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Abstract. We give a complete characterization of supercylicity for abelian semigroups of matri-
ces on Rn , n � 1 . We solve the problem of determining the minimal number of matrices over R

which form a supercyclic abelian semigroup on Rn . In particular, we show that no abelian semi-
group generated by

[ n−1
2

]
matrices on Rn can be supercyclic. ( [ ] denotes the integer part). This

answers a question raised by the second author in [H. Marzougui, Monatsh. Math. 175 (2014),
401–410]. Furthemore, we show that supercyclicity and R+ -supercyclicity are equivalent.

1. Introduction

Let Mn(R) be the set of all square matrices over R of order n � 1 and let GL(n,R)
be the group of invertible matrices of Mn(R) . Let G be an abelian sub-semigroup of
Mn(R) . By a sub-semigroup of Mn(R) , we mean a subset which is stable under mul-
tiplication and contains the identity matrix. For a vector v ∈ Rn , we consider the orbit
of G through v : G(v) = {Av : A ∈ G} ⊂ Rn . The orbit G(v) ⊂ Rn is called dense
(resp. somewhere dense) in Rn if G(v) = Rn (resp. G(v) has non-empty interior),
where E denotes the closure of a subset E ⊂ Rn . We say that G is hypercyclic if
there exists a vector v ∈ Rn such that G(v) is dense in Rn . In this case, v is called
a hypercyclic vector for G . This definition generalizes the notion of hypercyclicity of
a single operator to a semigroup of matrices. We refer the reader to the recent books
[5] and to [11] and papers [1], [2], [4], [7], [8], [9], [15] for a thorough account on
hypercyclicity. We say that G is supercyclic if there exists a vector v ∈ Rn such that
RG := {λAv : A ∈ G, λ ∈ R} is dense in Rn . In this case, v is called a supercyclic
vector for G . For a single operator on a separable Banach space, the notion of super-
cyclicity was introduced by Hilden and Wallen [13]. Since then much research about
supercyclicity has been done, we mention in particular [10], [12], [13]. Hilden and
Wallen [13] proved in particular that on Cn , n � 2, no operator can be supercyclic (see
[14], see also [12], and [10] for another proof). In the trivial case n = 1, each non-zero
matrix is supercyclic. In the real case, no operator can be supercyclic when n � 3 (see
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Corollary 4.10, see also [12]). However, if n = 2, a rotation

[
cosθ sinθ
−sinθ cosθ

]
, with θ ir-

rational, is supercyclic. It is clear that if an operator is hypercylic then it is supercyclic,
but a supercyclic operator need not be hypercyclic.

For abelian semigroups of matrices on Cn , supercyclicity was recently studied
by the author [14] (see also [16]). In [14], the author asks whether there exist super-
cyclic abelian semigroups of matrices on Rn for n � 3. This paper can be viewed as a
continuation of that work.

First, we give a general result answering the above question for any abelian sub-
semigroup of Mn(R) by providing an effective way of checking that a given semigroup
is supercyclic. Second, we prove that there is no supercyclic abelian semigroup in
Kη(R), where η has length r +2s (see the definition below) generated by n− s ma-
trices (see Theorem 4.4). Further, we show that the minimal number of matrices of
Mn(R) required to form a supercyclic abelian semigroup is

[
n−1
2

]
+1 (Theorem 4.9).

This answers a question raised by the author in [14]. Third, we prove that supercyclicity
and positive (or R+ )-supercyclicity are equivalent (see Theorem 5.1).

This paper is organized as follows: In Section 2, we introduce the notations, def-
initions and we give some results about hypercyclicity that are needed throughout the
paper. In Section 3, we prove Theorem 3.1. Section 4 is devoted to finitely generated
abelian semigroups; we prove the Theorems 4.1, 4.4, 4.9 and Corollaries. In Section 5,
we prove the equivalence between supercyclicity and positive supercyclicity.

2. Preliminaries

To state our main results, we need to introduce the following notations, definitions
and some results on hypercyclicity. Set N be the set of non negative integers.

1) The semigroup Kη(R) . Let n ∈ N , n � 1 be fixed. Let r, s ∈ N . By a par-
tition of n , we mean a finite sequence of positive integers η = (n1, . . . ,nr; m1, . . . ,ms)

such that
r
∑
j=1

n j + 2
s
∑
j=1

mj = n . In particular, we have r + 2s � n . The number r + 2s

will be called the length of the partition. Given a partition η = (n1, . . . ,nr; m1, . . . ,ms) ,
we denote by:

• Kη (R) := Tn1(R)⊕ . . .⊕Tnr(R)⊕Bm1(R)⊕ . . .⊕Bms(R) , where
− Tm(R) is the set of all m×m lower triangular matrices over R with only one

eigenvalue, for each m = 1,2, . . . ,n
− Bm(R) is the set of matrices of M2m(R) of the form⎡⎢⎢⎢⎣

C 0
C2,1 C

...
. . .

. . .
Cm,1 . . . Cm,m−1 C

⎤⎥⎥⎥⎦
for each 1 � m � n

2 , where C, Ci, j ∈ S, 2 � i � m,1 � j � m−1 and S is the semigroup

of matrices over R of the form

[
α β
−β α

]
.
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In particular:
− Kη(R) = Tn(R) and η = (n) if r = 1, s = 0.
− Kη(R) = Bm(R) and η = (m) , n = 2m if r = 0, s = 1.
− Kη(R) = Bm1(R)⊕ . . .⊕Bms(R) and η = (m1, . . . ,ms) if r = 0, s > 1.
We denote by
• K +

η (R) := T+
n1

(R)⊕ . . .⊕T+
nr

(R)⊕B∗
m1

(R)⊕ . . .⊕B∗
ms

(R), where
− T+

m(R) is the group of matrices of Tm(R) with all diagonal elements positive.
− B∗

m(R) := Bm(R)∩GL(2m,R) is the group of invertible matrices of Bm(R) .
We let
− T∗

m(R) = Tm(R)∩GL(m,R) the group of invertible matrices of Tm(R) .
− K ∗

η (R) := Kη(R)∩GL(n, R) , it is a sub-semigroup of GL(n, R) .
− B0 = (e1, . . . ,en) the canonical basis of Rn .
− In the identity matrix on Rn .
For a row vector v ∈ Rn , we will be denoting by vT the transpose of v . We let
• uη = [eη,1, . . . ,eη,r; fη,1, . . . , fη,s]T ∈ Rn , where for 1 � k � r; 1 � l � s ,
− eη,k = [1,0, . . . ,0]T ∈ Rnk , fη,l = [1,0, . . . ,0]T ∈ R2ml .

− f (l)
η = [0, . . . ,0, f (l)

1 , . . . , f (l)
s ]T ∈ Rn , where for 1 � l, j � s

f (l)
j = [0,δ j,l,0, . . . ,0]T ∈ R2mj , (δ j,l is the Kronecker symbol). Equivalently,

f (l)
η = etl , where tl =

r
∑
j=1

n j +2
l−1
∑
j=1

mj +2, l = 1, . . . ,s.

2) Abelian sub-semigroup of Kη(R) . Let G be an abelian sub-semigroup
of Kη(R) , for some partition η of n . Consider the matrix exponential map exp :
Mn(R) −→ GL(n,R) defined as exp(M) = eM .

We let:
• gη := exp−1(G)∩Kη(R) .
• gη (u) := {Bu : B ∈ gη}, u ∈ Rn .

• g2
η = exp−1(G2)∩Kη(R) , where G2 = {A2 : A ∈ G} .

• G∗ = G∩GL(n,R) , G∗2 = {A2 : A ∈ G∗} .
• The index of G . Each M ∈G∗ can be written as M = diag(M1, . . . ,Mr ; M̃1, . . . ,M̃s)

∈ K ∗
η (R) . Denote by μk the eigenvalues of Mk , k = 1, . . . ,r . We define the index of

G to be

ind(G) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if r = 0{
1, if ∃ M ∈ G∗ with μ1 < 0

0, otherwise
, if r = 1

card{k ∈ {1, . . . ,r} : ∃M ∈ G∗ with μk < 0 and μi > 0, ∀ i 
= k},
if r /∈ {0, 1}.

In particular,
− If G∗ ⊂ K +

η (R) with r 
= 0, then ind(G) = 0.
− If G∗ ⊂ B∗

m(R) , then ind(G) = 0 (since r = 0).
− As an example; let G be the semigroup generated by A1 = diag(eπ ,eπ) , A2 =[−1 0

π −1

]
and A3 = e−π

√
2

[
1 0

−π
√

3 1

]
.
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We see that G is an abelian sub-semigroup of T∗
2(R) with η = (2) , r = 1 and

ind(G) = 1.

3) The normal form of an abelian sub-semigroup of Mn(R) . First recall the
following proposition.

PROPOSITION 2.1. ([3], Proposition 2.2) Let G be an abelian sub-semigroup
of Mn(R) . Then there exists a P ∈ GL(n,R) such that P−1GP is an abelian sub-
semigroup of Kη(R) , for some partition η of n.

Let G be an abelian sub-semigroup of Mn(R) , n � 1. Then, following Proposition
2.1, let P ∈ GL(n,R) such that P−1GP ⊂ Kη(R) for some partition η of n . Given
an integer t � n , we shall say that the semigroup G has “a normal form of length t ”
if G has a normal form in Kη(R) , for some partition η = (n1, . . . ,nr; m1, . . . ,ms)
with length t = r +2s . For such a choice of matrix P , we define the index of G to be
ind(G) := ind(P−1GP) . It is clear that this definition does not depend on P .

4) Some results on hypercyclicity. The following theorems characterize the
hypercyclicity and the existence of somewhere dense orbit of any abelian semigroup of
matrices on Rn .

THEOREM 2.2. ([3], Theorem 1.1) Let G be an abelian sub-semigroup of Kη(R) ,
n � 1 , where η has length r+2s.

1. The following properties are equivalent:

(i) G has a somewhere dense orbit,

(ii) G(uη) is somewhere dense in Rn ,

(iii) gη(uη) is an additive sub-semigroup dense in Rn .

2. Assume that G is generated by p matrices A1, . . . ,Ap ( p � 1 ) and let B1, . . . ,Bp ∈
gη such that A2

1 = eB1 , . . . ,A2
p = eBp . Then G has a somewhere dense orbit in

Rn if and only if
p
∑

k=1
NBkuη +

s
∑
l=1

2πZ f (l)
η is dense in Rn .

THEOREM 2.3. ([3], Theorem 1.4) Let G be an abelian sub-semigroup of Kη(R) ,
n � 1 , where η has length r+2s.

1. The following properties are equivalent:

(i) G is hypercyclic,

(ii) G(uη) is dense in Rn ,

(iii) gη(uη) is an additive sub-semigroup dense in Rn and ind(G) = r .

2. Assume that G is generated by p matrices A1, . . . ,Ap ( p � 1 ) and let B1, . . . ,Bp ∈
gη such that A2

1 = eB1 , . . . ,A2
p = eBp . Then G is hypercyclic if and only if

p
∑

k=1
NBkuη +

s
∑
l=1

2πZ f (l)
η is dense in Rn and ind(G) = r .
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3. Supercyclic abelian sub-semigroups of Kη(R)

The aim of this section is to prove the following theorem.

THEOREM 3.1. Let n ∈ N , n � 1 and let G be an abelian sub-semigroup of
Kη(R) , where η has length r+2s. Then the following are equivalent:

(i) G is supercyclic,

(ii) uη is a supercyclic vector for G,

(iii) g2
η(uη)+Ruη is dense in Rn and ind(G) = r .

We denote by
• G′ = RG := {λA : λ ∈ R, A ∈ G} . It is an abelian semigroup of matrices on

Rn .
• g′η = exp−1(G′)∩Kη(R) .

LEMMA 3.2. We have (g′η)2 = (gη)2 +RIn .

Proof. Let A ∈ (g′η)2 . Then eA = (cB)2 for some c ∈ R∗ and B ∈G . Set c2 = eα

for some α ∈ R . Then e−αIn+A = B2 and so −αIn +A ∈ exp−1(G2) . As A ∈ Kη (R) ,
so is −αIn +A and hence A ∈ (gη )2 + RIn . Conversely, let A = αIn +B , where B ∈
(gη)2 and α ∈ R . As B ∈ Kη(R) , then so is A . Moreover, we have eA = eαeB . Since
eB ∈ G2 , so eA ∈ (G′)2 and thus A ∈ (g′η)2 . �

LEMMA 3.3. ([3], Corollary 5.4) Let G be an abelian sub-semigroup of K ∗
η (R) .

Then G has a somewhere dense orbit if and only if so does G2 .

LEMMA 3.4. g′η(uη ) is an additive sub-semigroup dense in Rn if and only if
(g′η)2(uη) is.

Proof. This follows from Theorem 2.2 and Lemma 3.3. �
The proofs of the Lemmas 3.5 and 3.6 below are straightforward.

LEMMA 3.5. Let G be an abelian sub-semigroup of Kη (R) . Then G is super-
cyclic if and only if G′ is hypercyclic.

LEMMA 3.6. We have ind(G′) = ind(G) .

LEMMA 3.7. ([3], Proposition 4.1) Let G be an abelian sub-semigroup of Kη(R)
and let u ∈ Rn . Then G∗(u) is somewhere dense (resp. dense) in Rn if and only if
G(u) is.

LEMMA 3.8. ([3], Proposition 4.5) Let G be an abelian sub-semigroup of K ∗
η (R) ,

where η has length r+2s. Then the following properties are equivalent:
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(i) G(uη) = Rn ,

(ii) G(uη) has non-empty interior and ind(G) = r .

LEMMA 3.9. Let G be an abelian sub-semigroup of Kη(R) , where η has length
r+2s. Set G′ = RG. The following properties are equivalent:

(i) G′ has a somewhere dense orbit,

(ii) G′(uη) has non-empty interior,

(iii) (gη)2(uη)+Ruη is an additive sub-semigroup dense in Rn .

Proof. The proof follows from Theorem 2.2, Lemmas [3.2–3.5] and Lemma 3.7.
�

Proof of Theorem 3.1. The proof follows from Theorem 2.3, Lemmas [3.5–
3.9]. �

4. On finitely generated abelian supercyclic semigroup

THEOREM 4.1. Let n ∈ N , n � 1 and let G be an abelian sub-semigroup of
Kη(R) , where η has length r + 2s. Assume that G is generated by p matrices
A1, . . . ,Ap ( p � 1 ) and let B1, . . . ,Bp ∈ gη such that A2

1 = eB1 , . . . ,A2
p = eBp . Then G is

supercyclic if and only if
p
∑

k=1
NBkuη +

s
∑
l=1

2πZ f (l)
η +Ruη is dense in Rn and ind(G)= r .

The proof needs the following lemma.

LEMMA 4.2. ([3], Proposition 4.6) Let G be an abelian sub-semigroup of K +
η (R)

and let B1, . . . ,Bp ∈ Kη(R) (p � 1) such that eB1 , . . . ,eBp generate G. We have that

gη(uη) =
p
∑

k=1
NBkuη +

s
∑
l=1

2πZ f (l)
η .

Proof of Theorem 4.1. The proof follows from Theorem 3.1, Lemmas 3.7 and
4.2. �

COROLLARY 4.3. Let n ∈ N , n � 1 and let G be an abelian sub-semigroup of
Kη(R) , where η has length r+2s.

(1) If G is supercyclic, then it is hypercyclic if and only if it has a somewhere dense
orbit.

(2) If G is supercyclic and generated by p matrices A1, . . . ,Ap ( p � 1 ) such that
A2

1 = eB1 , . . . ,A2
p = eBp , where B1, . . . ,Bp ∈ gη , then it is hypercyclic if and only

if
p
∑

k=1
NBkuη +

s
∑
l=1

2πZ f (l)
η is dense in Rn .
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Proof. If G is supercyclic, then by Theorem 3.1, ind(G) = r and so Corollary 4.3
follows from Theorems 2.2 and 2.3. �

THEOREM 4.4. Let n � 1 be an integer and let G be an abelian sub-semigroup
of Kη(R) , for some partition η of n of length r+2s. If G is generated by n− s−1
matrices in Kη(R) , it is not supercyclic.

LEMMA 4.5. Let n,s ∈ N such that n � 2 and 1 � s < n. Let H :=
n−s−1

∑
k=1

Nvk +
s
∑

k=1
Zek + Rv with vk ∈ Rn , 1 � k � n− s− 1 and v ∈ Rn . Then H is nowhere dense

in Rn .

Proof. Let E be the R-vector space generated by (v1, . . . ,vn−s−1,e1, . . . ,es) . One
has H ⊂ E +Rv . We distinguish two cases.

Case 1 : dimE � n−2. In this case, dim(E +Rv) � n−1 and so H is nowhere
dense in Rn .

Case 2 : dimE = n−1.
− If v ∈ E then dim(E +Rv) = n−1 and so H is nowhere dense in Rn .
− If v /∈ E then E +Rv = Rn , thus (v1, . . . ,vn−s−1,e1, . . . ,es,v) is a basis of Rn .

Assume that H is somewhere dense in Rn . Then there exists a vector

w =
n−s−1

∑
k=1

αkvk +
s

∑
k=1

βkek + γv

with αk ∈ R\Q, 1 � k � n− s−1, βk ∈ R , 1 � k � s and γ ∈ R such that

w = lim
l→+∞

n−s−1

∑
k=1

ml,kvk +
s

∑
k=1

sl,kek + λlv,

where ml,k ∈ N , 1 � k � n− s− 1, sl,k ∈ Z, 1 � k � s and λl ∈ R . Therefore,
lim

l→+∞
ml,k = αk for every 1 � k � n− s− 1. This implies that αk ∈ N , a contradic-

tion. �
Proof of Theorem 4.4. Let A1, . . . ,An−s−1 be matrices in Kη(R) that generate G

and let B1, . . . ,Bn−s−1 ∈ gη such that A2
1 = eB1 , . . . ,A2

n−s−1 = eBn−s−1 .

Define B0\(et1 , . . . ,ets) := (eis+1 , . . . ,ein) , where etl = f (l)
η , 1 � l � s (see page

3) and define the matrix S by

Sek =

{
2π f (k)

η , if 1 � k � s,

eik , if s+1 � k � n.

We see that S ∈ GL(n;R) . Write S−1uη = v and S−1Bkuη = vk , 1 � k � n− s− 1.

We let H :=
n−s−1

∑
k=1

Nvk +
s
∑

k=1
Zek +Rv . Then we have that

S(H) =
n−s−1

∑
k=1

NBkuη +
s

∑
l=1

2πZ f (l)
η +Ruη
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By Lemma 4.5, H is nowhere dense in Rn and thus so is S(H) . We conclude by
Theorem 4.1 that G is not supercyclic. �

PROPOSITION 4.6. For any n ∈ N , n � 1 , r,s ∈ N , and any partition η of n of
length r + 2s. there exist n− s matrices in K ∗

η ′(R) , where η ′ is a partition of n of
length 1+ r+2s or r+2s, that generate a supercyclic abelian semigroup.

LEMMA 4.7. ([15], Theorem 1.5) Let n ∈ N , n � 1 and r,s ∈ N . Then for any
partition η of n of length r+2s, there exist n−s+1 matrices in K ∗

η (R) that generate
a hypercyclic abelian semigroup.

Proof of Proposition 4.6. Set η = (n1, . . . ,nr; m1, . . . ,ms) . If n = 1, then r = 1,
s = 0 and n1 = 1. So it is obvious that every a ∈ R∗ generate a supercyclic semigroup
of R . Assume that n � 2. We distinguish two cases:

Case 1: r 
= 0.
− If ni � 2, for some 1 � i � r , say for example n1 � 2, then η0 := (n1 −

1, . . . ,nr; m1, . . . ,ms) is a partition of n−1 of length r+2s . By Lemma 4.7, there exist
(n− 1)− s + 1 = n− s matrices A′

1, . . . ,A
′
n−s in K ∗

η0
(R) that generate a hypercyclic

abelian semigroup G′ . Set Aj =
[
1 O
O A′

j

]
, j = 1, . . . ,n− s and let G be the semigroup

generated by A1, . . . ,An−s . It is clear that G is an abelian semigroup of K ∗
η ′(R) , where

η ′ = (1,n1−1, . . . ,nr; m1, . . . ,ms) is a partition of n of length 1+ r+2s .
Let x′ ∈ Rn−1 so that G′x′ is dense in Rn−1 and set x = [1,x′]T . We shall prove

that x is a supercyclic vector for G :
Let y = [y1,y′]T with y1 ∈R∗ and y′ ∈Rn−1 . Then there exist sequences ϕ1(k), . . . ,

ϕn−s(k) of integers such that

lim
k→+∞

(A′
1)

ϕ1(k) . . . (A′
n−s)

ϕn−s(k)x′ = y−1
1 y′.

Then we have [y1,y′]T = lim
k→+∞

y1A
ϕ1(k)
1 . . .Aϕn−s(k)

n−s x . Therefore y ∈ RGx . We conclude

that R∗ ×Rn−1 ⊂ RGx and hence RGx = Rn .
− If ni = 1, for all 1 � i � r , then η0 = (1, . . . ,1; m1, . . . ,ms) is a partition

of n−1 of length r−1+2s . Then by Lemma 4.7, there exist (n−1)− s+1 = n− s
matrices A′

1, . . . ,A
′
n−s in K ∗

η0
(R) that generate a hypercyclic abelian semigroup G′ . Set

Aj =
[
1 O
O A′

j

]
, j = 1, . . . ,n− s and let G be the semigroup generated by A1, . . . ,An−s .

Then G is an abelian semigroup of K ∗
η ′(R) , where η ′ = (1,1, . . . ,1; m1, . . . ,ms) is a

partition of n of length r+2s . Hence we prove similarily that G is supercyclic.
Case 2: r = 0. Then n = 2(m1 + . . .+ms) , s 
= 0 and η0 = (2m1−1,m2, . . . ,ms)

is a partition of n− 1 of length 1 + 2(s− 1) . By Lemma 4.7, there exist (n− 1)−
s + 1 = n− s matrices A′

1, . . . ,A
′
n−s in K ∗

η0
(R) that generate a hypercyclic abelian

semigroup G′ . Set Aj =
[
1 O
O A′

j

]
, j = 1, . . . ,n−s and let G be the semigroup generated
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by A1, . . . ,An−s . It is clear that G is an abelian semigroup of K ∗
η ′(R) , where η ′ =

(1,2m1−1,m2, . . . ,ms) is a partition of n of length 2+2(s−1) .
Let x′ ∈ Rn−1 so that G′x′ is dense in Rn−1 and set x = [1,x′]T . By the same way

as above, x is a supercyclic vector for G . �

COROLLARY 4.8. The minimum number of trigonalizable matrices of Mn(R) that
generate a supercyclic abelian semigroup is n.

Proof. Let G be an abelian semigroup generated by trigonalizable matrices of
Mn(R) . Then by Proposition 2.1, we may assume that G is an abelian sub-semigroup
of Kη(R) , for some partition η = (n1, . . . ,nr) of n (in this case s = 0). If G is
generated by n−1 matrices, then by Theorem 4.4, G is not supercyclic. Furthermore,
by Proposition 4.6, there exist n matrices in K ∗

η ′(R) , for some partition η ′ of n of
length 1 + r or r , generating a supercyclic abelian semigroup. Notice that these n
matrices are in particular triangular. The proof is complete. �

The following theorem is, in some sense, best possible.

THEOREM 4.9. (Minimal generators) Let n ∈ N , n � 1 . The minimum number
of matrices of Mn(R) that generate a supercyclic abelian semigroup is

[
n−1
2

]
+1 .

Proof. First, we prove that if G is generated by [ n−1
2 ] matrices of Mn(R) , then

it is not supercyclic: By Proposition 2.1, we may assume that G is an abelian sub-
semigroup of Kη(R) , for some partition η = (n1, . . . ,nr; m1, . . . ,ms) of n . If r = 0,
then n = 2(m1 + . . .+ms) , 2s � n and so

[
n−1
2

]
� n− s−1. If r 
= 0, then 1+2s �

r+2s � n and so
[

n−1
2

]
� n−s−1. Therefore from Theorem 4.4, G is not supercyclic.

Second, we will show that there exist
[

n−1
2

]
+1 matrices of Mn(R) that generate a

supercyclic abelian semigroup. If n is even, then n = 2s and let η = (m1, . . . ,ms) with
mi = 1, i = 1, . . . ,s . Then η is a partition of n of length 2s . Then by Proposition 4.6,
there exist n− s = n

2 matrices in K ∗
η ′(R) , for some partition η ′ of length 2+2(s−1) ,

generating a supercyclic abelian semigroup. If n is odd, then n = 2s+ 1 and let η =
(1;m1, . . . ,ms) with mi = 1, i = 1, . . . ,s . Then η is a partition of n of length 1+2s .
Then by Proposition 4.6, there exist n−s = n+1

2 matrices in K ∗
η ′(R) , for some partition

η ′ of length 1+2s , generating a supercyclic abelian semigroup. In either cases, there
exist [

n−1
2

]
+1 =

{
n
2 if n is even

n+1
2 if n is odd

matrices of Mn(R) generating a supercyclic abelian semigroup. As a result, Theorem
4.9 follows. �

COROLLARY 4.10. ([12], [13]) For n � 3 , no matrix on Rn is supercyclic.

Proof. Since n � 3, so 1 �
[

n−1
2

]
and then the Corollary follows from Theorem

4.9. �
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5. Positive supercyclicity

Let G be an abelian sub-semigroup of Mn(R) , it is called positive supercyclic or
also R+ -supercyclic if there exists x∈Rn such that R+G(x) := {λAx : A∈G, λ ∈R+}
is dense in Rn . This concept was introduced in [6] for one operator on a separable
Banach space. Bermudez et al. [6] proved that if an operator T is R-supercyclic, then
in fact T is R+ -supercyclic. Actually we prove that the same conclusion holds for any
abelian semigroup of Mn(R) .

THEOREM 5.1. Let n ∈ N , n � 1 and let G be an abelian sub-semigroup of
Mn(R) . Then the following are equivalent:

(i) G is supercyclic,

(ii) G is R+ -supercyclic.

Proof. By Proposition 2.1, we may assume that G is an abelian sub-semigroup of
Kη(R) , for some partition η of n of length r + 2s . It is obvious that (ii) ⇒ (i) . Let
us prove (i) ⇒ (ii) . Suppose that G is supercyclic. Then by Lemma 3.5, G′ := RG
is hypercyclic and so by Theorem 2.3, G′(uη ) is dense in Rn . We have G′(uη) =
R+G(uη)∪R+G(−uη) . We distinguish two cases.

Case 1: R+G(uη) is nowhere dense. In this case, R+G(−uη) is dense in Rn and
hence G is R+ -supercyclic.

Case 2: R+G(uη ) is somewhere dense. We have ind(G) = r = ind(R+G) (since
G is supercyclic). Furthermore, R+G ⊂ Kη(R) , thus by Lemma 3.8, R+G(uη) is
dense in Rn and so G is R+ -supercyclic. The proof is complete. �
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