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Abstract. In [15], E. A. Sánchez Pérez introduced the class of (s;q,θ ) -mixing operators, as a
generalization of (s;q) -mixing operators. We investigate analogous concepts here for the case of
multilinear operators between Banach spaces and Lipschitz mappings between metric spaces, in-
troducing the class of (s,q; p1 , . . . , pm;θ )-mixing multilinear operators and the Lipschitz Banach
ideal of (s,q,θ ) -mixing mappings show that our approach provides a multilinear and Lipschitz
extension of quotient theorem like the linear case. Several characterizations of these mappings
are presented, especially, every Lipschitz (s,q) -mixing map is Lipschitz (s,q,θ ) -mixing map
and a result relies on the duality theory for (q,θ ) -absolutely Lipschitz operators are given.

1. Introduction

Jarchow and Matter introduced in 1987 a general interpolation procedure for creat-
ing a new operator ideal from two given operator ideals (see [9]). Using this technique,
Matter defined the operator ideal Πq,θ of the (q,θ )-absolutely continuous linear op-
erators where 1 � q < ∞ and 0 � θ < 1. The resulting space must be understood
as an ideally located in between absolutely q -summing linear operators and continu-
ous linear operators, preserving some of the characteristic properties of the first class.
The class of (q; p1, . . . , pm;θ )-absolutely continuous multilinear operators on Banach
spaces has been defined and characterized by Dahia et al. in [8] as a natural multilinear
extension of the ideal of (q,θ )-absolutely continuous linear operators for which the re-
sulting vector space L θ

as,(q;p1,...,pm) is a normed (Banach) multi-ideal. In [15], Sánchez

Pérez introduced the interpolated operator ideal of (s,q,θ )-mixing linear operators that
generalize the well known operator ideal of (q, p)-mixing operators [12].

This class of operators is characterized by interesting integral inequalities and by
a certain splitting property (which explains the name “mixing”). More details on the
(s,q,θ )-mixing operators can be found also in [16]. In this paper, we introduce and
study the multilinear version of (s,q,θ )-mixing linear operators, that will be called
(s,q; p1, . . . , pm;θ )-mixing multilinear operators. As far as we know that is a first
attempt in this regard. We give some characterizations, for this class, by integral
inequalities similar to linear case and we prove the quotient theorem for this class.
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Also, we introduce the new space of a Lipschitz mixed (s;q,θ )-summable sequences
in pointed metric spaces obtaining in this the way a new Banach Lipschitz operator
ideal of Lipschitz (s;q,θ )-mixing mappings. The paper is structured into five sec-
tions. After the introductory one, in Section 2 we recall some notations, basic facts
on sequence spaces and several basic definitions of some classes of linear operators
between Banach spaces. In section 3, we extend to multilinear mappings the concept
of (s;q,θ )-mixing linear operators, and we show that our approach provides a multi-
linear extension of a quotient theorem for the linear case. In section 4, based on the
definition of mixed (s;q,θ )-summable sequences [15] and inspired by the Lipschitz
version of mixed summable sequences [5, Section 4.2], we present the definition of Lip-
schitz mixed (s;q,θ )-summable sequence of arbitrary pointed metric spaces and study
its fundamental properties. We will have opportunities to use this space of sequences
for introducing the classes of Lipschitz (s;q,θ ) -mixing maps and we characterize this
class of non-linear operators by means of their summability properties. Composition
property and some including results are given. In section 5, we establish the quotient
Lipschitz theorem for the classes of (s;q,θ )-mixing maps. As a consequence, we ob-
tain that this class is a strong Lipschitz operator Banach ideal. Afterwards we prove that
every Lipschitz (s,q)-mixing map is Lipschitz (s;q,θ ) -mixing. We end the paper with
the characterization of Lipschitz (s;q,θ )-mixing maps between metric spaces in terms
of ideal norms of associated bounded linear operators between Chevet-Safer spaces.

2. Notations and preliminaries

The notations used in the paper are, in general, standard. Let m ∈ N and Ei , (i =
1, . . . ,m) , F be Banach spaces over K , either R or C we will denote by L (E1, . . . ,Em;
F) the Banach space of all continuous m-linear mappings from E1× . . .×Em into F ,
under the norm

‖T‖ = sup
xi∈BEi , 1�i�m

∥∥T (x1, . . . ,xm)
∥∥ ,

where BEi denotes the closed unit ball of Ei(1 � i � m) . Let now E be a Banach space
and 1 � p � ∞ . The symbol EN will denote the sequences with values in E . Let �p (E)
be the Banach space of all absolutely p -summable sequences x = (x j) j ∈ EN with the
norm ∥∥∥x

∣∣∣�p (E)
∥∥∥= (

∞

∑
j=1

∥∥x j
∥∥p)

1
p .

We denote by �ω
p (E) the Banach space of all weakly p -summable sequences x = (x j) j

in E with the norm ∥∥∥x
∣∣∣�ω

p (E)
∥∥∥= sup

‖ξ‖E∗�1

∥∥∥(ξ (x j)) j

∣∣∣�p

∥∥∥ ,

where E∗ denotes the topological dual of E . If p = ∞ we are restricted to the case of
bounded sequences in �∞ (E) we use the sup norm. If we take E = K , then the spaces
�p (K) and �ω

p (K) coincide and we denote �p (K) by �p . If 1 < q � s � ∞ , we consider
the real number s∗(q) satisfying 1

s∗(q) + 1
s = 1

q . A sequence x = (x j) j of elements of
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E is said to be mixed (s;q)-summable if there exists a sequence ζ = (ζ j) j ∈ �s∗(q) and
a sequence x0 = (x0

j) j ∈ �ω
s (E) such that for all j ∈ N we have

x j = ζ j · x0
j (2.1)

We denote by �m
(s;q)(E) the Banach space of all mixed (s;q)-summable sequences of

elements of E with the norm

m(s;q) (x) = inf
∥∥∥ζ

∣∣∣�s∗(q)

∥∥∥∥∥∥x0
∣∣∣�ω

s (E)
∥∥∥ ,

where the infimum is taken over all possible representations of x in the form (2.1). The
relationships between the various sequence spaces are given by �q (E) ⊂ �m

(s;q) (E) ⊂
�ω
q (E) , with

∥∥∥x
∣∣∣�ω

q (E)
∥∥∥ � m(s;q) (x) �

∥∥∥x
∣∣∣�q (E)

∥∥∥ , for all x ∈ �q (E) . We denote by

W (BE∗), the set of all regular Borel probability measures on BE∗ (with the weak star
topology).

Let 1 < q � s � ∞ . An operator u : E −→ F between Banach spaces is called
(s,q)-mixing if there is a constant C � 0 such that for all n ∈ N and all x1, . . . ,xn ∈ E ,
the inequality

m(s;q)((ux j) j) � C ·
∥∥∥(x j) j

∣∣∣�ω
q (E)

∥∥∥
holds. The class of all (s,q)-mixing operators from E to F is denoted by M(s;q) (E,F) .
In this case, the (s,q)-mixing summing norm M(s;q) (u) of u is the infimum of such
constants C (see [12]). We recall the multilinear extension of the concept of (s,q)-
mixing operators were introduced by C. A. S. Soares in [18].

DEFINITION 2.1. Let 0 < q � s < ∞ and 0 < p1, . . . , pm < ∞ with 1
q � 1

p1
+

. . . + 1
pm

. An m-linear operator T ∈ L (E1, . . . ,Em;F) is (s,q; p1, . . . , pm)-mixing if
there exists a constant C > 0 such that

m(s,q)((T (x1
j , . . . ,x

m
j )n

j=1) � C
m

∏
i=1

∥∥∥(xi
j

)n

j=1

∣∣∣�ω
pi
(X)

∥∥∥ (2.2)

for every n ∈ N , (xi
j)

n
j=1 ⊂ Ei (i = 1, . . . ,m) . In this case we define ‖T‖(s,q;p1,...,pm) =

inf{C : for all C verifying the inequality(2.2)} . We denote the class of all such map-
pings by Lmx(s,q;p1,...,pm)(E1, . . . ,Em;F) .

Now we recall the definition of (q,θ )-absolutely continuous linear operators by
means of sequences (see [11, 10]). Let 1 � q < ∞ and 0 � θ < 1. For x = (x j) j ∈ EN

we put

δqθ (x) = sup
ξ∈BE∗

(
∞

∑
j=1

(∣∣ξ (x j)
∣∣1−θ ∥∥x j

∥∥θ
) p

1−θ

) 1−θ
p

.

It is clear that if δqθ (x) < ∞ then x ∈ �ω
q

1−θ
(E) with

∥∥∥x
∣∣∣�ω

q
1−θ

(E)
∥∥∥� δqθ (x) .
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DEFINITION 2.2. An operator u : E −→ F between Banach spaces is (q,θ )-
absolutely continuous, if there exists a constant C � 0 such that for any (x j)

n
j=1 ⊂ E,

we have ∥∥∥(ux j)n
j=1

∣∣∣� q
1−θ

(E)
∥∥∥� C ·δqθ ((x j)n

j=1).

This class is denoted by Πq,θ (E,F) and the infimum of all C by πq,θ (u) . The
notion of (s;q,θ )-mixing linear operators was introduced by E . A. Sánchez Pérez in
[15]. Let 0 < q � s � ∞, 0 � θ < 1 and 0 < s∗(q) � ∞ such that 1

s∗(q) + 1
s = 1

q . For

all finite sequences (x j)n
j=1 ⊂ E we put

m(s;q,θ)
(
(x j)n

j=1

)
= inf

{∥∥∥∥(ζ j)n
j=1

∣∣∣� s∗(q)
1−θ

∥∥∥∥δsθ
(
(x0

j)
n
j=1

)
: x j = ζ jx

0
j , j = 1, . . . ,n

}
.

The infimum is considered for all possible representations x j = ζ jx0
j , j = 1, . . . ,n, with

(ζ j)n
j=1 ⊂ K and (x0

j)
n
j=1 ⊂ E .

DEFINITION 2.3. The operator u : E −→ F, between Banach spaces, is (s;q,θ )-
mixing if there exists a constant C � 0 such that

m(s;q,θ)
(
(ux j)n

j=1

)
� C ·δqθ ((x j)n

j=1)

for every finite sequence (x j)n
j=1 in E. The infimum of all such constants C is repre-

sented by Mθ
(s;q)(u).

The next results can be found in [15, Lemma 1.4 and Proposition 1.5]

PROPOSITION 2.4. For every (x j)n
j=1 ⊂ E,

m(s;q,θ)((x j)n
j=1) = sup

μ∈W(BE∗ )

(
n

∑
j=1

(∫
BE∗

∣∣〈x j,ϕ
〉∣∣s∥∥x j

∥∥ θ s
1−θ dμ(ϕ)

) q
s
) 1−θ

q

. (2.3)

PROPOSITION 2.5. The following statements are equivalent
(i) u : X → Y is (s;q,θ )-mixing
(ii) There is C > 0 such that for every (x j)n

j=1 ⊂ E and every (ϕl)k
l=1 ⊂ F∗, the

following inequality holds

⎡
⎣ n

∑
j=1

(
k

∑
l=1

∣∣〈u(x j),ϕl
〉∣∣s∥∥ux j

∥∥ θ s
1−θ

) q
s
⎤
⎦

1−θ
q

� C.δqθ
(
(x j)n

j=1

)
.
∥∥∥(ϕl)k

l=1

∣∣∣�s(F∗)
∥∥∥1−θ

.

(2.4)
Moreover, we have Mθ

(s;q)(u) = inf{C > 0, C satisfies (2.4)} .

Now we are going to introduce some concepts and notations for the Lipschitz case,
let X , Y and Z be pointed metric spaces which have a special point designated by 0.



MULTILINEAR OPERATORS AND LIPSCHITZ OPERATOR IDEALS 907

The set of all Lipschitz functions from X into Y that send the special point 0 to 0 will
be denoted by Lip(X ,Y ) . For all T ∈ Lip(X ,Y ) we put

Lip(T ) = inf
{
C � 0 : d(T (x),T (x′)) � Cd(x,x′) for all x,x′ ∈ X

}
.

The Banach space Lip(X ,R) of real-valued Lipschitz functions defined on X with
the Lipschitz norm Lip(·) will be denoted by X# . Along with the paper we consider
BX# endowed with the pointwise topology (BX# is a compact Hausdorff space in this
topology). It is well known that X# has a predual, namely the space of Arens and Eells
Æ(X) (see [4] or [19] for more details on this space). A molecule on X is a scalar
valued function m on X with finite support that satisfies ∑

x∈X
m(x) = 0. We denote

by M (X) the linear space of all molecules on X . For x,x′ ∈ X the molecule mxx′
is defined by mxx′ = χ{x} − χ{x′} , where χA is the characteristic function of the set

A . For m ∈ M (X) we can write m =
n
∑
j=1

λ jmxjx′j for some suitable scalars λ j , and

we write ‖m‖M (X) = inf

{
n
∑
j=1

∣∣λ j
∣∣d(x j,x′j), m =

n
∑
j=1

λ jmxjx′j

}
, where the infimum is

taken over all representations of the molecule m . Denote by Æ(X) the completion of
the normed space (M (X),‖.‖M (X)) . Sawashima [17] defined the Lipschitz dual T # of

T ∈ Lip(X ,Y ) as the continuous linear operator T # : Y # −→ X# given by T #(g) := g ◦
T . In contrast to the linear case, where it was enough to consider sequences (x j) j ∈ EN ,

we require to consider sequences
(
(σ j,x′j,x′′j )

)
j∈N

of triples (σ j,x′j,x′′j ) ∈ R×X ×X .

To simplify notation, let us write (σ ,x′,x′′) for such a sequence. For a scalar sequence

τ = (τ j) j ⊂ R\{0} we will simply write (σ
τ ,x′,x′′) instead of

(
(σ j

τ j
,x′j,x′′j )

)
j∈N

. Let

1 � p < ∞ , the p -sequence set, denoted by �p(R×X ×X) , is defined as

�L
p(R×X ×X) =

{
(σ j,x

′,x′′) ∈ R×X ×X :
∞

∑
j=1

∣∣σ j
∣∣p dX(x′j,x

′′
j )

p < ∞

}
.

We denote its strong p -norm by

∥∥∥(σ ,x′,x′′)
∣∣∣�L

p

∥∥∥=

(
∞

∑
j=1

∣∣σ j
∣∣p dX(x′j,x

′′
j )

p

) 1
p

.

Also the weak Lipschitz p -sequence set, denoted by �L,ω
p (R×X ×X) , is defined as

�L,ω
p (R×X×X)=

{
(σ j,x

′,x′′) ∈ R×X×X :
∞

∑
j=1

∣∣σ j
∣∣p ∣∣ f x′j − f x′′j

∣∣p < ∞, for all f ∈ BX#

}
.

We denote its weak Lipschitz p -norm by

∥∥∥(σ ,x′,x′′)
∣∣∣�L,ω

p

∥∥∥= sup
f∈BX#

(
∞

∑
j=1

∣∣σ j
∣∣p ∣∣ f x′j − f x′′j

∣∣p)
1
p

.
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Observe that, since there is no linear structure on the set of triples (σ ,x′,x′′) , the above
notions are not really norms. But because of the similarity with the usual norms of
�p , we shall call them norms. In order to introduce the concept of Lipschitz (s;q)-
mixing operator. The third author of this paper in, [14, Definition 3.1], defined the
space of Lipschitz mixed (s;q)-summable sequence which is implicit in [5, Sec. 4.2].
A sequence (σ ,x′,x′′) ⊂ R×X ×X is called Lipschitz mixed (s;q)-summable if there
exists a sequence τ ∈ �s∗(q) such that (σ

τ ,x′,x′′) ∈ �L,ω
s (R×X ×X) . The space of all

this sequence is denoted by ML
(s;q)(R×X ×X) . Moreover, for a sequence (σ ,x′,x′′) ∈

ML
(s;q)(R×X ×X) define

mL
(s;q)(σ ,x′,x′′) = inf

∥∥∥τ
∣∣∣�s∗(q)

∥∥∥∥∥∥(σ
τ

,x′,x′′
)∣∣∣�L,ω

s

∥∥∥
where the infimum is taken over all sequences τ ∈ �s∗(q) .

DEFINITION 2.6. Let 0 < q � s � ∞ , a Lipschitz map T ∈ Lip(X ,Y ) is called
Lipschitz (s;q)-mixing operator if there is a constant C � 0 such that

mL
(s;q)(σ ,Tx′,Tx′′) � C ·

∥∥∥(σ ,x′,x′′)
∣∣∣�L,ω

q

∥∥∥
for arbitrary finite sequences (σ ,x′,x′′) ⊂ R×X ×X .

Note that there is another definition of Lipschitz (s;q)-mixing operators equivalent
to the above definition in when we have 1 � q � s < ∞ (see [5, Corollary 4.3]).

3. (s,q; p1, . . . , pm;θ )-mixing multilinear operators

In this section we extend the definition of class of (s,q,θ )-mixing linear operators
to the case of multilinear operators. In what follows, we consider the real numbers
0� θ < 1 and 1� q,s, p1, . . . , pm < ∞ such that 1

q � 1
p1

+ . . .+ 1
pm

. Before we study this
class of multilinear operators, we recall the definition of (q; p1, . . . , pm;θ )-absolutely
continuous multilinear operators were introduced by Dahia et al. in [8].

DEFINITION 3.1. A mapping T ∈L (E1, . . . ,Em;F) is (q; p1, . . . , pm;θ )-absolu-
tely continuous if there is a constant C � 0 such that for any xi

1, . . . ,x
i
n ∈Ei, (1 � i � m)

we have ∥∥∥(T (x1
j , . . . ,x

m
j

))n

j=1

∣∣∣� q
1−θ

(F)
∥∥∥� C

m

∏
i=1

δpiθ ((xi
j)

n
j=1).

The smallest C satisfying the inequality above is indicated by ‖T‖L θ
as,(q;p1,...,pm)

and the class of these mappings by L θ
as,(q;p1,...,pm)(E1, . . . ,Em;F) which is a Banach

space with the norm ‖T‖L θ
as,(q;p1,...,pm)

.
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DEFINITION 3.2. A mapping T ∈L (E1, . . . ,Em;F) is (s,q; p1, . . . , pm;θ )-mixing

if there is a constant C � 0 such that for any
(
xi

j

)n

j=1
⊂ Ei (1 � i � m) we have

m(s;q,θ)((T (x1
j , . . . ,x

m
j )n

j=1) � C
m

∏
i=1

δpiθ ((xi
j)

n
j=1). (3.1)

In this case we define

‖T‖mx(s,q;p1,...,pm;θ) = inf{C : for all C verifying the inequality (3.1)} .

We denote this class of mappings by L θ
mx(s,q;p1,...,pm) .

For θ = 0 we have

L 0
mx(s,q;p1,...,pm)(E1, . . . ,Em;F) = Lmx(s,q;p1,...,pm)(E1, . . . ,Em;F).

Notice that for m = 1 we recover the class of linear (s,q,θ )-mixing operators. Un-
fortunately, we have no proof for the fact that the class L θ

mx(s,q;p1,...,pm) is a Banach
multi-ideal. However, we do not need in our paper of this result.

In the following we characterize the class of (s,q; p1, . . . , pm;θ )-mixing multilin-
ear operators by means summability inequalities.

THEOREM 3.3. The mapping T ∈L (E1, . . . ,Em;F) is (s,q; p1, . . . , pm;θ )-mixing
if and only if there is a constant C � 0 such that

⎡
⎣ n

∑
j=1

(
k

∑
l=1

∣∣〈ϕl ,T (x1
j , . . . ,x

m
j )
〉∣∣s∥∥T (x1

j , . . . ,x
m
j )
∥∥ θ s

1−θ

) q
s
⎤
⎦

1−θ
q

(3.2)

� C ·
m

∏
i=1

δpiθ
(
(xi

j)
n
j=1

) ·∥∥∥(ϕl)k
l=1

∣∣∣�s(F∗)
∥∥∥1−θ

for all n,k ∈ N,
(
xi

j

)n

j=1
⊂ Ei (1 � i � m) and (ϕl)k

l=1 ⊂ F∗ . In this particular case,

‖T‖mx(s,q;p1,...,pm;θ) = infC

where the infimum is taken over all C satisfying (3.2).

Proof. We have two cases.
(i) Case s = q . Suppose that the conditions (3.2) is holds and take k = 1,

(
n

∑
j=1

∣∣〈ϕ ,T (x1
j , . . . ,x

m
j )
〉∣∣q∥∥T (x1

j , . . . ,x
m
j )
∥∥ θq

1−θ

) 1−θ
q

� C ·
m

∏
i=1

δpiθ
(
(xi

j)
n
j=1

)
for all ϕ ∈ BF∗ . Thus

δqθ
(
(T (x1

j , . . . ,x
m
j ))n

j=1

)
� C ·

m

∏
i=1

δpiθ
(
(xi

j)
n
j=1

)
.
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If we combine this inequality and (2.3) we obtain

m(s;q,θ)((T (x1
j , . . . ,x

m
j )n

j=1)

� sup
μ∈W (BF∗ )

⎛
⎝∫

BF∗

sup
ϕ∈BF∗

n

∑
j=1

∣∣〈ϕ ,T (x1
j , . . . ,x

m
j )
〉∣∣q∥∥T (x1

j , . . . ,x
m
j )
∥∥ θq

1−θ dμ(ϕ)

⎞
⎠

1−θ
q

= δqθ
(
(T (x1

j , . . . ,x
m
j ))n

j=1

)
� C ·

m

∏
i=1

δpiθ
(
(xi

j)
n
j=1

)
.

Therefore, T is (s,q; p1, . . . , pm;θ )-mixing and ‖T‖mx(s,q;p1,...,pm;θ) � C. Conversely,

suppose that T ∈ L θ
mx(s,q;p1,...,pm)(E1, . . . ,Em;F) . Given (xi

j)
n
j=1 ⊂ Ei,(i = 1, . . . ,m)

and (ϕl)k
l=1 ⊂ F∗ . If T (x1

j , . . . ,x
m
j ) = τ jy j,(1 � j � n) where (y j)n

j=1 ⊂ F and (τ j)n
j=1

⊂ K , we have

[
n
∑
j=1

k
∑
l=1

∣∣∣〈ϕl,T (x1
j , . . . ,x

m
j )
〉∣∣∣q∥∥∥T (x1

j , . . . ,x
m
j )
∥∥∥ θq

1−θ

] 1−θ
q

=

[
n
∑
j=1

k
∑
l=1

∣∣〈ϕl ,τ jy j
〉∣∣q∥∥τ jy j

∥∥ θq
1−θ

] 1−θ
q

�
(

k
∑
l=1

‖ϕl‖q
) 1−θ

q

sup
ϕ∈BF∗

[
n
∑
j=1

∣∣〈ϕ ,τ jy j
〉∣∣q ∥∥τ jy j

∥∥ θq
1−θ

] 1−θ
q

�
∥∥∥(ϕl)k

l=1

∣∣∣�q(F∗)
∥∥∥1−θ ∥∥∥(τ j)n

j=1

∣∣∣�∞

∥∥∥δqθ

(
(y j)n

j=1

)
.

Taking the Infimum on both sides over all possible representations of the form

T (x1
j , . . . ,x

m
j ) = τ jy j, ( j = 1, . . . ,n)

we obtain

[
n
∑
j=1

k
∑
l=1

∣∣∣〈ϕl,T (x1
j , . . . ,x

m
j )
〉∣∣∣q∥∥∥T (x1

j , . . . ,x
m
j )
∥∥∥ θq

1−θ

] 1−θ
q

�
∥∥∥(ϕl)k

l=1

∣∣∣�q(F∗)
∥∥∥1−θ ·m(q;q,θ)(T (x1

j , . . . ,x
m
j ))

n
j=1)

�
∥∥∥(ϕl)k

l=1

∣∣∣�q(F∗)
∥∥∥1−θ · ‖T‖mx(q,q;p1,...,pm;θ) ·

m
∏
i=1

δpiθ

(
(xi

j)
n
j=1

)
.

Therefore infC � ‖T‖(s,q;p1,...,pm;θ) .
(ii) Case s > q . Assume that T is (s,q; p1, . . . , pm;θ )-mixing. Consider 0 	=

ϕ1, . . . ,ϕk ∈ F∗. We define on BF∗ the probability measure ν =
k
∑
l=1

νlδl, where νl =
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‖ϕl‖s∥∥∥∥(ϕl)kl=1

∣∣∣�s(F∗)
∥∥∥∥

s , l = 1, . . . ,k and δl is the Dirac measure at the point ϕ̃l = ϕl
‖ϕl‖ . For

(xi
j)

n
j=1 ⊂ Ej,(i = 1, . . . ,m) we have∫

BF∗

∣∣〈ϕ ,T (x1
j , . . . ,x

m
j )
〉∣∣s dν(ϕ)

=
k

∑
l=1

∣∣∣∣
〈

ϕl

‖ϕl‖ ,T (x1
j , . . . ,x

m
j )
〉∣∣∣∣

s ‖ϕl‖s∥∥∥(ϕl)k
l=1

∣∣∣�s(F∗)
∥∥∥s

=
1∥∥∥(ϕl)k

l=1

∣∣∣�s(F∗)
∥∥∥s

k

∑
l=1

∣∣〈ϕl,T (x1
j , . . . ,x

m
j )
〉∣∣s .

From this equalities and (2.3) we get

⎡
⎣ n

∑
j=1

(
k

∑
l=1

∣∣〈ϕl ,T (x1
j , . . . ,x

m
j )
〉∣∣s ∥∥T (x1

j , . . . ,x
m
j )
∥∥ θ s

1−θ

) q
s
⎤
⎦

1−θ
q

=
∥∥∥(ϕl)k

l=1

∣∣∣�s(F∗)
∥∥∥1−θ

[
n

∑
j=1

(∫
BF∗

∣∣〈ϕ ,T (x1
j , . . .,x

m
j )
〉∣∣s dν(ϕ)

∥∥T (x1
j , . . .,x

m
j )
∥∥ θ s

1−θ

) q
s
] 1−θ

q

�
∥∥∥(ϕl)k

l=1

∣∣∣�s(F∗)
∥∥∥1−θ ·m(s;q,θ)((T (x1

j , . . . ,x
m
j )n

j=1)

� ‖T‖mx(s,q;p1,...,pm;θ)

∥∥∥(ϕl)k
l=1

∣∣∣�s(F∗)
∥∥∥1−θ m

∏
i=1

δpiθ
(
(xi

j)
n
j=1

)
and we obtain (3.2) with infC � ‖T‖mx(s,q;p1,...,pm;θ) .

Reciprocally, let us suppose that (3.2) is true. Given ν =
k
∑
l=1

νlδl a discrete proba-

bility measure onto BF∗ . We have[
n

∑
j=1

(∫
BF∗

∣∣〈ϕ ,T (x1
j , . . . ,x

m
j )
〉∣∣s∥∥T (x1

j , . . . ,x
m
j )
∥∥ θ s

1−θ dν(ϕ)
) q

s
] 1−θ

q

=

⎡
⎣ n

∑
j=1

(
k

∑
l=1

∣∣∣∣
〈

ν
1
s

l ϕl,T (x1
j , . . . ,x

m
j )
〉∣∣∣∣

s∥∥T (x1
j , . . . ,x

m
j )
∥∥ θ s

1−θ

) q
s
⎤
⎦

1−θ
q

� C
m

∏
i=1

δpiθ

(
(x j

i )
n
i=1

)
·
∥∥∥∥(ν 1

s
l ϕl)k

l=1

∣∣∣�s(F∗)
∥∥∥∥

1−θ

� C
m

∏
i=1

δpiθ

(
(x j

i )
n
i=1

)
.

Since the discrete probability measures are dense in W (BF∗) for the weak star topology
defined by C(BF∗) , it follows that this inequality holds for all such ν ∈ W (BF∗) and
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(xi
j)

n
j=1 ⊂ Ej,(i = 1, . . . ,m). Therefore, by (2.3) we obtain

m(s;q,θ)((T (x1
j , . . . ,x

m
j )n

j=1) � C
m

∏
i=1

δpiθ

(
(x j

i )
n
i=1

)
.

This shows that T is (s,q; p1, . . . , pm;θ )-mixing and ‖T‖L θ
mx(s,q;p1,...,pm)

= infC. �

Now we are ready to present the main results of this section. In order to prove
this theorem we need the following preliminary results. For a regular Borel proba-
bility measure ν on BF∗ , (with the weak star topology), we denote by i the isomet-
ric embedding F → C(BF∗) given by i(y) = 〈y, ·〉 . For y ∈ F consider the seminorm

‖〈y, ·〉‖s,θ = inf
k
∑
l=1

‖yl‖θ
(∫

BF∗ |〈yl, ·〉|s dν
) 1−θ

s
, the infimum computed over all decom-

positions of y as y =
k
∑
l=1

yl in F . Following [8, 1] (see also [7, Section 2.1.3]) , let

Ls,θ (ν) be the completion of the quotient normed space i(F)/‖ · ‖−1
s,θ(0) of all classes

of functions as 〈y, ·〉 ∈ i(F) ⊂C(BF∗) , y ∈ F, with the quotient norm ‖·‖s,θ .

THEOREM 3.4. Let 0 � θ < 1 and 1 � r,s,q, p1, . . . , pm < ∞ such that 1
q =

1
p1

+ . . . + 1
pm

and 1
q = 1

s + 1
r . For T ∈ L (E1, . . . ,Em;F), the following statements

are equivalent

a) The composition u◦T : E1× . . .×Em −→G is (q; p1, . . . , pm;θ )-absolutely con-
tinuous multilinear operators for any Banach space G and any (s,θ )-absolutely
continuous operator u : F −→ G with

‖u ◦T‖L θ
as,(q;p1,...,pm)

� C.πs,θ (u). (3.3)

b) There is a constant C � 0 such that for any probability measure ν ∈ W (BF∗)
there exists regular Borel probability measures μi ∈W (BE∗

i
),1 � i � m so that

for all (x1, . . . ,xm) ∈ E1× . . .×Em the inequality

inf

{
k

∑
l=1

(∫
BF∗

|〈ϕ ,yl〉|s ‖yl‖
θ s

1−θ dν(ϕ)
) 1−θ

s

: T (x1, . . . ,xm) =
k

∑
l=1

yl

}
(3.4)

� C.
m

∏
i=1

∥∥xi
∥∥θ

(∫
BE∗i

∣∣〈φ ,xi〉∣∣pi dμi(φ)

) 1−θ
pi

,

is valid.

c) T is (s,q; p1, . . . , pm;θ )-mixing with ‖T‖L θ
mx(s,q;p1,...,pm)

� C.

Moreover, ‖T‖L θ
mx(s,q;p1,...,pm)

= infC, where the infimum is taken over all con-

stants C either a), b) or c).
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Proof. a) =⇒ b) For each ν ∈W (BF∗) we consider the operator Jν : F → Ls,θ (ν)
given by Jν (y) = [〈y, ·〉] , where [〈y, ·〉] is the equivalence class of 〈y, ·〉 . In this case,
Jν is (s,θ )-absolutely continuous with πs,θ (Jν ) � 1 (see [8, Lemma 3.4]), then by
the hypothesis the m-linear mapping Jν ◦T is (q; p1, . . . , pm;θ )-absolutely continuous
with

‖Jν ◦T‖L θ
as(q;p1,...,pm)

� C.

By the domination theorem for the class L θ
as(q;p1,...,pm) (see [8, Theorem 3.3]), there is

regular Borel probability measures μi ∈W (BE∗
i
) such that for all xi ∈ Ei, 1 � i � m,

we have∥∥[〈T (x1, . . . ,xm), ·〉]∥∥s,θ

= inf

{
k

∑
l=1

(∫
BF∗

|〈ϕ ,yl〉|s ‖yl‖
θ s

1−θ dν(ϕ)
) 1−θ

s

: T (x1, . . . ,xm) =
k

∑
l=1

yl

}

� C
m

∏
i=1

∥∥xi
∥∥θ

(∫
BE∗i

∣∣〈φ ,xi〉∣∣pi dμi(φ)

) 1−θ
pi

.

b) =⇒ c) From (3.4) and by Hölder’s inequality we have

(
n

∑
j=1

(∫
BF∗

∣∣〈ϕ ,T (x1
j , . . . ,x

m
j )
〉∣∣s∥∥T (x1

j , . . . ,x
m
j )
∥∥ θ s

1−θ dμ(ϕ)
) q

s
) 1−θ

q

� C

⎡
⎢⎣ n

∑
j=1

⎛
⎝ m

∏
i=1

(∫
BE∗i

∥∥xi
j

∥∥θ pi
1−θ

∣∣〈φ ,xi
j

〉∣∣pi dμi(φ)

) 1−θ
pi

⎞
⎠

q
1−θ

⎤
⎥⎦

1−θ
q

� C
m

∏
i=1

(
n

∑
j=1

∫
BE∗i

∥∥xi
j

∥∥θ pi
1−θ

∣∣〈φ ,xi
j

〉∣∣pi dμi(φ)

) 1−θ
pi

� C
m

∏
i=1

δpiθ
(
(xi

j)
n
j=1

)

for every ν ∈W (BF∗),n∈N and (xi
j)

n
j=1 ⊂ Ei, i = 1, . . . ,m. By using the equality, (2.3)

we obtain

m(s;q,θ)((T (x1
j , . . . ,x

m
j )n

j=1) � C
m

∏
i=1

δpiθ
(
(xi

j)
n
j=1

)
.

Thus T ∈ L θ
mx(s,q;p1,...,pm)(E1, . . . ,Em;F) and ‖T‖L θ

mx(s,q;p1,...,pm)
� C.

c) =⇒ a) Let G a Banach space and let u : F −→ G be a (s,θ )-absolutely con-
tinuous operator. By the Pietsch domination theorem concerning the (s,θ )-absolutely
continuous operators [11, Theorem 4.1], there is a regular Borel probability measure
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μ on BF∗ such that for all (x1
j , . . . ,x

m
j ) ∈ E1× . . .×Em, j = 1, . . . ,n we have

∥∥u
(
T (x1

j , . . .,x
m
j )
)∥∥�πs,θ (u)

(∫
BF∗

∣∣〈ϕ ,T (x1
j , . . .,x

m
j )
〉∣∣s∥∥T (x1

j , . . .,x
m
j )
∥∥ θ s

1−θ dμ(ϕ)
) 1−θ

s

.

Then by the hypothesis and (2.3) we get

(
n

∑
j=1

∥∥u ◦T(x1
j , . . . ,x

m
j )
∥∥ q

1−θ

) 1−θ
q

� πs,θ (u)

(
n

∑
j=1

(∫
BF∗

∣∣〈ϕ ,T (x1
j , . . . ,x

m
j )
〉∣∣s∥∥T (x1

j , . . . ,x
m
j )
∥∥ θ s

1−θ dμ(ϕ)
) q

s
) 1−θ

q

� πs,θ (u).m(s;q,θ)((T (x1
j , . . . ,x

m
j )n

j=1)

� πs,θ (u).‖T‖L θ
mx(s,q;p1,...,pm)

m

∏
i=1

δpiθ
(
(xi

j)
n
j=1

)
.

Hence u ◦T ∈ L θ
as(q;p1,...,pm)(E1, . . . ,Em;G) and the inequality (3.3) holds. �

REMARK 3.5. Actually the equivalence between a) and c) in the above theorem
asserts that the class of (s,q; p1, . . . , pm;θ )-mixing multilinear operators satisfy the
quotient theorem

L θ
mx(s,q;p1,...,pm) = Π−1

s,θ ◦L θ
as(q;p1,...,pm).

4. Lipschitz (s;q,θ ) -mixing maps

Throughout this section, q,s,θ ,s∗(q) are real numbers such that 0 < q � s � ∞ ,
0 � θ < 1, 1

s∗(q) + 1
s = 1

q and X ,Y are pointed metric spaces. The notion of Lipschitz

mixed (s;q,θ )-summable sequence can be constructed as follows. For all sequences
(σ ,x′,x′′) ⊂ R×X ×X define

δL
sθ (σ ,x′,x′′) = sup

f∈BX#

[
∞

∑
j=1

(∣∣σ j
∣∣ ∣∣ f (x′j)− f (x′′j )

∣∣1−θ
dX(x′j,x

′′
j )

θ
) s

1−θ

] 1−θ
s

and
HL

s,θ (R×X ×X) =
{
(σ ,x′,x′′) ⊂ R×X ×X : δL

sθ (σ ,x′,x′′) < ∞
}

.

DEFINITION 4.1. A sequence (σ ,x′,x′′) ⊂ R×X ×X is called Lipschitz mixed
(s;q,θ )-summable, if there exists a sequence τ ∈ � s∗(q)

1−θ
such that (σ

τ ,x′,x′′)∈HL
s,θ (R×

X ×X) . The space of all Lipschitz mixed (s;q,θ )-summable sequences is denoted by
M

L,θ
(s;q)(R×X ×X) . Moreover, for a sequence (σ ,x′,x′′) ∈ M

L,θ
(s;q)(R×X ×X) define

mL,θ
(s;q)(σ ,x′,x′′) = inf

∥∥∥∥τ
∣∣∣� s∗(q)

1−θ

∥∥∥∥ ·δL
sθ

(σ
τ

,x′,x′′
)

(4.1)
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where the infimum is taken over all sequences τ ∈ � s∗(q)
1−θ

.

REMARK 4.2. Let (σ ,x′,x′′) be an arbitrary sequence in R×X ×X .

(1) For the special case if θ = 0, the class ML,0
(s;q)(R×X ×X) coincides with the

class ML
(s;q)(R×X ×X) .

(2) If q = s , then ML,θ
(q;q)(R×X ×X) = HL

q,θ (R×X ×X) with

m
L,θ
(q;q)(σ ,x′,x′′) = δL

qθ (σ ,x′,x′′).

(3) If s = ∞ , then M
L,θ
(∞;q)(R×X ×X) = �L

q
1−θ

(R×X ×X) with

m
L,θ
(∞;q)(σ ,x′,x′′) =

∥∥∥(σ ,x′,x′′)
∣∣∣�L

q
1−θ

(R×X ×X)
∥∥∥ .

Inspired by the analogous result of [15, Lemma 1.4] and the similar proof of [5,
Proposition 4.2] we give an important characteristic.

PROPOSITION 4.3. Let 0 < q < s < ∞ and 0 � θ < 1 . A sequence (σ ,x′,x′′) is
Lipschitz mixed (s;q,θ )-summable if and only if

[
∞

∑
j=1

[ ∫
BX#

∣∣σ j
∣∣ s

1−θ
∣∣ f (x′j)− f (x′′j )

∣∣s dX(x′j,x
′′
j )

θ s
1−θ dμ( f )

] q
s
] 1−θ

q

< ∞, (4.2)

for every μ ∈W (BX#) . In this particular case

sup
μ∈W(BX# )

[
∞

∑
j=1

[ ∫
BX#

∣∣σ j
∣∣ s

1−θ
∣∣ f (x′j)− f (x′′j )

∣∣s dX(x′j,x
′′
j )

θ s
1−θ dμ( f )

] q
s
] 1−θ

q

= mL
(s;q,θ)(σ ,x′,x′′).

Proof. Suppose that (σ ,x′,x′′) is Lipschitz mixed (s;q,θ )-summable sequence.
Then there exists a sequence τ ∈ � s∗(q)

1−θ
such that (σ

τ ,x′,x′′) ∈ HL
s,θ (R×X×X) . Apply-
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ing Hölder inequality we obtain

[
∞

∑
j=1

[ ∫
BX#

∣∣σ j
∣∣ s

1−θ
∣∣ f (x′j)− f (x′′j )

∣∣s dX(x′j,x
′′
j )

θ s
1−θ dμ( f )

] q
s
] 1−θ

q

=

⎛
⎜⎝ ∞

∑
j=1

[∣∣τ j
∣∣[ ∫

BX#

∣∣∣∣σ j

τ j

∣∣∣∣
s

1−θ ∣∣ f (x′j)− f (x′′j )
∣∣s dX(x′j,x

′′
j )

θ s
1−θ dμ( f )

] 1−θ
s
] q

1−θ

⎞
⎟⎠

1−θ
q

�
∥∥∥∥τ
∣∣∣� s∗(q)

1−θ

∥∥∥∥
⎛
⎜⎝ ∞

∑
j=1

∫
BX#

∣∣∣∣σ j

τ j

∣∣∣∣
s

1−θ ∣∣ f (x′j)− f (x′′j )
∣∣s dX(x′j,x

′′
j )

θ s
1−θ dμ( f )

⎞
⎟⎠

1−θ
s

�
∥∥∥∥τ
∣∣∣� s∗(q)

1−θ

∥∥∥∥δL
sθ (

σ
τ

,x′,x′′) < ∞.

Conversely, let a sequence (σ ,x′,x′′) satisfy the condition (4.2). Define a number β as
follow

β = sup
μ∈W (BX# )

[
∞

∑
j=1

[ ∫
BX#

∣∣σ j
∣∣ s

1−θ
∣∣ f (x′j)− f (x′′j )

∣∣s dX(x′j,x
′′
j )

θ s
1−θ dμ( f )

] q
s
] 1−θ

q

.

Then the number β is finite. Put u = s∗(q)
q and v = s

q . Then 1
u + 1

v = 1. We now
consider the compact, convex subset

K =

{
ξ = (ξ j) j :

∞

∑
j=1

ξ u
j � β

q
1−θ and ξ j � 0

}

of �u . Observe that the expression

φ(ξ ) =
∞

∑
j=1

(ξ j + ε)−v ·
∫

BX#

∣∣σ j
∣∣ s

1−θ
∣∣ f (x′j)− f (x′′j )

∣∣s dX(x′j,x
′′
j )

θ s
1−θ dμ( f ),

where μ ∈ W (BX#) , ε > 0, defines a continuous convex function φ on K . Take the
special family ξ = (ξ j) j with

ξ j =

⎛
⎜⎝∫

BX#

∣∣σ j
∣∣ s

1−θ
∣∣ f (x′j)− f (x′′j )

∣∣s dX(x′j,x
′′
j )

θ s
1−θ dμ( f )

⎞
⎟⎠

1
u·v

.

Then ξ ∈ K and φ(ξ ) � β
q

1−θ . Since the collection F of all functions ξ obtained

in this way is concave, by Ky Fan’s lemma, we can find ξ 0 =
(

ξ 0
j

)
j
∈ K such that
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φ(ξ 0) � β
q

1−θ for all φ ∈ F simultaneously. In particular, considering the Dirac mea-
sure δ f at a function f ∈ BX# , we obtain

∞

∑
j=1

(
ξ 0

j + ε
)−v ∣∣σ j

∣∣ s
1−θ

∣∣ f (x′j)− f (x′′j )
∣∣s dX(x′j,x

′′
j )

θ s
1−θ � β

q
1−θ .

We put τε = (τ j(ε)) j with τ j(ε) =
(

ξ 0
j + ε

) 1−θ
q

. Then

∥∥∥∥τ
∣∣∣� s∗(q)

1−θ

∥∥∥∥= lim
ε→0+

∥∥∥∥τε

∣∣∣� s∗(q)
1−θ

∥∥∥∥= lim
ε→0+

[
∞

∑
j=1

τ j(ε)
s∗(q)
1−θ

] 1−θ
s∗(q)

=

[
∞

∑
j=1

(ξ 0
j )

s∗(q)
q

] 1−θ
s∗(q)

=

[
∞

∑
j=1

(ξ 0
j )

u

] 1−θ
s∗(q)

� β
q

s∗(q) = β
1
u

and for f ∈ BX# ,

[
∞

∑
j=1

∣∣∣∣σ j

τ j

∣∣∣∣
s

1−θ ∣∣ f (x′j)− f (x′′j )
∣∣s dX(x′j,x

′′
j )

θ s
1−θ

] 1−θ
s

= lim
ε→0+

[
∞

∑
j=1

∣∣∣∣ σ j

τ j(ε)

∣∣∣∣
s

1−θ ∣∣ f (x′j)− f (x′′j )
∣∣s dX(x′j,x

′′
j )

θ s
1−θ

] 1−θ
s

= lim
ε→0+

⎡
⎣ ∞

∑
j=1

∣∣σ j
∣∣ s

1−θ(
ξ 0

j + ε
)v

∣∣ f (x′j)− f (x′′j )
∣∣s dX(x′j,x

′′
j )

θ s
1−θ

⎤
⎦

1−θ
s

� β
q
s = β

1
v .

Hence

∥∥∥∥τ
∣∣∣� s∗(q)

1−θ

∥∥∥∥δL
sθ (σ

τ ,x′,x′′) � β . �

DEFINITION 4.4. Let 0< q � s � ∞ and 0 � θ < 1. A Lipschitz map T : X −→Y
between pointed metric spaces is called Lipschitz (s;q,θ )-mixing if there is a constant
C � 0 such that

mL,θ
(s;q)(σ ,Tx′,Tx′′) � C ·δL

qθ (σ ,x′,x′′) (4.3)

for arbitrary finite sequences x′ , x′′ in X and σ in R . Let us denote by ML,θ
(s;q)(X ,Y )

the class of all Lipschitz (s;q,θ ) -mixing maps from X to Y. In such case, we put

mL,θ
(s;q)(T ) = infC,

where the infimum is taken over all constant C satisfying (4.3).
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REMARK 4.5.

1. The linear space ML,θ
(s;q)(X ,F) equipped with the norm mL,θ

(s;q)(·) is a Banach
space if q � 1 and a complete q -normed space if 0 < q < 1.

2. If θ = 0, then the class ML,θ
(s;q)(X ,Y ) coincides with the class ΠL

(mL(s;q),q)(X ,Y )

of Lipschitz (mL (s;q) ,q)-summing mappings was introduced by the third author
in [14, Definition 3.5] for 0 < q � s � ∞ and by J. A. Chávez-Domı́nguez in [5,
Corollary 4.3] for 1 � q < s < ∞ .

CONCLUDING REMARKS 4.6.

It is obvious that the Lipschitz (s; p,θ )−mixing maps satisfy the ideal property, i.e.

mL,θ
(s;p)(S ◦T ◦R) � Lip(S) ·mL,θ

(s;p)(T ) ·Lip(R)

whenever the composition makes sense.

• If 0 < q < s � ∞ and 0 � θ < 1, then �L
q

1−θ
(R×X ×X) ⊂ ML,θ

(s;q)(R×X ×X) ,

with mL,θ
(s;q)(σ ,x′,x′′) �

∥∥∥(σ ,x′,x′′)
∣∣∣�L

q
1−θ

∥∥∥ , for every (σ ,x′,x′′) ∈ �L
q

1−θ
(R×X ×

X) .

• If 0 < q < ∞ and 0 � θ < 1, then �L
q

1−θ
(R×X ×X)⊂ ML,θ

(q;q)(R×X ×X) , with

mL,θ
(q;q)(σ ,x′,x′′) �

∥∥∥(σ ,x′,x′′)
∣∣∣�L

q
1−θ

∥∥∥ , for every (σ ,x′,x′′) ∈ �L
q

1−θ
(R×X ×X) .

• If 0 < q � s � ∞ and 0 � θ < 1, then ML,θ
(s;q)(R×X ×X) ⊂ �L

s∗(q)
1−θ

(R×X ×X) .

Moreover ∥∥∥∥(σ ,x′,x′′)
∣∣∣�L

s∗(q)
1−θ

∥∥∥∥� mL,θ
(s;q)(σ ,x′,x′′).

• If 0 < q � s1 � s2 � ∞ and 0 � θ < 1, then ML,θ
(s2;q)(R×X ×X)⊂ ML,θ

(s1;q)(R×
X ×X) . Moreover

mL,θ
(s1;q)(σ ,x′,x′′) � mL,θ

(s2;q)(σ ,x′,x′′)

for every (σ ,x′,x′′) ∈ M
L,θ
(s2;q)(R×X ×X) .

The characterization of Lipschitz (s;q,θ )-mixing maps is presented in the fol-
lowing theorem, it is somewhat inspired by analogous results in the linear theory and
similar proof of [5, Theorem 4.1] we give an important characteristic.
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THEOREM 4.7. A Lipschitz map T from X to Y is Lipschitz (s;q,θ )-mixing if
and only if there is a constant C � 0 such that

[
m

∑
j=1

∣∣σ j
∣∣ s

1−θ

[ n

∑
k=1

∣∣∣〈gk,Tx′j
〉
(Y #,Y )−

〈
gk,Tx′′j

〉
(Y #,Y )

∣∣∣s dY (Tx′j,Tx′′j )
θ s

1−θ

] q
s
] 1−θ

q

� C ·δL
qθ (σ ,x′,x′′) ·

∥∥∥(gk)n
k=1

∣∣∣�s(Y #)
∥∥∥1−θ

(4.4)

for every σ1, . . . ,σm ∈ R; x′1, . . . ,x
′
m,x′′1 , · · · ,x′′m ∈ X ; g1, . . . ,gn ∈ Y # and m,n ∈ N .

Moreover
mL,θ

(s;q)(T ) = infC.

Taking the infimum over all C � 0 verifying the above inequality.

Proof. Assume that T is a Lipschitz (s;q,θ )-mixing map. Consider g1, . . . ,gn∈Y #

and define the discrete probability μ =
n
∑

k=1
tkδk , where tk = Lip(gk)s ·

∥∥∥(gk)n
h=1

∣∣∣�s(Y #)
∥∥∥−s

and δk denotes the Dirac measure at bk = gk
Lip(gk)

∈ BY# ; k = 1, . . . ,n . Then μ ∈
W (BY #) . For σ1, . . . ,σm ∈ R , x′1, . . . ,x

′
m,x′′1 , . . . ,x

′′
m ∈ X , we conclude from Proposi-

tion 4.3 that[
m

∑
j=1

∣∣σ j
∣∣ s

1−θ

[ n

∑
k=1

∣∣∣〈gk,Tx′j
〉
(Y #,Y )−

〈
gk,Tx′′j

〉
(Y #,Y )

∣∣∣s dY (Tx′j,Tx′′j )
θ s

1−θ

] q
s
] 1−θ

q

=

[
m

∑
j=1

∣∣σ j
∣∣ s

1−θ

[ ∫
BY#

∣∣∣〈g,Tx′j
〉
(Y#,Y ) −

〈
g,Tx′′j

〉
(Y #,Y )

∣∣∣s

×dY (Tx′j,Tx′′j )
θ s

1−θ dμ(g)
] q

s
] 1−θ

q ∥∥∥(gk)n
k=1

∣∣∣�s(Y #)
∥∥∥1−θ

� mL
(s;q,θ)(σ ,Tx′,Tx′′) ·

∥∥∥(gk)n
k=1

∣∣∣�s(Y #)
∥∥∥1−θ

� mL,θ
(s;q)(T ) ·δL

qθ (σ ,x′,x′′) ·
∥∥∥(gk)n

k=1

∣∣∣�s(Y #)
∥∥∥1−θ

.

To show the converse, observe that (4.4) means

[
m

∑
j=1

∣∣σ j
∣∣ s

1−θ

[ ∫
BY#

∣∣∣〈g,Tx′j
〉
(Y#,Y ) −

〈
g,Tx′′j

〉
(Y #,Y )

∣∣∣s ·dY (Tx′j,Tx′′j )
θ s

1−θ dμ(g)
] q

s
] 1−θ

q

� C ·δL
qθ (σ ,x′,x′′) (4.5)

for each discrete probabilitymeasure μ on BY # and σ1, . . . ,σm∈R ; x′1, . . . ,x
′
m,x′′1 , . . . ,x

′′
m

∈ X . Since the class of all finitely supported probability measures on BY# is dense in
the class of every probability measure on BY # for the weak star topology defined by



920 D. ACHOUR, E. DAHIA AND M. A. S. SALEH

C(BY #) , it follows that (4.5) satisfied for every probability measure μ on BY# and
σ1, . . . ,σm ∈ R , x′1, . . . ,x

′
m,x′′1 , . . . ,x

′′
m ∈ X . Taking the supremum over μ ∈W (BY #) on

the left side of (4.5) and using Proposition 4.3, we have

mL,θ
(s;q)(σ ,Tx′,Tx′′) � C ·δL

q,θ (σ ,x′,x′′). �

PROPOSITION 4.8. Let 0 < q � r � t � ∞ and 0 � θ < 1 . If S from Y to Z is a
Lipschitz (t;s,θ )-mixing map and T from X to Y is a Lipschitz (s;q,θ ) -mixing map,
then S ◦T from X to Z is a Lipschitz (t;q,θ )–mixing map. Moreover

mL,θ
(t;q)(S ◦T ) � mL,θ

(t;s)(S) ·mL,θ
(s;q)(T ).

Proof. From Definition 4.1, we have

m
L,θ
(t;q)

(
σ ,(S ◦T )x′,(S ◦T )x′′

)
= inf

∥∥∥∥τ
∣∣∣� t∗(q)

1−θ

∥∥∥∥δL
tθ (

σ
τ

,(S ◦T )x′,(S ◦T )x′′)

= inf
τ1·τ2

∥∥∥∥τ1 · τ2

∣∣∣� t∗(q)
1−θ

∥∥∥∥δL
tθ

(
σ

τ1 · τ2
,(S ◦T )x′,(S ◦T )x′′

)
.

Let σ ′ = σ
τ1

. Since 1
t∗(s) + 1

s∗(q) = 1
t∗(q) with the Hölder inequality give us

m
L,θ
(t;q)

(
σ ,(S ◦T )x′,(S ◦T )x′′

)
� inf

τ1·τ2

∥∥∥∥τ1

∣∣∣� s∗(q)
1−θ

∥∥∥∥ ·
∥∥∥∥τ2

∣∣∣� t∗(s)
1−θ

∥∥∥∥δL
t,θ

(
σ ′

τ2
,S(Tx′),S(Tx′′)

)

= inf
τ1

∥∥∥∥τ1

∣∣∣� s∗(q)
1−θ

∥∥∥∥ · inf
τ2

∥∥∥∥τ2

∣∣∣� t∗(s)
1−θ

∥∥∥∥δL
tθ

(
σ ′

τ2
,S(Tx′),S(Tx′′)

)
.

= inf
τ1

∥∥∥∥τ1

∣∣∣� s∗(q)
1−θ

∥∥∥∥ ·mL,θ
(t;s)

(
σ ′,S(Tx′),S(Tx′′)

)
� mL,θ

(t;s)(S) · inf
τ1

∥∥∥∥τ1

∣∣∣� s∗(q)
1−θ

∥∥∥∥ ·δL
sθ (σ ′,Tx′,Tx′′)

� mL,θ
(t;s)(S) ·mL,θ

(s;q)(σ ,Tx′,Tx′′)

� mL,θ
(t;s)(S) ·mL,θ

(s;q)(T ) ·δL
qθ (σ ,x′,x′′).

Finally, it follows from Definition 4.4 that

mL,θ
(t;q)(S ◦T) � mL,θ

(t;s)(S) ·mL,θ
(s;q)(T ). �

Now we finish this section by presenting the relationship between the Lipschitz
(s;q,θ ) -mixing map and its Lipschitz dual. We start by recalling the definitions of the
(s,q)-type linear operators. The absolute moments

csq =

⎛
⎝∫

R

|l|q dμs(l)

⎞
⎠

1
p

= 2 ·
[

Γ
( s−q

s

) ·Γ( 1+q
2

)
Γ
(

2−q
2

)
·Γ( 1

2

)
] 1

q
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exist for 0 < q < s < 2. Let 0 < q < s < 2. For arbitrary finite sequence x = (xk)n
k=1 ⊂

E , we put

t(s,q) (x) = c−1
sq ·

(∫
Rn

∥∥∥∥∥
n

∑
k=1

tk · xk

∥∥∥∥∥
q

dμn
s (t)

) 1
q

,

where t = (t1, . . . ,tn) ∈ Rn and μn
s stand for the n -fold product of s-stable laws μs .

An operator u : E −→F between Banach spaces is called (s,q)-type if there exists
a constant C such that

t(s,q) (ux) � C‖x|�s(E)‖ (4.6)

for arbitrary finite sequences x = (x j) j in E ; k = 1, . . . ,n and n∈N . We put T(s,q)(T )=
infC .

The class of these operators is represented by T(s,q) . The following proposition
can be proved as in [14, Corollary 4.3].

PROPOSITION 4.9. Let 0 < q < s < 2 and 0 � θ < 1 . If the Lipschitz dual oper-
ator T # : Y # −→ X# of the map T ∈ Lip(X ,Y ) is of (s,q)-type, then T is a Lipschitz
(s;q,θ ) -mixing map. Moreover

mL,θ
(s;q)(T ) � Lip(T )θ ·T(s,q)(T

#)1−θ .

5. A quotient Lipschitz theorem

We generalize the concept of quotients Lipschitz ideals between arbitrary metric
spaces and Banach spaces presented by the third author in [13, Sec.4.5], to quotients
Lipschitz ideals between arbitrary metric spaces. As an example, we show that the
concept of (s;q,θ ) -mixing maps provides a Lipschitz extension of quotient theorem.
We start by recalling the necessary theory of Lipschitz operator ideals (see [3, 13]) and
then introducing the main definition.

DEFINITION 5.1. A Lipschitz operator ideal ILip is a subclass of Lip such that
for every pointed metric space X and every Banach space E the components

ILip(X ,E) := Lip(X ,E)∩ILip

satisfy:
(i) ILip(X ,E) is a linear subspace of Lip(X ,E) .
(ii) vg ∈ ILip(X ,E) for v ∈ E and g ∈ X# .
(iii) The ideal property: if S ∈ Lip(Y,X) , T ∈ ILip(X ,E) and w ∈L (E,F) , then

the composition w◦T ◦ S is in ILip(Y,F) .
A Lipschitz operator ideal ILip is a normed (Banach) Lipschitz operator ideal if

there is ‖.‖ILip
: ILip −→ [0,+∞[ that satisfies

(i’) For every pointed metric space X and every Banach space E , the pair
(ILip(X ,E),‖.‖ILip

) is a normed (Banach) space and Lip(T ) � ‖T‖ILip for all T ∈
ILip(X ,E) .
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(ii’) ‖IdK : K −→ K, IdK(λ ) = λ‖ILip
= 1.

(iii’) If S ∈ Lip(Y,X) , T ∈ ILip(X ,E) and w ∈ L (E,F), then

‖w◦T ◦ S‖ILip
� Lip(S)‖T‖ILip

‖w‖ .

We say that a Lipschitz operator Banach ideal ILip is strong if, S ∈ Lip(Y,X) ,
T ∈ILip(X ,E) and R∈Lip(E,F), then the composition R◦T ◦S belongs to ILip(Y,F)
and

‖R◦T ◦ S‖ILip
� Lip(S)‖T‖ILip

Lip(R).

Suppose that, for every pair of metric spaces X and Y , the class

L :=
⋃
X ,Y

L (X ,Y )

stands for all Lipschitz maps acting between arbitrary metric spaces X and Y . The
Lipschitz operator ideal between arbitrary metric spaces X and Y as follows.

DEFINITION 5.2. Suppose that, for every pair of metric spaces X and Y , we are
given a subset ILip(X ,Y ) of L (X ,Y ) . The class

ILip :=
⋃
X ,Y

ILip(X ,Y )

is said to be a Lipschitz operator ideal, if the following conditions are satisfied:

(i) If Y = F is a Banach space, then ge ∈ ILip(X ,F) for g ∈ X# and e ∈ F .

(ii) BTA ∈ ILip(X0,Y0) for A ∈ L (X0,X) , T ∈ ILip(X ,Y ) , and B ∈ L (Y,Y0) .

Condition (i) implies that ILip contains nonzero Lipschitz operators.

DEFINITION 5.3. Let ILip be a Lipschitz operator ideal between arbitrary metric
spaces. A Lipschitz map T ∈ Lip(X ,Y ) belongs to the quotient ILip

−1◦ILip if S◦T ∈
ILip(X ,Z) for all S ∈ ILip(Y,Z) , where Z is an arbitrary pointed metric space.

It is not difficult to prove that

PROPOSITION 5.4. ILip
−1◦ILip is a Lipschitz operator ideal between arbitrary

metric spaces.

The proof of the next proposition is similar to [13, Proposition 30] and will be
omitted.

PROPOSITION 5.5. Let ILip be a strong Lipschitz operator Banach ideal. Then,
ILip

−1 ◦ILip is a Lipschitz operator Banach ideal. Moreover, we have

‖T‖I −1
Lip◦ILip

:= sup
{
‖S ◦T‖ILip

: S ∈ ILip(E,F),‖S‖ILip
� 1

}
where F is an arbitrary Banach space.
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Now we are ready to present the main results of this section. In order to prove
this theorem we need the following preliminary results for (q,θ )-absolutely Lipschitz
mapping below was first given by Achour et al. in [2].

DEFINITION 5.6. Let 1 � q < ∞ and 0 � θ < 1. Let X and Y be pointed metric
spaces. A map T ∈ Lip(X ,Y ) is called (q,θ )-absolutely Lipschitz, if there exists a
constant K � 0, a pointed metric space G and a Lipschitz operator S ∈ ΠL

q(X ,G) such
that

d(T (x),T (x′)) � K ·d(S(x),S(x′))1−θ ·d(x,x′)θ

for all x,x′ ∈ X . In this case πL
q,θ (T ) denotes the infimum of all KπL

q (S)1−θ , where
S differs over all Lipschitz p -summing operators defined on X that fulfill the above
condition.

The space of all (q,θ )-absolutely Lipschitz mappings between pointed metric
spaces X and Y is denoted by ΠL

q,θ (X ,Y ) . Recall that the be pointed metric space
X is isometrically embedded in Æ(X) via the mapping δX : X −→Æ(X) given by
δX(x) = mx0 (see [19]) . Let μ be a Borel probability measure on BX# . Consider the

canonical inclusion i :Æ(X) −→ C(BX#) , given by i(
n
∑
j=1

λ jmxjx′j ) :=
n
∑
j=1

λ j〈mxjx′j , ·〉 .
Following [2, Section 4], on i(Æ(X))

‖i(m)‖q,θ := inf
{ n

∑
j=1

∣∣λ j
∣∣d(x j,x

′
j)

θ
(∫

BX#

∣∣ f (x j)− f (x′j)
∣∣p dμ( f )

) 1−θ
q
}

(5.1)

where the infimum is taken over all representations of m of the form m =
n
∑
j=1

λ jmxjx′j .

Consider on i◦ δX(X) the pseudo-metric induced by ‖·‖q,θ :

dq,θ (i◦ δX(x), i◦ δX(x′)) :=
∥∥i◦ δX(x)− i◦ δX(x′)

∥∥
q,θ

and the relation of equivalence R given by

i◦ δX(x) : R : i◦ δX(x′) ⇔ dq,θ (i◦ δX(x), i◦ δX(x′)) = 0.

We put Xμ
q,θ := i◦δX (X)

R and let φ : i(δX (X)) −→ Xμ
q,θ be the projection. The following

results is due to Achour et al. in [2, Theorem 2.4 and Theorem 3.1].

THEOREM 5.7. Let 1 � q < ∞ , 0 � θ < 1 and T ∈ Lip(X ,Y ) . The following
statements are equivalent.

(i) T ∈ ΠL
q,θ (X ,Y ) .

(ii) There is a constant C � 0 and a regular Borel probability measure μ on BX#

such that

d(T (x),T (x′)) � C

(∫
BX#

(
| f (x)− f (x′)|1−θ d(x,x′)θ

) q
1−θ

dμ ( f )

) 1−θ
q

for all x,x′ ∈ X .
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(iii) There is a constant C � 0 such that for all (xi)n
i=1,(x

′
i)

n
i=1 in X and all (ai)n

i=1 ⊂
R+ we have

(
n

∑
i=1

aid(T (xi),T (x′i))
q

1−θ

) 1−θ
q

� C sup
f∈BX#

(
n

∑
i=1

ai

(
| f (xi)− f (x′i)|1−θ d(xi,x

′
i)

θ
) q

1−θ

) 1−θ
q

.

(iv) There exists a regular Borel probability measure μ on BX# and a Lipschitz oper-
ator v : Xμ

q,θ → Y such that the following diagram commutes

X
T ��

δX

��

Y

δX(X)
φ◦i �� Xμ

q,θ

v

��

Furthermore, the infimum of the constants C � 0 in (2) and (3) is πL
q,θ (T ) .

THEOREM 5.8. Let 1 < q � s � ∞ , 0 � θ < 1 , C � 0 and let T a Lipschitz
mapping from X to Y . The following are equivalent:

a) For any pointed metric space Z and any (s,θ )-absolutely Lipschitz is mapping
S : Y −→ Z , the composition S ◦ T is (q,θ )-absolutely Lipschitz mapping and
πL

q,θ (S ◦T ) � CπL
s,θ (S) .

b) There is a constant C � 0 such that for any probability measure ν ∈ W (BY #)
there exists μ ∈W (BX#) such that for every x′,x′′ in X .

inf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
∑
j=1

[ ∫
BY#

∣∣λ j
∣∣ s

1−θ

∣∣∣∣〈g,y′j
〉

(Y #,Y )
−
〈
g,y′′j

〉
(Y #,Y )

∣∣∣∣
s

dY (y′j,y′′j )
θ s

1−θ dν(g)
] 1−θ

s

: mTx′Tx′′ =
n
∑
j=1

λ jmy′jy′′j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

� C · inf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
∑
j=1

[ ∫
BX#

∣∣∣λ ′
j

∣∣∣ q
1−θ

∣∣∣∣〈 f ,x′j
〉

(X#,X)
−
〈

f ,x′′j
〉

(X#,X)

∣∣∣∣
q

dX(x′j,x′′j )
θq

1−θ dμ( f )
] 1−θ

q

: mx′x′′ =
n
∑
j=1

λ ′
jmx′jx′′j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.2)

c) T is (s,q,θ )-mixing Lipschitz with mL,θ
(s;q)(T ) � C.

Furthermore, the infimum of the constants C in either (a), (b) or (c) is mL,θ
(s;q)(T ) .
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Proof. (a)=⇒(b) Let ν be a probability measure on BY# . By using (iv) in Theo-
rem 5.7 we get a (s,θ )-absolutely Lipschitz operator Jθ

ν = φ ◦ i◦ δY : Y −→ Y ν
q,θ with

πL
s,θ (Jθ

ν ) � 1. Hence, from (a), the composition Jθ
ν ◦T is (q,θ )-absolutely Lipschitz

map with

πL
q,θ (Jθ

ν ◦T ) � C.πL
s,θ (Jθ

ν ) � C.

By the Lipschitz Pietsch Domination Theorem (ii) in Theorem 5.7, there is a probability
measure μ on BX# such that for all x′ , x′′ in X ,

∥∥∥Jθ
ν (Tx′)− Jθ

ν (Tx′′)
∥∥∥

s,θ

� πL
q,θ (Jθ

ν ◦T )
[ ∫
BX#

(∣∣ f (x′)− f (x′′)
∣∣1−θ

dX(x′,x′′)θ
) q

1−θ
dμ( f )

] 1−θ
q

i.e.

ds,θ (i◦ δY (Tx′), i◦ δX(Tx′′)) = ‖i(mTx′Tx′′)‖s,θ

� C

[ ∫
BX#

(∣∣ f (x′)− f (x′′)
∣∣1−θ

dX(x′,x′′)θ
) q

1−θ
dμ( f )

] 1−θ
q

.

Therefore, by (5.1), we get

‖i(mTx′Tx′′)‖s,θ

= inf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
∑
j=1

∣∣λ j
∣∣dY (y′j,y′′j )θ

[ ∫
BY#

∣∣∣∣〈g,y′j
〉

(Y #,Y )
−
〈
g,y′′j

〉
(Y#,Y )

∣∣∣∣
s

dν(g)
] 1−θ

s

: mTx′Tx′′ =
n
∑
j=1

λ jmy′jy′′j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

We conclude that

inf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
∑
j=1

[ ∫
BY#

∣∣λ j
∣∣ s

1−θ

∣∣∣∣〈g,y′j
〉

(Y #,Y )
−
〈
g,y′′j

〉
(Y#,Y )

∣∣∣∣
s

dY (y′j,y′′j )
θ s

1−θ dν(g)
] 1−θ

s

: mTx′Tx′′ =
n
∑
j=1

λ jmy′jy′′j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

� C

[ ∫
BX#

(∣∣ f (x′)− f (x′′)
∣∣1−θ

dX(x′,x′′)θ
) q

1−θ
dμ( f )

] 1−θ
q

. (5.3)

Let mx′x′′ =
n
∑
j=1

λ ′
jmx′jx′′j , so the second part of inequality (5.3) becomes as follows
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C

[ ∫
BX#

(∣∣ f (x′)− f (x′′)
∣∣1−θ

dX(x′,x′′)θ
) q

1−θ
dμ( f )

] 1−θ
q

= C

[ ∫
BX#

(
|〈 f ,mx′x′′)〉|1−θ ‖mx′x′′ ‖θ

) q
1−θ

dμ( f )
] 1−θ

q

(∗)
= C

[ ∫
BX#

⎛
⎝
∣∣∣∣∣
〈

f ,
n

∑
j=1

λ ′
jmx′j ,x′′j )

〉∣∣∣∣∣
1−θ ∥∥∥∥∥

n

∑
j=1

λ ′
jmx′jx′′j

∥∥∥∥∥
θ
⎞
⎠

q
1−θ

dμ( f )
] 1−θ

q

.

So, by the triangular inequality

(∗) � C

[ ∫
BX#

[
(

n

∑
j=1

∣∣λ ′
j

∣∣)1−θ
∣∣∣〈 f ,mx′j x′′j )

〉∣∣∣1−θ
(

n

∑
j=1

∣∣λ ′
j

∣∣)θ
∥∥∥mx′jx′′j

∥∥∥θ
] q

1−θ
dμ( f )

] 1−θ
q

= C

[ ∫
BX#

(
n

∑
j=1

∣∣λ ′
j

∣∣ ∣∣∣〈 f ,mx′j x′′j )
〉∣∣∣1−θ ∥∥∥mx′jx′′j

∥∥∥θ
) q

1−θ

dμ( f )
] 1−θ

q

� C
n

∑
j=1

[ ∫
BX#

∣∣λ ′
j

∣∣ q
1−θ

∣∣∣〈 f ,mx′jx′′j )
〉∣∣∣q∥∥∥mx′jx′′j

∥∥∥ θq
1−θ

dμ( f )
] 1−θ

q

= C
n

∑
j=1

[ ∫
BX#

∣∣λ ′
j

∣∣ q
1−θ

∣∣∣〈 f ,x′j
〉
(X#,X) −

〈
f ,x′′j

〉
(X#,X)

∣∣∣q dX(x′j,x
′′
j )

θq
1−θ dμ( f )

] 1−θ
q

.

Taking the infimum over all representations of mx′x′′ , we get

(∗)�C · inf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
∑
j=1

[ ∫
BX#

∣∣∣λ ′
j

∣∣∣ q
1−θ

∣∣∣∣〈 f ,x′j
〉

(X#,X)
−
〈

f ,x′′j
〉

(X#,X)

∣∣∣∣
q

dX(x′j,x′′j )
θq

1−θ dμ( f )
] 1−θ

q

: mx′x′′ =
n
∑
j=1

λ ′
jmx′jx′′j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

By (5.3) and (∗) we have the condition (b).
(b)=⇒(c) Let σ in R and x′,x′′ in X . Therefore, for all ε > 0, there exists a

representation of mxx′ and mTx′Tx′′ such that( m

∑
j=1

[ ∫
BY#

∣∣σ j
∣∣ s

1−θ
∣∣∣〈g,Tx′j

〉
(Y #,Y )−

〈
g,Tx′′j

〉
(Y #,Y )

∣∣∣s dY (Tx′j,Tx′′j )
θ s

1−θ dν(g)
] q

s
) 1−θ

q

< C ·
[ m

∑
j=1

∫
BX#

∣∣σ j
∣∣ q

1−θ
∣∣∣〈 f ,x′j

〉
(X#,X) −

〈
f ,x′′j

〉
(X#,X)

∣∣∣q dX(x′j,x
′′
j )

θq
1−θ dμ( f )

] 1−θ
q

+ ε

� C ·δL
q,θ (σ ,x′,x′′)+ ε. (5.4)
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Letting ε −→ 0 and taking the supremum over all ν ∈W (BY#) on the left side of (5.4),
we get

mL
(s;q,θ)(σ ,Tx′,Tx′′) � C ·δL

q,θ (σ ,x′,x′′).

(c)=⇒(a) Assume that T is a Lipschitz (s;q,θ ) -mixing map. Then, by Proposition
4.3, we have

[
m

∑
j=1

[ ∫
BY#

∣∣σ j
∣∣ s

1−θ
∣∣g(Tx′j)−g(Tx′′j )

∣∣s dY (Tx′j,Tx′′j )
θ s

1−θ dν(g)
] q

s
] 1−θ

q

� mL,θ
(s;q)(T ) ·δL

q,θ (σ ,x′,x′′). (5.5)

Now, let S :Y −→ Z be a (s,θ )-absolutely Lipschitz mapping. By the Lipschitz Pietsch
Domination theorem (ii) in Theorem 5.7, there is a probability measure ν on BY# such
that for all y′ , y′′ in Y ,

dZ(Sy′,Sy′′) � πL
s,θ (S)

⎡
⎢⎣∫
BY#

(∣∣g(y′)−g(y′′)
∣∣1−θ

dY (y′,y′′)θ
) s

1−θ
dν(g)

⎤
⎥⎦

1−θ
s

.

Then

[
m

∑
j=1

∣∣σ j
∣∣ q

1−θ dZ(Sy′j,Sy′′j )
q

1−θ

] 1−θ
q

� πL,θ
s (S)

⎡
⎢⎢⎣ m

∑
j=1

∣∣σ j
∣∣ s

1−θ

⎛
⎜⎝∫

BY#

(∣∣g(y′j)−g(y′′j )
∣∣1−θ

dY (y′j,y
′′
j )

θ
) s

1−θ
dν(g)

⎞
⎟⎠

q
s
⎤
⎥⎥⎦

1−θ
q

(5.6)

for all σ1, . . . ,σm ∈ R , x′1, . . . ,x
′
m,x′′1 , . . . ,x

′′
m ∈ X and m ∈ N . Then, from the inequali-

ties (5.6) and (5.5), we have

[
m

∑
j=1

∣∣σ j
∣∣ q

1−θ dZ
(
S ◦T(x′j),S ◦T(x′′j )

) q
1−θ

] 1−θ
q

� πL,θ
s (S) ·mL,θ

(s;q)(T ) ·δL
qθ (σ ,x′,x′′).

(5.7)
Hence S ◦T is (q,θ )-absolutely Lipschitz map with

πL
q,θ (S ◦T ) � πL

s,θ (S) ·mL,θ
(s;q)(T ). (5.8)

�

As immediate consequence of the above theorem, the following corollary holds.
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COROLLARY 5.9. Let 1 � q < ∞ and 0 � θ < 1. Then

ML,θ
(s;q)(X ,Y ) = ΠL

s,θ (Y,Z)−1 ◦ΠL
q,θ (X ,Z)).

As (q,θ )-absolutely Lipschitz mappings is a strong Banach Lipschitz ideal [2,
Remark 2.7], the above corollary and the Proposition 5.5 given

PROPOSITION 5.10. Let 1 � q,s � ∞ and 0 � θ < 1.

1.
(
ML,θ

(s;q)(X ,E),mL,θ
(s;q)(·)

)
is a strong Lipschitz operator Banach ideal.

2. For any T ∈ Lip(X ,Y ) , mL,θ
(s;q)(T ) = Lip(T ) whenever s � p and mL,θ

(∞;q)(T ) =
πL

q,θ (T ) , so only the case 1 � q < s < ∞ gives something new.

The main relationship between the Lipschitz (s,q)-mixing and the Lipschitz
(s,q,θ )-mixing mappings is the following.

PROPOSITION 5.11. Every Lipschitz (s,q)-mixing map T : X −→ Y is Lipschitz
(s,q,θ )-mixing and satisfies

mL,θ
(s;q)(S) � Lip(S)θ .mL

(s;q)(S)1−θ .

Proof. Let T ∈ ML
(s;q)(X ,Y ) and 0 � θ < 1. Consider S ∈ ΠL

s,θ (Y,Z) , then by

Definition 5.6 there exists an S0 ∈ ΠL
s (Y,Z0) satisfying

d(S(y),S(y′)) � Kd(S0(y),S0(y′))1−θ d(y,y′)θ (5.9)

for all y,y′ ∈ Y and

πL
s,θ (S) = inf

{
K.πL

s (S0)1−θ
}

(5.10)

We show that S ◦T ∈ ΠL
q,θ (X ,Z). For all x,x′ ∈ X , then from (5.9) we have

d(S ◦T (x),S ◦T (x′))
� Kd (S0 ◦T (x),S0 ◦T(x′))1−θ d(T (x),T (x′))θ

� K.Lip(T )θ .d(R(x),R(x′))1−θ d(x,x′))θ ,

where R = S0 ◦T .
Since T ∈ ML

(s;q)(X ,Y ) it follows that R = S0 ◦T ∈ ΠL
q(X ,Z) (see [5]) and

πL
q (R) � mL

(s;q)(T ).πL
s (S0) .

Again, by the Definition 5.6, S ◦T is (q,θ )-absolutely Lipschitz and

πL
q,θ (S ◦T) � K.Lip(T )θ .πL

q (R)1−θ

� Lip(T )θ .mL
(s;q)(T )1−θ .(K.πL

s (S0)
1−θ ).
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Taking the infimum on both sides over all S0 ∈ ΠL
s (Y,Z0) and K � 0 satisfying (5.9),

we get

πL
q,θ (S ◦T ) � Lip(T )θ .mL

(s;q)(T )1−θ .πL
s,θ (S).

Then by (1) in Theorem 5.8 we have T ∈ ML,θ
(s;q)(X ,Y ) with

mL,θ
(s;q)(T ) � Lip(T )θ .mL

(s;q)(T )1−θ . �

In [6] vector valued molecules were naturally considered. An E -valued molecule
on X is a finitely supported map m : X −→ E such that ∑x∈X m(x) = 0. The vector
space of all E -valued molecules on X is designated by M (X ,E) . Let 1 � r < ∞ such
that r∗ = p∗

1−θ , for a molecule m ∈ M (X ,E) , the (p,θ )-Chevet-Saphar norm is given
by

csp,θ (m)= inf
{∥∥(λ j

∥∥v j
∥∥)n

j=1

∥∥
r
δLip

p∗,θ

(
(λ−1

j ,x j,x
′
j)

n
j=1

)
: m =

n

∑
j=1

v jmxjx′j ,λ j > 0
}
.

We denote by CSp,θ (X ,E) the space M (X ,E) endowed with the norm csp,θ . By [2,
Theorem 3.3] the spaces CSp,θ (X ,E)∗ and ΠL

p∗,θ (X ,E∗) are isometrically isomorphic
via the canonical pairing,

〈m,S〉 =
n

∑
j=1

〈
v j,S(x j)−S(x′j)

〉
. (5.11)

Following [6], recall that for any Banach space G , the Lipschitz mapping S : X →
Y induces a well-defined linear mapping SG : M (X ,G) → M (Y,G) given by

SG(
n

∑
j=1

v jmxjx′j ) =
n

∑
j=1

v jmS(x j)S(x′j).

The following theorem can be proved as in [5].

THEOREM 5.12. Let 1 � p < ∞ , 0 � θ < 1 and S ∈ Lip(X ,Y ) . The following
statements are equivalent.

1. S is Lipschitz (s, p,θ )-mixing map.

2. For every Banach space G, the operator

SG : CSp∗,θ (X ,G) →CSs∗,θ (Y,G)

is continuous and
∥∥SG : CSp∗,θ (X ,G) →CSs∗,θ (Y,G)

∥∥� mL,θ
(s;p)(S) .
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Proof. The necessity condition, suppose that S is a Lipschitz (s, p,θ )-mixing
map. Let ϕ ∈ C S s∗,θ (Y,G)∗ with ‖ϕ‖ � 1. Since CS s∗,θ (Y,G)∗ ≡ ΠL

s,θ (Y,G∗)
by [2, Theorem 3.3], we can identify ϕ with a map Lϕ ∈ ΠL

s,θ (Y,G∗) with πL
s,θ (Lϕ ) =

‖ϕ‖ � 1. Let m be a G−valued molecule on X , say m =
m
∑
j=1

v jmx′jx′′j with x′j,x′′j ∈ X

and v j ∈ G . Then SG (m) =
m
∑
j=1

v jmSx′jSx′′j . The pairing formula defined in (5.11), the

Hölder inequality ( 1
r∗ + 1−θ

p = 1) and Theorem 5.8 naturally come together to give us

〈ϕ ,SG (m)〉 =
m

∑
j=1

〈
Lϕ(Sx′j)−Lϕ(Sx′′j ),v j

〉
=
〈
Lϕ ◦ S,m

〉
.

Hence

|〈ϕ ,SG(m)〉| � mL,θ
(s;p)(S) ·δL

p,θ
( 1

σ
,x′,x′′

) ·∥∥∥σ · ‖v‖
∣∣∣�r∗

∥∥∥ . (5.12)

Taking the infimum over all representations of m and σ ⊂R on the right side of (5.12)
and the supremum over all such ϕ on the left side of (5.12), we have

sup
ϕ∈BCS s∗,θ (Y,G)∗

|〈ϕ ,SG (m)〉| � mL,θ
(s;p)(S) · csp∗,θ (m). (5.13)

Then css∗,θ (SG (m)) � mL,θ
(s;p)(S) · csp∗,θ (m) and ‖SG‖ � mL,θ

(s;p)(S) .
The sufficient condition, suppose that SG :CSp∗,θ (X ,G)→CSs∗,θ (Y,G) is a boun-

ded linear operator. Let T :Y →G∗ be a (s,θ )-absolutely Lipschitz operator. It suffices
to show that T ◦ S ∈ ΠL

p,θ (X ,G∗). Assume m is an G−valued molecule on X , say

m =
m
∑
j=1

v jmx′jx′′j with x′j,x′′j ∈ X and v j ∈ G . Then

〈T ◦ S,m〉 =
m

∑
j=1

〈
v j,(T ◦ S)x′j− (T ◦ S)x′′j

〉
=

〈
T,

m

∑
j=1

v jmSx′jSx′′j

〉
= 〈T,SG(m)〉 .

By the duality between the (s,θ )-absolutely norm and the (s∗,Θ)-Chevet-Saphar norm,
together with the boundedness of SG,

|〈T ◦ S,m〉| = |〈T,SG(m)〉|
� πL

s,θ (T ).css∗,θ (SG(m))
� πL

s,θ (T ).‖SG‖ .csp∗,θ (m).

Therefore, from the duality between csp∗,θ (.) and πL
p,θ (.) after taking the supremum

over all molecules m with csp∗,θ (.) � 1 on both sides above, we obtain

πL
p,θ (T ◦ S) � ‖SG‖ .πL

s,θ (T ).

By Theorem 5.8 we get that S is Lipschitz (s, p,θ )-mixing map with

mL,θ
(s;p)(S) � ‖SG‖ . �
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[5] J. A. CHÁVEZ-DOMÍNGUEZ,Lipschitz (q, p) -mixing operators, Proc. Amer. Math. Soc. 140 (2012),
3101–3115.
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University of M’sila
28000 M’sila, Algeria

e-mail: dachourdz@yahoo.fr

Elhadj Dahia
Laboratoire d’Analyse Fonctionnelle et Géométrie des Espaces
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