(L) for each t ∈ J , and (2.4) holds.

DEFINITION 2.2. ([1, § 3.1]) A function u ∈C(J ,L2) is a mild solution of (2.4)
if
∫ t
0 ũ(s)ds ∈ D(L) and

ũ(t) = ϕ +L
∫ t

0
ũ(s)ds+

∫ t

0
f̃ (s)ds, t ∈ J ,

where the integrals are Riemann integrals of continuous functions from J to L2 =
L2([0,ω ];H) .

REMARK 2.1. We remark that the classical and mild solutions of Problem (1.1)
are defined the same way if one takes f and f̃ to be the zero functions. Observe that
a function u : J × [0,ω ] → H is a mild solution of (1.1) if and only if there exists a
sequence of functions ϕn ∈W 1

2 , n � 1, such that lim
n→∞

ϕn = ϕ in L2 and u is a uniform

limit on compact subsets of J × [0,ω ] of a sequence of classical solutions (un) , n � 1,
of Problem (1.1) with un(0,s) = ϕn(s) , s ∈ [0,ω ] .
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An important tool for justifying the Fourier method for Problems (1.1) and (1.2)
is provided by the following, nearly obvious, result.

THEOREM 2.1. Assuming (2.1) and (2.2), the differential operator L is an in-
finitesimal generator of a strongly continuous operator group T : R → B(L2). Every
classical solution u ∈C(J ,L2) of (1.1) is given by

u(t,s) = (T (t)ϕ)(s), s ∈ [0,ω ], t ∈ J , (2.7)

where ϕ ∈W 1
2 and ϕ(0) = ϕ(ω) . Every mild solution is also given by (2.7), but with

ϕ ∈ L2 .

The above theorem, at least in the case when the function s �→ ‖V (s)‖ is bounded,
follows from the general results on perturbation of operator semigroups (see [24], [21]).
We shall use the method of similar operators to present a much stronger version of
Theorem 2.1 in Theorems 2.10 and 2.12.

REMARK 2.2. From [1, Proposition 3.1.16], it follows that any mild solution u ∈
C(J ,L2) of (1.2) satisfies

ũ(t) = T (t− t0)ũ(t0)−
∫ t

t0
T (t − τ) f̃ (τ)dτ, t0,t ∈ J , (2.8)

where T : R → EndL2 is the group of operators from Theorem 2.1 generated by the
operator L . Similarly, any classical solution of (1.2) satisfies (2.8) with ũ(t) ∈ D(L) ⊂
W 1

2 .

The following theorem immediately follows.

THEOREM 2.2. Problem (1.2) has a unique mild solution u∈C(J ,L2) such that

ũ(t) = T (t)ϕ +
∫ t

0
T (t − τ) f̃ (τ)dτ, t ∈ J .

2.2. Similar operators and direct sums

Recall that by H we denote an abstract complex Hilbert space. We begin with
the following definition.

DEFINITION 2.3. Two linear operators Ai : D(Ai)⊂H →H , i = 1,2, are called
similar, if there exists a continuously invertible operator U ∈ B(H ) such that

A1Ux =UA2x, x ∈ D(A2), UD(A2) = D(A1).

The operator U is called the similarity transform of A1 into A2 .

Directly from the above definition we have the following result about the spectral
properties of similar operators.
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LEMMA 2.3. Let Ai : D(Ai) ⊂ H → H , i = 1,2 , be two similar operators with
the similarity transform U . Then the following properties hold.

(1) We have σ(A1) = σ(A2) , σp(A1) = σp(A2) , and σc(A1) = σc(A2) , where σp

denotes the point spectrum and σc denotes the continuous spectrum;

(2) Assume that the operator A2 admits a decomposition A2 = A21⊕A22 with respect
to a direct sum H = H1 ⊕H2 , where A21 = A2|H1 and A22 = A2|H2 are the
restrictions of A2 to the respective subspaces. Then the operator A1 admits a
decomposition A1 = A11 ⊕A12 with respect to the direct sum H = H̃1 ⊕ H̃2 ,
where A11 = A1|H̃1

and A12 = A1|H̃2
are the restrictions of A1 to the respective

invariant subspaces. Moreover, if P is the projection onto H1 parallel to H2 ,
then P̃ =UPU−1 is the projection onto H̃1 parallel to H̃2 .

(3) If λ0 is an eigenvalue of the operator A2 and x is a corresponding eigenvector,
then y = Ux is an eigenvector of the operator A1 corresponding to the same
eigenvalue λ0 .

(4) If A2 is a generator of a C0 -semigroup (or group) T2 : J→ B(H ) , J∈ {R,R+} ,
then the operator A1 generates the C0 -semigroup (group)

T1(t) = UT2(t)U−1, t ∈ J, T1 : J → B(H ), J ∈ {R,R+}.

We shall need to extend Property (2) in the above lemma to the case of countable
direct sums. To this end we assume that the abstract Hilbert space H can be written
as

H =
⊕
�∈Z

H�, (2.9)

where each H� , � ∈ Z , is a closed nonzero subspace of H , H j is orthogonal to
H� for � 	= j ∈ Z , and each x ∈ H satisfies x = ∑

�∈Z

x� , where x� ∈ H� and ‖x‖2 =

∑
�∈Z

‖x�‖2 . In other words, we have a disjunctive resolution of the identity

P = {P�, � ∈ Z}, (2.10)

that is a system of idempotents with the following properties:

1. P∗
� = P� , � ∈ Z ;

2. PjP� = δ j�P� , j , � ∈ Z , where δ j� is the standard Kronecker delta;

3. The series ∑
n∈Z

P�x converges unconditionally to x ∈ H and ‖x‖2 = ∑
�∈Z

‖P�x‖2 ;

4. Equalities P�x = 0, � ∈ Z , imply x = 0 ∈ H ;

5. H� = ImP� , x� = P�x , � ∈ Z .
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Given a resolution of the identity P as in (2.10), it is often convenient to represent
an operator X ∈B(H ) in terms of its matrix. We write such matrices as X̃ =(Xj�) j,�∈Z ,
where Xj� = PjXP� , j , �∈Z . Under obvious conditions on the domain, the matrix also
makes sense for an unbounded operator. In the case when the matrix of a linear operator
is diagonal, we get the following definition.

DEFINITION 2.4. We say that a closed linear operator A : D(A) ⊂ H → H is
represented as an orthogonal direct sum of bounded operators A� ∈ B(H�) , �∈Z , with
respect to a decomposition (2.9), that is

A =
⊕
�∈Z

A�, (2.11)

if the following three properties hold.

1. D(A)= {x∈H : ∑
�∈Z

‖A�x�‖2 < ∞,x� =P�x, �∈Z} and H� ⊂D(A) for all �∈Z .

2. For each � ∈ Z the subspace H� is an invariant subspace of the operator A and
A� is the restriction of A to H� . The operators A� , � ∈ Z , are called parts of the
operator A .

3. Ax = ∑
�∈Z

A�x� , x ∈ D(A) , where x� = P�x , � ∈ Z , and the series converges un-

conditionally in H .

We remark that σ(A�) ⊆ σ(A) , � ∈ Z . Without additional assumptions, however,
the spectrum σ(A) may strictly contain the union of the spectra σ(A�) , � ∈ Z , and
even its closure.

DEFINITION 2.5. Given a continuously invertible operator U ∈ B(H ) and an or-
thogonal decomposition (2.9), a U -orthogonal decomposition of H is the orthogonal
direct sum

H =
⊕
�∈Z

UH�. (2.12)

DEFINITION 2.6. Given a continuously invertible operator U ∈ B(H ) , we say
that a closed linear operator A : D(A) ⊂ H → H is a U -orthogonal direct sum of
bounded linear operators Ã� , � ∈ Z , with respect to decomposition (2.12), if (2.11)
holds with respect to the decomposition (2.9) and Ã� = UA�U−1 , � ∈ Z . In this case,
we write

A =
⊕
�∈Z

Ã�.

We remark that U -orthogonal decompositions and direct sums can be viewed as or-
thogonal with respect to the inner product

〈x,y〉U = 〈Ux,Uy〉, x,y ∈ H .
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We shall provide an example of direct sums of operators based on the operator L
defined in (2.5) and (2.6). We write L = L0 −V , where L0 : D(L0) = D(L) ⊂ L2 → L2

is the differential operator L0 = d
ds and

(Vy)(s) = V (s)y(ω − s). (2.13)

The operator V is well defined because D(L0) ⊂ D(V ) . We shall treat the operator L
as the perturbation of L0 by V .

Let H = L2 = L2([0,ω ],H) . The spectrum of the operator L0 = d
ds can be written

as

σ(L0) =
⋃
�∈Z

σ�,

where σ� = {λ�} , λ� = i 2π�
ω , � ∈ Z . The corresponding spectral projections P� =

P(σ�,L0) , � ∈ Z , are given by

(P�x)(s)ei 2π�
ω s = x̂(�)ei 2π�

ω s, x ∈ H , s ∈ [0,ω ], (2.14)

where the Fourier transform F : H → �2(Z,H) is defined by

(Fx)(�) = x̂(�) =
1
ω

∫ ω

0
x(τ)e−i 2π�

ω τ dτ, � ∈ Z, x ∈ L1. (2.15)

In particular, the operator L0 = d
ds is an orthogonal direct sum of operators (L0)� =

L0|H� = i2π�
ω I� , where I� is the identity operator on H� = ImP� , � ∈ Z . In other

words, L0 =
⊕
�∈Z

λ�I� .

We shall also make use of coarser decompositions of H and L0 . For m ∈ Z+ =
N∪{0} , we let P(m) = ∑

|�|�m
P� and consider a new resolution of the identity

P(m) = {P(m)}∪{P�, |�| > m}. (2.16)

Then the operator L0 may also be represented as an orthogonal direct sum

L0 = (L0)(m) ⊕
( ⊕

|�|>m

(L0)�

)
= (L0)(m) ⊕

( ⊕
|�|>m

λ�I�

)
, m ∈ Z+, � ∈ Z,

where (L0)(m) is the restriction of L0 = d
ds to H(m) = ImP(m) . The above represen-

tation is with respect to the orthogonal decomposition of L2 given by L2 = H(m) ⊕( ⊕
|�|>m

H�

)
. Observe that (L0)(m) =

⊕
|�|�m

λ�I� with respect to the decomposition H(m) =⊕
|�|�m

H� .
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2.3. Schatten-type classes and main results

For an abstract complex Hilbert space H , we write Sp(H ) , 1 � p < ∞ , for the
classical Schatten classes of compact operators in B(H ) . In particular, S2(H ) is the
two-sided ideal of Hilbert–Schmidt operators in B(H ) with the norm

‖X‖2 = (tr(XX∗))1/2, X ∈ S2(H ),

where tr(XX∗) is the trace of the nuclear operator XX∗ ∈ S1(H ) . The formula
〈X ,Y 〉 = tr(XY ∗) , X ,Y ∈ S2(H ) , defines an inner product in S2(H ) .

To formulate our results, however, we need a more general version of the Hilbert–
Schmidt class.

DEFINITION 2.7. We say that an operator X ∈ B(H ) belongs to the Hilbert–
Schmidt class S2(H ,P) with respect to a resolution of the identity P given by
(2.10), if

∑
j,�∈Z

‖PjXP�‖2 < ∞. (2.17)

The norm ‖X‖2,P =
(

∑
j,�∈Z

‖PjXP�‖2
)1/2

turns S2(H ,P) into a normed linear

space. Moreover, the following two lemmas immediately follow.

LEMMA 2.4. The space S2(H ,P) of Hilbert–Schmidt operators with respect
to (2.10) is a Banach algebra.

LEMMA 2.5. An operator X ∈ S2(H ,P) belongs to S2(H ) if and only if

∑
j,�∈Z

‖PjXP�‖2
2 < ∞.

REMARK 2.3. Observe that if there is an N ∈ N such that for each �∈ Z the rank
of P� ∈P is at most N , then S2(H ,P) = S2(H ) . We also note that for any m ∈ N

we have S2(H ,P(m)) = S2(H ,P) , where the family P(m) is given by (2.16).

Before we state our main results, we remind the reader of the assumptions that we
have made. The following Hypothesis 2.1 applies to all of the remaining statements of
this section as well as the rest of the paper, with the exception of Section 3.

HYPOTHESIS 2.1. The differential operator L = L0 −V : D(L) ⊂ L2 → L2 is de-
fined by (2.5) and (2.6). The operator L0 : D(L0) = D(L) ⊂ L2 → L2 is the differential
operator L0 = d

ds . The operator V is given be (2.13), where the potential function V
satisfies (2.1) and (2.2).

The foundation for the main contributions of this paper is provided in the following
theorem.
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THEOREM 2.6. Let H = L2 = L2([0,ω ],H) and P be the resolution of the
identity consisting of the spectral projections of the operator L0 . There is a number
k ∈ Z+ and a continuously invertible operator U ∈ B(H ) given by U = I +W with
W ∈S2(H ,P) , such that the operator L = L0−V is similar to the operator L0−V0 ,
where V0 ∈ S2(H ,P) ,

LU = U(L0−V0),

and the subspaces H(k) = ImP(k) and H� = ImP� , |�|> k , are invariant for V0 . More-
over, the operator L is the U -orthogonal direct sum

L = U

⎛⎝L0 −
⎛⎝V0(k)⊕

⎛⎝⊕
|�|>k

V0,�

⎞⎠⎞⎠⎞⎠U−1

with respect to the U -orthogonal decomposition H = UH(k) ⊕
( ⊕

|�|>k
UH�

)
.

In Sections 4, 5, and 6, we will provide an explicit form for the operators U and
V0 in the above theorem.

The first of our two main contributions is the following theorem, which describes
the spectral properties of the operator L . We use the notation of Theorem 2.6 and
Hypothesis 2.1.

THEOREM 2.7. The spectrum σ(L) of the operator L satisfies

σ(L) = σ(k) ∪
⎛⎝ ⋃

|�|>k

({
i
2π�

ω

}
+ σ�

)⎞⎠ ,

where each σ� = σ(V0,�) , |�|> k , is the spectrum of the restriction V0,� of the operator
V0 to the invariant subspace H� . Moreover, we have

∑
|�|>k

|σ�|2 < ∞, where |σ�| = max
λ∈σ�

|λ |, � ∈ Z.

We remark that the differential operators without the involution studied in [2,
10] have considerably different spectral properties. For the finite dimensional case,
a stronger version of this theorem can be found in [13]. We also state the following
theorem that follows immediately from Theorem 2.7 and results in [3].

THEOREM 2.8. If H is a finite dimensional space then each bounded mild solu-
tion ũ of (2.3) is a Bohr almost periodic function [3].

The following theorem holds under the same conditions as Theorems 2.6 and 2.7
and uses the same notation. We also let P̃(k) = P(σ(k),L) and P̃� = P({ i2π�

ω }+ σ�,L) ,
|�| > k , be the spectral projections corresponding to the sets σ(k) and { i2π�

ω }+ σ� ,
|�| > k , respectively. The result below establishes the equiconvergence of the spectral
decompositions in the topology of S2(H ,P) .
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THEOREM 2.9. We have

lim
n→∞

∥∥∥∥∥P̃(k) +
n

∑
|�|=k+1

P̃�−P(k)−
n

∑
|�|=k+1

P�

∥∥∥∥∥
2,P

= 0.

The following theorem is the second main contribution of this paper.

THEOREM 2.10. Consider the differential operator L defined by (2.5) and (2.6)
and let P be the resolution of the identity consisting of the spectral projections of the
operator L0 . The operator L generates a C0 -group of operators

T : R → B(H ), H = L2 = L2([0,ω ],H).

Moreover, there is a number k ∈ Z+ and a continuously invertible operator U ∈ B(H )
given by U = I +W with W ∈ S2(H ,P) , such that the group T̃ : R → B(H ) given
by T̃ (t) = U−1T (t)U , t ∈ R , satifies

T̃ (t) =

(−k−1⊕
�=−∞

et( i2π�
ω I�+B�)

)
⊕ etB(k) ⊕

(
∞⊕

�=k+1

et( i2π�
ω I�+B�)

)
, t ∈ R. (2.18)

In the above formula we have B(k) ∈ B(H(k)) and B� ∈B(H�) , |�|> k , with ∑
|�|>k

‖B�‖2

< ∞ .

The number k in the above theorem will be defined more explicitly in Theo-
rem 5.3. Observe that each operator T (t) , t ∈ R , is a U -orthogonal direct sum of
operators with respect to the U -orthogonal decomposition of H = L2 given by (2.12).
The following corollary immediately follows from (2.18). In its formulation, we use
the translation group S : R → B(H ) given by

(S(t)x)(s) = x(t + s) = ∑
�∈Z

eλ�t(P�x)(s), x ∈ H , t ∈ R,

where we rely on the fact that H = L2([0,ω ],H) is isometrically isomorphic to the
space L2,ω = L2,ω(R,H) of ω -periodic H -valued functions on R that are norm-square-
summable over [0,ω ] .

COROLLARY 2.11. The group T̃ in (2.18) can be written as

T̃ (t) = S(t)Φr(t) = Φl(t)S(t), t ∈ R,

where the functions Φl ,Φr : C → B(H ) are entire functions of exponential type such
that Φl |H j = Φr|H j , | j| > k , and

max{‖Φl(z)‖,‖Φr(z)‖} � eβ |z|, β = sup

{
2πk
ω

+‖B(k)‖,‖Bj‖, | j| > k

}
.
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Given a mild solution u(t,s) = (T (t)ϕ)(s) , t ∈ R , s ∈ [0,ω ] , ϕ ∈ L2 , of Problem
(1.1), we define its generalized Fourier series by

T (t)ϕ = UT̃ (t)U−1ϕ

= U
−k−1

∑
�=−∞

et( i2π�
ω I�+B�)P�U

−1ϕ +UetB(k)P(k)U
−1ϕ

+U
∞

∑
�=k+1

et( i2π�
ω I�+B�)P�U

−1ϕ .

(2.19)

In the following theorem, we estimate the rate of convergence of the generalized
Fourier series of a mild solution of (1.1). We let κ� = sup

|n|��

‖Bn‖ , β� = ‖P�W‖2 , and

γ� = ‖B�‖ , |�| � k + 1. Then lim
l→∞

κ� = 0, lim
|�|→∞

β� = 0, and (β�) and (γ�) are square

summable sequences.
Using (2.19) and Parseval’s identity, we obtain the following result.

THEOREM 2.12. For any function ψ ∈ L2 we have∥∥∥∥∥T (t)Uψ −UetB(k)P(k)ψ − ∑
k<|�|�n

Ue( i2π�
ω I�+B�)tP�ψ

∥∥∥∥∥
2

� C

(
∑

|�|�n+1

e2γ�|t|(|ψ̂(�)|2 + β 2
� ‖ψ‖2)

) 1
2

� Ceκn+1|t|
(

∑
|�|�N+1

(|ψ̂(�)|2 + β 2
� ‖ψ‖2)

) 1
2

, t ∈ R,

for each n > k and some C > 0 that is independent of n .

We conclude the list of our results with the following theorem that follows immediately
from Theorem 2.12.

THEOREM 2.13. The spectral and growth bounds [1] of the group T generated
by the differential operator L coincide.

We remark that the spectral theory of abstract differential operators such as L and
the theory of operator (semi)groups generated by them have been extensively stud-
ied. For readers interested in the subject, we mention excellent books [1, 19, 21] and
references therein. We note that general invertibility conditions for abstract parabolic
operators [12, 27] do not apply for the operator L we study here because iR is not a
subset of the interior of ρ(L) . Stability questions for the group generated by L are of
interest, but we leave them beyond the scope of this paper and refer to [8, 35], among
other papers on the subject.
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3. The method of similar operators.

The method of similar operators has its origins in various similarity and pertur-
bation techniques. Among them classical perturbation methods of celestial mechanics,
Ljapunov’s kinematic similarity method [23, 28, 30], Friedrichs’ method of similar
operators that is used in quantum mechanics [22], and Turner’s method of similar oper-
ators [36, 37].

The method of similar operators that we use here originally appeared in [4, 5].
It has many different versions that apply to various classes of differential operators
[8, 33, 38, 39]. In this section, we outline the version of the method that was used in
[9, 14].

The method of similar operators constructs a similarity transform for an operator
A−B : D(A) ⊂ H → H , where the spectrum of the operator A is known and has
certain properties, and the operator B is A-bounded (see Definition 3.1 below). The
goal of the method is to obtain an operator B1 such that the operator A−B is similar
to A−B1 and the spectral properties of A−B1 are in some sense close to those of A .
In particular, certain spectral subspaces of A will remain invariant for A−B1 .

DEFINITION 3.1. Let A : D(A)⊂H →H be a linear operator. A linear operator
B : D(B) ⊂ H → H is A-bounded if D(B) ⊇ D(A) and ‖B‖A = inf{c > 0 : ‖Bx‖ �
c(‖x‖+‖Ax‖), x ∈ D(A)} < ∞ .

The space LA(H ) of all A-bounded linear operators is a Banach space with re-
spect to the norm ‖ · ‖A . Moreover, given λ0 ∈ ρ(A) , where ρ(A) = C \σ(A) is the
resolvent set of A , we have B ∈ LA(H ) if and only if B(λ0I − A)−1 ∈ B(H ) and
‖B‖λ0

= ‖B(λ0I−A)−1‖B(H ) defines an equivalent norm in LA(H ) [21].
The method of similar operators uses the commutator transform adA : D(adA) ⊂

B(H ) → B(H ) defined by

adAX = AX −XA, X ∈ D(adA),

where the domain D(adA) contains all X ∈ B(H ) such that the following two proper-
ties hold:

1. XD(A) ⊆ D(A) ;

2. The operator adAX : D(A) → H (uniquely) extends to a bounded operator Y ∈
B(H ) ; we then let adAX = Y .

The key notion of the method of similar operators is that of an admissible triplet.
Once such a triplet is constructed achieving the goal of the method becomes a routine
task.

DEFINITION 3.2. ([9, 14]) Let M be a linear subspace of LA(H ) , J : M →M ,
and Γ : M → B(H ) . The collection (M ,J,Γ) is called an admissible triplet for the
operator A , and the space M is the space of admissible perturbations, if the following
six properties hold.
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1. M is a Banach space that is continuously embedded in LA(H ) , i.e., M has a
norm ‖ · ‖∗ such that there is a constant C > 0 that yields ‖X‖A � C‖X‖∗ for
any X ∈ M .

2. J and Γ are bounded linear operators; moreover, J is an idempotent.

3. (ΓX)D(A) ⊂ D(A) and

(adA ΓX)x = (X − JX)x, x ∈ D(A), X ∈ M ;

moreover Y = ΓX ∈ B(H ) is the unique solution of the equation

adAY = AY −YA = X − JX , (3.1)

that satisfies JY = 0.

4. XΓY , (ΓX)Y ∈ M for all X ,Y ∈ M , and there is a constant γ > 0 such that

‖Γ‖ � γ, max{‖XΓY‖∗,‖(ΓX)Y‖∗} � γ‖X‖∗‖Y‖∗.

5. J((ΓX)JY ) = 0 for all X ,Y ∈ M .

6. For every X ∈M and ε > 0 there exists a number λε ∈ ρ(A) , such that ‖X(A−
λε I)−1‖ < ε .

To illustrate the above definition, one should think of the operators involved in
terms of infinite matrices. The operator A is then represented by an infinite diagonal
matrix and the operator B – by a matrix with some kind of off-diagonal decay. The
transform J should be thought of as a projection that picks the main (block) diagonal
of an infinite matrix, whereas the transform Γ annihilates the main (block) diagonal and
weighs the remaining diagonals in accordance with equation (3.1) thereby introducing
or enhancing the off-diagonal decay. The picture will be made more precise in Example
4.2.

To formulate the main theorem of the method of similar operators for an operator
A−B , we use the function Φ : M → M given by

Φ(X) = BΓX − (ΓX)(JB)− (ΓX)J(BΓX)+B. (3.2)

THEOREM 3.1. ([9, 14]) Assume that (M ,J,Γ) is an admissible triplet for an
operator A : D(A) ⊂ H → H and B ∈ M . Assume also that

4γ‖J‖‖B‖∗ < 1, (3.3)

where γ comes from the Property 4 of Definition 3.2. Then the operator A−B is similar
to the operator A− JX∗ , where X∗ ∈ M is the (unique) fixed point of the function Φ
given by (3.2), and the similarity transform of A−B into A−JX∗ is given by I+ΓX∗ ∈
B(H ) . Moreover, the map Φ : M → M is a contraction in the ball {X ∈ M : ‖X −
B‖∗ � 3‖B‖∗} , and the fixed point X∗ can be found as a limit of simple iterations:
X0 = 0 , X1 = Φ(X0) = B, etc.
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The space M in the above theorem is typically constructed based on the properties
of the operator B . Condition (3.3) is there to guarantee existence of the solution of the
functional equation Φ(X) = X or, in other words, existence and uniqueness of the fixed
point of Φ in the space M .

We will need the following consequence of Lemma 2.3 and Theorem 3.1.

THEOREM 3.2. ([14]) Assume that (M ,J,Γ) is an admissible triplet for A : D(A)
⊂H →H , B∈M satisfies (3.3), and A−JX∗ is a generator of a C0 -group T̃ : R→
B(H ) . Then the operator A−B is a generator of the C0 -group T : R→ EndH given
by

T (t) = (I + ΓX∗)T̃ (t)(I + ΓX∗)−1, t ∈ R,

where X∗ is the fixed point of the function Φ in (3.2).

In this paper, we are especially interested in the case when the operator A : D(A)⊂
H → H is the differential operator L0 = L+V , where L is given by (2.5) and (2.6),
and the perturbation V , that plays the role of the operator B , is given by (2.13). The
following spectral assumptions on the operator A that are often made in the method of
similar operators are clearly satisfied for the operator L0 .

We assume that A is skew-adjoint and its spectrum σ(A) satisfies

σ(A) =
⋃
�∈Z

Δ�,

where Δ� , � ∈ Z , are compact mutually disjoint sets. By P� , � ∈ Z , we denote the
spectral projections that correspond to Δ� , �∈Z . Then P = {P�, �∈Z} is a resolution
of the identity and the space H has an orthogonal decomposition (2.9) involving the
spectral subspaces H� = ImP� , � ∈ Z .

In this setting, it is often possible to consider an admissible triplet (M ,J,Γ) such
that the transform J : M → M is defined by

JX = ∑
�∈Z

P�XP�, X ∈ M .

In particular, each operator JX , X ∈ M , is an orthogonal direct sum of operators
X� = P�X |H� , X� ∈ B(H�) , � ∈ Z . We also point out that in this case the operator
A− JX also is an orthogonal direct sum:

A− JX =
⊕
�∈Z

(A�−X�), (3.4)

where A� = A|H� is the restriction of A to H� .

THEOREM 3.3. Under the assumptions of Theorem 3.2, the operator A−B with
B∈M is similar to the operator A−JX∗ , X∗ ∈M , which is an orthogonal direct sum
of the form (3.4) with X = X∗ and with respect to the orthogonal decomposition (2.9)
of H , where H� = ImP� , � ∈ Z . The operator A−B is then a U -orthogonal direct
sum, where U is the similarity transform of A−B into A− JX∗ .
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We shall denote the operator A− JX∗ from the above theorem by A0 and its parts
in decomposition (3.4) by A0,� .

LEMMA 3.4. An operator A0 in (3.4) is a generator of a C0 -group of operators
T0 : R → B(H ) if and only if

sup
|t|�b

sup
�∈Z

‖etA0,�‖B(H�) = C(b) < c < ∞, (3.5)

b � 1 . If (3.5) holds, then the operators T0(t) , t ∈ R , are orthogonal direct sums

T0(t) =
⊕
�∈Z

etA0,� , t ∈ R,

with respect to the orthogonal decomposition (2.9) of H .

Proof. If (3.5) holds, then the formula

T0(t)x = ∑
�∈Z

etA0,�P�x, t ∈ R,

defines an operator in B(H ) . This follows from

‖T0(t)x‖2 = ∑
�∈Z

‖etA0,�P�x‖2 � C2(b) ∑
�∈Z

‖P�x‖2 = C2(b)‖x‖2, x ∈ H .

A direct computation shows that the operators T0(t) ∈ EndH , t ∈ R , form a group.
The group is clearly strongly continuous on the dense subset of vectors of the form
x = ∑

|�|�n
P�x , n ∈ Z+ . Therefore, it is a C0 -group.

The converse statement is obvious and the lemma is proved. �
Thus, to study the group generated by the operator A−B it suffices to study a

group which is an orthogonal direct sum of bounded operators.

4. The first similarity transform

In many cases, it can be difficult to define the space M of admissible perturbations
for a given operator A−B . It may, however, be possible to pick a good space M first,
and then find an operator A−C that is similar to A−B and such that C ∈ M . In fact,
this is always possible if the following assumption holds.

ASSUMPTION 4.1. ([14]) Assume that (M ,J,Γ) is an admissible triplet for an
operator A such that the transforms J and Γ are restrictions of linear operators from
LA(H ) to LA(H ) denoted by the same symbols. Assume also that the operator B ∈
LA(H ) has the following five properties.

1. ΓB ∈ B(H ) and ‖ΓB‖ < 1 ;
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2. (ΓB)D(A) ⊂ D(A);

3. BΓB, (ΓB)JB ∈ M ;

4. A(ΓB)x− (ΓB)Ax = Bx− (JB)x , x ∈ D(A);

5. For any ε > 0 there is λε ∈ ρ(A) such that ‖B(A−λεI)−1‖ < ε .

THEOREM 4.2. ([14]) If Assumption 4.1 holds then the operator A−B is similar
to A− JB−B0 , where B0 = (I + ΓB)−1(BΓB− (ΓB)JB) . The similarity transform is
given by I + ΓB so that

(A−B)(I + ΓB) = (I + ΓB)(A− JB−B0).

In this section, we use the above theorem to find an operator L0−Ṽ that is similar
to the operator L = L0−V given by (2.5) and (2.6), see also (2.13). Hereinafter, we let
H = L2 = L2([0,ω ];H) . We also use the fact that H is isometrically isomorphic to
the space L2,ω = L2,ω(R,H) of ω -periodic H -valued functions on R that are norm-
square-summable over [0,ω ] .

We let P be the resolution of the identity consisting of the Riesz projections
P� = P({i2π�/ω},L0) , � ∈ Z , given by (2.14), and choose M = S2(H ,P) – the
Hilbert–Schmidt class with respect to P (see Definition 2.7).

Recall that an operator X : D(L0) ⊂ H → H , X ∈ LL0(H ) , can be represented
via its matrix (Xj�) , j, � ∈ Z , where Xj� = PjXP� ∈ B(H ) , j, � ∈ Z .

LEMMA 4.3. Assume that X ∈ LL0(H ) satisfies (2.17). Then X can be uniquely
extended to a bounded operator in B(H ) , denoted by the same symbol, so that X ∈
S2(H ,P) and ‖X‖ � ‖X‖2,P .

Proof. Consider Df = {x ∈H : P�x = 0 for all but finitely many �∈ Z} . Clearly,
Df ⊆ D(L0) ⊆ D(X) and Df is dense in H . Given x ∈ Df , we have

‖Xx‖2 = ∑
j∈Z

‖PjXx‖2 = ∑
j∈Z

∥∥∥∥∥∑
�∈Z

PjXP�x

∥∥∥∥∥
2

� ∑
j∈Z

(
∑
�∈Z

‖PjXP�‖‖P�x‖
)2

.

Using Schwartz’s inequality, we get

‖Xx‖2 � ∑
j∈Z

∑
�∈Z

‖PjXP�‖2 ∑
�∈Z

‖P�x‖2 = ∑
j∈Z

∑
�∈Z

‖PjXP�‖2‖x‖2.

Since Df is dense in H , the operator X extends to an operator in B(H ) and the
extension satisfies X ∈ S2(H ,P) with the required estimate. �

Thus, we can determine if an operator in LL0(H ) belongs to S2(H ) solely from
the estimate (2.17) for its matrix.

Presently, we proceed to define the transforms J,Γ : LL0(H )→ LL0(H ) that can
be used in Theorem 4.2. These transforms will have two equivalent representations:
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an integral one and a matrix one. For the integral representation we use the translation
representation S : R → H mentioned before:

(S(t)x)(s) = x(t + s) = ∑
�∈Z

eλ�t(P�x)(s), x ∈ H , t ∈ R.

For an operator X ∈ B(H ) with the matrix entries Xj� = PjXP� , j, � ∈ Z , we have

Xnx = ∑
j−�=n

Xj�x =
1
ω

∫ ω

0
e−λntS(t)XS(−t)xdt, x ∈ H , (4.1)

for the n -th diagonal of X .

EXAMPLE 4.1. Computing the matrix form of the operator V in (2.13) we get

(Vj�x)(t) = (PjVP�x)(t) = (VP�x)̂ ( j)eλ jt = V̂ ( j + �)x̂(�)eλ jt

so that Vj� = F ∗V̂ ( j + �)F , where F is the Fourier transform defined by (2.15). In
other words, the matrix of the operator V can be written in the following equivalent
form:

V ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

... . .
.

. .
.

· · · V̂ (−2) V̂ (−1) V̂ (0) · · ·
· · · V̂ (−1) V̂ (0) V̂ (1) · · ·
· · · V̂ (0) V̂ (1) V̂ (2) · · ·
. .

.
. .

. ...
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.2)

For X ∈ B(H ) , the transforms J and Γ are defined by

(JX)x = X0x =
1
ω

∫ ω

0
S(t)XS(−t)xdt, x ∈ H , (4.3)

and

(ΓX)x =
1
ω

∫ ω

0
f (t)S(t)XS(−t)xdt, x ∈ H , (4.4)

where f : R → C is an ω -periodic function given by

f (t) =
ω
2
− t ∼ ∑

n 	=0

ω
2πni

ei 2πn
ω t , t ∈ (0,ω). (4.5)

We deduce from (4.1) that

(ΓX)0 = 0 and (ΓX)n =
ω

2πni
Xn =

1
λn

Xn. (4.6)

Similarly, for each m ∈ Z+ and X ∈ B(H ) , we define transforms Jm and Γm via

JmX = P(m)XP(m) + ∑
|�|>m

P�XP� = JX −P(m)(JX)P(m) +P(m)XP(m) (4.7)
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and

ΓmX = ΓX −P(m)(ΓX)P(m) = ∑
max{| j|,|�|}>m

j 	=�

PjXP�

λ j −λ�
, (4.8)

so that J0 = J and Γ0 = Γ .
Next, we extend the definitions of the transforms so that Jm , Γm : LL0(H ) →

LL0(H ) , m ∈ Z+ . Given λ0 ∈ ρ(L0) , we define

JmX = Jm(X(L0 −λ0I)−1)(L0 −λ0I), X ∈ LL0(H ), (4.9)

and

ΓmX = Γm(X(L0−λ0I)−1)(L0 −λ0I), X ∈ LL0(H ). (4.10)

We observe that these extensions do not depend on the choice of λ0 ∈ ρ(L0) and the
formulas (4.9) and (4.10) still hold. Moreover, if x ∈ D(L0) , the formulas (4.3) and
(4.4) also remain valid. If the operators JmX and ΓmX admit continuous extensions,
we shall denote these extensions by the same symbols and write JmX , ΓmX ∈ B(H ) .

EXAMPLE 4.2. Computing J and Γ transforms for the operator V in (2.13) we
get

(JVx)(s) =
1
ω

∫ ω

0
(S(t)VS(−t)x)(s)dt =

1
ω

∫ ω

0
(S(t)Vx)(s− t)dt

=
1
ω

∫ ω

0
V (s+ t)x(ω − s−2t)dt =

1
2ω

∫ ω

0
V

(
s+ ω − τ

2

)
x(τ)dτ

and, similarly,

(ΓVx)(s) =
1
ω

∫ ω

0
f (t)(S(t)VS(−t)x)(s)dt

=
1

2ω

∫ ω

0
f

(
ω − s− τ

2

)
V

(
s+ ω − τ

2

)
x(τ)dτ,

where f is given by (4.5). Thus, JV and ΓV are, indeed, integral operators. Moreover,
we also get that their matrices have the following equivalent form:

JV ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

... . .
.

. .
.

· · · V̂ (−2) 0 0 · · ·
· · · 0 V̂ (0) 0 · · ·
· · · 0 0 V̂ (2) · · ·
. .

.
. .

. ...
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.11)
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and

ΓV ∼ ω
2π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

...
... . .

.
. .

.

· · · 0 −V̂ (−1) − 1
2 V̂ (0) − 1

3 V̂ (1) · · ·
· · · V̂ (−1) 0 −V̂ (1) − 1

2 V̂ (2) · · ·
· · · 1

2 V̂ (0) V̂ (1) 0 −V̂ (3) · · ·
· · · 1

3 V̂ (1) 1
2 V̂ (2) V̂ (3) 0 · · ·

. .
.

. .
. ...

...
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.12)

Using (2.1) and Lemma 4.3, we observe that the operators JV and ΓV belong to the
class M = S2(H ,P) of Hilbert–Schmidt operators with respect to P .

To use Assumption 4.1, we need the operator Z = VΓV . Computing its matrix,
we get

Zj� = F ∗
(

∑
n 	=�

1
�−n

V̂ ( j +n)V̂ (�+n)

)
F , (4.13)

where F is the Fourier transform given by (2.15). It follows from (2.2) and Lemma
4.3 that Z ∈ S2(H ,P) .

The above example together with (4.7) and (4.8) leads to the following result.

LEMMA 4.4. The operators JmV , ΓmV and Zm = VΓmV , m ∈ Z+ , all belong to
S2(H ,P) .

Since the condition (2.2) is rather nebulous, we provide a few natural sufficient
conditions for it in the following proposition. To prove one of them, we use the integral
representation of the operator Z = VΓV :

(Zy)(s) =
1

2ω

∫ 2ω

0
f

(
s− τ

2

)
V

(
2ω − s− τ

2

)
V (s)y(τ)dτ, (4.14)

where f is given by (4.5).

PROPOSITION 4.5. Assume that one (or more) of the following assumptions hold.

1. ∑
n∈Z

‖V̂ (n)‖ < ∞ .

2. V ∈ L2([0,ω ],S2(H)) .

Then (2.2) holds.

Proof. Assuming the first condition, we have

∑
j,�∈Z

∥∥∥∥∥∑
n 	=�

1
�−n

V̂ ( j +n)V̂ (�+n)

∥∥∥∥∥
2

= ∑
j,�∈Z

∥∥∥∥∥∑
n 	=0

1
n
V̂ ( j +n)V̂ (2�+n)

∥∥∥∥∥
2

� ∑
j,�∈Z

(
∑
r 	=0

‖V̂ ( j + r)‖
)(

∑
n 	=0

1
|n|2 ‖V̂ ( j +n)‖‖V̂ (2�+n)‖2

)
< ∞,



DIFFERENTIAL OPERATOR WITH AN INVOLUTION AS A GROUP GENERATOR 743

where we used Schwartz’s inequality.
Assuming the second condition, it follows from (4.14) and∫ ω

0

∫ ω

0
‖V (ω − s− τ)V (2s)‖2

2 dsdτ < ∞

that Z ∈ S2(H ) so that (2.2) follows from (4.13). �
In the following lemma we consider a few more properties from the Assumption

4.1.

LEMMA 4.6. The operators ΓmV , m ∈ Z+ , have the following properties.

1. (ΓmV )D(L0) ⊂ D(L0);

2. L0(ΓmV )x− (ΓmV )L0x = (V − JmV )x , x ∈ D(L0);

3. For each ε > 0 there is λε ∈ ρ(L0) such that ‖V (L0 −λεI)−1‖2,P < ε .

Proof. From Lemma 4.3, we have (ΓV )H� ⊆D(L0) , �∈Z , and (4.11) and (4.12)
immediately imply

L0(ΓV )P� = (ΓV )L0P� +(V − JV)P�, � ∈ Z.

From (4.7) and (4.8) we deduce

L0(ΓmV )P� = (ΓmV )L0P� +(V − JmV )P�, � ∈ Z.

It follows that for any n ∈ N we have

L0P(n)(ΓmV )(L0 −λεI)−1y = P(n)(ΓmV )L0(L0 −λεI)−1y+

+P(n)(V − JmV )(L0 −λεI)−1y = P(n)L y,

where L is given by

L y = (ΓmV )L0(L0 −λεI)−1y+(V − JmV )(L0 −λεI)−1y.

Since L ∈ B(H ) , we have P(n)L y → L y for all y ∈ H . Using the fact that the
operator L0 is closed, we deduce Properties 1 and 2.

To prove Property 3, observe that the matrix elements Yj� of the operator Y =

V (L0 −λεI)−1 satisfy Yj� = F ∗ V̂ ( j+�)
λ j−λε

F . It follows that

‖Y‖2
2,P = ∑

j,�∈Z

∥∥∥∥∥ V̂ ( j + �)
λ j −λε

∥∥∥∥∥
2

=
ω2

4π2 ∑
�∈Z

∥∥∥V̂ (�)
∥∥∥2

∑
j∈Z

1
j2 +n2 < ε

for λε = iλn with a sufficiently large n . �
The final condition in the Assumption 4.1 is proved in the following lemma.
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LEMMA 4.7. There is m � 0 such that ‖ΓmV‖2,P < 1 .

Proof. Since ΓV ∈ S2(H ,P) , we have

lim
m→∞

‖ΓmV‖2,P = lim
m→∞

‖ΓV −P(m)(ΓV )P(m)‖2,P = 0

and the result follows. �
Applying Theorem 4.2 and the above lemma, we obtain the main result of this

section.

THEOREM 4.8. There exists m ∈ Z+ such that the operator I +ΓmV is invertible
and (I + ΓmV )−1 − I ∈ S2(H ,P) . Moreover, the operator L0 −V is similar to the
operatpr L0 − Ṽ , where

Ṽ = JmV +(I + ΓmV )−1(VΓmV − (ΓmV )JmV ) ∈ S2(H ,P). (4.15)

More precisely, (L0 −V)(I + ΓmV ) = (I + ΓmV )(L0 − Ṽ).

5. The second similarity transform

In this section, we construct another similarity transform that will allow us to prove
the main results. We begin with constructing a space M of admissible perturbations
that is slightly smaller than S2(H ,P) .

For any X ∈ S2(H ,P) we define

αn(X) = ‖X‖−
1
2

2 max

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝ ∑

|�|�n
�∈Z

‖P�X‖2
2,P

⎞⎟⎠
1
4

,

⎛⎜⎝ ∑
|�|�n
�∈Z

‖XP�‖2
2,P

⎞⎟⎠
1
4

⎫⎪⎪⎬⎪⎪⎭ , n ∈ Z. (5.1)

The sequence (αn(X)) , n ∈ Z , has the following properties.

1. αn(X) = α−n(X) , n ∈ Z .

2. lim
|n|→∞

αn(X) = 0.

3. αn(X) � 1 for each n ∈ Z .

4. αn(X) � αn+1(X) , n � 0.

5. αn(X) 	= 0 for all n ∈ Z , provided that P(m)XP(m) 	= X for all m ∈ Z+ .

6. We have

∑
n∈Z

αn(X) 	=0

‖XPn‖2
2,P +‖PnX‖2

2,P

(αn(X))2 < ∞.
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For any X ∈ S2(H ,P) we define a self-adjoint operator FX by

FX = ∑
n∈Z

αn(X)Pn.

Observe that FX ∈ B(H ) can be viewed as a function of the skew-adjoint operator
L0 : FX = fX (L0) , where fX : σ(L0) → R+ , fX (λn) = αn(X) , n ∈ Z , and ‖FX‖ =
max
n∈Z

|αn(X)| = 1.

We are interested in the case when X is the perturbation Ṽ ∈ S2(H ,P) given
by (4.15). We will assume that P(n)ṼP(n) 	= Ṽ for all n∈Z+ . Otherwise, L0−Ṽ can be

represented for some n ∈ N as an orthogonal direct sum of an operator (L0 − Ṽ )|H(n)

and the operator L0|H ⊥
(n) , where H ⊥

(n) is the orthogonal complement of H(n) . In this
case, the remaining proofs are trivial. To simplify the notation, we shall write αn and
F instead of αn(Ṽ ) and FṼ , respectively.

We let M be the space of all operators X ∈ S2(H ,P) such that

X = XlF and X = FXr,

where Xl,Xr ∈S2(H ,P) . We let ‖X‖M = max{‖Xl‖2,P ,‖Xr‖2,P} . Clearly, ‖X‖2 �
‖X‖M , X ∈ M .

Our assumption on Ṽ implies that αn(Ṽ ) 	= 0 for all n ∈ Z . Therefore, kerF 	=
{0} and the space M is a Banach space.

We remark that for any X ∈ S2(H ,P) we have

X =

(
∑
n∈Z

1
αn(X)

XPn

)
FX = FX

(
∑
n∈Z

1
αn(X)

PnX

)
.

It follows that Ṽ ∈ M .
Next, we observe that M is invariant for the transforms Jk and Γk , k � 0, defined

by (4.7) and (4.8). Moreover, for each k � 0, we have

Jk(XlF) = (JkXl)F, Jk(FXr) = F(JkXr),

Γk(XlF) = (ΓkXl)F, Γk(FXr) = F(ΓkXr),

where Xr , Xl ∈ S2(H ,P) .
To estimate ‖Γk(XF)‖2,P and ‖Γk(FX)‖2,P , X ∈S2(H ,P) , we introduce two

sequences (α ′
n) , n ∈ N and (α̃n) , n ∈ N , given by

α ′
n = max

|i|�n
| j|<n

|αi −α j|
|i− j| , α̃n =

ω
2π

(2αn + α ′
n), n ∈ N.

It is clear that (α ′
n) and (α̃n) belong to the space c0(N) of sequences vanishing at

infinity.
The following lemma is an analog of [9, Lemma 3] and [13, Lemma 3.1].
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LEMMA 5.1. For any k ∈ Z+ and X ∈ S2(H ,P) we have

max{‖Γk(XF)‖2,P ,‖Γk(FX)‖2,P} � α̃k+1‖X‖2,P.

Proof. Let P(k) = I−P(k) , k ∈ Z+ . Then

‖FP(k)‖ =

∥∥∥∥∥∑
n∈Z

αnPnP
(k)

∥∥∥∥∥� αk+1.

From the definition of the transforms Γk , it follows that

‖Γk(XF)‖2,P = ‖Γ(XFP(k))+ Γ(P(k)XFP(k))‖2,P

� ω
2π

αk+1‖X‖2,P +‖Γ(P(k)XFP(k))‖2,P .
(5.2)

We write Γ(P(k)XFP(k)) as

Γ(P(k)XFP(k)) = Γ(P(k)FXP(k))+ Γ(P(k)(XF −FX)P(k)).

The operator matrix entries (P�Z(k)P j) , �, j ∈ Z , of the operators Z(k) = Γ(P(k)(XF −
FX)P(k)) , k � 0, satisfy

P�Z(k)Pj =
f (λ�)− f (λ j)

λ�−λ j
P�XPj =

ω
2π i

α�−α j

�− j
P�XPj,

where |�| � k+1, | j| � k , and P�Z(k)Pj = 0 otherwise. Therefore,

‖Γ(P(k)XFP(k))‖2,P � ω
2π

αk+1‖X‖2,P +
ω
2π

max
|�|�k+1
| j|�k

|α�−α j|
|�− j| ‖X‖2,P

=
ω
2π

(αk+1 + α ′
k+1)‖X‖2,P .

(5.3)

From (5.2) and (5.3) we obtain ‖Γk(XF)‖2,P � α̃k+1‖X‖2,P . The estimate for
the norm of Γk(FX) , X ∈ S2(H ,P) , is obtained in a similar fashion. �

The next lemma is an analog of [9, Lemma 4] and [13, Lemma 3.2].

LEMMA 5.2. The collection (M ,Jk,Γk) , k ∈ Z+ , is an admissible triplet for the
operator L0 , and the constant γ = γk in Definition 3.2 satisfies γk � α̃k+1.

Proof. As we observed before, M is a Banach space that is continuously em-
bedded into S2(H ,P) . It follows that M is continuously embedded in LL0(H ) .
Therefore, Property 1 of Definition 3.2 holds.

Properties 2 and 5 follow immediately from the definitions of Jk and Γk , k � 0,
and Lemma 2.5.
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Properties 3 and 6 were proved in Lemma 4.6.
It remains to prove Property 4. Let X = XlF ∈ M and Y = YlF ∈ M , where Xl

end Yl ∈ S2(H ,P) . Then XΓkY = ZlF , where Zl = XlΓk(FYl) . From Lemma 5.1,
we have

‖Zl‖2,P � α̃k+1‖Xl‖2,P‖Yl‖2,P � α̃k+1‖X‖M ‖Y‖M .

Next, let X = FXr and Y = FYr with Xr and Yr ∈ S2(H ,P) . Then XΓkY = FZr ,
where Zr = XrΓk(FYr) . Using Lemma 5.1 once again, we obtain

‖Zr‖2,P � α̃k+1‖Xr‖2,P‖Yr‖2,P � α̃k+1‖X‖M ‖Y‖M .

The desired estimate for the norm of (ΓkX)Y is obtained in the same way, and the
lemma is proved. �

Theorem 5.3 below is the main result of this section. It follows from Theorems 3.1
and 3.3, and Lemmata 5.1 and 5.2. The property lim

k→∞
α̃k = 0 ensures existence of k � 0

such that condition (3.3) in Theorem 3.1.

THEOREM 5.3. Let m ∈ Z+ be as in Theorem 4.8 and k � m be such that

4α̃k+1‖Ṽ‖M < 1.

Then the operator L0−Ṽ is similar to the operator L0−JkX∗ = L0−V0 , where X∗ ∈M
is the unique fixed point of the non-linear function Φ in (3.2), where the transforms Jk

and Γk , are defined by (4.7) and (4.8), and B = Ṽ . Moreover, the operator V0 is an
orthogonal direct sum

V0 = V0(k)⊕
⎛⎝⊕

| j|>k

V0, j

⎞⎠
with respect to the decomposition of the space H = L2 given by

H = H(k) ⊕
⎛⎝⊕

| j|>k

H j

⎞⎠ .

In the above formula, H(k) = ImP(k) , H j = ImPj , | j| > k , where P(k) and Pj , | j| >
k , are the spectral projections of the operator L0 defined by (2.14). The similarity
transform of L0 − Ṽ into L0 −V0 is the operator I + ΓkX∗ .

6. Proofs of the main results

Theorem 2.6 follows from Theorems 4.8 and 5.3. We remark that the similarity
transform U in Theorem 2.6 has the form

U = Um,k = (I + ΓmV )(I + ΓkX∗) = I +Wm,k, (6.1)

where Wm,k = ΓmV +ΓkX∗+(ΓmV )(ΓkX∗) ∈ S2(H ,P) , and the numbers k � m � 0
can be determined from Theorems 4.8 and 5.3.

The result below follows from Theorem 5.3, Lemma 2.3, and the argument in [9,
Remark 2].
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THEOREM 6.1. The spectrum of the operator L coincides with the spectrum of
the operator

L0 −V0 = L0−P(k)X∗P(k)−
⎛⎝⊕

| j|>k

PjX∗Pj

⎞⎠ .

Moreover, we have

σ(L) = σ(L(k))∪σ(Lj) = σ(L(k))∪
⎛⎝ ⋃

| j|>k

(
2π j
ω

+ σ(PjX∗|H j)
)⎞⎠ ,

where L(k) is the restriction of the operator L0 −P(k)X∗P(k) to H(k) = ImP(k) and the
operators L j are the restrictions of L0 −PjX∗Pj to ImPj , | j| > k .

Theorem 2.7 follows immediately from Theorem 6.1, since X∗ ∈ S2(H ,P)
yields ∑

|n|>k
‖PnX∗Pn‖2 < ∞ .

Next, we estimate the spectral projections.

Proof of Theorem 2.9. Assume the conditions of Theorem 2.6. Fix k , m ∈ Z+
that satisfy conditions of Theorems 4.8 and 5.3. As usually, let Pn = P({λn},L0) ,
λn = { i2πn

ω } , n ∈ Z , and P(k) = ∑
|n|�k

Pn be the spectral projections for the operator L0 .

Similarly, let P̃(k) = Um,kP(k)U
−1
m,k and P̃n = Um,kPnU

−1
m,k be the spectral projections for

the operator L , as follows from Lemma 2.3. Projections P(Ω) and P̃(Ω) are defined
by

P(Ω) = ∑
n∈Ω

Pn, P̃(Ω) = ∑
n∈Ω

P̃n = ∑
n∈Ω

Um,kPnU
−1
m,k, Ω = Z\ {−k, . . . ,k}.

Obviously, P(Ω) is the spectral projection that corresponds to the spectral subset
⋃

n∈Ω
{λn}

of the operator L0 .
Given X ∈ S2(H ,P) , we let

α(Ω,X) = max
n∈Ω

αn(X), Ω ⊂ Z,

where the sequence αn(X) , n ∈ Z , is given by (5.1).
Let X ∈ M , so that X = XlFX = FXXr , where Xl , Xr ∈ S2(H ,P) . We have

‖P(Ω)X‖2,P = ‖P(Ω)FXXr‖2,P

=
∥∥∥( ∑

n∈Ω
αn(X)Pn

)
Xr

∥∥∥
2,P

� α(Ω,X)‖X‖2,P

and similarly for XP(Ω) . It follows that

max{‖P(Ω)X‖2,P,‖XP(Ω)‖2,P} � ‖X‖M α(Ω,X).
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Next, we estimate ‖P(Ω)ΓkX‖2,P and ‖ΓkXP(Ω)‖2,P . We get

‖P(Ω)ΓkX‖2
2,P = ∑

�∈Ω, j∈Z

� 	= j

‖P�P(Ω)XPj‖2
2,P

|λ�−λ j|2 �
( ω

2π

)2

∑
�∈Ω

‖P�X‖2
2,P

�
( ω

2π

)2
α4(Ω,X)‖X‖2

2,P.

Therefore,

‖P(Ω)ΓkX‖2,P � ω
2π

α2(Ω,X)‖X‖2,P ,

and similarly for ‖ΓkXP(Ω)‖2,P . We note that the definition of the sequence α and
the space M imply that ‖FP(Ω)‖ = ‖P(Ω)F‖ = α(Ω,B) . Therfore, α(Ω,X) �
α(Ω,B)‖X‖M , X ∈ M .

The two properties below also follow from the definition of (αn(X))n .

1. If X = ∑
��1

X� , X� ∈ S2(H ,P) , then the series converges absolutely and

αn(X)‖X‖2,P � ∑
��1

αn(X�)‖X�‖2,P .

2. If X = X1 · . . . ·X� , Xj ∈ S2(H ,P) , 1 � j � � , then

αn(X)‖X‖2,P � (αn(X1)+ . . .+ αn(X�))
�⋂

j=1

‖Xj‖2,P .

Next we estimate P̃(Ω)−P(Ω) , where Ω ⊂ Z \ {−k, . . . ,k} . Recall that U in
Theorem 2.6 is given by Um,k = I +Wm,k , where Wm,k = ΓmV + ΓkX∗ +(ΓmV )(ΓkX∗) .
From Lemma 2.3, we get

P̃(Ω)−P(Ω) = (Wm,kP(Ω)−P(Ω)Wm,k)(I +Wm,k)−1.

Then

‖P(Ω)Wm,k‖2,P � ‖P(Ω)(ΓmV )‖2,P +‖P(Ω)(ΓkX∗)‖2,P

+‖P(Ω)(ΓmV )(ΓkX∗)‖2,P

� ‖P(Ω)(ΓV )‖2,P +‖P(Ω)(ΓX∗)‖2,P

+‖P(Ω)(ΓV)(ΓX∗)‖2,P

� C1(α(Ω,ΓV )+ α2(Ω,X∗)) � C2(α(Ω,ΓV )+ α2(Ω,V )),

where the constants C1 and C2 are independent of Ω . A similar estimate holds for
‖Wm,kP(Ω)‖2,P .

The operator (I +Wm,k)−1 can be written as (I +Wm,k)−1 = I +
∞
∑
j=1

(−1) jW j
m,k ,

which yields

‖(I +Wm,k)−1 − I‖2,P � ‖Wm,k‖2,P

1−‖Wm,k‖2,P
.
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Collecting the above estimates together, we get

‖P̃(Ω)−P(Ω)‖2,P � C3(α(Ω,ΓV )+ α2(Ω,V )), (6.2)

where C3 is independent of Ω .

Since the sequence (αn(X))n vanishes at infinity, the assertion of Theorem 2.9
immediately follows from (6.2), if we let Ω = {n ∈ Z, |n| > N} for sufficiently large
N ∈ N . �

To construct the group T : R → B(L2) generated by the operator L : W 1
2 ⊂ L2 →

L2 , we use Theorem 2.6 and its more detailed version – Theorem 5.3. Together with
Theorem 3.2 and Lemma 3.4, they imply that each operator T (t) , t ∈ R , is a U -
orthogonal (U = Um,k ) direct sum of the form

T (t) = U

(−k−1⊕
j=−∞

et( i2π j
ω Ij+V0, j)⊕ etV0(k) ⊕

(
∞⊕

j=k+1

et( i2π j
ω Ij+V0, j)

))
U−1, (6.3)

with respect to the U -orthogonal decomposition

L2 = H =
−k−1⊕
j=−∞

UH j ⊕UH(k)⊕
(

∞⊕
j=k+1

UH j

)
.

The numbers m , k ∈ Z+ , were defined in Theorems 4.8 and 5.3, respectively. The
operators V0(k) and V0, j were defined in Theorem 5.3 as well. The operator Um,k has
the form (6.1), so that Um,k = I +Wm,k , where Wm,k ∈ S2(H ,P) .

Thus, the group T : R → B(L2) generated by L = L0 −V has been constructed.
The assertions of Theorem 2.1 regarding mild and classical solutions of Problem (1.1)
follow from the general theory of operator groups (see [20], [21], [24]). Formula (6.3)
yields Theorem 2.10 with Bj =V0, j , | j| � k+1, and B(k) =V0(k) . From Theorems 2.6
and 5.3 we get ∑

| j|�k+1
‖V0, j‖2 < ∞ .

Finally, Theorem 2.12 is obtained from (6.3) and Parseval’s identity.

7. Examples

In this section, we present a concrete simple example that illustrates the method of
similar operators and our main results.

We make the simplest possible choice of a non-trivial example. In particular, we
let H = C , ω = 2π , and choose a constant potential V (s)≡ 1

c with a sufficiently large



DIFFERENTIAL OPERATOR WITH AN INVOLUTION AS A GROUP GENERATOR 751

c � 1. We then have H � �2(Z) , so that

L0 ∼ i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
... . .

.
. .

.
. .

.

· · · −2 0 0 0 0 · · ·
· · · 0 −1 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 0 0 2 · · ·
. .

.
. .

.
. .

. ...
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (L0) jk = i jδ j−k,

where δ j is the usual Kronecker delta, and

V ∼ 1
c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
... . .

.
. .

.
. .

.

· · · 0 0 0 0 1 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 1 0 0 0 · · ·
· · · 1 0 0 0 0 · · ·
. .

.
. .

.
. .

. ...
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (V ) jk =

1
c

δ j+k.

We can compute the spectrum of L0−V immediately by looking at 2×2 matrices
comprised of the rows and columns numbered j and − j , j 	= 0:

σ(L) = σ(L0 −V) =
{
−1

c

}
∪
{

i j

√
1− 1

c2 j2
: j ∈ Z\ {0}

}
. (7.1)

To illustrate the set-up of our method, we compute the following two matrices:

JV ∼ 1
c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
... . .

.
. .

.
. .

.

· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
. .

.
. .

.
. .

. ...
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (JV ) jk =

1
c

δ jδk;

ΓV ∼ 1
2ci

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
... . .

.
. .

.
. .

.

· · · 0 0 0 0 − 1
2 · · ·

· · · 0 0 0 −1 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 1 0 0 0 · · ·
· · · 1

2 0 0 0 0 · · ·
. .

.
. .

.
. .

. ...
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (ΓV ) jk =

δ j+k

2 jci
, j 	= 0.
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A direct computation shows L0ΓV − (ΓV )L0 = V − JV so that (3.1) is satisfied.
To illustrate the first similarity transform of our method we compute U = (I +

ΓV )−1 by looking at the same kind of 2×2 submatrices as before (7.1). We get

U ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
... . .

.
. .

.
. .

.

· · · 16c2

16c2−1
0 0 0 − 4ci

16c2−1
· · ·

· · · 0 4c2

4c2−1
0 − 2ci

4c2−1
0 · · ·

· · · 0 0 1 0 0 · · ·
· · · 0 2ci

4c2−1
0 4c2

4c2−1
0 · · ·

· · · 4ci
16c2−1

0 0 0 16c2

16c2−1
· · ·

. .
.

. .
.

. .
. ...

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(U) jk =
4 j2c2δ j−k

4 j2c2−1
+

2 jciδ j+k

4 j2c2−1
, j 	= 0, (U)00 = 1.

Recall that we chose c sufficiently large so that the above matrix can also be computed
via a geometric series:

U = (I + ΓV)−1 =
∞

∑
n=0

(−ΓV )n =
∞

∑
n=0

(ΓV )2n −ΓV
∞

∑
n=0

(ΓV )2n.

The choice of c also guarantees that we do not need to deal with coarser resolutions of
the identity neither in the first nor in the second similarity transform (we have m = k = 0
in Theorem 5.3). Since

VΓV ∼ 1
2ic2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
... . .

.
. .

.
. .

.

· · · 1
2 0 0 0 0 · · ·

· · · 0 1 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 −1 0 · · ·
· · · 0 0 0 0 − 1

2 · · ·
. .

.
. .

.
. .

. ...
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (VΓV ) jk =

iδ j−k

2 jc2 , j 	= 0,

and, from (4.15), Ṽ = JV +U(VΓV − (ΓV )JV ) = JV +UVΓV, we get

Ṽ ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
... . .

.
. .

.
. .

.

· · · − 4i
16c2−1

0 0 0 1/c
16c2−1

· · ·
· · · 0 − 2i

4c2−1
0 1/c

4c2−1
0 · · ·

· · · 0 0 1
c 0 0 · · ·

· · · 0 1/c
4c2−1

0 2i
4c2−1

0 · · ·
· · · 1/c

16c2−1
0 0 0 4i

16c2−1
· · ·

. .
.

. .
.

. .
. ...

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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(Ṽ ) jk =
δ j+k

c(4 j2c2−1)
+

2 jiδ j−k

4 j2c2−1
, j 	= 0,(Ṽ )00 =

1
c
.

Thus, Ṽ ∈ S2(H ) , which was the goal of the first similarity transform. Observe also
that the 2×2 submatrices of L0− Ṽ are

1
4c2 j2 −1

(−i j(4c2 j2 −3) 1/c
1/c i j(4c2 j2 −3)

)
, j 	= 0.

After a short direct computation, we see that L0 −V and L0 − Ṽ do indeed have the
same spectrum (7.1).

Next, we would like to illustrate our second similarity transform by finding the
fixed point X∗ of the function (3.2) with B = Ṽ . To simplify the notation, we let
v j = 1

c(4 j2c2−1) so that

(Ṽ ) jk = v jδ j+k +2c jiv jδ j−k, j 	= 0.

We also let x j = (X∗) j j and y j = (X∗) j,− j . Observe that all other entries of the matrix
of X∗ are 0, so that it suffices to look at the same kind of the 2×2 submatrices as in the
computation of the spectrum of L0−V . Thus, from Φ(X∗) = X∗ = ṼΓX∗− (ΓX∗)JṼ −
(ΓX∗)J(ṼΓX∗)+ Ṽ we must have(

x− j y− j

y j x j

)
= v j

(−2ci j 1
1 2ci j

)
· 1
2i j

(
0 −y− j

y j 0

)
− 1

2i j

(
0 −y− j

y j 0

)
· v j

(−2ci j 0
0 2ci j

)
− 1

2i j

(
0 −y− j

y j 0

)
· v j

(
0 1
1 0

)
· 1
2i j

(
0 −y− j

y j 0

)
+ v j

(−2ci j 1
1 2ci j

)
=

v j

2i j

[(
y j 2ci jy− j

2ci jy j y− j

)
−
(

0 −2ci jy− j

−2ci jy j 0

)]
+

v j

4 j2

(
0 y2− j
y2

j 0

)
+ v j

(−2ci j 1
1 2ci j

)

=
v j

2i j

⎛⎝ y j +4c j2 4ci jy− j − y2− j
2i j +2i j

4ci jy j − y2
j

2i j +2i j y− j −4c j2

⎞⎠ .

With a little bit of work, it follows that y− j = y j and⎧⎪⎪⎨⎪⎪⎩
x j =

iv j

2 j
y j +2c jiv j

y j = 2cv jy j +
v j

4 j2
y2

j + v j

, j 	= 0.
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Therefore, we get ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x j = i j

⎛⎝1−
√

(1−2cv j)
2 − v2

j

j2

⎞⎠
y j = −4c j2 +

2 j2

v j

⎛⎝1−
√

(1−2cv j)
2 − v2

j

j2

⎞⎠ ,

which, after simplification, implies

x j = i j

(
1−
√

1− 1
c2 j2

)
=

i

c2 j
(
1+
√

1− 1
c2 j2

) , j 	= 0.

The above equality is once again consistent with (7.1) as it is immediate that x0 = − 1
c .

Recall that Theorem 3.1 yields that L0 − Ṽ is similar to L0 − JX∗ and we have just
confirmed that, in this example, the two operators do, indeed, have the same spectrum.
Observe also that {x j} is a square summable sequence as was predicted by Theorem
2.7. This highlights a major difference that is caused by the presence of the involution.
In an analogous example without the involution, we would be looking at the operator
L0− 1

c I which has a very different spectral structure in terms of the perturbation.
Of course, in a more sophisticated example, one may be unable to find the fixed

point X∗ explicitly. This underscores the importance of the estimates in Theorem 2.12
and the equiconvergence result of Theorem 2.9.

Acknowledgement. We thank the anonymous referee for their helpful suggestions
to improve the manuscript.
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