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Abstract. For a given nonnegative integer g, a matrix Cn,g of size n is called g -circulant
if Cn,g = [a(r−gs)modn]

n−1
r,s=0 . Such matrices arise in wavelet analysis, subdivision algorithms,

and more generally when dealing with multigrid/multilevel methods for structured matrices and
approximations of boundary value problems. In this paper, we study the eigenvalues of g -
circulants. The relationship to the harmonic analysis is explored and based on the new recur-
sive formulas for eigenvalues of such class of matrices are obtained. This result represents an
extension of the work due to E. Ngondiep and S. Serra Capizzano in establishing bounds for
preconditioners for the linear system of equations determined by the same matrix and it could
be seen as a tool for the analysis of the preconditioners. Numerical experiments are presented to
illustrate the theoretical result.

1. Introduction

Let g be a nonnegative integer (g � 1). We consider the problem of the eigen-
values of g -circulant matrices Cn,g. A g -circulant is a matrix in which each row (ex-
cept the first) is obtained from the preceding row by shifting the elements cyclically g
columns to the right. In other words, the entries of a g -circulant Cn,g = [ar,s]n−1

r,s=0 obey
the rule ar,s = a(r−gs)modn. Obviously, a g -circulant is uniquely determined by its first
row and the shifting parameter g ∈ N. For a g -circulant Cn,g , its first row vector, say,
(a0,a1, . . . ,an−1), can be recorded in

θCn,g(x) =
n−1

∑
r=0

arx
r,

which is called the Hall polynomial of Cn,g. In particular, the Hall polynomial of a g-

circulant Cn,g can be written as θCn,g(x) =
r−1
∑
j=0

xα j
, where α0 < α1 < .. . < αr−1 � n−1,

and r = θCn,g(1). For the algebraic properties of such matrices we refer to Section 5.1
of the classical book by Davis [7], while additional new results can be found in [22]
and references therein. On the other hand, such kind of matrices arises in important
applications such as wavelet analysis [6, 24, 1, 5, 4, 25], in subdivision algorithm and
more generally when dealing with multigrid/multilevel methods for structured matrices
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and approximation of boundary value problems [10, 17, 7, 2, 24, 4], and of course in
the numerical approximation of one-dimensional PDEs with constant coefficients [3].
Furthermore, it is instructive to recall that Gilbert Strang [20] has shown rich connec-
tions between dilation equations in the wavelet context and multigrid algorithm [12, 23],
when constructing the restriction/prolongationoperators [2] with various boundary con-
ditions. It is worth noticing that the use of different boundary conditions is quite
natural when dealing with signal/image restoration problems or differential equations
[15, 12, 11].

In some recent works [9, 16, 13], we addressed the problems of characterizing of
singular values of g -circulant matrices and we provided an asymptotic analysis of the
singular value/eigenvalues distribution for the g -Toeplitz sequences. Furthermore, we
presented a brief analysis for problems of regularizing preconditioning of g -Toeplitz se-
quences via g -circulants. In [14] the authors established bounds for the preconditioners
for the linear system of equations determined by g -circulant matrices. Moreover, let M
be a given matrix, then the task in constructing preconditioners is to give a nonsingu-
lar matrix P easily invertible such that P−1M is close to the identity matrix. There, a
bound on the eigenvalues of P−1M gives an information on the quality of the precondi-
tioner (the tighter the eigenvalues are clustered around 1 the better). The result of this
work could be seen as a tool for this analysis. On the other hand, the authors [18] an-
alyzed the g -cirulant matrices and they provided closed expressions of the eigenvalues
for such matrices. In this note, we are still interested in the study of g -circulant matri-
ces but we provide the explicit formulas of the eigenvalues. Specifically, the attention
is focused on the following three items:

(i1) a detailed study of the eigenvalues of g -circulant matrices together with the ex-
plicit formulas of such values;

(i2) a technical approach that computes these eigenvalues in recursive way. This item
along with item (i1) are our original contributions and they represent both an
improvement and a generalization of the result presented in [18];

(i3) a few numerical examples concerning the eigenvalues of g -circulants structures
obtained by technical approach (stated in second item) and the simulation of such
values, and regarding the effectiveness of the numerical eigenvalues according to
the theoretical indications given in the first two items.

In connection with the singular values of Cn,g = FnDnF�
n Zn,g [15, 16], other sparse and

structured matrices Mn,g, can be chosen in appropriate algebras of matrices so that Cn,g

can be written as
Cn,g = FnDnMn,gF

�
n , (1)

where Dn ∈ Cn×n is a diagonal matrix, Fn ∈ Cn×n is the Fourier matrix and Mn,g ∈
Cn×n. In addition, the matrices given in decomposition (1) are defined by

Dn = diag(
√

nF�
n a), (2)

Fn =
1√
n

[
e−î 2π jk

n

]n−1

j,k=0
Fourier matrix, where î2 = −1, (3)
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a = [a0,a1, . . . ,an−1]T , first column of the matrix Cn,g, (4)

Mn,g = F�
n Zn,gFn, (5)

Zn,g = [δr−gs]n−1
r,s=0 where δk =

{
1 if k ≡ 0 modn,
0 otherwise.

(6)

Unfortunately, the study of the eigenvalues of g-circulant matrices asks additional dif-
ficulties: we refer to the classical circulant cases where the parameter g is assumed

equals 1. However, we construct a finite sequence of matrices
{

M(k−1)
ng(k−1) ,gk ·Δ(k−1)

ng(k−1)

}s

k=0

of decreasing size ng(k−1) , with initial assumptions: M(−1)
ng(−1) ,g0 = Mn,g and Δ(−1)

ng(−1)
= Dn .

We compute the eigenvalues of DnMn,g and use equation (1) to provide the spectrum
of Cn,g. Furthermore, we observe that also the case of nonpositive g can be taken into
consideration and can be reduced to the case of a nonnegative g . In fact, the role
of circulants will be played by (−1)-circulant matrices (called also anti-circulants or
skew-circulants) [7, 4]; as for circulants, (−1)-circulants for a commutative algebra
simultaneously diagonalized by another unitary transform that can be written as the
product of the Fourier matrix and a diagonal unitary matrix. Finally, it is worth notic-
ing to remind that in [21] the author determined close formulae of such values in the
case where the positive integers n and g are coprime.

The paper is organized as follows. Section 2 is reserved to some preliminary
results. In section 3, we give some preparatory tools. Section 4 deals with the char-
acterizing of the eigenvalues of g -circulant matrices. Some numerical evidences are
considered and discussed in section 6. We end the paper by drawing the conclusion in
section 7.

2. Some preliminary results

This section includes some lemmas and propositions of which we will make use
in our work. We denote by Eig(A) the spectrum of a matrix A .

LEMMA 2.1. Let a,b,k be three positive integers, then the following equalities
hold

(a mod k)(b mod k) mod k = ab mod k, (7)

(a mod k±b mod k) mod k = (a±b) mod k, (8)

a mod k+b < k ⇔ a mod k+b = (a+b) mod k. (9)

Proof. The euclidian division of both integers a and b by k yields a = a0 + r1k
and b = b0 + r2k, where r1 and r2, are the remainders of divisions of a and b, re-
spectively. Obviously, 0 � a0,b0 < k . By straightforward computations, it is easy to
see that: (a mod k)(b mod k) mod k = a0b0 mod k and ab mod k = a0b0 mod k. Fur-
thermore, (a mod k± b mod k) mod k = (a0 ± b0) mod k and (a± b) mod k = (a0 ±
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b0) mod k. Relation (9) holds thanks to the following equalities: a mod k +b = a0 +
b and (a+b) mod k = (a0 +b) mod k. �

We state the well known theorem (Euler-Fermat Theorem) and other useful results
which play a crucial role in our analysis.

PROPOSITION 2.1. (Euler-Fermat Theorem) Let a,b∈N� (with a < b) and ϕ(b)
be the Euler number of b. If (a,b) = 1, where (n, p) refers to the greater common
divisor of two integers n and p, then

aϕ(b) ≡ 1 mod b.

Furthermore,
ϕ(b) = b−1

if b is coprime.

To obtain a simple form of the matrix sequences stated in Section 1, we should
use the mapping given by Lemma 2.2.

LEMMA 2.2. Let n and g be two positive integers such that, 1 � g < n. If (n,g)=
1 , then the mapping

l : {0,1, . . . ,n−1} → {0,1, . . . ,n−1},
k �→ l(k) = lk = gk mod n,

is bijective and there exists ϕ(n) ∈ N� such that, for j ∈ {0,1, . . . ,n−1} fixed, and for
each q ∈ {0,1, . . . ,ϕ(n)−1}, it holds

lq( j) = jgq mod n and lϕ(n)( j) = j, (10)

where lq = l ◦ l ◦ . . .◦ l︸ ︷︷ ︸
q times

.

Proof. First, we assume that (n,g) = 1. Let k1,k2 ∈ {0,1, . . . ,n− 1} such that,
lk1 = lk2 . Using this, it is not hard to see that gk1 − lk1 ≡ 0 mod n and gk2 − lk1 ≡
0 mod n. A combination of both congruences along with equality lk1 − lk2 = 0, yields
g(k1 − k2) ≡ 0 mod n. Since (n,g) = 1, we have k1 − k2 ≡ 0mod n, which implies
k1 = k2. So, the map l is nonsingular. The map l is bijective thanks to the cardinality
of the set {0,1, . . . ,n− 1}. Furthermore, for j ∈ {0,1, . . . ,n− 1} fixed, and for every
q∈ {0,1, . . . ,ϕ(n)−1}, utilizing the requirement (n,g) = 1 together with equation (7)
and Proposition 2.1 result in

lq( j) = jgq mod n and lϕ(n)( j) = j. (11)

�
Now, using the mapping l given in Lemma 2.2, it is easy to construct the g -matrix

Mn,g.
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LEMMA 2.3. There exists a g-matrix Mn,g such that,

Zn,g = FnMn,gF
�
n , (12)

where Mn,g, is given by

Mn,g = [δ (n)
gi− j]

n−1
i, j=0, with δ (n)

k =
{

1 if k ≡ 0 mod n,
0 otherwise.

(13)

Proof. For j,k = 0,1, . . . ,n−1, there exists a unique (qk, lk) ∈ Z2, with 0 � lk <
n, such that

lk −gk = qkn. (14)

A simple calculation gives

(F�
n Zn,g) jk =

n−1

∑
l=0

(F�
n ) jl(Zn,g)lk =

n−1

∑
l=0

δl−gk(F�
n ) jl = (F�

n ) jlk . (15)

Combining the Fourier matrix Fn together with equations (14) and (15) provide

(Mn,g)i j = (F�
n Zn,gFn)i j =

n−1

∑
k=0

(F�
n Zn,g)ik(Fn)k j =

(15)

n−1

∑
k=0

(F�
n )ilk (Fn)k j =

1
n

n−1

∑
k=0

exp

(
î2π ilk

n

)

exp

(−î2πk j
n

)
=

1
n

n−1

∑
k=0

exp

(
î2π(ilk − k j)

n

)
=

1
n

n−1

∑
k=0

exp

(
î2π [i(gk+nqk)− k j]

n

)

=
1
n

n−1

∑
k=0

exp
(
î2π iqk

)
exp

(
î2πk(gi− j)

n

)
=

1
n

n−1

∑
k=0

exp

(
î2πk(gi− j)

n

)
=
{

1 if gi− j ≡ 0 mod n,
0 otherwise,

where the second equality in the second line comes from relation (14). So, Mn,g =
[δ (n)

gi− j]
n−1
i, j=0. �

REMARK 2.1. As a straightforward consequence, it comes from relation (1) that

Eig(Cn,g) = Eig(DnMn,g). (16)

The following section provides the main tool that we shall use to describe the
spectrum of Cn,g. The idea is based on a matrix product of order ng, where ng < n.
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3. Some preparatory tools

In the following we denote by δ 0 = (n,g) the greater common divisor of both
nonnegative integers n and g, and by Z̃n,g ∈ Cn×ng the matrix Zn,g defined in (6) by
considering only the ng = n

δ 0 first columns. We prove that zero is an eigenvalue of
Cn,g, and we determine its algebraic and geometrical multiplicity. Furthermore, we
give a simplified formula of the spectrum of Cn,g.

LEMMA 3.1. Let n and g be two integers such that 1 � g < n and Mn,g be the
g-matrix defined in (13). Then

Eig(Cn,g) = Eig

(
δ 0−1

∑
j=0

MjΔ j

)
∪{0},

where 0 is an eigenvalue of multiplicity n−ng, Mj ∈ Mng(C) and Δ j ∈ Mng(C) is a
diagonal matrix.

Proof. Combining equations (6) and (13), straightforward computations yield
Mn,g = Z

′
n,g . In addition, since Z̃

′
n,g ∈ Mng×n(C) and n = ng× δ 0, it holds

Z
′
n,g =

[
Z̃

′
n,g Z̃

′
n,g . . . . . . Z̃

′
n,g

]′
and Z̃

′
n,g = [M0|M1| . . . |Mδ 0−1],

where “ ′ ” refers to the transpose of a matrix. So, the matrix Mn,g can be written as
Mn,g = K⊗ Z̃

′
n,g, where K ∈ Mδ 0×1(C) is a unit-column matrix whose coefficients are

equal 1 and the symbol ⊗ denotes the tensor product, that is, [ai j]⊗X = [ai jX ], where
[ai j] and X designate two matrices.

In way similar, the product of matrices Mn,g and Dn gives

Mn,gDn = (K⊗ Z̃
′
n,g)Dn = K⊗Q,

where Q = [M0Δ0|M1Δ1| . . . |Mδ 0−1Δδ 0−1]. Here, the diagonal matrix Dn is decom-
posed as Dn = diag(Δ j, j = 0,1, . . . ,δ 0 − 1), where Δ j is also a diagonal matrix of
order δ 0.

By straightforward calculation the determinant of the matrix Mn,gDn −λ In gives

∣∣Mn,gDn −λ In
∣∣=

∣∣∣∣∣∣∣∣∣∣∣

M0Δ0 −λ Ing M1Δ1 . . . Mδ 0−1Δδ 0−1
M0Δ0 M1Δ1−λ Ing M2Δ2 . . . Mδ 0−1Δδ 0−1

...
...

...
...

M0Δ0 M1Δ1 . . . Mδ 0−1Δδ 0−1−λ Ing

∣∣∣∣∣∣∣∣∣∣∣
.
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Adding all the columns and putting the result in the first column results in

∣∣Mn,gDn−λ In
∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ Ing +
δ 0−1

∑
j=0

MjΔ j M1Δ1 . . . Mδ 0−1Δδ 0−1

−λ Ing +
δ 0−1

∑
j=0

MjΔ j −λ Ing +M1Δ1 M2Δ2 . . . Mδ 0−1Δδ 0−1

...
...

...
...

−λ Ing +
δ 0−1

∑
j=0

MjΔ j M1Δ1 . . . −λ Ing +Mδ 0−1Δδ 0−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Subtracting from the first row the other rows gives the determinant of an upper triangu-
lar matrix, multiplying the elements of the diagonal yields the following equality

∣∣Mn,gDn −λ In
∣∣= (−λ )n−ng

∣∣∣∣∣−λ Ing +
δ 0−1

∑
j=0

MjΔ j

∣∣∣∣∣ ,
where Ing is the identity matrix of dimension ng×ng, and |A| denotes the determinant
of a square matrix A . So, the spectrum of the matrix product Mn,gDn is given by

Eig(Mn,gDn) = Eig

(
δ 0−1

∑
j=0

MjΔ j

)
∪{0}. (17)

A combination of relations (16)–(17) provides

Eig(Cn,g) = Eig(DnMn,g) = Eig(Mn,gDn) = Eig

(
δ 0−1

∑
j=0

MjΔ j

)
∪{0},

where 0 is of multiplicity n−ng. �

The following Lemma gives a simplified form of the sum
δ 0−1

∑
j=0

MjΔ j.

LEMMA 3.2. Setting g1 = g mod ng , ng(−1) = n, ng(0) = ng, and denoting the

parameter δ (ng)
k by

δ (ng)
k =

{
1 if k ≡ 0 mod ng,
0 otherwise.

Then relation (18) holds,
δ 0−1

∑
k=0

MkΔk = Δ(0)
ng M(0)

ng,g1 , (18)

where Δ(0)
ng is a diagonalmatrix of size ng , M(0)

ng,g1 is a matrix of order ng. Both matrices
are defined as (

Δ(0)
ng

)
j j

= dg j mod n and
(
M(0)

ng,g1

)
i j

= δ (ng)
g1i− j, (19)
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for i, j = 0,1, . . . ,ng − 1, where dk := dkk = (Dn)k,k. Dn is the diagonal matrix given
in (2) .

Proof. For k = 0,1, . . . ,δ 0 −1, we have that

Mk =
[
(Mn,g)kng+i,kng+ j

]ng−1
i, j=0

and Δk =
[
(Dn)kng+i,kng+ j

]ng−1
i, j=0

.

In addition, using the definitions Mk and Δk together with the coefficients of the product
MkΔk result in

(MkΔk)i, j =
ng−1

∑
p=0

(Mk)ip(Δk)p j = (Mk)i j(Δk) j j

= δ (n)
g(kng+i)−kng− jdkng+ j,kng+ j = δ (n)

gi−(kng+ j)dkng+ j,

for i, j = 0,1, . . . ,ng − 1. Now, we define the quantities g̃ and g1 as g̃ = g−g mod ng
ng

and g1 = g mod ng, respectively. More specifically, g = g̃ng +g1. Furthermore, simple
calculations yield g̃i = qiδ 0 + ri, where 0 � ri < δ 0. Using this, it is not hard to see
that gi = ngg̃i+ g1i = ng(qiδ 0 + ri)+ g1i = qin+ ring + g1i, 0 � ri < δ 0. So, ring =
(g−g1)i mod n. Utilizing this, straightforward computations provide(

δ 0−1

∑
k=0

MkΔk

)
i, j

=
δ 0−1

∑
k=0

δ (n)
gi−kng− jdkng+ j =

δ 0−1

∑
k=0

δ (n)
(ri−k)ng+g1i− jdkng+ j

(a)
= δ (n)

g1i− jdring+ j

= δ (n)
g1i− jd(g−g1)i mod n+ j

(b)
=
{

dgi mod n if j = g1i mod n
0 otherwise

(c)
=
{

dgi mod n if j = g1i mod ng

0 otherwise
= δ (ng)

g1i− jdgi mod n
(d)
=
(

Δ(0)
ng M(0)

ng,g1

)
i j

,

where, (a) holds since there exists a unique ki ∈ {0,1, . . . ,δ 0 − 1} such that ki = ri,
(b) comes from Lemma 2.1, (c) comes from estimate j < ng, and (d) follows from

the definition of entries of Δ(0)
ng M(0)

ng,g1 . �

REMARK 3.1. If g1 �= 0 then (ng,g) = (ng,g1) .

Armed with above tools we are able to characterize the eigenvalues of g -circulant
matrices Cn,g .

4. Characterization of eigenvalues

This section studies the eigenvalues of the g-circulant matrices. The case where
the positive integers n and g are coprime is introduced and some particular cases are
presented. This tool provides an idea on a close formula of eigenvalues. The approach
used for characterizing such values consists in reducing at each step the nonnegative
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integers n and g, discuss following the greater common divisor of reduced quantities
the eigenvalues of Cn,g and provide an iterative scheme that computes in recursive way
the spectrum of Cn,g . For the sake of simplicity, we use the notation ds := dss = (Dn)s,s,
where Dn is the diagonal matrix defined in (2) .

LEMMA 4.1. Let l : {0,1, . . . ,n− 1}→ {0,1, . . . ,n− 1} be the mapping defined
in Lemma 2.2 which satisfies lqj = lq( j) , for 0 � q � ϕ(n)−1 and 0 � j � n−1 (ϕ(n)
is the Euler indicator), where l0 = lϕ(n) is the identity. If (n,g) = 1, it holds

(Mn,gDn)ϕ(n) = diag

(
ϕ(n)−1

∏
p=0

dlpj l
p
j
: j = 0,1, . . . ,n−1

)
. (20)

Proof. We prove this result by mathematical induction. Since (n,g) = 1, using
the Euler-Fermat theorem, we have that gϕ(n) ≡ 1 mod n. Using Lemma 2.2, simple
computations give

(Mn,gDn)ik =
n−1

∑
l=0

(Mn,g)il(Dn)lk =
n−1

∑
l=0

dlkδ (n)
gi−l = dlik, for i,k = 0,1, . . . ,n−1. (21)

In way similar, we have (Mn,gDnMn,gDn)ik =
n−1
∑

p=0
(Mn,gDn)ip(Mn,gDn)pk =

n−1
∑

p=0
dli pdlpk =

dl2i kdlili . The third equality holds thank to relation (21) and the last one comes from

Lemma 2.2. Let us assume that for every q ∈ {2,3, . . . ,ϕ(n)−1} ,

(Mn,gDn)
q
ik = dlqi kdlili . . .dlq−1

i lq−1
i

. (22)

Plugging relations (22) , (2) and Lemma 2.2, it is easy to see that

(Mn,gDn)
ϕ(n)
ik =

n−1

∑
p=0

(Mn,gDn)
ϕ(n)−1
ip (Mn,gDn)pk =

n−1

∑
p=0

d
lϕ(n)−1
i p

dlili . . .dlϕ(n)−2
i lϕ(n)−2

i
dlpk

= d
l
ϕ(n)−1
i l

ϕ(n)−1
i

dlili . . .dl
ϕ(n)−2
i l

ϕ(n)−2
i

d
l
ϕ(n)
i k

= dikdlilidl2i l2i
. . .d

l
ϕ(n)−1
i l

ϕ(n)−1
i

,

which ends the proof. �

LEMMA 4.2. Let l : {0,1, . . . ,n− 1}→ {0,1, . . . ,n− 1} be the mapping defined
in Lemma 2.2 that satisfies lqj = lq( j) , for 0 � q � ϕ(n)−1 and 0 � j � n−1, where

l0 = lϕ(n) is the identity. Assume that (n,g) = 1, the spectrum of Cn,g is given by

Eig(Cn,g) = Eig(Mn,gDn) =

{
exp

(
î
2k( j)π
ϕ(n)

)ϕ(n)−1

∏
m=0

flmp( j)
; j = 0,1, . . . ,n−1

}
,

where lmp( j) = gmp( j) mod n, flmp( j)
= L

1
ϕ(n)
lmp( j)

exp

(
î

θlm
p( j)

ϕ(n)

)
, with dk = (Dn)k,k = Lk exp

(
îθk

)
.

Dn is the diagonal matrix defined in (2) .
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Proof. Putting Eig(Mn,gDn) = diag(β0,β1, . . . ,βn−1), by the Schur theorem [19]
there exists a unitary matrix U such that,

U�(Mn,gDn)U = R =

⎛⎜⎜⎜⎜⎝
β0 � . . . �

β1 �. . .
...

. . . �
0 βn−1

⎞⎟⎟⎟⎟⎠ . (23)

Using relation (23), a simple calculation gives

(U�(Mn,gDn)U)ϕ(n) =U�(Mn,gDn)ϕ(n)U = Rϕ(n) =

⎛⎜⎜⎜⎜⎜⎝
β ϕ(n)

0 � . . . �

β ϕ(n)
1 �. . .

...
. . . �

0 β ϕ(n)
n−1

⎞⎟⎟⎟⎟⎟⎠ . (24)

So, it comes from (24) the equality Eig((Mn,gDn)
ϕ(n)) = Eig(Rϕ(n)). In addition, com-

bining relations (20) and (24) results in{
ϕ(n)−1

∏
p=0

dlpj
: j = 0,1, . . . ,n−1

}
=
{

β ϕ(n)
j : j = 0,1, . . . ,n−1

}
.

Hence, for each j ∈ {0,1, . . .n − 1}, there exists i j ∈ {0,1, . . . ,n− 1} ( i j = p( j),
where p is a mapping from {0,1, . . . ,n− 1} to {0,1, . . . ,n− 1} ) satisfying β ϕ(n)

j =
ϕ(n)−1

∏
m=0

dlmp( j)
. Setting β j = a j exp

(
îα j

)
= [a j,α j] and dt = Lt exp

(
îθt
)
= [Lt ,θt ], simple

computations yield [aϕ(n)
j ,ϕ(n)α j] =

[
ϕ(n)−1

∏
m=0

Llmp( j)
,

ϕ(n)−1

∑
m=0

θlmp( j)

]
. Using this, the modu-

lus and the argument of β j are given by

a j =

(
ϕ(n)−1

∏
m=0

Llmp( j)

) 1
ϕ(n)

and α j ∈
{

1
ϕ(n)

(
2kπ +

ϕ(n)−1

∑
m=0

θlmp( j)

)
: k = 0,1, . . . ,ϕ(n)−1

}
.

(25)
Furthermore, let k j = k( j) be an element of the set {0,1, . . . ,ϕ(n)−1}, which corre-
sponds to the index of α j , the explicit formula of α j is given by

α j =
1

ϕ(n)

(
2k( j)π +

ϕ(n)−1

∑
m=0

θlmp( j)

)
. (26)

Combining relations (25) and (26), β j becomes

β j = exp

(
î
2k( j)π
ϕ(n)

)ϕ(n)−1

∏
m=0

L
1

ϕ(n)
lmp( j)

exp

(
î
θlmp( j)

ϕ(n)

)
= exp

(
î
2k( j)π
ϕ(n)

)ϕ(n)−1

∏
m=0

flmp( j)
, (27)
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where lmp( j) = gmp( j) mod n and flmp( j)
= L

1
ϕ(n)
lmp( j)

exp

(
î

θlm
p( j)

ϕ(n)

)
. So, the spectrum of the

matrix Mn,gDn is given by

Eig(Mn,gDn) =

{
exp

(
î
2k( j)π
ϕ(n)

)ϕ(n)−1

∏
m=0

flmp( j)
; j = 0,1, . . . ,n−1

}
. (28)

Using the following equation

Eig(Mn,gDn) = Eig(DnMn,g),

the proof is completed thank to relations (16) and (28). �
In the following Lemma, we analyze the case where the parameter g is a divisor of

n, of multiplicity p ( p � 1). This is a special case for Multigrid method with different
size reduction [8].

LEMMA 4.3. Consider the mapping l defined in Lemma 2.2. If n = gp.n0, with
p � 1 , n0 � 1 and (n0,g) = 1; we have

Eig(Cn,g)=

{
exp

(
î
2k( j)π
ϕ(n0)

)ϕ(n0)−1

∏
q=0

fl p+q
v( j)

; j = 0,1, . . . ,n0−1

}
∪{0 : mult. = n−n0},

where lp+q
v( j) = gp+qv( j) mod n and flp+q

v( j)
= L

1
ϕ(n0)

l p+q
v( j)

exp

(
î

θ
l
p+q
v( j)

ϕ(n0)

)
, with d j = Lj exp

(
îθ j

)
,

v( j) ∈ {0,1, . . . ,n0 −1} and k( j) ∈ {0,1, . . . ,ϕ(n0)−1} .

Proof. First, we recall that δ 0 = (n,g)= g . A combination of (17)–(18) provides

Eig(Mn,gDn,g) = Eig

(
g−1

∑
j=0

MjΔ j

)
∪{0 : mult. = n−gp−1n0}.

= Eig
(
M(0)

gp−1n0,g
Δ(0)

gp−1n0

)
∪{0 : mult. = n−gp−1n0},

where (Δ(0)
gp−1n0

)ii = dgi mod n = dgi; (M(0)
gp−1n0,g

)i j = δ (gp−1n0)
gi− j ; i, j = 0,1, . . . ,gp−1n0 −

1. In way similar, for p > 1, it holds

Eig(M(0)
gp−1n0,g

Δ(0)
gp−1n0

) = Eig

(
g−1

∑
j=0

MjΔ j

)
∪{0 : mult. = gp−1n0−gp−2n0}

= Eig
(
M(1)

gp−2n0,g
Δ(1)

gp−2n0

)
∪{0 : mult. = gp−1n0−gp−2n0},

where (Δ(1)
gp−2n0

)ii = dg(gi) mod n = dg2i, (M(1)
gp−2n0,g

)i j = δ (gp−2n0)
gi− j , for i, j = 0,1, . . . ,

gp−2n0 − 1. By mathematical induction, one constructs a finite sequence of matrices
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M(k)

gp−k−1n0,g
Δ(k)

gp−k−1n0

}p−1

k=0
, of decreasing order gp−k−1n0, satisfying for k = 1,2, . . . ,

p−1,

Eig
(
M(k−1)

gp−kn0,g
Δ(k−1)

gp−kn0

)
= Eig

(
g−1

∑
j=0

MjΔ j

)
∪{0 : mult. = gp−kn0−gp−k−1n0}

= Eig
(
M(k)

gp−k−1n0,g
Δ(k)

gp−k−1n0

)
∪{0 : mult. = (gp−k −gp−k−1)n0}, (29)

where (Δ(k)
gp−k−1n0

)ii = dgk+1i and (M(k)
gp−k−1n0,g

)i j = δ (gp−k−1n0)
gi− j , for i, j = 0,1, . . . ,

gp−k−1n0−1. Combining relations (16) and (29), the spectrum of Cn,g becomes

Eig(Cn,g) = Eig(Mn,gDn)

= Eig
(
M(0)

gp−1n0,g
Δ(0)

gp−1n0

)
∪{0 : mult. = gpn0−gp−1n0}

...

= Eig
(
M(p−1)

n0,g Δ(p−1)
n0

)
∪{0 : mult. = gpn0−n0}

= Eig
(
M(p−1)

n0,g1 Δ(p−1)
n0

)
∪{0 : mult. = gpn0−n0}, (30)

where g1 = g mod n0 . On the other hand, for i, j = 0,1, . . . ,n0 − 1, (Δ(p−1)
n0 ) j j =

dgp j mod n = dgp j and (M(p−1)
n0,g1 )i j = δ (n0)

g1i− j =
{

1 if j ≡ g1i mod n0

0 otherwise
. To complete the

proof, we must compute the eigenvalues of the matrix M(p−1)
n0,g1 Δ(p−1)

n0 .

Spectrum of the matrix M(p−1)
n0,g1 Δ(p−1)

n0 . Let d̃ j = dgp j and let introduce the mapping
l̃ defined by

l̃ : {0,1, . . . ,n0−1} → {0,1, . . . ,n0−1}
j �→ l̃( j) = l̃ j = g1 j mod n0.

This mapping is bijective (the proof is obvious according to Lemma 2.2). In addi-
tion, since (n0,g1) = 1, it comes from Proposition 2.1 (Euler-Fermat Theorem) that

gϕ(n0)
1 ≡ 1 mod n0. In equation (20), replacing n, g and ϕ(n) with n0, g1 and ϕ(n0) ,

respectively, straightforward calculations give

(
M(p−1)

n0,g1 Δ(p−1)
n0

)ϕ(n0)
= diag

{
ϕ(n0)−1

∏
q=0

d̃l̃qj
: j = 0,1, . . . ,n0 −1

}
, (31)

where l̃qj = gq
1 j mod n0 = gq j mod n0. Furthermore,

d̃l̃qj
= d̃gq j mod n0 := d(gq j mod n0)gp = dgp+q j mod n = dlpgq j

= dlp+q
j

. (32)
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Combining relations (31)–(32), simple calculations yield the eigenvalues β j of

M(p−1)
n0,g1 Δ(p−1)

n0 , that is,

β j = exp

(
î
2k( j)π
ϕ(n0)

)ϕ(n0)−1

∏
m=0

L
1

ϕ(n0)

l p+m
v( j)

exp

⎛⎝î
θl p+m

v( j)

ϕ(n0)

⎞⎠= exp

(
î
2k( j)π
ϕ(n0)

)ϕ(n0)−1

∏
m=0

fl p+m
v( j)

,

(33)

where l p+m
v( j) = gp+mv( j) mod n, fl p+m

v( j)
= L

1
ϕ(n0)

l p+m
v( j)

exp

(
î

θ
l p+m
v( j)

ϕ(n0)

)
, with d j = Lj exp

(
îθ j

)
,

v( j) ∈ {0,1, . . . ,n0 −1} and k( j) ∈ {0,1, . . . ,ϕ(n0)−1} . So

Eig
(
M(p−1)

n0,g1 Δ(p−1)
n0

)
=

{
exp

(
î
2k( j)π
ϕ(n0)

)ϕ(n0)−1

∏
m=0

fl p+m
v( j)

: j = 0,1, . . . ,n0−1

}
. (34)

An assembling of relations (30) and (34) ends the proof. �
In the rest of this work, we analyze in detail the spectrum of the matrix Cn,g. To

attain this purpose we construct by mathematical induction a finite sequence of matrices{
M(k−1)

ng(k−1) ,gk ·Δ(k−1)
ng(k−1)

}s

k=0
, of decreasing size ng(k−1) , which satisfies the initial assump-

tions: M(−1)
ng(−1) ,g0 = Mn,g and Δ(−1)

ng(−1)
= Dn. We recall that ng = n

δ (0) , with δ (0) = δ 0,

g1 = g mod ng, and we start with the case where the integers ng and g1 are coprime.

LEMMA 4.4. Consider the mapping l defined in Lemma 2.2. Suppose that (ng,g1)
= 1, then it holds

Eig(Cn,g) =

{
exp

(
î
2k( j)π
ϕ(ng)

)ϕ(ng)

∏
p=1

fl pv( j)
; j = 0,1, . . . ,ng −1

}
∪{0},

where 0 is of multiplicity n−ng, l p
v( j) = gpv( j) mod n, and flpv( j)

= L
1

ϕ(ng)

l p+m
v( j)

exp

(
î

θ
l
p
v( j)

ϕ(ng)

)
,

with d j = (Dn) j, j = Lj exp
(
îθ j

)
, v( j)∈{0,1, . . . ,ng−1}, and k( j)∈{0,1, . . . ,ϕ(ng)−

1}.

Proof. According to Lemma 3.1 and relation (18) , the spectrum of Cn,g is given

by Eig(Cn,g) = Eig(M(0)
ng,g1Δ(0)

ng )∪{0 : mult. = n− ng}. Since (ng,g1) = 1, according

to Euler-Fermat theorem (Proposition 2.1) there exists ϕ(ng) ∈ N∗, such that g
ϕ(ng)
1 ≡

1 mod ng . Furthermore, simple calculations and rearranging terms provide

(M(0)
ng,g1Δ(0)

ng )2
i j =

ng−1

∑
l=0

(M(0)
ng,g1Δ(0)

ng )il(M
(0)
ng,g1Δ(0)

ng )l j =
ng−1

∑
l=0

δ (ng)
g1i−ldgi mod nδ (ng)

g1l− jdgl mod n

= dgi mod nδ (ng)
g(g1i mod ng)− jdg(g1i mod ng) mod n = δ (ng)

g(g1i mod ng)− jdgi mod ndg2i mod n,
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the last equality comes from equalities g(g1i mod ng) mod n = (g2i mod g̃n) mod n =
g2i mod n , where g = g̃δ 0. Now, we need to give a simplified formula of coefficients

of the matrix
(
M(0)

ng,g1Δ(0)
ng

)ϕ(ng)
, where ϕ(ng) designates the Euler indicator of ng.

Setting β (h)( j) = jgh
1 mod ng , by mathematical induction it is not hard to see that

(M(0)
ng,g1Δ(0)

ng )ϕ(ng)
i j = δ (ng)

gβ (ϕ(ng)−1)(i)− j

ϕ(ng)

∏
p=1

dgpimod n.

Using equations (7) and (8), the application of the Euler-Fermat theorem yields(
gβ (ϕ(ng)−1)(i)− j

)
mod ng =

(
gβ (ϕ(ng)−1)(i) mod ng− j mod ng

)
mod ng

=
(
(g1β (ϕ(ng)−1)(i) mod ng) mod ng− j

)
mod ng

=
(
(g1 ·gϕ(ng)−1

1 i mod ng) mod ng− j
)

mod ng

=
(
g

ϕ(ng)
1 i mod ng− j

)
mod ng

= (i− j) mod ng = 0 ⇔ i = j.

The last equality comes from g1 = g mod ng and according to Proposition 2.1, we have

g
ϕ(ng)
1 ≡ 1 mod ng, the equivalence follows from estimate |i− j| < ng. So

(M(0)
ng,g1Δ(0)

ng )ϕ(ng)
i j =

⎧⎨⎩
ϕ(ng)
∏
p=1

dgpi mod n if j = i,

0 otherwise.

Setting dt = Lt exp
(
îθt
)

= [Lt ,θt ] (t ∈ N), the trigonometric form of the entry

(M(0)
ng,g1Δ(0)

ng )ϕ(ng)
j j is given by

(M(0)
ng,g1Δ(0)

ng )ϕ(ng)
j j =

[
ϕ(ng)

∏
p=1

Lgp j mod n;
ϕ(ng)

∑
p=1

θgp j mod n

]
.

Now, let Eig
(
M(0)

ng,g1Δ(0)
ng

)
= {λ j : j = 0,1, . . . ,ng − 1} be the set of eigenvalues of

M(0)
ng,g1Δ(0)

ng . Similar to case (n,g) = 1, a simple calculation gives

λ j = exp

(
î
2k( j)π
ϕ(ng)

)ϕ(ng)

∏
p=1

L
1

ϕ(ng)

gpv( j) mod n exp

(
î
θgpv( j) mod n

ϕ(ng)

)

= exp

(
î
2k( j)π
ϕ(ng)

)ϕ(ng)

∏
p=1

fgpv( j) mod n,

where v( j) ∈ {0,1, . . . ,ng − 1}, k( j) ∈ {0,1, . . . ,ϕ(ng) − 1} and fgpv( j) mod n =

L
1

ϕ(ng)

gpv( j) mod n exp
(
î

θgpv( j) mod n

ϕ(ng)

)
. This completes the proof. �
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Moreover, we have the following fundamental results which play crucial roles in
our original contribution (namely Theorem 4.1).

LEMMA 4.5. Setting δ (0) = (ng,g1) > 1 , there exists a finite sequence{
(gk+1,δ (k),ng(k) )

}
k

of elements of N3 satisfying: g0 = g, ng(0) = ng, g1 = g mod ng

and for k ∈ N (k �= 0 ), gk = gk−1 mod ng(k−1), δ (k−1) = (ng(k−1) ,gk), ng(k) =
ng(k−1)

δ (k−1) ,

and a matrix sequence
{

M(k)
ng(k) ,gk+1Δ(k)

ng(k)

}
k

of decreasing order ng(k) (this sequence is

finite since the matrix Mn,gDn is of order n) such that,

a) M(0)
ng(0) ,g1Δ(0)

ng(0)
= M(0)

ng,g1Δ(0)
ng ,

b) Δ(k)
ng(k)

= diag
(
dgk+1 j mod n) : j = 0,1, . . . ,ng(k) −1

)
,

c) M(k)
ng(k) ,gk+1 =

[
δ

(ng(k) )

gk+1i− j

]ng(k)−1

i, j=0
; where δ

(ng(k) )
q =

{
1 if q ≡ 0 mod ng(k) ,

0 otherwise.

Proof. First, let us set: g0 = g, ng(0) = ng, g1 = g mod ng, δ (0) = (ng,g1) and

ng(1) = ng

δ (0) . As proved in Lemmas 3.1-3.2, straightforward calculations yield

Eig
(
M(0)

ng,g1Δ(0)
ng

)
= Eig

(
δ (0)−1

∑
k=0

M(1)
k Δ(1)

k

)
∪{0},

where 0 is of multiplicity ng − ng(1) , the entries
(
M(1)

k

)
i j

and
(

Δ(1)
k

)
j j

, are given

by
(
M(1)

k

)
i j

=
(
M(0)

ng,g1

)
kng(1)+i,kng(1)+ j

= δ (ng)
g1(kng(1)+i)−(kng(1)+ j) = δ (ng)

(g1i− j)−kng(1)
(the

last equality is a straightforward consequence of relations: g1ng(1) = g1
δ (0) δ (0)ng(1) =

g1
δ (0) ng ≡ 0 mod ng) ,(

Δ(1)
k

)
j j

=
(

Δ(0)
ng

)
kng(1)+ j,kng(1)+ j

= dg(kng(1)+ j)mod n, k = 0,1, . . . ,δ (0) −1,

and i, j = 0,1, . . . ,ng(1) − 1. To end the proof of this result, we should give a simple

form of the sum
δ (0)−1

∑
k=0

M(1)
k Δ(1)

k . Setting g2 = g1 mod ng(1) , it holds

(M(1)
k Δ(1)

k )i, j =
ng(1)−1

∑
p=0

(M(1)
k )ip(Δ

(1)
k )p j = (M(1)

k )i j(Δ
(1)
k ) j j

= δ (ng)
g1i−(kng(1)+ j)dg(kng(1)+ j)mod n,
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for i, j = 0,1, . . . ,ng(1) − 1. Since g2 = g1 mod ng(1) , we can write g1 = g̃1ng(1) + g2,

where g̃1 ∈ N. Using this, it is not hard to see that g1i = ng(1) g̃1i+g2i = ng(1)(qiδ (0) +
ri)+ g2i = qing + ring(1) + g2i, where 0 � ri < δ (0). From these equalities, it follows
ring(1) = (g1−g2)i mod ng. Now, straightforward calculations provide(

δ (0)−1

∑
k=0

M(1)
k Δ(1)

k

)
i, j

=
δ (0)−1

∑
k=0

δ (ng)
g1i−kng(1)− jdg(kng(1)+ j)mod n

=
δ (0)−1

∑
k=0

δ (ng)
(ri−k)ng(1)+g2i− jdg(kng(1)+ j)mod n

= δ (ng)
g2i− jdg(ring(1)+ j)mod n = δ (ng)

g2i− jdg((g1−g2)i mod ng+ j)mod n

=
( f )

{
dg(g1i mod ng) mod n if j ≡ g2i mod ng,

0 otherwise.

=
(h)

{
dg2i mod n if j ≡ g2i mod ng(1) ,

0 otherwise.

= δ
(ng(1) )

g2i− j dg2i mod n =
(

Δ(1)
ng(1)

M(1)
ng(1) ,g2

)
i j

,

where, the third equality holds because there exists a unique ki ∈ {0,1, . . . ,δ (0) − 1},
such that ki = ri. Equality (f) comes from Lemma 2.1. Equality (h) comes from esti-

mate j < ng(1) . A straightforward calculation of entries of Δ(1)
ng(1)

M(1)
ng(1) ,g2 provides the

last equality. Here, g2 can be equal to zero. Finally, for every k ∈ N� , we construct the
parameters gk, δ (k−1) and ng(k) , as follows

gk = gk−1 mod ng(k−1) , δ (k−1) = (ng(k−1) ,gk), ng(k) =
ng(k−1)

δ (k−1) . (35)

Using relation (35) we define the finite sequence
{
(gk+1,δ (k),ng(k) )

}
k∈N

of elements

of N
3 and we construct by mathematical induction the matrix sequence{

M(k)
ng(k) ,gk+1Δ(k)

ng(k)

}
k∈N

of decreasing size ng(k) satisfying

(
M(k)

ng(k) ,gk+1

)
i j

= δ
(ng(k) )

gk+1i− j, (36)

and(
Δ(k)

ng(k)

)
ii
= dg[g1(g2(...(gk−1(gki mod ng(k−1) ) mod ng(k−2) )...) mod ng(1) ) mod ng0 ] mod n =

(β )
dgk+1i mod n,

(37)
for i, j = 0,1, . . . ,ng(k) −1.

Let us prove the last equality in (37). Putting G = g[g1(. . . (gk−1(gki mod ng(k−1))
mod ng(k−2)) . . .) mod ng(0) ] mod n, we can write g j = g j−1−mj.ng( j−1) , where mj ∈Z,
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for every j = 1, . . . ,k. Hence, simple calculations result in

G := g[g1(. . . (gk−1(gki mod ng(k−1)) mod ng(k−2)) . . .) mod ng(0) ] mod n

= g[g1(g2(. . . (g2
k−1i mod ng(k−2)) . . .) mod ng(1)) mod ng(0) ] mod n

= g[g1(g2(. . . (g3
k−2i mod ng(k−3)) . . .) mod ng(1)) mod ng(0) ] mod n

= g[g1(g2(. . . (g4
k−3i mod ng(k−4)) . . .) mod ng(1)) mod ng(0) ] mod n

...

= g[gk
1i mod ng(0) ] mod n

= gk+1i mod n. �

As a straightforward consequence of Lemma 4.5, the following result describes
in detailed way the spectrum of Cn,g.

LEMMA 4.6. Let s ∈ N be the first index associated with the sequences con-
structed in Lemma 4.5 such that, δ (s) ∈ {1,ng(s)} . Then, we have

1. If δ (s) = ng(s) , then gs+1 = 0 . Hence

Eig(Cn,g) = Eig

(
M(s)

ng(s) ,0
Δ(s)

ng(s)

)
∪{0 : mult. = n−ng(s)} = {d0, 0},

where 0 is of multiplicity n−1;

2. For δ (s) = 1 , it holds

Eig(Cn,g) = Eig
(
M(s)

ng(s) ,gs+1Δ(s−1)
ng(s)

)
∪{0 : mult. = n−ng(s)}

=

⎧⎪⎨⎪⎩0, exp

⎛⎝î
2k( j)π

ϕ
(
ng(s)

)
⎞⎠ϕ

(
ng(s)

)
−1

∏
h=0

fgh
s+1ks(p( j)) mod n; j = 0,1, . . . ,ng(s) −1

⎫⎪⎬⎪⎭ ,

where 0 is an eigenvalue of algebraic and geometric multiplicity n− ng(s) , ks( j) =

gs+1 j mod n, p( j) ∈ {0,1, . . . ,ng(s) −1}, k( j) ∈
{

0,1, . . . ,ϕ
(
ng(s)

)
−1

}
, and

fgh
s+1ks(p( j)) mod n = L

1

ϕ
(

ng(s)

)
gh
s+1ks(p( j)) mod n

exp

⎛⎝î
θgh

s+1ks(p( j)) mod n

ϕ
(
ng(s)

)
⎞⎠ ,

with d j = (Dn) j, j = Lj exp
(
îθ j

)
.
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Proof. Case 1. (δ (s) = ng(s) ). Since δ (s) = ng(s) , we have that gs+1 = 0. So, the

matrix M(s)
ng(s) ,0

Δ(s)
ng(s)

is given by M(s)
ng(s) ,0

Δ(s)
ng(s)

=C1⊗d0, where C1 is the matrix of order

ng(s) having 1 as entries of the first column, 0 elsewhere and d0 is the first entry of the
diagonal matrix D. A combination of Lemmas 3.1, 3.2 and 4.5, after straightforward
computations and rearranging terms gives

Eig(Cn,g) = Eig
(
M(0)

ng(0) ,g1Δ(0)
ng(0)

)
∪{0 : mult. = n−ng}

= Eig
(
M(1)

ng(1) ,g2Δ(1)
ng(1)

)
∪{0 : mult. = ng−ng(1)}∪{0 : mult. = n−ng}

= Eig
(
M(1)

ng(1) ,g2Δ(1)
ng(1)

)
∪{0 : mult. = n−ng(1)}

...

= Eig
(
M(s)

ng(s) ,gs+1Δ(s)
ng(s)

)
∪{0 : mult. : ng(s−1) −ng(s)}∪{0 : n−ng(s−1)}

= {d0, 0 : mult. = n−1}.
Case 2. δ (s) = 1. According to Euler-Fermat theorem (Proposition 2.1), there

exists a positive integer ϕ(ng(s) ), satisfying g
ϕ(ng(s) )

s+1 = 1 mod ng(s) . The entries of

Δ(s)
ng(s)

M(s)
ng(s) ,gs+1 , are defined as

(
Δ(s)

ng(s)
M(s)

ng(s) ,gs+1

)
i j

= δ
(ng(s) )

gs+1i− jdg[g1(g2(...(gs−1(gsi mod ng(s−1) ) mod ng(s−2) )...) mod ng(1) ) mod ng0 ] mod n

= δ
(ng(s) )

gs+1i− jdks(i),

where i, j = 0,1, . . . ,ng(s) − 1, and ks(i) = gs+1i mod n. So, the spectrum of Cn,g is
given by

Eig(Cn,g) = Eig
(
M(s)

ng(s) ,gs+1Δ(s)
ng(s)

)
∪{0 : mult. = n−ng(s)}.

Since the integers ng(s) and gs+1 are coprime, using Lemma 4.4, replacing ng by ng(s) ,
g1 by gs+1 , p( j) by ks(p( j)) , and ϕ(ng) by ϕ(ng(s) ), we get

Eig(Cn,g) =

⎧⎨⎩exp

(
î
2k( j)π
ϕ(ng(s) )

)ϕ(ng(s) )−1

∏
h=0

fgh
s+1ks(p( j)) mod n : j = 0,1, . . . ,ng(s) −1

⎫⎬⎭
∪{0 : mult. = n−ng(s)},

where fgh
s+1ks(p( j)) mod n = L

1
ϕ(ng(s) )

gh
s+1ks(p( j)) mod n

exp

(
î

θ
gh
s+1ks(p( j)) mod n

ϕ(ng(s) )

)
, p( j)∈{0,1, . . . ,ng(s)

−1}, and k( j) ∈ {0,1, . . . ,ϕ(ng(s) )−1} . �
More specifically, the following theorem characterizes the eigenvalues of g -circulant

matrices Cn,g.
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THEOREM 4.1. Let n and g be two positive integers, then there exists a nonneg-
ative integer s such that, the spectrum of Cn,g is given by

Eig(Cn,g)= {0}∪

⎧⎪⎨⎪⎩exp

⎧⎪⎨⎪⎩î
2k( j)π

ϕ
(
ng(s)

)ϕ
(
ng(s)

)
−1

∏
h=0

fgh
s+1ks(p( j)) mod n

⎫⎪⎬⎪⎭ ; j = 0,1, . . . ,ng(s) −1

⎫⎪⎬⎪⎭ ,

where 0 is of multiplicity n−ng(s), ng(s) is given by relation (35), ks( j) = gs+1 j mod n,

p( j) ∈ {0,1, . . . ,ng(s) − 1}, k( j) ∈
{

0,1, . . . ,ϕ
(
ng(s)

)
−1

}
and fgh

s+1ks(p( j)) mod n =

L

1

ϕ
(

ng(s)

)
gh
s+1ks(p( j)) mod n

exp

(
î

θ
gh
s+1ks(p( j)) mod n

ϕ
(
ng(s)

)
)

, with d j = (Dn) j, j = Lj exp
(
îθ j

)
.

Proof. The proof comes from Lemmas 4.5 and 4.6. �

REMARK 4.1. we obtain a simplified recursive procedure that computes the eigen-
values of Cn,g.

5. A recursive procedure

Given a positive integer g , the Fourier matrix Fn and the matrix Zn,g = [δr−gs]n−1
r,s=0 ,

determine the matrix Mn,g = FnZn,gF�
n := [δgr−s]n−1

r,s=0 . Set ng(−1) := n ; δ (−1) := (n,g) ;

g(0) = g0 := g ; ng := ng(0) := n
δ (−1) ; M(−1)

ng(−1) ,g0 := Mn,g ; Δ(−1)
ng(−1)

:= Dn = diag(d j : j =

0,1,2, . . . ,n−1) ; δ (n)
s := δs . Put k := 0;

(1) if δ (k−1) = 1;

i. compute using Lemma 4.1 the matrix

(
M(k−1)

ng(k−1) ,gk ·Δ(k−1)
ng(k−1)

)ϕ
(
ng(k−1)

)
:= diag

⎛⎜⎝ϕ
(
ng(k−1)

)
−1

∏
p=0

dlpj
, j = 0,1, . . . ,ng(k−1) −1

⎞⎟⎠ ,

where l p
j := gp j mod ng(k−1) ;

ii. for a fixed j ∈ {0,1, . . . ,ng(k−1) −1} , solve the equation

z
ϕ
(
ng(k−1)

)
=

ϕ
(
ng(k−1)

)
−1

∏
p=0

dlpj
;

iii. then the spectrum of Cn,g is

Eig(Cn,g) = Eig
(
M(k−1)

ng(k−1) ,gk ·Δ(k−1)
ng(k−1)

)
∪{0} =
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(
î

2k( j)π
ϕ(ng(k−1))

)ϕ(ng(k−1) )−1

∏
h=0

fgh
kRk−1(p( j))mod ng(k−1)

: j = 0,1, . . . ,ng(k−1) −1

⎫⎬⎭ ,

0 is of multiplicity n−ng(k−1) ; Rk−1( j) := gk j mod n ; d j := Lj exp
(
îθ j

)
, where

|d j| = Lj ;

fgh
kRk−1(p( j)) mod ng(k−1)

:= L

1

ϕ
(

ng(k−1)

)
gh
kRk−1(p( j)) mod ng(k−1)

exp

⎛⎝î
θgh

kRk−1(p( j)) mod ng(k−1)

ϕ
(
ng(k−1)

)
⎞⎠ ,

where ϕ(a) denotes the Euler indicator associated with the positive integer a,

p( j) ∈ {0,1, . . . ,ng(k−1) −1}, and k( j) ∈
{

0,1, . . . ,ϕ
(
ng(k−1)

)
−1

}
;

stop.

otherwise,

(2) if δ (k−1) := ng(k−1) ,

i. compute:
gk := 0;

Eig

(
M(k−1)

ng(k−1) ,0
·Δ(k−1)

ng(k−1)

)
:= {d0,0 : mult. = ng(k−1) −1};

ii. hence the spectrum of Cn,g is given by

Eig(Cn,g) := Eig

(
M(k−1)

ng(k−1) ,0
·Δ(k−1)

ng(k−1)

)
∪{0 : mult. = n−ng(k−1)}

:= {d0,0 : mult. = n−1};
stop;

otherwise;

(3) put k := k+1, compute:

ng(k−1) :=
ng(k−2)

δ (k−2) ; gk := gk−1 mod ng(k−1) ; δ (k−1) := gcd(ng(k−1),gk);

and
Δ(k−1)

ng(k−1)
:= diag

(
dgk j mod n : j = 0,1, . . . ,ng(k−1) −1

)
;

M(k−1)
ng(k−1) ,gk :=

[
δ

(ng(k−1) )
gkr−s

]ng(k−1)−1

r,s=0
; δ

(ng(k−1) )
q :=

{
1 if q ≡ 0 mod ng(k−1) ,

0 otherwise;

The above scheme determines in recursive way the eigenvalues of Cn,g . It can
break off in step (1) if the positive integers n and g are coprime. In that case the
obtained values are like those determined by William F. Trench in [21]. In addition, the
scheme can stop in step (2) if g = 0.

In the following we present some numerical experiments which confirm the theo-
retical results.
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6. Some numerical experiments

Aimed of providing numerical evidences to the theoretical results of the previous
section, we now analyze in detail the eigenvalues of g-circulant matrices Cn,g in both
cases

(i) the integers n and g are coprime,

(ii) the integers n and g are not coprime,

and where the generating function f is chosen in different classes of integrable func-
tions defined over (−π ,π), such as: polynomials (for instance, f (x) = 1+x3 ), trigono-
metric polynomials (i.e., f (x) = (1− cos(x))3 ) and neither polynomials nor trigono-
metric polynomials (for example, f (x) = x−2

x2+1
).

In these numerical experiments, we consider six test cases and we report for each
considered case the eigenvalues of Cn,g. We observe that the symbol f is nonnegative
in the case of trigonometric polynomials, and only has a real root in both others cases.
However, when the parameter g is strictly greater that 1, and is not coprime with
the integer n, the g -circulant matrix, Cn,g, has at least one eigenvalue equals zero of
multiplicity greater than two. The numerical tests have been developed with MatLab
R2009a, and the eigenvalues have been computed by the built-in MatLab function eig().

• Test 1: n = 80, g = 50, and the generating function f is an integrable function
defined over (−π ,π), by f (x) = x−2

x2+1
.

Table 1. Eigenvalues of C80,50.

−125.78−27.55i −10−2 10−2 −10−2i 10−2i 0

where i is the complex number satisfying i2 = −1. When neglecting the four num-
bers ±10−2 and ±10−2i with respect to −125.78− 27.55i, it follows that “0” is an
eigenvalue of algebraic and geometrical multiplicity equals 80− 1 = 79. In that case,
we meet the first item of Lemma 4.6. In addition, one also could compute the value of
d0 and compare it to the number −125.78−27.55i to meet the theoretical result given
above.

• Test 2: n = 11 and g = 7 (the integers n and g are coprime), and the generating
function f is given in Test 1.

Table 2. Eigenvalues of C11,7.

−15.4190−3.7759i −8.2470+0.1980i −6.5556+5.0077i −2.3602+7.9046i
6.7883+4.6873i 8.2470−0.1980i −6.7883−4.6873i 6.5556−5.0077i
2.3602−7.9046i 2.7368+7.7822i −2.7368−7.7822i

The above values are all complex numbers and zero is not on this list, so zero is not an
eigenvalue of C11,7, which implies that the matrix C11,7 is nonsingular. Furthermore,
except the complex number, −15.4190− 3.7759i, which is related to the spectral ra-
dius, ρ(C11,7), of C11,7, that is, ρ(C11,7) = |−15.4190−3.7759i|, where | · | denotes
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the C-norm, the list shows that if λ is an eigenvalue of C11,7, then its conjugate λ also
is another one. This suggests that the coefficients of the characteristic polynomial of
C11,7 are almost all real.

• Test 3: n = 54, g = 3, and the generating function f is defined over (−π ,π)
by f (x) = (1− cos(x))3.

Table 3. Eigenvalues of C54,3.

283.50 67.50 0

It is obvious that “0” is an eigenvalue of C54,3, of algebraic and geometrical multiplicity
equals, 54− 2 = 52. This case corresponds to Lemma 4.3. Indeed, n = gpn0, where
n = 54, g = 3, p = 3, and n0 = 2, with (n0,g) = 1. In addition, we observe that the
non null eigenvalues of C54,3 are real. Hence, one can thinks that this follows from the
fact that the generating function, f , is a trigonometry polynomial.

• Test 4: n = 54 and g = 37 (the integers n and g are coprime), and the gener-
ating function f is given in Test 3.

Table 4. Eigenvalues of C54,37.

283.50 67.50 264.54+66.51i 264.54−66.51i 216.22+110.81i
158.62−122.76i 158.62+122.76i 111.15+107.72i 111.15−107.72i 82.74+80.01i
216.22−110.81i −71.74+118.54i −71.74+118.54i −70.94+119.85i −68.33+121.36i
−66.79+121.40i −71.74−118.54i −71.88−115.45i −71.15−114.01i −70.94−119.85i
−68.33−121.36i −66.79−121.40i −64.04+119.98i −71.88+115.45i −64.04−119.98i
−68.40−112.26i −71.15+114.01i −66.72−112.22i −63.16−118.62i −63.16+118.62i
−63.02−115.37i −68.40+112.26i −66.72+112.22i −63.02+115.37i −63.83−113.89i

82.74−80.01i −63.83+113.89i 70.87+52.61i 70.87−52.61i 67.85+31.04i
67.85−31.04i 67.51+14.44i 67.51−14.44i 138.53−2.86i 138.53+2.86i
139.27−1.51i 139.27+1.51i 135.92−4.53i 134.31−4.61i 135.92+4.53i
134.31+4.61i 130.54−1.67i 130.54+1.67i 131.42−3.11i 131.42+3.11i

The above values are complex numbers, except the two numbers 283.50 and 67.50, and
zero is not an eigenvalue of C54,37. In addition, this list suggests that for any complex
eigenvalue of C54,37, its conjugate is also an eigenvalue.

• Test 5: n = 28, g = 16, and the generating function f is a polynomial defined
over (−π ,π), by f (x) = 1+ x3.

Table 5. Eigenvalues of C28,16.

119.85+49.59i 60.79+104.72i −102.87+78.99i −121.08+0.29i
−16.98−128.59i 28.00−45.11i 60.29−105.01i 0

Here “0” is an eigenvalue of algebraic and geometrical multiplicity equals 28−7 = 21.
It is obvious to see that all the non null eigenvalues of C28,16 are complex numbers.
Furthermore, we observe that any non null eigenvalue of C28,16 has its conjugate as
eigenvalue. This test case meets the theoretical result stated in Lemma 4.4.
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• Test 6: n = 28, g = 9, and the generating function f is given in Test 5.

Table 6. Eigenvalues of C28,9.

28+873.57i −133.37+116.71i −176.23+18.23i 103.90+143.51i 167.76+57.15i
−34.39−173.86i 72.33−161.73i −128.7+78.99i 119.85+49.59i −121.08+0.29i

60.79+104.72i −96.77−27.70i 24.40+97.65i −62.21+56.03i −65.51+30.75i
29.09+74.44i 59.39+41.36i 79.63+25.86i −79.01−12.03i 60.29−105.01i
77.34−81.95i −16.98−128.59i 72.37−69.95i 49.92−62.41i 28−45.11i
6.13−72.11i −21.34−81.95i −17.42−81.89i

It is obvious to see that any eigenvalue of C28,9 is not real and zero is not an eigenvalue.
Furthermore, we observe that any eigenvalue of C28,9 doesn’t have its conjugate as
eigenvalue.

A combination of six tests shows the crucial role played by the generating function
in characterizing the eigenvalues of g-circulant matrices. Before dealing with the con-
ditioning of g-circulant structures, it is quite interesting to notice that the eigenvalues of
Cn,g agree with the corresponding theoretical results (as already proven by numerical
tests).

In fact, for g � 2, if δ = (n,g) = 1, then the eigenvalues are bounded away from
zero (see tests and Figure 1), and if δ > 1, some of the first ng = n

δ eigenvalues are
always bounded away from zero, while the remaining are null, as stated in Lemmas
4.3, 4.4 and 4.6. In particular, for each couple: n = 80 and g = 63, n = 11 and g = 7,
n = 54 and g = 37 or n = 28 and g = 9, the greater common divisor , δ , equals 1.
So, the eigenvalues of Cn,g are bounded away from zero in the well conditioned tests
(see both smallest and greatest eigenvalues (in modulus) in tests 2, 4 and 6 above, and
the graphs in green). On the other hand, for each case: n = 80 and g = 50, or n = 54
and g = 3, n = 28 and g = 16, more than one half of the eigenvalues of Cn,g are null,
which imply that the g-circulant matrices are singular, so are very ill-conditioned.

It is now interesting to analyze the clustering of the spectrum of g-circulant ma-
trices. Any non-coprime case (graphs (in blue) in Figure 1 along with tests 1, 3, and
5 ) give rise to a good clustered at zero, in the last n− ng eigenvalues, while the re-
maining ones, perhaps, are non null. This is a result which was expected in the light of
Lemmas 4.3, 4.4 and 4.6. The g-circulant matrices Cn,g guarantee a good clustering
in a subspace which is the most large possible (remember that the rank of Cn,g tends
to ng, since n− ng eigenvalues vanish as n increases, so that the rank of Cn,g cannot
be greater or equal than ng ). This good clustering at zero of Cn,g occurs in the ill-
conditioned cases (some of eigenvalues are null). We can also observe, from six tests
above that the g-circulant structures are not necessary related to a distribution func-
tion (in the sense of eigenvalues). Indeed, the g-circulant matrices have only non null
complex eigenvalues.

The situation is different in the coprime case, as tests 2, 4, and 6, together with
graphs (in green) in Figure 1, suggest. The lists of eigenvalues corresponding to these
tests show that when the generating function has a complex root, any eigenvalue does
not admit its conjugate as eigenvalue (see test 6, case of the polynomial generating
function). This observation is quite different when the symbol related to Cn,g only has
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Eigenvalues of g-circulant matrices when n and g are both non-coprime and coprime.
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Figure 1: The graphs representing the eigenvalues of Cn,g in both non-coprime case (in blue)
and coprime case (in green).

real roots (one can refer to tests 2 and 4, to see that, except the eigenvalue associated
with the spectral radius of Cn,g (test 2), each eigenvalue has its conjugate as another
one). We can say that the g-circulant structure has a lot of cyclically repeated (i.e.,
a number and its conjugate), hence linearly independent, columns, which means that
a good clustering at zero is no longer possible. However, the numerical experiments
corresponding to coprime case confirm the result stated in Lemma 4.2.
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7. Conclusion

This paper has studied in detail the eigenvalues of the g -circulant matrices and
has provided an iterative analysis that computes the eigenvalues in recursive way. The
obtained results generalize those of Willian F. Trench (case where the positive integers
n and g are coprime) and they also represent an improvement and an extension of the
work due to S. Serra Capizzano and D. Sesana which concerns closed form expressions
of such values. We have presented and discussed various numerical evidences which
have confirmed our theoretical results. Future works would study the more involved
eigenvector behavior for the g -circulant structures.

Acknowledgement. The author thanks the anonymous referees for detailed and
valuable comments which helped to greatly improve the quality of this paper.
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[23] U. TROTTENBERG, C. W. OOSTERLEE, A. SCHÜLLER, Multigrid, Academic press, London (2001).
[24] CLINE PLEMONS WORM, Generalized inverses of certains Toeplitz matrices, LAA 8, 25–33 (1974).
[25] P. ZELLINI, On the optimal computation of a set of symmetric and persymmetric bilinear forms, LAA

2, 3101–119 (1979).

(Received August 29, 2016) Eric Ngondiep
Department of Mathematics and Statistics, College of Science

Al-Imam Muhammad Ibn Saud Islamic University
90950 Riyadh 11632-Saudi Arabia

and
Hydrological Research Centre

Institute for Geological and Mining Research
4110 Yaounde-Cameroon

e-mail: ericngondiep@gmail.com;

engondiep@imamu.edu.sa

Operators and Matrices
www.ele-math.com
oam@ele-math.com


