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Abstract. In the paper we study one-dimensional Dirac operator

Dy = By′ +P(x)y, y = (y1, y2)T ,

where B =
(

0 1
−1 0

)
, P(x) = diag(p(x),q(x)) , p(x) and q(x) are complex valued functions

from the class L1(G) , G = (0,2π) .
Necessary and sufficient conditions of Bessel property and unconditional basicity (the

Riesz basicity) of the system of root-functions of the operator D in L2
2(G) are set up. A theorem

on equivalent basicity for these systems in L2
2(G) is proved.

1. Introduction and statement of results

In the paper we study Bessel property and basicity of the system of root vector-
functions of one-dimensionalDirac operator with summable coefficient (potential). The
root vector-functions are understood in generalized representation, i.e. without regard
to boundary conditions (see [8]). Under this sense of root functions, necessary and
sufficient conditions of unconditional basicity in L2 of the system conditions of uncon-
ditinal basicity in L2 of the system of root functions of the operator Lu = −u′′+q(x)u
were first set up by V. A. Il’in in [8]. Further, in the papers [2, 11, 13, 14, 15, 21, 28]
these and other issues were studied for an ordinary differential operator of arbitrary or-
der, and the criteria of Bessel property, Riesz property and unconditional basicity were
set up. Criterion of Bessel property and unconditional basicity for the Dirac operator
with the potential P(x) ∈ L2(G) were set up in the paper [16]. The papers [3, 17, 18,
19, 20] were devoted to componentwise uniform equiconvergence on a compact, uni-
form convergence, the Riesz property of the system of root vector functions of the Dirac
operator.

Rich references [1, 4, 5, 7, 12, 23, 24, 25, 26, 27, 29] deal with properties of
basicity and other spectral properties of root vector-functions of the Dirac operator
(with boundary conditions). In the paper [29] the Riesz basicity is set up in the case
when the potential belongs to the class L2 and boundary conditions are separated. The
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case with regular boundary conditions and with potential from the class L2 was studied
in the paper [5]. The Riesz basicity from subspaces, and in the case of strongly regular
boundary conditions the Riesz basicity is proved. The Dirac operator with a potential
from Lp , p � 1 was studied in the papers [26], [27] and the Riesz basicity was proved
for the case of strongly regular boundary conditions while in the case of regular (but
not strongly regular) boundary conditions, the Riesz basicity from subspaces is proved.

Let L2
p(G) , p � 1, G = (0,2π) be the space of two-component vector-functions

f (x) = ( f1(x), f2(x))
T with the norm

‖ f‖p = ‖ f‖p,2 =
{∫

G
| f (x)|p dx

} 1
p

=

⎧⎨
⎩
∫

G

(
n

∑
i=1

| fi(x)|2
) p

2

dx

⎫⎬
⎭

1
p

.

In the case p = ∞ the norm is defined by the equality ‖ f‖∞ = ‖ f‖∞,2 = sup
x∈G

vrai | f (x)| .

For f (x) ∈ L2
p(G) , g(x) ∈ L2

q(G) , p−1 +q−1 = 1, 1 � p � ∞, there exist ( f ,g) =∫
G ∑2

j=1 f j(x)g j(x)dx .
Let us consider one-dimensional Dirac operator

Dy = By′ +P(x)y, y(x) = (y1(x), y2(x))
T , x ∈ G = (0,2π) ,

where B =
(

0 1
−1 0

)
, P(x) = diag(p(x),q(x)) , p(x) and q(x) are complex-valued

functions from the class L1(G) .
Following [8] we will understand the root vector-functions of the operator D

without regard to the form of boundary conditions, more exactly under eigen vector-
function of the Dirac operator D responding to the eigen value λ , we will understand

any identically nonzero two-component vector-function
0
y(x) that is absolutely con-

tinuous on G and almost everywhere in G satisfies the equation D
0
u = λ

0
u . Under

the associated vector-function of order � , � � 1 responding to the same λ and as-

sociated vector-function
0
y(x) , we will understand any two-component vector-function

�
y(x) that is absolutely continuous G and almost everywhere in G satisfies the equation

D
�
y = λ

�
y+

�−1
y .

Let {uk(x)}∞
k=1 be an arbitrary system comprised from the root vector-functions

of the operator D , {λk}∞
k=1 be the appropriate system of eigen values. Furthermore, the

vector-function uk(x) is included into the system {uk(x)}∞
k=1 together with appropriate

associated vector-functions of less order.

DEFINITION 1.1. The system {ϕk(x)}∞
k=1 ⊂ L2

2 (G) is said to be Bessel if there
exists a constant M such that for any vector-function f (x) ∈ L2

2(G) the equality

∞

∑
k=1

|( f ,ϕk)|2 � M‖ f‖2
2,2

is fulfilled.
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DEFINITION 1.2. The system {ϕk(x)}∞
k=1 ⊂ L2

2 (G) is quadratically close to the

system {ψk(x)}∞
k=1 ⊂ L2

2 (G) if
∞
∑

k=1
‖ϕk −ψk‖2

2,2 < ∞ .

DEFINITION 1.3. Two sequences of elements in Hilbert space H are equivalent
if there exists an operator H that is linear bounded and boundedly inversible in H and
takes one of these sequences to another one.

In the paper the following theorems are proved.

THEOREM 1.4. (Criterion of Bessel property) Let P(x) ∈ L1(G) , the lengths of
the chains of root vector-functions be uniformly bounded and there exist a constant C0

such that
|Imλk| � C0, k = 1,2, . . . . (1.1)

Then for the Bessel property of the system
{

uk(x)‖uk‖−1
2

}∞

k=1
in L2

2 (G) it is nec-

essary and sufficient the existence of a constant M1 such that

∑
|Reλk−τ|�1

1 � M1, (1.2)

where τ is an arbitrary real number.

REMARK 1.5. In sufficient part of theorem 1.4 the condition of uniform bound-
edness of the length of chains of root vector-functions is fulfilled in all cases, because
it follows from inequality (1.2).

Let D∗ be an operator formally associated to the operator D :

D∗ = B
d
dx

+P∗(x).

Let {ϑk(x)}∞
k=1 be a system biorthogonally associated to {uk(x)}∞

k=1 in L2
2 (G)

and consists of the root vector-functions of the operator D∗ .

THEOREM 1.6. (On unconditional basicity) Let P(x) ∈ L1(G) , the lengths of the
chains of root vector-functions be uniformly bounded, one of the systems {uk(x)}∞

k=1
and {ϑk(x)}∞

k=1 be complete in L2
2 (G) and condition (1.1) be fulfilled. Then necessary

and sufficient condition for unconditional basicity in L2
2 (G) of each of these systems is

the existence of constants M1 and M2 that ensure validity of inequality (1.2) and

‖uk‖2 ‖ϑk‖2 � M2, k = 1,2, . . . (1.3)

Note that under the conditions of theorem 1.5 satisfaction of inequalities (1.2) and
(1.3) is the necessary and sufficient condition for Riesz basicity of each of the systems{

uk(x)‖uk‖−1
2

}∞

k=1
and

{
ϑk(x)‖ϑk‖−1

2

}∞

k=1
in L2

2 (G) .
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THEOREM 1.7. (On basicity) Let P(x) ∈ L1(G) , the lengths of the chains of root
vector-functions be uniformly bounded, condition (1.1)–(1.3) be fulfilled and the sys-

tem
{

uk(x)‖uk‖−1
2

}∞

k=1
be quadratically close to some basis {ψk(x)}∞

k=1 of the space

L2
2 (G) . Then the systems

{
uk(x)‖uk‖−1

2

}∞

k=1
and {ϑk(x)‖uk‖2}∞

k=1 are the bases in

L2
2 (G) , and they are equivalent to the basis {ψk(x)}∞

k=1 and its biorthogonally associ-
ated system, respectively.

REMARK 1.8. Theorems 1.4, 1.5, and 1.6 remain valid also in the case when
P(x) ∈ L1(G) is an arbitrary but not necessarily a diagonal matrix-function.

2. Some auxiliary statements

Cite some necessary statements that will be used when proving theorems 1.4–1.6.

STATEMENT 2.1. (see [16]) If p(x) and q(x) belong to the class L�oc
1 (G) and

the points x− t , x , x+ t are in the domain G, then the following formulas are valid for
the root vector-function uk(x):

uk(x± t) = (cosλkt · I∓ sinλkt ·B)uk(x)+
∫ x±t

x
(sinλk (t−|ξ − x|) I

±cosλk (t−|ξ − x|)B) [P(ξ )uk(ξ )−θkuk−1(ξ )]dξ ; (2.1)

uk(x− t)+uk(x+ t) = 2uk(x)cosλkt +
∫ x+t

x−t
(sinλk(t −|ξ − x|)I

+sgn(ξ − x)cosλk(t −|x− ξ |)B) [P(ξ )uk(ξ )−θkuk−1(ξ )]dξ ,

(2.2)

where I is a unit operator in E2 ; θk = 0, if uk(x) is an eigen vector-function; θk = 1, if
uk(x) is an associated vector-function, and in the last case it is assumed that λk = λk−1 .

STATEMENT 2.2. (see [16]) Let the functions p(x) and q(x) belong to the class
L1(G) . Then there exist the constants Gi(nk,G) , i = 1,2, independent of λk, such that
the following estimates are valid

‖θkuk−1‖∞ � C1 (nk,G)(1+ |Imλk|)‖uk‖∞ , (2.3)

‖uk‖∞ � C2 (nk,G)(1+ |Imλk|)
1
r ‖uk‖r , (2.4)

where nk is the order of the associated vector-function uk , r � 1 .
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3. Proof of the Bessel property criterion

In this section of the paper we will prove theorem 1.4 on Bessel property of root
vector-function of Dirac’s operator.

Necessity. Let us fix an arbitrary number τ ∈ (−∞,+∞) and introduce the in-
dices set Jτ = {k : |Reλk − τ| � 1, |Imλk| � C0} , where C0 is a constant from condi-

tion (1.1). Choose a number n0 � 1 so that R =
(
n0(1+C0)

3
2

)−1
� mesG

4 = π
2 and for

any set E ⊂ G , mesE � 2R , the following inequality be fulfilled:

ω(R) = sup
E⊂G

{
‖P‖1,E

}
� L−1 , where ‖P‖1,E =

∫
E {|p(x)|+ |q(x)|}dx ,

L is a positive number and choice of its value will be defined later.
Let k ∈ Jτ , x ∈ [0,π ] . Write the mean value formula (2.2) for the points x , x+ t ,

x+2t, where t ∈ [0,R] :

uk(x) = 2uk(x+ t)cosλkt−uk (x+2t)+
∫ x+2t

x
(sinλk(t −|x+ t− ξ |)I

+sgn(ξ − x− t)cosλk(t −|x+ t− ξ |)B)[P(ξ )uk(ξ )−θkuk−1(ξ )]dξ .

Adding and subtracting 2uk(x + t)cosτt in the right hand side of this equality, and
using the operation R−1 ∫ R

0 dt we get

uk(x) =
2
R

∫ R

0
uk(x+ t)cosτtdt− 1

R

∫ R

0
uk (x+2t)dt

+
4
R

∫ R

0
uk (x+ t)sin

λk + τ
2

t sin
τ −λk

2
tdt

+
1
R

∫ R

0

∫ x+2t

x
(sinλk(t−|x+ t− ξ |)I

+sgn(ξ − x− t)cosλk(t−|x+ t− ξ |)B) [P(ξ )uk(ξ )−θkuk−1(ξ )]dξdt.

Having used formula (2.1) in the third addend, we have

uk(x) = R−1
∫ 2π

0
uk(t)w(t)dt +4R−1

∫ R

0
(cosλktI− sinλktB)

×sin
λk + τ

2
t sin

τ −λk

2
tdtuk(x)+4R−1 ·

∫ R

0

∫ x+t

x
(sinλk(t−|x+ t− ξ |)I

+cosλk (t−|ξ − x|) B) · [P(ξ )uk(ξ )−θkuk−1(ξ )]dξ sin
τ + λk

2
t sin

τ −λk

2
tdt

+R−1
∫ R

0

∫ x+2t

x
(sinλk(t−|x+ t− ξ |)I

+cosλk(t −|x+ t− ξ |)B) [P(ξ )uk(ξ )−θkuk−1(ξ )]dξdt

= R−1
∫ 2π

0
uk(t)w(t)dt + I1 + I2 + I3 (3.1)

where w(t) = 2cosτ(x− t)− 1
2 for x � t � x+R , w(t) = − 1

2 for x+R < t � x+2R
and w(t) = 0 for t /∈ [x,x+2R].
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Taking k ∈ Jτ into account and using the inequalities |sinz| � 2, |cosz| � 2 for
|Imz| � 1 and |sinz| � 2 |z| for |Imz| � 1 we find

|I1| � 16R |τ −λk| |uk(x)| � 16R(1+ |Imλk|) |uk(x)|
� 16R(1+C0) |uk(x)| � 16n−1

0 |uk(x)| ;
|I2| � 64

(
ω(R)‖uk(x)‖∞ +

R
2
‖θkuk−1‖∞

)
;

|I3| � 8(ω(R)‖uk(x)‖∞ +R‖θkuk−1‖∞) .

Taking these estimations into account in equality (3.1), we get the inequality

|uk(x)| � R−1

∣∣∣∣
∫ 2π

0
uk(t)w(t)dt

∣∣∣∣+16n−1
0 |uk(x)|+72ω(R)‖uk‖∞ +40R‖θkuk−1‖∞ .

Requiring n0 � 32, hence we find that for x ∈ [0,π ] it is valid

|uk(x)| � 2R−1

∣∣∣∣
∫ 2π

0
uk(t)w(t)dt

∣∣∣∣+144ω(R)‖uk‖∞ +80R‖θkuk−1‖∞ . (3.2)

In the same way, inequality (3.2) is proved in the case x ∈ [π ,2π ] . In this case the
function w(t) is defined in the following way: w(t) = − 1

2 for x− 2R � t < x−R ,
w(t) = 2cosv(x− t)− 1

2 for x−R � t � x , w(t) = 0 for t ∈ [x−2R,x]. Therefore,
inequality (3.2) is fulfilled for any x ∈ [0,2π ] . Having used estimations (2.3) and (2.4),
allowing for 1+ |Imλk| � 1+C0 , from inequality (3.2) we have

|uk(x)| � 2R−1

∣∣∣∣
∫ 2π

0
uk(t)w(t)dt

∣∣∣∣+ [144C2 (nk,G) (1+C0)
1
2 ω(R)

+80RθkC1 (nk,G)c2 (nk,G) (1+C0)
3
2

]
‖uk‖2 .

By uniform boundedness of the length of the chain of the root vectors C2 (nk,G) �
γ1 = const , C1 (nk,G)C2 (nk,G) � γ2 = const . Consequently,

|uk(x)| � 2R−1

∣∣∣∣
∫ 2π

0
uk(t)w(t)dt

∣∣∣∣+ [144γ1(1+C0)
1
2 L−1 +80θkγ2n

−1
0

]
‖uk‖2

Hence, by inequalities |∑m
i=1 ai|2 � m∑m

i=1 |ai|2 we have

|uk(x)|2 ‖uk‖−2
2 � 16

R2

{ ∣∣∣∣
∫ 2π

0
u1

k(t)w(t)dt

∣∣∣∣
2

‖uk‖−2
2 +

∣∣∣∣
∫ 2π

0
u2

k(t)w(t)dt

∣∣∣∣
2

‖uk‖−2
2

}

+4

{(
144γ1(1+C0)

1
2 L−1

)2
+
(
80θkγ2n

−1
0

)2}
,

where uk(t) =
(
u1

k(t),u
2
k(t)
)T

.
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Having applied the Bessel inequality, we get that for any finite set J ⊂ Jτ the
following inequality is fulfilled

∑
k∈J

|uk(x)|2 ‖uk‖−2
2 � 32M

R2 ‖w‖2
2 +4

{(
144γ1(1+C0)

1
2 L−1

)2
+
(
80θkγ2n

−1
0

)2}∑
k∈J

1.

(3.3)
Taking into account ‖w‖2

2 = O(R) and chosing the number n0 so large that

4

{(
144γ1(1+C0)

1
2 L−1

)2
+
(
80γ2n

−1
0

)2}� 1
4π

be fulfilled, from (3.3) we find

∑
k∈J

1 � constR−1 = constn0(1+C0)
3
2 = const.

By arbitrariness of the set J ⊂ Jτ , hence we get inequality (1.2). The part of
necessity of theorem 1.1 is proved.

Sufficiency. Writing the shift formula (2.1) for uk(x + t) for x = 0 and scalarly
multiplying by the vector-function f (t) = ( f1(t), f2(t))

T ∈ L2
2 (0,2π) , we conclude

that for the Bessel inequality to be fulfilled for the system ϕk(t) = uk(t)‖uk‖−1
2 , k =

1,2, . . . , it suffices to set up validity of the following inequalities:

∞

∑
k=1

∣∣∣∣
∫ 2π

0
fi(t)cosλktdt

∣∣∣∣
2 ∣∣ϕ i

k(0)
∣∣2 � C‖ f‖2

2 , i = 1,2; (3.4)

∞

∑
k=1

∣∣∣∣
∫ 2π

0
fi(t)sinλktdt

∣∣∣∣
2 ∣∣ϕ3−i

k (0)
∣∣2 � C‖ f‖2

2 , i = 1,2; (3.5)

∞

∑
k=1

∣∣∣∣
∫ 2π

0
f1(t)

∫ t

0
p(ξ )ϕ1

k (ξ )sinλk (t− ξ )dξdt

∣∣∣∣
2

� C‖ f‖2
2 ; (3.6)

∞

∑
k=1

∣∣∣∣
∫ 2π

0
f1(t)

∫ t

0
q(ξ )ϕ2

k (ξ )cosλk (t− ξ )dξdt

∣∣∣∣
2

� C‖ f‖2
2 ; (3.7)

∞

∑
k=1

∣∣∣∣
∫ 2π

0
f2(t)

∫ t

0
p(ξ )ϕ1

k (ξ )cosλk (t− ξ )dξdt

∣∣∣∣
2

� C‖ f‖2
2 ; (3.8)

∞

∑
k=1

∣∣∣∣
∫ 2π

0
f2(t)

∫ t

0
q(ξ )ϕ2

k (ξ )sinλk (t− ξ )dξdt

∣∣∣∣
2

� C‖ f‖2
2 ; (3.9)

∞

∑
k=1

∣∣∣∣∣θk

∫ 2π

0
fi(t)

∫ t

0

ui
k−1(ξ )
‖uk‖2

sinλk (t− ξ )dξdt

∣∣∣∣∣
2

� C‖ f‖2
2 , i = 1,2; (3.10)

∞

∑
k=1

∣∣∣∣∣θk

∫ 2π

0
fi(t)

∫ t

0

u3−i
k−1(ξ )
‖uk‖2

cosλk (t− ξ )dξdt

∣∣∣∣∣
2

� C‖ f‖2
2 , i = 1,2; (3.11)
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where ϕ i
k(ξ ) = ui

k(ξ )‖uk‖−1
2 .

Prove estimation (3.4). As by estimation (2.4) and conditions (1.1), (1.2)∣∣ϕ i
k (0)

∣∣ =
∣∣ui

k (0)
∣∣‖uk‖−1

2 � ‖uk‖∞ ‖uk‖−1
2

� C2 (nk,G) (1+C0)
1
2 ‖uk‖2 ‖uk‖−1

2 = C2 (nk,G) (1+C0)
1
2 � const,

as by (1.2) the quantity C2 (nk,G) is bounded, then for validity of (3.4) it is sufficient
the following inequality to be fulfilled

∞

∑
k=1

∣∣∣∣
∫ 2π

0
fi(t)cosλktdt

∣∣∣∣
q

� C‖ f‖2
2 . (3.12)

This inequality was set up in the paper [8] provided Reλk � 0, (1.1) and (1.2) for τ � 1.
Hence inequality (3.12) follows for Reλk ∈ (−∞,+∞) , |Imλk|�C0 , as by the theorem
condition (1.2) is fulfilled for any τ ∈ (−∞,+∞) . Inequality (3.5) is set up just in the
same way.

Now let us be convinced in validity of inequalities (3.6)–(3.9). They are proved in
the same way. Therefore we prove only the inequality (3.6). Denote

gi (t,ξ ) =
{

fi(t + ξ ) for 0 � t � 2π − ξ
0, for 2π − ξ < t � 2π ,

i = 1,2,

where ξ ∈ [0,2π ] . Then by estimation (2.4) and conditions (1.1), (1.2), we have

Ik =
∣∣∣∣
∫ 2π

0
f1(t)

∫ t

0
p(ξ )ϕ1

k (ξ )sinλk(t− ξ )dξdt

∣∣∣∣
2

=
∫ 2π

0
f1(t)

∫ t

0
p(ξ )ϕ1

k (ξ )sinλk(t − ξ )dξdt

×
∫ 2π

0
f1(t)

∫ t

0
p(ξ )ϕ1

k (ξ )sinλk(t− ξ )dξdt

=
∫ 2π

0
p(ξ )ϕ1

k (ξ )
∫ 2π

0
g1 (t,ξ )sinλktdtdξ

×
∫ 2π

0
p(τ)ϕ1

k (τ)
∫ 2π

0
g1 (r,τ) sinλkrdrdτ

=
∫ 2π

0

∫ 2π

0
p(ξ )p(τ)ϕ1

k (ξ )ϕ1
k (τ)

∫ 2π

0
g1 (t,ξ )

×sinλktdt ·
∫ 2π

0
g1 (r,τ) sinλkrdrdξdτ

� C2
2 (nk,G) (1+C0)

∫ 2π

0

∫ 2π

0
|p(ξ )| |p(τ)|

×
∣∣∣∣
∫ 2π

0
g1 (t,ξ )sinλktdt

∣∣∣∣
∣∣∣∣
∫ 2π

0
g1 (r,τ) sinλkrdr

∣∣∣∣dξdτ

� const
∫ 2π

0

∫ 2π

0
|p(ξ )| |p(τ)|

∣∣∣∣
∫ 2π

0
g1 (t,ξ )sinλktdt

∣∣∣∣
∣∣∣∣
∫ 2π

0
g1 (r,τ) sinλkrdr

∣∣∣∣dξdτ.
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Hence for an arbitrary natural number N we have

N

∑
k=1

Ik � const
∫ 2π

0

∫ 2π

0
|p(ξ )| |p(τ)|

×
(

N

∑
k=1

∣∣∣∣
∫ 2π

0
g1 (t,ξ )sinλktdt

∣∣∣∣
∣∣∣∣
∫ 2π

0
g1 (r,τ) sinλkrdr

∣∣∣∣
)

dξdτ

� const
∫ 2π

0

∫ 2π

0
|p(ξ )| |p(τ)|‖g1 (·,ξ )‖2 ‖g1 (·,τ)‖2 dξdτ.

Taking into account that ‖g1 (·,ξ )‖2 � ‖ f1‖2 is fulfilled for any fixed ξ ∈ [0,2π ] , we

get
N
∑

k=1
Ik � const ‖p‖2

1 ‖ f1‖2
2 � const ‖ f‖2

2 .

Hence, the validity of inequality (3.5) follows from arbitrariness of the number N .
Prove inequality (3.10). By estimations (2.3), (2.4) and conditions (1.1), (1.2)

θk
∣∣ui

k−1(ξ )
∣∣‖uk‖−1

2 � θkC1 (nk,G)C2 (nk,G) (1+C0)
3
2

‖uk‖2 ‖uk‖−1
2 = θkC1 (nk,G)C2 (nk,G) � C = const.

After changing the order of integration, the left hand side of (3.10) with regard to
the last inequality is majorized from above with the series

C
∞

∑
k=1

∫ 2π

0

∣∣∣∣
∫ 2π

0
gi (t,ξ )sinλktdt

∣∣∣∣
2

dξ .

This series converges and its some does not exceed the value C‖ f‖2
2 . The validity of

inequality (3.10) is proved. Inequality (3.11) is proved just in the same way. Theorem
1.4 is completely proved. �

4. Proof of theorems 1.2 and 1.3

Proof of theorem 1.5. Necessity. Let the systems {uk(x)}∞
k=1 and {ϑk(x)}∞

k=1
form an unconditional basis in L2

2 (G) . According to Lorch’s theorem [22] the systems,{
uk(x)‖uk‖−1

2

}∞

k=1
and

{
ϑk(x)‖ϑk‖−1

2

}∞

k=1
are the Riesz basis in L2

2 (G) . Then by N.

K. Barri’s theorem [6, pp. 347–375] the series

∞

∑
k=1

|( f ,uk)|2 ‖uk‖−2
2 ,

∞

∑
k=1

|(g,ϑk)|2 ‖ϑk‖−2
2

converge for any f (x),g(x) from the class L2
2 (G) . Since the Bessel property of the sys-

tems
{

uk(x)‖uk‖−1
2

}∞

k=1
and

{
ϑk(x)‖ϑk‖−1

2

}∞

k=1
follows from convergence of these

series (see [9], pp. 433–435), then necessity of condition (1.2) follows from theorem
1.4. The necessity of condition (1.3) is known well not only for unconditional but for
ordinary basicity of the arbitrary system {uk(x)}∞

k=1 as well (see [6], p. 370).
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Sufficiency. Let conditions (1.1)–(1.3) be fulfilled, and the system {uk(x)} be com-

plete in L2
2 (G) . By theorem 1.4, the systems

{
uk(x)‖uk‖−1

2

}∞

k=1
and

{
ϑk(x)‖ϑk‖−1

2

}∞

k=1
are Bessel in L2

2 (G) .
As conditions (1.3) are fulfilled, then for arbitrary g(x) ∈ L2

2 (G)

∞

∑
k=1

|(g,ϑk ‖uk‖2)|2 � M2

∞

∑
k=1

∣∣∣(g,ϑk ‖ϑk‖−1
2 )
∣∣∣2 � const ‖g‖2

2 .

Therefore, the systems
{

uk(x)‖uk‖−1
2

}∞

k=1
and {ϑk(x)‖uk‖2}∞

k=1 are Bessel in L2
2 (G) .

Prove the unconditional basicity of the system {uk(x)}∞
k=1 . Let Pn f =

n
∑

k=1
( f ,ϑk)uk(x) ,

n = 1,2, . . . . Then

‖Pn f‖2 = sup
‖g‖2=1

|(Pn f ,g)| = sup
‖g‖2=1

∣∣∣∣∣
n

∑
k=1

|( f ,ϑk) (uk,g)|
∣∣∣∣∣

� sup
‖g‖2=1

n

∑
k=1

|( f ,ϑk ‖uk‖2)|
∣∣∣(g,uk ‖uk‖−1

)∣∣∣� const ‖ f‖2 .

Consequently, the sequence {Pn f} is uniformly bounded. Then by the theorem
on bases (see [10, p. 11]), the system {uk(x)}∞

k=1 is a basis in L2
2 (G) . It will be an

unconditional basis as well by the Bessel property of the systems
{

uk(x)‖uk‖−1
2

}∞

k=1
and {ϑk(x)‖uk‖2}∞

k=1 in L2
2 (G) . The system {ϑk(x)}∞

k=1 is also an unconditional basis
in L2

2 (G) , because it is a system biorthogonally associated to {uk(x)}∞
k=1 Theorem 1.5

is proved. �

Proof of theorem 1.6. As the system {ϑk(x)}∞
k=1 consists of root vector-functions

of the operator D∗ = B d
dx +P∗(x) , then by theorem 1.4 conditions (1.1) and (1.2) pro-

vide Bessel property of the system
{

ϑk(x)‖ϑk‖−1
2

}∞

k=1
in L2

2 (G) , i.e.

∞

∑
k=1

∣∣∣( f ,ϑk ‖ϑk‖−1
2

)∣∣∣2 � M ‖ f‖2
2 (4.1)

for any vector-function f (x) ∈ L2
2 (G) .

From inequality (4.1), condition (1.3) and guadratical closeness of the system{
uk ‖uk‖−1

2

}∞

k=1
and {ψk}∞

k=1 it follows that the seties

∞

∑
k=1

f̃k ‖uk‖2 ‖ϑk‖2

(
uk(x)‖uk‖−1

2 −ψk(x)
)

converges in L2
2 (G) for any f (x) ∈ L2

2 (G) , where f̃k =
(

f ,ϑk ‖ϑk‖−1
2

)
. Let us denote

the sum of this series by K f , where K is some linear operator acting in L2
2 (G) . This
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follows from fundamental property of the sequence

Kn f =
n

∑
k=1

f̃k ‖uk‖2 ‖ϑk‖2

(
uk(x)‖uk‖−1

2 −ψk(x)
)

in the space L2
2 (G) .

Obviously, the relation ‖K f −Kn f‖2 = o(1)‖ f‖2 is fulfilled for any f (x)∈L2
2 (G) .

Consequently, the sequence of finite-dimensional operators Kn converges to the oper-
ator K , i.e. ‖K−Kn‖L2

2→L2
2
→ 0 n → ∞ . Hence, it follows the compactness of the

operator K in L2
2 (G) .

It is clear that Kuk ‖uk‖−1
2 = uk ‖uk‖−1

2 −ψk , i.e. (I−K)uk ‖uk‖−1
2 = ψk , k =

1,2, . . . .
Show that the operator I −K is continuously inversible. As K is a compact op-

erator, then from the Fredholm alternative it follows that if the operator I−K is irre-
versible, then there exists a nonzero element g ∈ L2

2 (G) such that (I−K)∗ g = 0. This
element g satisfies the relation

(g,ψk) =
(
g,(I−K)uk ‖uk‖−1

2

)
=
(
(I−K)∗g,uk ‖uk‖−1

2

)
= 0, k = 1,2, . . . .

Hence, by the basicity of the system {ψk(x)}∞
k=1 in L2

2 (G) it follows that g ≡ 0.
The obtained contradiction shows that the operator I−K is reversible. Consequently,

the system
{

uk(x)‖uk‖−1
2

}∞

k=1
is a basis in L2

2 (G) equivalent to the basis {ψk(x)}∞
k=1 .

If by {zk(x)}∞
k=1 we denote a system biorthogonal to {ψk(x)}∞

k=1 , then ϑk(x)‖uk‖2
= (I−K)∗zk(x) . Hence it follows that the system {ϑk(x)‖uk‖2}∞

k=1 is a basis equiva-
lent to the basis {zk(x)}∞

k=1 in L2
2 (G) .

Theorem 1.6 is proved. �
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