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Abstract. Let p � 1 and n be a non-negative integer and A = (am,k)m,k�0 be a non-negative
matrix. In this paper the norm of backward difference operators Δ(n) and Δ(−n) from the se-
quence space lp into the certain sequence space Ap are computed, where Ap is the space of all
real sequences x = (xk)∞

k=0 such that

∞

∑
m=0

∣∣∣∣∣
∞

∑
k=0

am,kxk

∣∣∣∣∣
p

< ∞.

Moreover, the results are applied for well known matrices such as Cesàro matrix of order n and
Hilbert and also new matrices which are introduced in this study.

1. Introduction

Let p � 1 and ω denote the set of all real-valued sequences. Any vector subspace
of ω is called a sequence space. The classical space lp is the set of all real sequences
x = (xk)∞

k=0 ∈ ω such that

‖x‖p =

(
∞

∑
k=0

|xk|p
)1/p

< ∞.

Let A = (am,k)m,k�0 be a matrix. We define the matrix domain Ap by

Ap =
{

x = (xk) : Ax ∈ lp
}

=

{
x = (xk) :

∞

∑
m=0

∣∣∣∣∣
∞

∑
k=0

am,kxk

∣∣∣∣∣
p

< ∞

}
, (1.1)

which is a sequence space. The new sequence space Ap generated by the limitation
matrix A from a sequence space lp can be the expansion or the contraction and or the
overlap of the original space lp [3].

Mathematics subject classification (2010): 26D15, 40C05, 40G05, 47B37, 47B39.
Keywords and phrases: Matrix operator, backward difference operator, norm, Cesàro matrix, Hilbert
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The matrix domain which plays an important role to construct a new sequence
space of classical space lp , has been studied by several authors. For instance, the matrix
domains of the difference operator are investigated in [1, 3, 14, 15, 16] and the matrix
domains of fractional difference operator are introduced in [2, 10, 11, 12, 13]. In these
works topological properties, inclusion relations, duals and matrix transformations of
these spaces are investigated, but the norm of matrix operators on these matrix domains
are not studied.

Although the norm of matrix operators on the sequence space lp have computed by
many mathematicians such as Hardy, Bennett and Borwein [4, 6, 7, 8, 9], the problem
of finding the norm of operators on matrix domains has not studied extensively. The
authors recently computed norm of operators on some matrix domains [17]. In this
present paper, we try to solve this problem for backward difference operator from lp
into Ap .

The semi-norm on the matrix domain Ap , ‖.‖Ap , is defined by

‖x‖Ap =

(
∞

∑
m=0

∣∣∣∣∣
∞

∑
k=0

am,kxk

∣∣∣∣∣
p) 1

p

.

Note that this function will be not a norm, since if x = (1,−1,0,0, · · ·) and the matrix
A is defined such that a0,0 = a0,1 = 1 and the remaining entries be zero, then ‖x‖Ap = 0
while x �= 0. Consider that Ap = lp and ‖.‖Ap = ‖.‖p , for A = I .

Throughout this paper, we suppose that n is an arbitrary non-negative integer and(−1
0

)
= 1 and

(n
k

)
= 0 for k > n � 0. The backward difference operators Δ(n) = (δ (n)

k, j )

of order n and Δ(−n) = (δ (−n)
k, j ) of order −n are defined as below, respectively,

δ (n)
k, j =

{
(−1)k− j

( n
k− j

)
j � k � n+ j,

0 otherwise,

and

δ (−n)
k, j =

{(n+k− j−1
k− j

)
0 � j � k,

0 otherwise.

Note that Δ(n) = Δ(−n) = I , when n = 0 and I is the identity matrix.
In this paper, we consider the inequalities of the forms

‖Δ(n)x‖Ap � U‖x‖p, ‖Δ(−n)x‖Ap � V‖x‖p,

for all sequence x ∈ lp . The constants U and V are not depending on x , and the norms
of Δ(n) and Δ(−n) are the smallest possible values of U and V , respectively. Note that
in the above inequalities, we choose the matrix domains Ap which satisfy boundedness
of the operators Δ(n) and Δ(−n) .

We use the notation ‖.‖Ap for the norm of operators from lp into Ap , and ‖.‖p

for the norm of operators from lp into itself.
In this study, we focus on computing the norm of operator Δ(n) from lp into Ap ,

for p = 1 in Section 2 and for p > 1 in Section 3. Moreover the norm of operator Δ(−n)

from lp into Ap is considered in Section 4.
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2. The norm of operator Δ(n) from l1 into A1

In this section, we try to solve the problem of finding norm of operator Δ(n) from
l1 into A1 , where A are Cesàro, Hilbert, identity and backward difference matrices. We
may begin with the following theorem which is essential in the study.

THEOREM 2.1. Let A = (ak,i)k,i�0 be a matrix and B = (bk,i)k,i�0 be a lower
triangular matrix. If M = sup j u j < ∞ where

u j =
∞

∑
k=0

∣∣∣(AB)k, j

∣∣∣ ,
for j = 0,1, · · · , then B is a bounded operator from l1 into A1 and

‖B‖A1 = M.

Proof. Let x be a sequence in l1 . We have

‖Bx‖A1 =
∞

∑
k=0

∣∣∣∣∣
∞

∑
j=0

j

∑
i=0

ak, jb j,ixi

∣∣∣∣∣=
∞

∑
k=0

∣∣∣∣∣
∞

∑
j=0

∞

∑
i= j

ak,ibi, jx j

∣∣∣∣∣
=

∞

∑
k=0

∣∣∣∣∣
∞

∑
j=0

(AB)k, jx j

∣∣∣∣∣�
∞

∑
k=0

∞

∑
j=0

∣∣(AB)k, j

∣∣ |x j|

=
∞

∑
j=0

∞

∑
k=0

∣∣(AB)k, j

∣∣ |x j| =
∞

∑
j=0

u j|x j| � M‖x‖1,

which says that ‖B‖A1 � M . Let m be a non-negative integer. We take x = em which
em denotes the sequence having 1 in place m and 0 elsewhere, then ‖x‖1 = 1 and
‖Bx‖A1 = um . Hence

um =
‖Bx‖A1

‖x‖1
� ‖B‖A1 ,

and M = supm um � ‖B‖A1 . Therefore we have the desired result. �
In the following, we investigate the norms of Cesàro matrix of order 1, C1 =

(ck, j) , which is defined by

ck, j =
{ 1

k+1 0 � j � k
0 j > k.

To do this, the following two lemmas are needed.

LEMMA 2.2. If n ∈ N , then

m

∑
j=0

(−1) j
(

n
j

)
=
{

(−1)m
(n−1

m

)
m < n

0 m = n.
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Proof. Use the identity
(n

j

)
=
(n−1

j−1

)
+
(n−1

j

)
for j � 1, for m < n and note that the

left hand side of the equality is the summation of the coefficients of binomial (1− z)n

for m = n . �

LEMMA 2.3. If n ∈ N , then(
n−1

0

)
+

1
2

(
n−1

1

)
+ · · ·+ 1

n

(
n−1
n−1

)
=

2n−1
n

.

Proof. By integrating from 0 to 1 of both sides of the identity

(1+ z)n−1 =
n−1

∑
j=0

(
n−1

j

)
z j,

the proof is obvious. �

THEOREM 2.4. Let C1 be the Cesàro matrix of order 1 . Then Δ(n) is a bounded
operator from l1 into C1

1 and

‖Δ(n)‖C1
1
=

2n−1
n

.

Proof. According to above theorem and Lemma 2.2, we deduce that

u j =
∞

∑
k= j

∣∣∣∣(C1Δ(n)
)

k, j

∣∣∣∣= n+ j

∑
k= j

∣∣∣∣∣
k

∑
i= j

ck,iδ
(n)
i, j

∣∣∣∣∣
=

n+ j

∑
k= j

∣∣∣∣∣
k

∑
i= j

(−1)i− j

k+1

(
n

i− j

)∣∣∣∣∣=
n+ j

∑
k= j

1
k+1

∣∣∣∣∣
k− j

∑
i=0

(−1)i
(

n
i

)∣∣∣∣∣
=

1
j +1

(
n−1

0

)
+

1
j +2

(
n−1

1

)
+ · · ·+ 1

j +n

(
n−1
n−1

)
.

So by Lemma 2.3

‖Δ(n)‖C1
1
= sup

j
u j = u0 =

2n−1
n

. �

Consider the Hilbet matrix H = (h j,k) whose entries are h j,k = 1
j+k+1 for all j,k �

0. For the next theorem, we need the definition of β function and the following lemma

β (m,n) =
∫ 1

0
zm−1(1− z)n−1dz,

where m,n ∈ N .
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LEMMA 2.5. For n ∈ N

n

∑
j=0

(−1) j
(

n
j

)
1

j +m
=
∫ 1

0
zm−1(1− z)ndz = β (m,n+1).

Proof. By using identity

(1− z)n =
n

∑
j=0

(−1) j
(

n
j

)
z j,

and multiplying both sides in term zm−1 also integrating from 0 to 1, we get the re-
sult. �

THEOREM 2.6. If H is the Hilbert matrix, then Δ(n) is a bounded operator from
l1 into H1 and

‖Δ(n)‖H1 =
1
n
.

Proof. By the notation of Theorem 2.1 and Lemma 2.5

u j =
∞

∑
k=0

∣∣∣∣(HΔ(n)
)

k, j

∣∣∣∣= ∞

∑
k=0

∣∣∣∣∣
n+ j

∑
i= j

hk,iδ
(n)
i, j

∣∣∣∣∣
=

∞

∑
k=0

n+ j

∑
i= j

(−1)i− j
(

n
i− j

)
1

k+ i+1
=

∞

∑
k=0

n

∑
i=0

(−1)i
(

n
i

)
1

k+ i+ j +1

=
∞

∑
k=0

∫ 1

0
zk+ j(1− z)ndz =

∫ 1

0

∞

∑
k=0

zk+ j(1− z)ndz

=
∫ 1

0

z j

1− z
(1− z)ndz = β ( j +1,n),

hence u j = β ( j +1,n) . Since the function β ( j,n) is decreasing with respect to j for
all n , so

‖Δ(n)‖H1 = sup
j

u j = u0 = β (1,n) =
1
n
. �

THEOREM 2.7. The backward difference operator Δ(n) is a bounded operator
from l1 into l1 and

‖Δ(n)‖1 = 2n.

Proof. According to notations of Theorem 2.1 for identity matrix, we obtain

u j =
n+ j

∑
k= j

∣∣∣∣(−1)k− j
(

n
k− j

)∣∣∣∣= n

∑
k=0

(
n
k

)
= 2n.
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So

‖Δ(n)‖1 = sup
j

u j = 2n. �

THEOREM 2.8. The difference operator Δ(n) is a bounded operator from l1 into

Δ(m)
1 and

‖Δ(n)‖
Δ(m)

1
= 2n+m.

Proof. It is easy, so we omit the proof. �

3. Upper bounds of the operator Δ(n) from lp into Ap

The purpose of this section is to find the norm of operator Δ(n) from lp space into
Cn

p and Hp spaces. To do this, we need the Schur’s Theorem and a lemma which are
essential in the study.

THEOREM 3.1. ([9], Theorem 275) Let p > 1 and T = (tm,k) be a matrix opera-
tor with tm,k � 0 for all m,k . Suppose that K , R are two strictly positive numbers such
that

∞

∑
m=0

tm,k � K for all k,
∞

∑
k=0

tm,k � R f or all m,

(bounds for column and row sums respectively). Then

‖T‖p � R1/p∗K1/p,

where p∗ is the conjugate of p i.e. 1
p + 1

p∗ = 1 .

The above theorem is known as Schur’s theorem.

LEMMA 3.2. Let p � 1 and A = (am,k) be a matrix and T = (tm,k) be a lower
triangular matrix. If AT is a bounded operator on lp , then T will be a bounded
operator from lp into Ap and

‖T‖Ap = ‖AT‖p.

Proof. For every x ∈ lp ,

‖Tx‖p
Ap

=
∞

∑
k=0

∣∣∣∣∣
∞

∑
j=0

j

∑
i=0

ak, jt j,ixi

∣∣∣∣∣
p

=
∞

∑
k=0

∣∣∣∣∣
∞

∑
j=0

∞

∑
i= j

ak,iti, jx j

∣∣∣∣∣
p

=
∞

∑
k=0

∣∣∣∣∣
∞

∑
j=0

(AT )k, jx j

∣∣∣∣∣
p

= ‖ATx‖p
p,

so the proof is finished. �
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Let the sequences an = (an
j)

∞
j=0 be defined by

an
j =
(

n+ j−1
j

)
, (3.1)

these sequences play an essential role in this study, hence we bring the first four of these
sequences in below:

a0 : 1 0 0 0 · · · ,
a1 : 1 1 1 1 · · · ,
a2 : 1 2 3 4 · · · ,
a3 : 1 3 6 10 · · · .

One can note that the relation an+1
j = ∑ j

k=0 an
k is hold for these sequences which

is stated in the following lemma.

LEMMA 3.3. We have

j

∑
k=0

(
n+ j− k−1

j− k

)
=

j

∑
k=0

(
n+ k−1

k

)
=
(

n+ j
j

)
.

Proof. The proof is obvious. �
Also the next useful lemma shows that the above sequences an are the coefficients

of the binomial (1− z)−n .

LEMMA 3.4. For |z| < 1 , we have

(1− z)−n =
∞

∑
j=0

an
j z

j =
∞

∑
j=0

(
n+ j−1

j

)
z j.

Proof. By differentiating n−1 times of the identity (1− z)−1 = ∑∞
j=0 z j , we get

the result. �
If (ak) is a non-negative sequence with a0 > 0 and Aj = a0 + a1 + · · ·+ a j , the

Nörlund matrix Na = (a j,k) is defined as follows:

a j,k =

{
a j−k
A j

0 � k � j,

0 otherwise.
(3.2)

The Cesàro matrix of order n , Cn = (cn
j,k) , is the Nörlund matrix Nan with the sequence

an as in (3.1). So

cn
j,k =

⎧⎨
⎩

(n+ j−k−1
j−k )

(n+ j
j ) 0 � k � j

0 otherwise.
(3.3)
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Note that C0 and C1 are the well known identity and Cesàro matrices, respectively.
Hardy in [8] has proved that Cn is a bounded operator on lp and

‖Cn‖p =
Γ(n+1)Γ(1/p∗)

Γ(n+1/p∗)
, (3.4)

where p > 1. In particular for n = 1, ‖C1‖p = p∗ .
The sequence space associated with Cn , according to relation (1.1), will be called

Cn
p . So

Cn
p =

{
x = (xk) :

∞

∑
k=0

∣∣∣∣∣ 1(n+ j
j

) k

∑
j=0

(
n+ j− k−1

j− k

)
x j

∣∣∣∣∣
p

< ∞

}
.

For proving our main theorem in this section, we need the following combinatoric
lemma.

LEMMA 3.5. For j = 1,2, · · · , we have

j

∑
k=0

(−1)k
(

n
k

)(
n+ j− k−1

j− k

)
= 0.

Proof. By using Lemma 3.4 and the following identity

1 = (1− z)n(1− z)−n

=
n

∑
j=0

(−1) j
(

n
j

)
z j

∞

∑
j=0

(
n+ j−1

j

)
z j

=
∞

∑
j=0

j

∑
k=0

(−1)k
(

n
k

)(
n+ j− k−1

j− k

)
z j

= 1+
∞

∑
j=1

j

∑
k=0

(−1)k
(

n
k

)(
n+ j− k−1

j− k

)
z j,

the result is obvious. �

THEOREM 3.6. Suppose that p > 1 and Cn is the Cesàro matrix of order n. Then
Δ(n) is a bounded operator from lp into Cn

p and

‖Δ(n)‖Cn
p
= 1.

Proof. If B = CnΔ(n) , we have

bt,s = (CnΔ(n))t,s =
t

∑
j=s

Cn
t, jΔ

(n)
j,s

=
1(t+n
t

) t

∑
j=s

(−1) j−s
(

n
j− s

)(
n+ t− j−1

t− j

)

=
1(t+n
t

) t−s

∑
j=0

(−1) j
(

n
j

)(
n+ t− j− s−1

t− j− s

)
.
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Now if t = s , then t − s = 0 hence j = 0 and bs,t = 1
(t+n

t ) . Also if t > s , then u =

t− s � 1 hence by using Lemma 3.5

bs,t =
1(t+n
t

) u

∑
j=0

(−1) j
(

n
j

)(
n+u− j−1

u− j

)
= 0.

So

bs,t =

{
1

(t+n
t ) s = t

0 s �= t,

and by applying Lemma 3.2, we have ‖Δ(n)‖Cn
p
= ‖B‖p . Since by Theorem 3.1 for B ,

R � 1 and C � 1, we obtain ‖Δ(n)‖Cn
p
� 1. Now let x = e1 , we have ‖e1‖p = 1 and

‖Δ(n)e1‖Cn
p
= 1, so ‖Δ(n)‖Cn

p
= 1. �

4. Upper bounds of the operator Δ(−n) from lp into Ap

In this section, we introduce four type of sequence spaces Hn
p , En

p , D[m,n]
p and Bn

p

and will find the norm of operator Δ(−n) from lp into these spaces.

THEOREM 4.1. ([9], Theorem 323) Let p > 1 and H be the Hilbert matrix. Then
H is a bounded operator on lp and

‖H‖p = π csc(π/p).

THEOREM 4.2. Suppose that p > 1 and the matix Hn is defined by

hn
j,k =

n!

∏n
i=0( j + k+1+ i)

, ( f or j,k = 0,1, · · ·). (4.1)

Then Δ(−n) is a bounded operator from lp into Hn
p and

‖Δ(−n)‖Hn
p
= π csc(π/p).

Proof. According to Lemma 3.2 and Theorem 4.1, it is sufficient to prove HnΔ(−n)

= H . By Lemma 3.4, we have

(HnΔ(−n))k,m =
∞

∑
j=m

hn
k, jδ

(−n)
j,m

=
∞

∑
j=m

(
n+ j−m−1

j−m

)
n!

( j + k+1)( j + k+2) · · ·( j + k+n+1)

=
∞

∑
j=0

(
n+ j−1

j

)
( j + k+m)!n!

( j +m+ k+n+1)!
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=
∞

∑
j=0

(
n+ j−1

j

)
β ( j +m+ k+1,n+1)

=
∞

∑
j=0

(
n+ j−1

j

)∫ 1

0
z j+m+k(1− z)ndz

=
∫ 1

0

∞

∑
j=0

(
n+ j−1

j

)
z jzm+k(1− z)ndz

=
∫ 1

0
(1− z)−nzm+k(1− z)ndz

=
1

k+m+1
= hk,m. �

Note that for n = 0, we have Hn = H .
In the following, we define matrix En = (en

j,k) by

en
j,k =

{
(−1) j−k

j+1

(n−1
j−k

)
k � j � k+n−1,

0 otherwise.
(4.2)

For computing the norm of operator Δ(−n) from lp into sequence space En
p , we need

the following lemma.

LEMMA 4.3. For j = 0,1,2, · · · and n ∈ N , we have

j

∑
k=0

(−1) j−k
(

n−1
j− k

)(
n+ k−1

k

)
= 1.

Proof. Let |z| < 1. By using identity

∞

∑
j=0

z j = (1− z)−1 = (1− z)−n(1− z)n−1

=
∞

∑
j=0

(
n+ j−1

j

)
z j

n−1

∑
j=0

(−1) j
(

n−1
j

)
z j

=
∞

∑
j=0

j

∑
k=0

(−1) j−k
(

n−1
j− k

)(
n+ k−1

k

)
z j,

the proof is trivial. �

THEOREM 4.4. Let the matrix En be defined as in (4.2). Then Δ(−n) is a bounded
operator from lp into En

p and ‖Δ(−n)‖En
p = p∗ .
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Proof. It is sufficient to prove EnΔ(−n) = C1 where C1 is the Cesàro matrix. By
Lemma 4.3

(EnΔ(−n)) j,m =
j

∑
k=m

en
j,kδ (−n)

k,m

=
1

j +1

j

∑
k=m

(−1) j−k
(

n−1
j− k

)(
n+ k−m−1

k−m

)

=
1

j +1

j−m

∑
k=0

(−1) j−m−k
(

n−1
j−m− k

)(
n+ k−1

k

)

=
1

j +1
= C1

j,m.

Hence from Lemma 3.2 and relation 3.4, we conclude the results. �
By the sequences an in relation (3.1), we define a lower triangular matrix D[m,n] =

(d j,k) with

d j,k =

{ am
j−k

an+m+1
j

0 � k � j,

0 k > j,

=

⎧⎨
⎩

(m+ j−k−1
j−k )

(n+m+ j
j ) 0 � k � j,

0 k > j,
(4.3)

where m and n are non-negative integers.
Note that for m = n = 0, D[0,0] is the identity matrix, for m = 1, n = 0, D[1,0] is

the Cesàro matrix, and also for m = 0,1 and n = 2, we have

D[0,2] =

⎛
⎜⎜⎜⎝

1 0 0 · · ·
0 1

3 0 · · ·
0 0 1

6 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ , D[1,2] =

⎛
⎜⎜⎜⎝

1 0 0 · · ·
1
4

1
4 0 · · ·

1
10

1
10

1
10 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎠ . (4.4)

In sequel, we need the following lemma.

LEMMA 4.5. For non-negative integers n, m and j , we have

j

∑
k=0

(
n+ k−1

k

)(
m+ j− k−1

j− k

)
=
(

n+m+ j−1
j

)
.

Proof. Let |z| < 1. From the identities

(1− z)−n(1− z)−m =
∞

∑
j=0

(
n+ j−1

j

)
z j

∞

∑
j=0

(
m+ j−1

j

)
z j

=
∞

∑
j=0

j

∑
k=0

(
n+ k−1

k

)(
m+ j− k−1

j− k

)
z j,
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and

(1− z)−n(1− z)−m = (1− z)−(n+m) =
∞

∑
j=0

(
n+m+ j−1

j

)
z j,

we obtain the claim. �

Now, we are ready to obtain the norm of operator Δ(−n) from lp into D[m,n]
p .

THEOREM 4.6. Suppose that D[m,n] is defined as in (4.3). Then Δ(−n) is a bounded

operator from lp into D[m,n]
p and

‖Δ(−n)‖
D[m,n]

p
=

Γ(n+m+1)Γ(1/p∗)
Γ(n+m+1/p∗)

.

In particular, ‖I‖
D[1,0]

p
= p∗ .

Proof. By using Lemma 4.5

(D[m,n]Δ(−n)) j,i =
j

∑
k=i

d j,kδ (−n)
k,i

=
1(n+m+ j
j

) j

∑
k=i

(
n+ k− i−1

k− i

)(
m+ j− k−1

j− k

)

=
1(n+m+ j
j

) j−i

∑
k=0

(
n+ k−1

k

)(
m+ j− i− k−1

j− i− k

)

=

(n+m+ j−i−1
j−i

)
(n+m+ j

j

) = Cn+m
j,i ,

so D[m,n]Δ(−n) = Cn+m . Now by applying Lemma 3.2 and relation 3.4, we deduce the
result. �

EXAMPLE 4.7. For both matrices in relation (4.4), we have

‖Δ−2‖
D

[0,2]
p

=
2p∗2

p∗ +1
, ‖Δ−2‖

D
[1,2]
p

=
6p∗3

(2p∗ +1)(p∗+1)
.

Bennett in Theorem 11.5 from [4] investigated the following inequality

‖x‖C1
p
� ‖x‖Hp � π

p∗
csc(π/p)‖x‖C1

p
, (4.5)

for all x ∈ lp . Similarly, we have the following inequality.
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COROLLARY 4.8. If p > 1 , then

‖x‖C1
p
� ‖Δ(−n)x‖Hn

p
� π

p∗
csc(π/p)‖x‖C1

p
,

for all x ∈ lp .

Proof. By Lemma 3.2 and Theorem 4.2, we have

‖Δ(−n)x‖Hn
p
= ‖HnΔ(−n)x‖p = ‖Hx‖p = ‖x‖Hp .

Hence relation (4.5) completes the proof. �
Bennett used the factorization H = CtB , to prove the right hand side of relation

(4.5), where B is given by

Bj,k =
( j +1)

( j + k+1)( j + k+2)
, (4.6)

and Ct is the Copson matrix.

THEOREM 4.9. ([5], Proposition 2) If p > 1 and the matix B is defined by (4.6),
then B is a bounded operator on lp and

‖B‖p =
π
p

csc(π/p∗).

For Hn which is defined as in (4.1), we have a similar factorization of the form Hn =
CtBn , where Bn is given by

bn
j,k =

(n+1)!( j + k)!( j +1)
( j + k+n+2)!

. (4.7)

If n = 0 in (4.7), then Bn = B .

THEOREM 4.10. Suppose that p > 1 and the matix Bn is defined by (4.7). Then
Δ(−n) is a bounded operator from lp into Bn

p and

‖Δ(−n)‖Bn
p =

π
p

csc(π/p∗).

Proof. According to Lemma 3.2 and Theorem 4.9, it is sufficient to prove BnΔ(−n)

= B .

(BnΔ(−n))k,m =
∞

∑
j=m

bn
k, jδ

(−n)
j,m =

∞

∑
j=m

(
n+ j−m−1

j−m

)
(n+1)!( j + k)!(k+1)

( j + k+n+2)!

= (k+1)
∞

∑
j=0

(
n+ j−1

j

)
β ( j +m+ k+1,n+2)
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= (k+1)
∞

∑
j=0

(
n+ j−1

j

)∫ 1

0
z j+m+k(1− z)n+1dz

= (k+1)
∫ 1

0
(1− z)−nzm+k(1− z)n+1dz

=
(k+1)

(m+ k+1)(m+ k+2)
= bk,m. �
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