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ON A PROBLEM BY HANS FEICHTINGER

RADU BALAN, KASSO A. OKOUDJOU AND ANIRUDHA PORIA

(Communicated by A. Böttcher)

Abstract. In this paper, we solve a spectral problem about positive semi-definite trace-class pseu-
dodifferential operators on modulation spaces which was posed by H. Feichtinger. Later, C. Heil
and D. Larson rephrased the problem in the broader setting of positive semi-definite trace-class
operators on a separable Hilbert space. Our solution consists in constructing a counterexample
that solves Hans Feichtinger’s problem by first solving this second problem.

1. Introduction

In this paper we answer the following question posed by Feichtinger at an Ober-
wolfach mini-workshop on wavelets [4].

PROBLEM 1.1. Let T be a positive semi-definite trace class operator on L2(R)
given by

T f (x) =
∫

R

k(x,y) f (y)dy,

where f ∈ L2(R) and k ∈ M1(R2) , the so-called Feichtinger algebra. Suppose that

T =
∞

∑
k=1

hk ⊗hk,

where {hk}∞
k=1 ⊂ L2(R) is a set of orthogonal eigenfunctions of T corresponding to

the eigenvalues {‖hk‖2
2}∞

k=1 , such that ‖hk‖M1(R) < ∞ , and the bar denotes the complex

conjugation. In particular, Trace(T ) = ∑∞
k=1 ‖hk‖2

2 < ∞.
Must we have: ∑∞

k=1 ‖hk‖2
M1(R) < ∞?

Heil and Larson later put the problem in the broader setting of positive semi-
definite trace-class operators on a separable Hilbert space H [9]. To state this gen-
eralization we first set some notations. Let H be a separable Hilbert space and choose
an orthonormal basis {wn}n�1 for H . We define a subspace H1 of H by

H
1 =

{
f ∈ H : ||| f ||| :=

∞

∑
n=1

|〈 f ,wn〉| < ∞
}
. (1.1)
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It follows that |||wn|||= ‖wn‖= 1 for every n , and that if f ∈H1 then f = ∑∞
n=1〈 f ,wn〉wn ,

with convergence of this series in both norms ‖ · ‖ and |||·||| .
We define an operator T : H → H by

T =
∞

∑
m=1

∞

∑
n=1

cmn(wm ⊗wn), (1.2)

where the scalars cmn are such that

∞

∑
m=1

∞

∑
n=1

|cmn| < ∞

and the tensor product wm ⊗wn maps linearly H to H via

f ∈ H 	→ wm ⊗wn( f ) = 〈 f ,wn〉wm.

It is easy to see that T ∈ I1 , the space of all trace-class operators, with

‖T‖I1 �
∞

∑
m=1

∞

∑
n=1

‖cmn(wm ⊗wn)‖I1 =
∞

∑
m=1

∞

∑
n=1

|cmn| < ∞.

In addition, note that the series defining T converges not only in the strong operator
topology and operator norm, but also in trace-class norm.

Now suppose that the operator T given by (1.2) is positive semi-definite. Let
{hn}n�1 be an orthonormal basis of eigenvectors of T and {λn}n�1 ⊂ [0,∞) be the
corresponding eigenvalues. It follows that

T =
∞

∑
n=1

λn(hn ⊗hn) =
∞

∑
n=1

gn⊗gn, (1.3)

where gn = λ 1/2
n hn . In addition,

‖T‖I1 =
∞

∑
n=1

λn =
∞

∑
n=1

λn‖hn‖2 < ∞.

Heil and Larson’s generalization of Problem 1.1 is the following question [9].

PROBLEM 1.2. With the above notations, must we have

∞

∑
n=1

λn|||hn|||2 < ∞? (1.4)

In Section 3 we show that the solution to each of these problems is negative by
providing counterexamples for each of them. But first, we provide some necessary
background in Section 2
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2. Preliminaries

In this section we recall the definition of the modulation spaces and some of their
properties. In the second half of the section, we introduce two classes of trace-class
operators that capture the behaviors of the operators in Problems 1.1 and 1.2.

2.1. Modulation spaces

Let g∈S (R) be a function in the Schwartz space of smooth and rapidly decaying
functions, e.g., g(x) = e−πx2

, and let 1 � p � ∞ . We say that a tempered distribution
f is in the modulation space Mp(R) if and only if

‖ f‖p
Mp :=

∫∫
R2

|Vg f (x,ω)|pdxdω < ∞,

with the usual modification for p = ∞ , where

Vg f (x,ω) =
∫

R

f (t)g(t − x)e−2π iωtdt

is the short -time Fourier trans f orm (STFT) of a function f with respect to g . A
simple application of the Plancherel formula shows that if f ∈ L2(R) then

‖Vg f‖2
L2(R2) =

∫∫
R2

|Vg f (x,ω)|2dxdω = ‖g‖2
2‖ f‖2

2.

Consequently, Vg is a multiple of an isometry from L2(R) into L2(R2) and M2(R) =
L2(R), [7]. The other modulation space that will be of interest in the sequel is M1(R) ,
which is also known as the Feichtinger algebra [5, 7]. In particular, we note that

S (R) ⊂ M1(R) ⊂ M2(R) = L2(R) ⊂ M∞(R) ⊂ S ′(R).

We also need a discrete characterization of L2 and M1 . Such a characterization
exists for all the modulation spaces in terms of the so-called Wilson basis, see [2, 6, 12].
In particular, it is known that there exists an orthonormal basis W := {wn}n�1 for
L2(R) where for each n � 1, wn ∈ M1(R) . In addition, for 1 � p � ∞ and for all
f ∈ Mp ,

f = ∑
n�1

〈 f ,wn〉wn,

where the series converges unconditionally in the norm of Mp if 1 � p < ∞ , and is
weak∗ convergent if p = ∞ . Moreover,

‖ f‖Mp =
(

∑
n�1

|〈 f ,wn〉|p
)1/p

is an equivalent norm for Mp ; we refer to [7, Theorem 8.5.1] for details. In the sequel,
we shall only be interested in p = 1, and p = 2. In the latter case, {wn}n�1 is an
orthonormal basis for L2(R).
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It is trivial to extend these characterizations to modulation spaces defined on Rd .
In particular, one defines a Wilson orthonormal basis for L2(R2) by taking the tensor
product of 1-dimensional Wilson ONBs. For example, {Wn,m : n,m � 1} ⊂ L2(R2) is
given by

Wn,m(x,y) := wn ⊗wm(x,y) = wn(x)wm(y), n,m � 1,

and it acts by

Wn,m( f ) = 〈 f ,wm〉wn =
(∫

R

f (y)wm(y)dy

)
wn.

In addition, {Wn,m : n,m � 1} is an unconditional basis for M1(R2) .
Let T : L2(R) → L2(R) be a compact integral operator associated with the kernel

k ∈ M1(R2) ⊂ L2(R2)∩L1(R2) and defined by

T f (x) =
∫

R

k(x,y) f (y)dy.

Then, T is a trace-class operator [9], and

k = ∑
m,n�1

〈k,Wm,n〉Wm,n, (2.1)

with convergence of the series in the M1 -norm. In addition,

‖k‖M1 = ∑
m,n�1

|〈k,Wmn〉| < ∞. (2.2)

It now follows that for f ∈ L2(R) ,

T f = ∑
m,n�1

〈k,Wmn〉(wm ⊗wn)( f ) = ∑
m,n�1

〈k,Wmn〉(Wm,n)( f ).

The discrete version of the integral operator T is given by the matrix K = (〈k,Wm,n〉)m,n�1 ,
or equivalently

T = ∑
m,n�1

〈k,Wm,n〉Wm,n. (2.3)

Suppose in addition that T is positive semi-definite. Then, by the spectral theorem,

T =
∞

∑
k=1

λktk ⊗ tk =
∞

∑
k=1

hk ⊗hk,

where {λk}∞
k=1 ⊂ (0,∞) is the set of eigenvalues of T and {tk}∞

k=1 is an orthonormal
basis of corresponding eigenfunctions, and hk =

√
λktk for each k � 1. It was proved

in [1, 9] that hk ∈ M1(R) .
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2.2. Type A and type B operators

Let H denote an infinite-dimensional separable Hilbert space, with norm ‖ · ‖
and inner product 〈·, ·〉 . Let I1 ⊂ B(H) be the subspace of trace-class operators. A
positive semi-definite operator T belongs to I1 if and only if

‖T‖I1 =
∞

∑
n=1

λn(T ) < ∞,

where {λn(T )}n�1 is the set of eigenvalues of T arranged in a decreasing order and
repeated according to multiplicity. For a detailed study on trace-class operators see
[3, 10].

We fix now an orthonormal basis {wn}n�1 for H , once and for all. This basis
induces the norm |||·||| on the dense subset H

1 introduced in (1.1), and repeated here
for the convenience of the reader:

||| f ||| =
∞

∑
n=1

|〈 f ,wn〉|, H
1 =

{
f ∈ H :

∞

∑
n=1

|〈 f ,wn〉| < ∞
}
.

DEFINITION 2.1. An operator T given by (1.2) is of Type A with respect to the
orthonormal basis {wn}n�1 if, for an orthogonal set of eigenvectors {gn}n�1 of T such
that T = ∑∞

n=1 gn⊗gn , with convergence in the strong operator topology, we have that

∞

∑
n=1

|||gn|||2 < ∞.

DEFINITION 2.2. An operator T given by (1.2) is of Type B with respect to the
orthonormal basis {wn}n�1 if there is some sequence of vectors {vn}n�1 in H such
that T = ∑∞

n=1 vn ⊗ vn with convergence in the strong operator topology and we have
that

∞

∑
n=1

|||vn|||2 < ∞.

It is clear that if T is of Type A then it is of Type B . However, it was shown in [9,
Example 2.2] that not every positive trace-class operator is of Type A or Type B , even
when the operator is finite-rank.

Problem 1.2 can now be reformulated as follows.

PROBLEM 2.3. If T is of Type B with respect to an orthonormal basis {wn}n�1 ,
must it be of Type A with respect to the same ONB {wn}n�1 ?

3. Main results

We answer negatively Problems 1.2 and 2.3 by constructing a counterexample for
the complex Hilbert space H , in Proposition 3.1. This example is then modified to
generate an example when the Hilbert space H is over the real field, in Proposition 3.3.
From there, we answer the Feichtinger original problem in Theorem 3.4.
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PROPOSITION 3.1. Let H = �2({1,2, . . .}) , and choose p > 1 . Let {w�}∞
�=1 de-

note the standard orthonormal basis of H , i.e., w� = δ� . Then H1 = �1({1,2, . . .}) .
For each n � 1 , let {en,k}n−1

k=0 be the Fourier ONB of Cn defined by

en,k =
1√
n

(
e−

2πik�
n

)n−1

�=0
=

1√
n

(
1,e−

2πik
n ,e−

4πik
n , . . . ,e−

2πik(n−1)
n

)T
,

and consider the n×n matrix Tn given by

Tn =
n−1

∑
k=0

λn,k(en,k ⊗ en,k) =
1
n3

n−1

∑
k=0

(
1+

k
np

)
(en,k ⊗ en,k) ∈ C

n×n,

where λn,k = 1
n3

(
1+ k

np

)
. We define an infinite block-diagonal matrix T by

T = T1 ⊕T2⊕ . . .⊕Tn⊕ . . .

Then, T is a positive semi-definite trace-class operator of Type B but not of Type A
with respect to the orthonormal basis {w�} .

Proof. By construction, the blocks Tn that make up T are pairwise orthogonal.
Furthermore, for each n � 1, the spectrum of Tn consists of simple eigenvalues λn,k

with corresponding eigenvectors en,k for k = 0, . . . ,n− 1. Consequently, for each
n � 1, and each k ∈ {0, . . . ,n− 1} , en,k generates a one-dimensional eigenspace of
T corresponding to the eigenvalue λn,k . It is clear that T is positive semi-definite.
Since ‖en,k‖2 = 1 and T =

⊕∞
n=1 ∑n−1

k=0 λn,k(en,k ⊗ en,k) , we see that

‖T‖op �
∞

∑
n=1

n−1

∑
k=0

1
n3

(
1+

k
np

)
‖en,k ⊗ en,k‖op

=
∞

∑
n=1

n−1

∑
k=0

1
n3

(
1+

k
np

)
‖en,k‖

=
∞

∑
n=1

n−1

∑
k=0

1
n3

(
1+

k
np

)
< ∞.

Furthermore, since p > 1, we see that

‖T‖I1 = trace(T ) =
∞

∑
n=1

n−1

∑
k=0

1
n3

(
1+

k
np

)

=
∞

∑
n=1

1
n3

(
n+

n(n−1)
2np

)
< ∞.

Hence T is a well-defined trace-class operator on H .
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We now show that T is of Type B . To this end we observe that for each n � 1,
∑n−1

k=0 en,k ⊗ en,k = In , where In denotes the identity of order n . Then

Tn =
1
n3

n−1

∑
k=0

(
1+

k
np

)
(en,k ⊗ en,k)

=
1
n3

n−1

∑
k=0

(en,k ⊗ en,k)+
1

n3+p

n−1

∑
k=0

k(en,k ⊗ en,k)

=
1
n3 In +

1
n3+p

n−1

∑
k=0

k(en,k ⊗ en,k).

Thus T can be written as

T =
⊕
n�1

Tn =
⊕
n�1

(
1
n3 In +

1
n3+p

n−1

∑
k=0

k(en,k ⊗ en,k)

)

=
⊕
n�1

(
1
n3 In

)
+
⊕
n�1

1
n3+p

n−1

∑
k=0

k(en,k ⊗ en,k)

=
⊕
n�1

1
n3

n

∑
k=1

(wn(n−1)
2 +k

⊗wn(n−1)
2 +k

)+
⊕
n�1

1
n3+p

n−1

∑
k=0

k(en,k ⊗ en,k).

Then we have ∣∣∣∣∣∣∣∣∣wn(n−1)
2 +k

∣∣∣∣∣∣∣∣∣= 1,
∣∣∣∣∣∣en,k

∣∣∣∣∣∣= √
n,

and

∑
n�1

1
n3 ·

n

∑
k=1

12 + ∑
n�1

1
n3+p

n−1

∑
k=0

k · (√n)2

= ∑
n�1

(
1
n2 +

n−1
2n1+p

)
< ∞, for any p > 1.

Hence, T is of Type B with respect to {w�}��1 .
We now show that T is not of Type A with respect to {w�}� . The key point is that

T has only one-dimensional eigenspaces, so

∞

∑
n=1

n−1

∑
k=0

λn,k(en,k ⊗ en,k) =
∞

∑
n=1

1
n3

n−1

∑
k=0

(
1+

k
np

)
(en,k ⊗ en,k)

is the unique decomposition of T as a sum of rank one projections generated by or-
thogonal eigenfunctions of T . Note again that

∣∣∣∣∣∣en,k

∣∣∣∣∣∣= √
n, and

λn,k
∣∣∣∣∣∣en,k

∣∣∣∣∣∣= 1
n3

(
1+

k
np

)
·√n < ∞.
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However,

∞

∑
n=1

n−1

∑
k=0

λn,k

∣∣∣∣∣∣en,k

∣∣∣∣∣∣2 =
∞

∑
n=1

1
n2

n−1

∑
k=0

(
1+

k
np

)

=
∞

∑
n=1

1
n2

(
n+

n(n−1)
2np

)

�
∞

∑
n=1

1
n

= ∞. �

We can modify the counterexample in Proposition 3.1 to deal with the case of a
real Hilbert space H . This amounts to using a real-valued ONB for Rn instead of the
Fourier ONB {en,k}n−1

k=0 . For this let {hn,k}n−1
k=0 denote the Hartley ONB basis for Rn

(see [11]), where

hn,k =
1√
n

(
cos

(
2πkl

n

)
+ sin

(
2πkl

n

))n−1

l=0
=

√
2
n

(
cos

(
2πkl

n
− π

4

))n−1

l=0
.

Thus
n−1

∑
k=0

hn,k ⊗hn,k =
n−1

∑
k=0

hn,k ⊗hn,k = In,

where In denotes the identity of order n in R
n .

LEMMA 3.2. For a fixed n � 1 and each 0 � k � n−1 we have√
n
2

�
∣∣∣∣∣∣hn,k

∣∣∣∣∣∣= 1√
n

n−1

∑
l=0

∣∣∣∣cos

(
2πkl

n

)
+ sin

(
2πkl

n

)∣∣∣∣� √
n. (3.1)

Proof. Denote by Sn the set

Sn :=
{

2πk
n

: 0 � k � n−1

}
.

It is easy to see that for each 0 � l � n−1 we have

Sn =
{

2πkl
n

(mod 2π) : 0 � k � n−1

}
=
{
− 2πk

n
(mod 2π) : 0 � k � n−1

}
.

Let E := ∑x∈Sn |cosx+ sinx| . Then

2E = ∑
x∈Sn

|cosx+ sinx|+ ∑
−x∈Sn

|cosx+ sinx|

=
√

2
n−1

∑
k=0

∣∣∣∣cos

(
2πk
n

− π
4

)∣∣∣∣+√
2

n−1

∑
k=0

∣∣∣∣cos

(
2πk
n

+
π
4

)∣∣∣∣
=

√
2

n−1

∑
k=0

[∣∣∣∣cos

(
2πk
n

− π
4

)∣∣∣∣+
∣∣∣∣sin

(
2πk
n

− π
4

)∣∣∣∣
]
. (3.2)
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Now for each x ∈ R ,

(|sinx|+ |cosx|)2 = |sinx|2 + |cosx|2 +2|sinxcosx| = 1+ |sin2x| � 1,

⇒
√

2 � |sinx|+ |cosx| � 1.

It follows from (3.2) that n � E � n√
2

and therefore (3.1). �

PROPOSITION 3.3. Let H = �2({1,2, . . .}) , and choose p > 1 . Let {w�}∞
�=1 de-

note the standard orthonormal basis of H , i.e., w� = δ� . For each n � 1 let Tn denote
the n×n matrix given by

Tn =
1
n3

n−1

∑
k=0

(
1+

k
np

)
(hn,k ⊗hn,k) ∈ R

n×n.

We define an infinite block-diagonal matrix T by

T = T1 ⊕T2⊕ . . .⊕Tn⊕ . . .

Then, T is a positive semi-definite trace-class operator of Type B but not of Type A
with respect to the orthonormal basis {w�}��1 .

Proof. The proof is almost identical to that of Proposition 3.1 where the Fourier
ONB vectors en,k are replaced by the Hartley ONB vectors hn,k and the estimate∣∣∣∣∣∣en,k

∣∣∣∣∣∣= √
n is replaced by

√ n
2 �

∣∣∣∣∣∣hn,k

∣∣∣∣∣∣� √
n , cf. Lemma 3.2. �

We can now give an answer to Feichtinger’s question, i.e., Problem 1.2.

THEOREM 3.4. Suppose that {wn}n�1 is a Wilson orthonormal basis for L2(R)
with g ∈ M1(R) . Let p > 1 , and for each n � 1 set λn,k = 1

n3 (1+ k
np ).

For fixed n � 1 and each 0 � k � n−1 , let hn,k ∈ L2(R) where

hn,k =
1√
n

n−1

∑
l=0

(
cos

(
2πkl

n

)
+ sin

(
2πkl

n

))
wn(n−1)

2 +l+1
.

Let T be the operator defined by

T =
∞

∑
n=1

n−1

∑
k=0

λn,khn,k ⊗hn,k.

The following statements hold:

(i) {hn,k : 0 � k � n−1,n � 1} is an orthonormal basis for L2(R) .

(ii) T is a positive semi-definite trace-class operator on L2(R) that provides a counter-
example to Problem 1.2.
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Proof. (i) It is easy to see that for each n � 1, {hn,k}n−1
k=0 is an orthogonal set in

L2(R) . Indeed, 〈hn,k,hn′,k′ 〉 = 0, for n �= n′ . Furthermore, since 〈wn,wm〉 = δn,m we
have that ‖hn,k‖ = 1 for all n � 1, and k ∈ {0,1, . . . ,n−1} .

(ii) It is also easy to see that T is a well-defined operator on L2(R) . In fact, the
series defining T converges in the operator norm. Furthermore, since ‖hn,k⊗hn,k‖I1 =
1, it follows that

‖T‖I1 =
∞

∑
n=1

n−1

∑
k=0

λn,k =
∞

∑
n=1

1
n3

n−1

∑
k=0

(
1+

k
np

)
=

∞

∑
n=1

1
n3

(
n+

n(n−1)
2np

)
< ∞.

Consequently, T is a trace-class operator.
By Lemma 3.2,

‖hn,k‖M1 =
∞

∑
m=1

|〈hn,k,wm〉|

=
1√
n

∞

∑
m=1

∣∣∣∣∣
〈

n−1

∑
l=0

(
cos

(
2πkl

n

)
+ sin

(
2πkl

n

))
wn(n−1)

2 +l
,wm

〉∣∣∣∣∣
=

1√
n

n−1

∑
l=0

∣∣∣∣cos

(
2πkl

n

)
+ sin

(
2πkl

n

)∣∣∣∣
�
√

n
2
.

Also each term

λn,k‖hn,k‖M1 =
1
n3

(
1+

k
np

)
· 1√

n

n−1

∑
l=0

∣∣∣∣cos

(
2πkl

n

)
+ sin

(
2πkl

n

)∣∣∣∣
� 1

n3

(
1+

k
np

)
·√n < ∞.

However,

∞

∑
n=1

n−1

∑
k=0

λn,k‖hn,k‖2
M1 �

∞

∑
n=1

1
2n2

n−1

∑
k=0

(1+
k
np )

=
∞

∑
n=1

1
2n2

(
n+

n(n−1)
2np

)

�
∞

∑
n=1

1
2n

= ∞. �
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