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USING Q–CALCULUS TO STUDY LDLT FACTORIZATION

OF A CERTAIN VANDERMONDE MATRIX

ALEXEY KUZNETSOV

(Communicated by R.-C. Li)

Abstract. We use tools from q-calculus to study LDLT decomposition of the Vandermonde ma-
trix Vq with entries vi, j = qi j . We prove that the matrix L is given as a product of diagonal
matrices and the lower triangular Toeplitz matrix Tq with elements ti, j = 1/(q;q)i− j , where
(z;q)k is the q-Pochhammer symbol. We investigate some properties of the matrix Tq , in partic-
ular, we compute explicitly the inverse of this matrix.

1. Introduction and main results

Let us consider a Vandermonde matrix

Vq :=

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 . . .
1 q q2 q3 . . .
1 q2 q4 q6 . . .
1 q3 q6 q9 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

of size n× n . In the special case when q = e−2π i/n , this matrix is called the discrete
Fourier transform matrix. Explicit matrix factorizations of the discrete Fourier trans-
form matrix are very important, since they are often used in various versions of the Fast
Fourier Transform algorithm [5]. Motivated by this connection, in this note we plan to
study the LDLT factorization of the matrix Vq and to investigate the properties of the
factors appearing in such decomposition. The tools and techniques, which are used to
prove our results, come from q-calculus.

First, let us present several definitions and notation. In what follows, we assume
that n ∈ N and q ∈ C . We define the q-Pochhammer symbol

(z;q)n := (1− z)(1− zq) · · ·(1− zqn−1), n � 1, (1)

and (z;q)0 := 1. We will denote by I the n×n identity matrix. The following matrices
of size n× n will be used frequently in this paper: a lower-triangular Toeplitz matrix
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Tq = {ti, j}0�i, j�n−1 defined by ti, j = 1/(q;q)i− j if i � j , and a diagonal matrix Pq =
{pi, j}0�i, j�n−1 having elements pi,i = (q;q)i , or, more explicitly,

Tq :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . .
1

(q;q)1
1 0 0 . . .

1
(q;q)2

1
(q;q)1

1 0 . . .
1

(q;q)3
1

(q;q)2
1

(q;q)1
1 . . .

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

, Pq :=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 . . .
0 (q;q)1 0 0 . . .
0 0 (q;q)2 0 . . .
0 0 0 (q;q)3 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

.

Note that the matrices Tq and Tq−1 are well-defined for all q ∈ C \An , where the set
An is given by

An := {q ∈ C : q j = 1 for some j = 1,2, . . . ,n−1}.
In our first result we identify explicitly the matrices appearing in the LDLT fac-

torization of the Vandermonde matrix Vq .

THEOREM 1. Assume that q ∈ C\An . Then Vq = LDLT , where L = PqTq(Pq)−1

and D = {di, j}0�i, j�n−1 is a diagonalmatrix having elements di,i = (−1)iqi(i−1)/2(q;q)i .

In section 2 we give a very simple proof of Theorem 1 (our proof is based on the
q-Binomial Theorem). Alternatively, one could derive this result starting from formulas
(2.4) and (2.5) in the paper [4] by Oruc and Phillips, who use symmetric functions to
study LU decomposition of general Vandermonde matrices.

REMARK 1. It is easy to see that the entries of the matrix L = PqTq(Pq)−1 are
given by

li, j =
(q;q)i

(q;q) j(q;q)i− j
, i � j. (2)

This matrix is known in the literature as the q-Pascal matrix and it has appeared in
[2, 3].

In our second result we present some properties of the Toeplitz matrix Tq , includ-
ing an explicit formula for its inverse. First we define the following two matrices of
size n×n :

S :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

, Dq :=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 . . .
0 q 0 0 . . .
0 0 q2 0 . . .
0 0 0 q3 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

. (3)

THEOREM 2. Assume that q ∈ C\An . Then

(i) (Tq)−1 = Tq−1(I−S)−1 = Dq−1Tq−1Dq ;
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(ii) for m ∈ N we have

TqDq−mTq−1Dqm = I +
m−1

∑
j=1

(q1−m;q) j

(q;q) j
S j. (4)

REMARK 2. Note that the matrix H := (I − S)−1 , which appears in item (i), is
a lower triangular Toeplitz matrix having elements hi, j = 1 if i � j and hi, j = 0
otherwise. Similarly, the matrix in the right-hand side of (4) is a lower-triangular
Toeplitz matrix, having m non-zero diagonals: this matrix has coefficient 1 on the
main diagonal and the coefficient (q1−m;q) j/(q;q) j on the sub-diagonal number j , for
1 � j � m−1.

2. Proofs

The only tool that will be needed for proving Theorems 1 and 2 is the q-Binomial
Theorem (see [1] [Theorem 10.2.1]), which states that

(az;q)∞

(z;q)∞
= ∑

j�0

(a;q) j

(q;q) j
z j, |q| < 1, |z| < 1. (5)

Here (z;q)∞ := ∏l�0(1− zql) and it is clear that this infinite product converges for all
z ∈ C and |q|< 1. We also record here the following two corollaries of the q-Binomial
Theorem, which will be needed later:

1
(z;q)∞

= ∑
j�0

z j

(q;q) j
, |q| < 1, |z| < 1, (6)

(z;q)∞ = ∑
j�0

(−1) jq j( j−1)/2

(q;q) j
z j, |q| < 1, z ∈ C. (7)

Proof of Theorem 1. Using formula (2) and considering an element (i, j) of the
matrix LDLT we see that formula Vq = LDLT is equivalent to the following identity:
for any integers i, j � 0

qi j =
min(i, j)

∑
k=0

(−1)kqk(k−1)/2(q;q)i(q;q) j

(q;q)k(q;q)i−k(q;q) j−k
. (8)

We will prove the above identity by writing the Taylor series of the function

g(u,v) :=
(uv;q)∞

(u;q)∞(v;q)∞
, |u| < 1, |v| < 1, |q| < 1,

in two different ways. First of all, from formula (5) we obtain

g(u,v) =
1

(v;q)∞
× (uv;q)∞

(u;q)∞
=

1
(v;q)∞

∑
i�0

(v;q)i

(q;q)i
ui.
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Using the fact that (v;q)i/(v;q)∞ = 1/(qiv;q)∞ and expanding this expression in Taylor
series in v via (6) we conclude that

g(u,v) = ∑
i�0

∑
j�0

qi juiv j

(q;q)i(q;q) j
. (9)

On the other hand, we can obtain the series expansion of g(u,v) by applying
formulas (6) and (7) in the form

(uv;q)∞ = ∑
k�0

(−1)kqk(k−1)/2

(q;q)k
ukvk,

1
(u;q)∞

= ∑
l�0

ul

(q;q)l
,

1
(v;q)∞

= ∑
m�0

vm

(q;q)m
.

We multiply the above three series expansions and obtain a Taylor series representation
in the form

g(u,v) = ∑
k�0

∑
l�0

∑
m�0

(−1)kqk(k−1)/2

(q;q)k(q;q)l(q;q)m
uk+lvk+m. (10)

Comparing the coefficients in front of the term uiv j in both formulas (9) and (10) gives
us the desired result (8). �

Proof of Theorem 2. Let us prove the identity TqTq−1 = (I−S)−1 , which is equiv-
alent to the first equality in item (i) (the second equality in (i) follows from formula (4)
with m = 1). The main idea of the proof is that the Toeplitz matrix Tq can be expressed
in the following form

Tq = I + ∑
j�1

S j

(q;q) j
, (11)

where S is the matrix defined in (3). The above formula is easy to derive, given that for
1 � j � n−1 the entries of the matrix S j have value 1 on the sub-diagonal number j
and value zero everywhere else. In particular, S j is a zero matrix for j � n , thus the
series in (11) terminates at j = n−1. Similarly, using the identity

(1/q;1/q) j = (−1) jq− j( j+1)/2(q;q) j, (12)

and formula (11) we obtain

Tq−1 = I + ∑
j�1

(−1) jq j( j−1)/2

(q;q) j
(qS) j. (13)

Now, assume that |q| < 1. Then formulas (6) and (11) give us

Tq = [(S;q)∞]−1 = (I−S)−1× (I−qS)−1× (I−q2S)−1×·· · . (14)
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Similarly, formulas (7) and (13) give us

Tq−1 = (qS;q)∞ = (I−qS)× (I−q2S)× (I−q3S)×·· · . (15)

From the above two identities we see that all the terms (I−qiS) in the product TqTq−1

are cancelled, except for the first term (I−S)−1 , thus we obtain TqTq−1 = (I−S)−1 for
|q|< 1. We extend this result from |q|< 1 to the general case q ∈ C\An by analytical
continuation in q .

The proof of formula (4) uses the same ideas. Again, first we assume that |q|< 1.
From (12) we check that Dq−mTq−1Dqm is a Toeplitz matrix of the form

Dq−mTq−1Dqm = I + ∑
j�1

(−1) jq j( j−1)/2

(q;q) j
(q1−mS) j = (q1−mS;q)∞.

Using the above result and formula (14) we obtain

TqDq−mTq−1Dqm = [(S;q)∞]−1× (q1−mS;q)∞ = (q1−mS;q)m−1.

The desired desired result (4) follows by applying (5) and analytical continuation in
q . �
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