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Abstract. The generalized Rhaly Cesàro matrices Aα are the triangular matrix with nonzero
entries ank = αn−k/(n+1) with α ∈ [0,1] . In [Proc. Amer. Math. Soc. 86 (1982), 405-
409], Rhaly determined boundedness, compactness of generalized Rhaly Cesàro matrices on �2
Hilbert space and shown that its spectrum is σ (Aα ,�2) = {1/n} ∪ {0} . Also in [32], lower
bounds for these classes were obtained under certain restrictions on �p by Rhoades. In this
paper, boundedness, compactness, spectra, the fine spectra and subdivisions of the spectra of
generaled Rhaly Cesàro operator on c0 and c have been determined.

1. Introduction

Let x = (xn) , y = (yn) be complex sequences. The generalized Rhaly-Cesàro
transform Aαx = y of a sequence x = (xk) is defined by

yn =
1

n+1

n

∑
k=0

αn−kxk, n = 0,1,2, . . . (1.1)

where α ∈ (0,1] . It is clear that if α = 0, then A0 is a diagonal matrix and if α = 1,
then A = C1 is Cesàro matrix. Boundness and spectrum on various sequences spaces
of C1 matrix were considered by several authors [21, 28]. Throughout the article we
will get α ∈ (0,1) .

In 1982, Rhaly [29] determined the spectrum of generalized Rhaly-Cesàro matrix
Aα on the Hilbert space �2 . The main purpose of this paper is to present boundness,
compactness, spectrum, fine spectrum and subdivision of the spectrum of continuous
linear operators on the spaces c0 and c of all null and convergent sequences of complex
numbers, respectively.
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2. Boundness of generalized Rhaly-Cesàro operator

In 1982, Rhaly [29] showed that generalized Rhaly-Cesàro operator Aα is a bounded
linear operator on the Hilbert space �2 . We will show that Aα is bounded linear opera-
tor on c0 and c .

When A = (ank) is an infinite matrix, necessary and sufficient conditions for
boundness of A on various sequence spaces were considered by several authors.

From [27], it is known that

A = (ank) ∈ B(c0) ⇐⇒
⎧⎨
⎩

i) ‖A‖ = sup
n

∑
k
|ank| < ∞

ii) lim
n

ank = 0
(2.1)

A = (ank) ∈ B(c) ⇐⇒

⎧⎪⎨
⎪⎩

i) ‖A‖ = sup
n

∑
k
|ank| < ∞

ii) lim
n

∞
∑

k=p
ank = ap (for all fixed p)

. (2.2)

Now, first let us show that generalized Rhaly-Cesàro matrix is bounded linear
operator on sequence spaces c0 and c and then calculate norm of this operator.

THEOREM 1. Aα ∈ B(c0) and ‖Aα‖B(c0) = 1 for α ∈ (0,1) .

Proof. From (2.1), we have

i) ‖Aα‖ = supn ∑k |ank| = supn ∑n
k=0

∣∣∣αn−k

n+1

∣∣∣� supn
1

n+1 ∑n
k=0 1 = 1 and

ii) limn ank = limn
αn−k

n+1 = 0;i.e, ‖Aα‖ � 1 and hence Aα ∈ B(c0) .
Then, since

‖Aα‖ = sup
x�=θ

‖Ax‖c0
‖x‖c0

= sup
x�=θ

∥∥∥∥
(

x0,
αx0+x1

2 ,
α2x0+αx1+x2

3 ,
α3x0+α2x1+αx2+x3

4 ,...

)∥∥∥∥
‖x‖

�

∥∥∥(1, α
2 , α2

3 ,...
)∥∥∥

c0
1 = sup

n

∣∣∣ αn

n+1

∣∣∣= 1,

we obtain‖Aα‖B(c0) = 1. �

THEOREM 2. Aα ∈ B(c) and ‖Aα‖B(c) = 1 for α ∈ (0,1) .

Proof. It is similar to the proof of the previous Theorem. �

3. Compactness of generalized Rhaly-Cesàro operator

Compact linear operators have a great deal with application in practice. For in-
stance, they play a central role in the theory of integral equations and in various prob-
lems of mathematical physics.
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Theory of compact linear operators served as a model for the early work in func-
tional analysis. Their properties closely resemble those of operators on finite dimen-
sional spaces. For a compact linear operator, spectral theory can be treated fairly com-
pletely in the sense that Fredholm’s famous theory of linear integral equations may be
extended to linear functional equations Tx−λx = y with a complex parameter λ . This
generalized theory is called the Riesz-Schauder theory.

Definition of compact linear operator is as follows;
Let X and Y be normed spaces. An operator T : X → Y is called a compact

linear operator (or completely continuous linear operator) if T is linear and if for every
bounded subset M of X , the image T (M) is relatively compact, that is, the closure
T (M) is compact.

From the definition of compactness of a set we readily obtain a useful criterion for
operators:

THEOREM 3. [25] Let X and Y be normed spaces and T : X → Y a linear
operator. Then T is compact if and only if it maps every bounded sequence (xn) in X
onto a sequence (Txn) in Y which has a convergent subsequence.

The compact linear operators from X into Y form a vector space.
Furthermore, the following Theorem also implies that certain simplifications take

place in the finite dimensional case:

THEOREM 4. [25] Let X and Y be normed spaces and T : X → Y a linear
operator. Then:

(a) If T is bounded and dimT (X) < ∞ , the operator T is compact.
(b) If dimX < ∞ , the operator T is compact.

THEOREM 5. [25] Let (Tn) be a sequence of compact linear operators from a
normed space X into a Banach space Y . If (Tn) is uniformly operator convergent,
then the limit operator T is compact.

The compactness of the Rhaly operator was discussed in [38], [39], [40]. In 1982,
Rhaly [29] showed that generalized Rhaly-Cesàro operator Aα on the Hilbert space �2

were compact linear operator. Our aim is to show that Aα is compact linear operator
on c0 and c .

THEOREM 6. Aα is compact on c0 for α ∈ (0,1) .

Proof. Let

A(r)
α (x) :=

(
x0,

1
2

(αx0 + x1) ,
1
3

(
α2x0 + αx1 + x2

)
, . . . ,

1
r+1

r

∑
k=0

αr−kxk,0,0, . . .

)
.

Since dim(Ar
α (c0)) = r +1 < ∞ for all r ∈ N , from Theorem 4, Ar

α is compact linear
operator on c0 for all r ∈ N . For each x ∈ c0 , we have
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∥∥∥(Aα −A(r)
α

)
(x)
∥∥∥

c0
=

∥∥∥∥∥
(

0,0, . . . ,
1

r+2

r+1

∑
k=0

αn−r−1xk,
1

r+3

r+2

∑
k=0

αn−r−2xk, . . .

)∥∥∥∥∥
c0

= sup
n�r

∣∣∣∣∣ 1
n+1

n

∑
k=0

αn−kxk

∣∣∣∣∣�
(

sup
n�r

1
n+1

n

∑
k=0

αn−k

)
‖x‖

c0

= sup
n�r

1
n+1

(
αn + αn−1 + · · ·+ α +1

)‖x‖
c0

= ‖x‖c0
sup
n�r

1
n+1

1−αn+1

1−α

=
‖x‖c0

1−α
sup
n�r

(
1−αn+1

n+1

)
−→ 0, as r → ∞.

Hence

∥∥∥Aα −A(r)
α

∥∥∥ � sup
x�=θ

∥∥∥(Aα −A(r)
α

)
(x)
∥∥∥

c0

‖x‖c0

� 1
1−α

sup
n�r

1−αn+1

n+1
−→ 0, as r → ∞.

Therefore
A(r)

α −→ Aα , as r → ∞ (U.O.C)

and from Theorem 5 Aα is compact linear operator on c0 . �

THEOREM 7. Aα is compact on c for α ∈ (0,1) .

Proof. It is similar to the proof of the previous Theorem. �

4. Spectrum of generalized Rhaly-Cesàro operator

Let X �= {0} be a complex normed space and T : D(T ) → X a linear operator
with domain D(T ) ⊂ X . A complex number λ that satisfies the conditions

(Rl) Rλ (T ) := T−1
λ := (T −λ I)−1 resolvent operator exists,

(R2) Rλ (T ) is bounded, and
(R3) Rλ (T ) is defined on a set which is dense in X.

is called a regular value of T .

ρ (T ) := {λ ∈ C : λ is a regular values of T}
is called resolvent set of T . σ (T ) = C−ρ (T ) is called spectrum set of T .

Furthermore, the spectrum σ (T ) is divided into three disjoint sets, some of them
may be empty, as follows.

• The point spectrum or discrete spectrum σp (T ) is the set such that Rλ (T ) does
not exist. A λ ∈ σp (T ) is called an eigenvalue of T .
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• The continuous spectrum σc (T ) is the set such that Rλ (T ) exists and satisfies
(R3) but not (R2), that is, Rλ (T ) is unbounded.

• The residual spectrum σr (T ) is the set such that Rλ (T ) exists (and may be
bounded or not) but does not satisfy (R3), that is, the domain of Rλ (T ) is not
dense in X .

Spectral theory is one of the main branches of modern functional analysis and its
applications. Roughly speaking, it is concerned with certain inverse operators, their
general properties and their relations to the original operators. Such inverse operators
arise quite naturally in connection with the problem of solving equations (systems of
linear algebraic equations, differential equations, integral equations). For instance, the
investigations of boundary value problems by Sturm and Liouville and Fredholm’s fa-
mous theory of integral equations were important to the development of the field. For
more information on spectrum, see [25].

The following theorem tells us that the point spectrum of a compact linear operator
is not complicated. In fact, it is known from the following theorem that every nonzero
spectral value of a compact linear operator is an eigenvalue. The spectrum of a compact
linear operator largely resembles the spectrum of an operator on a finite dimensional
space.

THEOREM 8. [25] The set of eigenvalues of a compact linear operator T : X →X
on a normed space X is countable (perhaps finite or even empty), and the only possible
point of accumulation is λ = 0 . Every spectral value λ �= 0 of T is an eigenvalue of
T . However, if X is infinite dimensional, then 0 ∈ σ (T ) .

4.1. Spectrum of generalized Rhaly-Cesàro operator on c0

Spectrum of compact Rhaly operator was specified in [38], [39] and [40]. The
spectrum of generalized Rhaly-Cesàro operator Aα on the Hilbert space �2 was exam-
ined by Rhaly [29] in 1982. Now we determine spectrum of Aα on c0 .

THEOREM 9. σp (Aα ,c0) =
{

1
n

: n ∈ N

}
=: S for 0 < α < 1 .

Proof. Let

Aαx = λx ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = λx0
1
2 (αx0 + x1) = λx1

1
3

(
α2x0 + αx1 + x2

)
= λx2

1
4

(
α3x0 + α2x1 + αx2 + x3

)
= λx3

...

1
n+1

(
n
∑

k=0
αn−kxk

)
= λxn

...

. (4.1)
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i) From (4.1), we have (1−λ )x0 = 0. If x0 �= 0, then λ = 1. From (4.1), we get

1
2 (αx0 + x1) = x1 ⇒ 1

2 αx0 = 1
2x1 ⇒ x1 = αx0

1
3

(
α2x0 + αx1 + x2

)
= x2 ⇒ 2

3 α2x0 = 2
3x2 ⇒ x2 = α2x0

...

1
n+1

(
n
∑

k=0
αn−kxk

)
= xn ⇒ xn = αnx0, x0 �= 0, 0 < α < 1.

Hence we take x0 = 1. Since ∣∣∣∣xn+1

xn

∣∣∣∣→ |α| < 1,

The series ∑n |xn| converges, therefore xn −→ 0; i.e, x = (xn) ∈ c0 . Therefore we have
λ = 1 ∈ σp (Aα ,c0) .

ii) In (4.1), let x0 = 0. Then

1
2
x1 = λx1 ⇒

(
λ − 1

2

)
x1 = 0 ⇒ if x1 �= 0, then λ =

1
2
.

Hence from (4.1), we have

xn = nαn−1x1, x0 = 0, x1 = 1, α ∈ (0,1) .

Since ∣∣∣∣xn+1

xn

∣∣∣∣→ |α| < 1,

the series ∑n |xn| converges, therefore xn −→ 0; i.e, x = (xn) ∈ c0 . Hence, we get
λ = 1

2 ∈ σp (Aα ,c0) .
iii) If m is the smallest integer for which xm �= 0, since

1
m+1

(
m

∑
k=0

αm−kxk

)
= λxm, xm �= 0

and x0 = x1 = · · · = xm−1 = 0, we have

1
m+1

xm = λxm, xm �= 0

i.e,

λ =
1

m+1
.

Thus, the equation (4.1) becomes

1
n+1

(
n

∑
k=m

αn−kxk

)
=

1
m+1

xn for all n > m
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equation. Therefore, we have

xm+n =
(m+1)(m+2)· · · (m+n)

n!
αnxm, for all n � 1, xm �= 0.

Hence, since∣∣∣∣xm+n+1

xm+n

∣∣∣∣= (m+1)(m+2)· · · (m+n)(m+n+1)
(m+1)(m+2)· · · (m+n)(n+1)

|α| → |α| < 1,

we have ∑n |xn| < ∞ and therefore (xm+n) ∈ c0 . Then we get

λ =
1

m+1
∈ σp (Aα ,c0) .

As a result, eigenvalues for each m are simple and 1
m ∈ σp (Aα ,c0) , i.e;

σp (Aα ,c0) =
{

1
m

: m = 1,2, . . .

}
= S. �

LEMMA 1. [34, p. 221–223] Each bounded linear operator T : X −→ X is de-
termined by an infinite matrix of complex numbers, where X = c0 , c , �1 .

We will use the following Lemma to find the adjoint of a linear transform on the
c0 sequence space.

LEMMA 2. [42, p. 266] Let T : c0 
−→ c0 be a linear map and define T ∗ : �1 
−→
�1 , by T ∗g = g ◦ T, g ∈ c∗0 ∼= �1 , then T must be given with a matrix by Lemma 1,
moreover, T ∗ : �1 
−→ �1 is transposed matrix of T .

THEOREM 10. σp (A∗
α ,c∗0 ∼= �1) = S for 0 < α < 1 .

Proof. From Lemma 2, it is clear that the matrix of (Aα)∗ is transpose of matrix
Aα , i.e;

a∗nk =

{
αk−n

k+1 , 0 � n � k
0 , n > k

. (4.2)

Let A∗
αx = λx . Since A∗

α is transpoze of A , for n � 1, we have

x0 +
α
2

x1 +
α2

3
x2 +

α3

4
x3 + · · · = λx0

1
2
x1 +

α
3

x2 +
α2

4
x3 + · · · = λx1

1
3
x2 +

α
4

x3 + · · · = λx2

1
4
x3 + · · · = λx3

...
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where x �= 0. Thus, for all n � 1,

xn =
1

αn

(
λ − 1

n

)(
λ − 1

n−1

) · · ·(λ −1)
λ n x0 =

1
αn

n

∏
k=1

(
1− 1

kλ

)
x0 (4.3)

is valid. Hence, for all n � 1, since the eigenvector corresponding to λ = 1/n is

x =
(
1,−(n−1)/α,−(n−1)/α2, , . . . ,−(n−1)/αn−1,0,0, . . .

) ∈ �1,

we have λ = 1/n ∈ σp (A∗
α , �1) , i.e;

S = {1/n : n ∈ N} ⊂ σp (A∗
α ,c∗0 ∼= �1) .

Since ∣∣∣∣xn+1

xn

∣∣∣∣= 1
α

∣∣∣∣1− 1
λ (n+1)

∣∣∣∣→ 1
α

> 1, (n → ∞) ,

the series ∑n |xn| is divergent, if λ /∈
{

1
n

: n ∈ N

}
. So there is no other eigenvalue, i.e;

we have

σp (A∗
α , �1) = S =

{
1
n

: n = 1,2, . . .

}
. �

In this section, finally, we compute the spectrum of Aα over c0 .

THEOREM 11. σ (Aα ,c0) = S∪{0} for 0 < α < 1 .

Proof. Since dimc0 = ∞ , 0 ∈ σ (Aα ,c0) and Aα is compact linear operator from
Theorem 6, if λ ∈ σ (Aα ,c0) , then λ ∈ σp (Aα ,c0) . Therefore, we have σ (Aα ,c0) =
S∪{0} . �

4.2. Spectrum of generalized Rhaly-Cesàro operator on c

In this section, we will examine the spectrum of operator Aα over c .

THEOREM 12. σp (Aα ,c) = S for 0 < α < 1 .

Proof. It is similar to the proof of the previous Theorem 9. �

The following lemma is useful for finding the adjoint of a linear transformation on
the sequence space c .

LEMMA 3. [43, p. 267] If T : c→ c is a linear transformation and T ∗ : �1 → �1 ,
T ∗g = g◦T, g∈ c∗ ∼= �1 , then T and T ∗ have matrix representations, also T ∗ : �1 → �1



THE SPECTRUM GENERALIZED RHALY-CESÀRO MATRICES 963

is given by

T ∗ = A∗ =
(

χ (limA) (ϑn)
∞
n=0

(ak)
∞
k=0 At

)

=

⎛
⎜⎜⎜⎜⎜⎝

χ (limA) ϑ0 ϑ1 ϑ2 · · ·
a0 a00 a10 a20 · · ·
a1 a01 a11 a21 · · ·
a2 a02 a12 a22 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where

ak = lim
n

ank

χ (A) = limAe−
∞

∑
k=0

limAek = lim
n ∑

k

ank −∑
k

lim
n

ank

ϑn = χ (Pn ◦T) = (Pn ◦T )e−∑
k

ank,

ank = Pn (T (ek)) = (T (ek))n .

If χ (A) �= 0, then A is called co-regular matrix and if χ (A) = 0, then A is called
co-null matrix.

Let’s now find the adjoint over c of the generalized Rhaly Cesáro matrix.

LEMMA 4. For 0 < α < 1 , adjoint of Aα on c is given by

A∗
α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0 1 α

2
α2

3
α3

4 · · ·
0 0 1

2
α
3

α2

4 · · ·
0 0 0 1

3
α
4 · · ·

0 0 0 0 1
4 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4)

Proof. By Lemma 3, we have

χ (Aα) = lim
n→∞

∞
∑

k=0
ank = limAe−

∞
∑

k=0
limAek

= lim
n→∞

n
∑

k=0
ank = lim

n→∞
αn

n+1

(
1+ 1

α + 1
α2 + · · ·+ 1

αn

)
= lim

n→∞
αn

n+1
1−( 1

α )n+1

1− 1
α

= lim
n→∞

1−αn+1

(n+1)(1−α)

= 1
1−α lim

n→∞
1−αn+1

n+1 = 0

and so Aα is a co-null matrix. Also we get

ak = lim
n

ank = lim
n→∞

αn−k

n+1
= 0
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and

n

∑
k=0

ank =
n

∑
k=0

αn−k

n+1
=

αn

n+1

n

∑
k=0

(
1
α

)k

=
αn

n+1

{
1+

1
α

+ · · ·+
(

1
α

)n}
=

αn

n+1

{
1− 1

αn+1

1− 1
α

}

=
αn

n+1
α

α −1

{
1− 1

αn+1

}
=

1
(α −1)(n+1)

{
αn+1−1

}
.

Finally, we have

(Pn ◦Aα)e =
{

αnx0 + αn−1x1 + · · ·+ αxn−1 + xn

n+1

}
x=e

=
αn + αn−1 + · · ·+ α +1

n+1
=

1
n+1

1−αn+1

1−α

ϑn = (Pn ◦Aα)e−
n

∑
k=0

ank =
1

n+1

{
1−αn+1

1−α
− 1

(α −1)
(
αn+1−1

)}

=
1

(n+1)(1−α)
{
1−αn+1 + αn+1−1

}
= 0.

This proves Lemma. �

Now we can calculate the point spectrum of the adjoint of Aα on c .

THEOREM 13. σp (A∗
α ,c∗ ∼= �1) =

{
1
n : n = 1,2, . . .

}∪{0} for 0 < α < 1 .

Proof. Let x �= 0 and A∗
αx = λx ; i.e;

A∗
αx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0 1 α

2
α2

3
α3

4 · · ·
0 0 1

2
α
3

α2

4 · · ·
0 0 0 1

3
α
4 · · ·

0 0 0 0 1
4 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2
...
xn
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λx0

λx1

λx2
...

λxn
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.5)

⇐⇒
{

λx0 = 0

λxn = 1
n xn + α

n+1xn+1 + α2

n+2xn+2 + · · · , for all n � 1

is valid. If 0 = λx0 then we have λ = 0 or x0 = 0. We obtain λ = 0∈ σp (A∗
α ,c∗ ∼= �1)

since the eigenvector corresponding to λ = 0 is x = (1,0,0, . . .) . From the second
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equation of (4.5), we get

x1 + α
2 x2 + α2

3 x3 + · · · = λx1
1
2x2 + α

3 x3 + α2

4 x4 + · · · = λx2

}
⇒ x2 = λ−1

αλ x1

1
2x2 + α

3 x3 + α2

4 x4 + · · · = λx2
1
3x3 + α

4 x4 + · · · = λx3

}
=⇒ x3 = (λ− 1

2 )(λ−1)

(αλ )2
x1

...

(4.6)

where x1 �= 0. From (4.6), we have

xn =
1

αn−1

(
λ − 1

n−1

)
. . . (λ −1)

λ n−1 x1 =
1

αn−1

n−1

∏
k=1

(
1− 1

kλ

)
x1 for all n > 1 (4.7)

where x1 �= 0. We obtain λ = 1 ∈ σp (A∗
α ,c∗ ∼= �1) since the eigenvector correspond-

ing to λ = 1 is x = (x0,x1,0,0, . . .) ∈ �1 where x1 �= 0. From (4.7), for all m ∈ N ,
λ = 1

m ∈ σp (A∗
α ,c∗ ∼= �1) , because x1 �= 0 x = (x0,x1, . . . ,xm,0,0, . . .) , is response

to λ = 1
m which is eigenvector where xk �= 0 for all k = 1, . . . ,m . So, we obtain

S =
{ 1

n : n ∈ N
}⊂ σp (A∗

α ,c∗ ∼= �1) .
Do you have another eigenvalue? If λ �= 0 and λ �= 1

m for all m ∈ N , then we
have ∣∣∣∣xn+1

xn

∣∣∣∣ λ �= 1
k=

1
α

∣∣∣∣1− 1
λn

∣∣∣∣→ 1
α

> 1, (n → ∞)

i.e; there is no other λ ∈ C that makes ∑n |xn| < ∞ . Therefore, we get

σp (A∗
α , �1) = S∪{0} =

{
1
n

: n = 1,2, . . .

}
∪{0} . �

THEOREM 14. σ (Aα ,c) = S∪{0} for 0 < α < 1 .

Proof. The proof is done as the proof of Theorem 11. �

THEOREM 15. [10] If A ∈ B(c) , then σ(A,c) = σ(A, �∞) .

COROLLARY 1. σ (Aα , �∞) = S∪{0} for 0 < α < 1 .

4.3. An application to the summability

In this section, let us prove a Mercerian theorem with the help of spectrum.
The convergence domain cA of A = (ank) is defined by cA = {x : Ax ∈ c} . If

ank = 0 for n > k , then A is called a triangle matrix. If cA = c , then A is called a
Mercerian matrix and if cA ⊂ c , then A is called a conservative matrix.
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THEOREM 16. [43] A conservative triangle A is Mercerian iff A−1 is conserva-
tive.

THEOREM 17. Let λ �= 0 and λ �= 1
1−m ∈ R, (m = 0,1,2, . . .) . If A := λ I +(1−

λ )Aα , then cA = c.

Proof. By hypothesis, we have λ
λ−1 �= 0 and λ

λ−1 �= 1
1−m (m = 0,1,2, . . .) . If

λ = 1, then it is clear that cA = c . Let λ �= 1. Since

A := λ I +(1−λ )Aα = (λ −1)
[

λ
λ −1

I−Aα

]

by Theorem14, λ
λ−1 �∈σ (Aα ,c) and thus λ

λ−1 ∈ρ (Aα ,c) . Therefore,
[

λ
λ−1 I−Aα

]−1 ∈
B(c) . Hence

A−1 = (λ −1)−1
[

λ
λ −1

I−Aα

]−1

= [λ I +(1−λ )Aα ]−1 ∈ B(c).

By Theorem 16, cA = c . �

5. Fine spectrum

If X is a Banach space and B(X) denotes the collection of all bounded linear
operators on X and T ∈ B(X) , then there are three possibilities for R(T ) :

(I) R(T ) = X
(II) R(T ) = X , but R(T ) �= X ,
(III) R(T ) �= X

and three possibilities for T−1 :
(1) T−1 exists and continuous,
(2) T−1 exists but discontinuous,
(3) T−1 does not exist.
If these possibilities are combined in all possible ways, nine different states are

created. These are labelled by: I1 , I2 , I3 , II1 , II2 , II3 , III1 , III2 , III3 . For example, if
an operator is in state III2 , then R(T ) �= X and T−1 exists and is discontinuous. From
the closed graph theorem, I2 is empty (see [20]).

ApplyingGoldberg’s classification to the operator Tλ := λ I−T , where λ ∈σ(T,X)
the spectrum of T , considered as an operator in B(X) where X = c0 or X = c , we have

(I) Tλ = λ I−T is surjective
(II) R(Tλ ) = X , but R(Tλ ) �= X ,
(III) R(Tλ ) �= X

and three possibilities for T−1
λ :

(1) Tλ = λ I−T is injective and T−1
λ =: Rλ (T ) is bounded,

(2) Tλ = λ I−T is injective and T−1
λ is unbounded, and

(3) Tλ = λ I−T is not injective.
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If λ is a complex number such that Tλ = λ I − T ∈ I1 or Tλ = λ I − T ∈ II1 ,
then λ ∈ ρ(T,X) . All scalar values of λ not in ρ(T,X) comprise the spectrum of
T . The further classification of σ(T,X) gives rise to the fine spectrum of T . That is,
σ(T,X) can be divided into the subsets I2σ(T,X) , I3σ(T,X) , II2σ(T,X) , II3σ(T,X) ,
III1σ(T,X) , III2σ(T,X) , III3σ(T,X) . For example, if Tλ = λ I−T is in a given state
III2 (say), then we write λ ∈ III2σ(T,X) .

We can summarize the above situation in a table as follows:

1 2 3
Rλ (T ) exists Rλ (T ) exists Rλ (T )

and is bounded and is unbounded does not exists

I R(λ I−T ) = X λ ∈ ρ (T ) – λ ∈ σp (T )

II R(λ I−T ) = X λ ∈ ρ (T ) λ ∈ σc (T ) λ ∈ σp (T )

III R(λ I−T ) �= X λ ∈ σr (T ) λ ∈ σr (T ) λ ∈ σp (T )

Table 1: Goldberg’s decomposition of the spectrum

This classification of the spectrum is called the Goldberg Classification. Let’s give
the theorems that will help the Goldberg Classification.

THEOREM 18. [20, p. 58] If T ∗ has a bounded inverse, then R(T ∗) is closed.

THEOREM 19. [20, p. 59] T has a dense range if and only if T ∗ is 1-1.

THEOREM 20. [20, p. 60] R(T ∗) = X∗ if and only if T has a bounded inverse.

THEOREM 21. [20, p. 60] R(T ) = X and T has a bounded inverse if and only
if R(T ∗) = X∗ and T ∗ has a bounded inverse.

The relationship between the fine spectrum of bounded linear operator and fine
spectrum of its adjoint is given by Fig. 1.

The fine spectrum of the operators on some sequence spaces was first discussed in
[11], [21], [30], [31], [38] and [42]. Later, many authors [2], [4], [5], [6], [8], [9], [12],
[13], [19], [22], [23], [24], [26], [33], [35], [36], [37], etc. have made a fine division of
the spectrum and the work on this subject is still ongoing.
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�

�

T

T ∗

Figure 1. State diagram for B(X) and B(X∗) for a non-reflective Banach space X .

5.1. The fine spectrum of generalized Rhaly-Cesàro matrices on c0

We will examine the fine spectrum of the generalized Rhaly Cesàro operator on
c0 , which is compact in this section.

THEOREM 22. 0 ∈ II2σ (Aα ,c0) for 0 < α < 1 .

Proof. Since σp (Aα ,c0)= S , we have 0 /∈σp (Aα ,c0) . Thus, there exists (Aα)−1 .
Therefore, Aα ∈ (1)∪ (2) . Let us now show that Aα ∈ II , that is, R(Aα) = c0 and
R(Aα) �= c0 . Since σp (A∗

α ,c∗0 ∼= �1) = S and therefore since 0 /∈ σp (A∗
α , �1) , the op-

erator A∗
α is 1-1. Thus, from Theorem 19, we get R(Aα) = c0 . Let us now show that

R(Aα) �= c0 . If Aαx = y is solved, then we get

yn =
1

n+1

n

∑
k=0

αn−kxk.

Thus, we obtain
x0 = y0 and xn = (n+1)yn−αnyn−1

from the equations

(n+1)yn = αnx0 + αn−1x1 + · · ·+ αxn−1 + xn

αnyn−1 = α
(
αn−1x0 + αn−2x1 + · · ·+ xn−1

)
.
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Hence, A−1
α = (bnk) matrix is given by

bnk =

⎧⎨
⎩

n+1 , k = n
−αn , k = n−1
0 , otherwise

.

If we take y = (yn) =
(

(−1)n

n+1

)
∈ c0 , then for all n , we get

(xn) =
(

(n+1)
(−1)n

n+1
− (−1)n−1 nα

n

)
= ((−1)n (1+ α)) .

Therefore, x /∈ c0 . Thus, since y = (yn) ∈ c0 , but x = (xn) /∈ c0 , Aα is not onto, that is,
R(Aα) �= c0 . Hence Aα ∈ II . As a result, Aα ∈ II1 or Aα ∈ II2 . Since 0 ∈ σ (Aα ,c0) ,
we have Aα /∈ II1 . Then we get Aα ∈ II2 , that is, 0 ∈ II2σ (Aα ,c0) . �

THEOREM 23. For all λ = 1
m , m = (1,2, . . .) , λ ∈ III3σ (Aα ,c0) where 0 < α <

1 .

Proof. Since σp (Aα ,c0) = S , λ = 1
m ∈σp (Aα ,c0) = S for all m . Therefore, Tλ =

(λ I−Aα) has no inverse, i.e; we have T ∈ (3) . The adjoint operator T ∗ = λ I−A∗
α is

not 1-1 for λ = 1
m , because λ = 1

m ∈ σp (A∗
α ,c0) . From Theorem 19, Tλ = λ I −Aα

does not have a dense image. Therefore, R(T ) �= c0 ; that is, Tλ ∈ III . Accordingly,
T 1

m
= 1

mI−Aα ∈ III3 and λ = 1
m ∈ III3σ (Aα ,c0) are obtained. �

5.2. The fine spectrum of generalized Rhaly-Cesàro matrices on c

We will examine the fine spectrum of the generalized Rhaly Cesàro operator on c ,
which is compact in this section.

THEOREM 24. 0 ∈ III2σ (Aα ,c) for 0 < α < 1 .

Proof. For 0 < α < 1, adjoint of Aα on c is given by

A∗
α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0 1 α

2
α2

3
α3

4 · · ·
0 0 1

2
α
3

α2

4 · · ·
0 0 0 1

3
α
4 · · ·

0 0 0 0 1
4 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

from Lemma 4. Thus, for y = (1,0,0, . . .) , there is no x ∈ �1 satisfying A∗
αx = y ; that

is, A∗
α is not onto. Therefore, from Theorem 20, Aα has not a bounded inverse and thus

Aα ∈ (2) . On the other hand, the operator A∗
α is not 1-1, because 0∈σp (A∗

α , �1) . Thus,
Aα does not have a dense range from Theorem 19, that is, Aα ∈ III , and consequently
Aα ∈ III2 , and so 0 ∈ III2σ(M,c) . �
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THEOREM 25. For all λ = 1
m , m = (1,2, . . .) , λ ∈ III3σ (Aα ,c) where 0 < α <

1 .

Proof. The proof can be made in the way of Theorem 23. �

6. Subdivision of the spectrum of Aα

A bounded linear operator T in a Banach space X is given. Then, if ‖xk‖= 1 and
‖Txk‖→ 0 as k → ∞ , sequence (xk)k in X is called a Weyl sequence for T .

In what follows, we call the set

σap (T ) := {λ ∈ K : there exists aWeyl sequence for λ I−T} (6.1)

as the approximate point spectrum of T . Moreover, the subspectrum

σδ (T ) := {λ ∈ σ (T ) : λ I−T is not surjective} (6.2)

is called defect spectrum of T .
The two subspectra (6.1) and (6.2) form a (not necessarily disjoint) subdivision

σ (T ) = σap (T )∪σδ (T ) (6.3)

of the spectrum. There is another subspectrum,

σco (T ) = {λ ∈ K : R(λ I−T ) �= X} (6.4)

which is often called compression spectrum in the literature and which gives rise to
another (not necessarily disjoint) decomposition

σ (T ) = σap (T )∪σco (T ) (6.5)

of the spectrum. Clearly, σp (T ) ⊆ σap (T ) and σco (T ) ⊆ σδ (T ) . Moreover, we note
that

σr (T ) = σco (T )\σp (T ) (6.6)

and
σc (T ) = σ (T )\[σp (T )∪σco (T )] (6.7)

Sometimes it is useful to relate the spectrum of a bounded linear operator to that
of its adjoint.

PROPOSITION 1. [7, Proposition 1.3] The spectra and subspectra of an operator
T ∈ B(X) and its adjoint T ∗ ∈ B(X∗) are related by the following relations:

(a) σ (T ∗) = σ (T ) .
(b) σc (T ∗) ⊆ σap (T ) .
(c) σap (T ∗) = σδ (T ) .
(d) σδ (T ∗) = σap (T ) .
(e) σp (T ∗) = σco (T ) .
(f) σco (T ∗) ⊇ σp (T ) .
(g) σ (T ) = σap (T )∪σp (T ∗) = σp (T )∪σap (T ∗) .
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We can write the above definition as the following table

• A lot of separation of the spectrum is possible. The non-discrete spectrum (Ap-
poroximate point spectrum, defect spectrum and compression spectrum) can be
found in the book entitled “Nonlinear Spectral Theory”, published by J. Appell
et al.

• This separation of an operator for the first time in the literature was handled in
2011 by Kh. Amirov and Nuh Durna, Mustafa Yıldırım [1].

• After these studies, this separation has been studied by various authors in [14],
[15], [16], [17], [18], [19], [41] and is still being studied.

(1) (2) (3)
Rλ (T ) exists Rλ (T ) exists Rλ (T )

and is bounded and is unbounded does not exists

(I) R(λ I−T ) = X λ ∈ ρ (T ) –
λ ∈ σp (T )
λ ∈ σap (T )

(II)
R(λ I−T ) �= X
R(λ I−T ) = X

λ ∈ ρ (T )
λ ∈ σc (T )
λ ∈ σap (T )
λ ∈ σδ (T )

λ ∈ σp (T )
λ ∈ σap (T )
λ ∈ σδ (T )

(III) R(λ I−T ) �= X

λ ∈ σr (T )
λ ∈ σδ (T )
λ ∈ σco (T )

λ ∈ σr (T )
λ ∈ σap (T )
λ ∈ σδ (T )
λ ∈ σco (T )

λ ∈ σp (T )
λ ∈ σap (T )
λ ∈ σδ (T )
λ ∈ σco (T )

Table 2: Separations of the spectrum ([1])

6.1. Subdivision of the spectrum of Aα on c0

In this section, We will examine subdivision of the spectrum of the generalized
Rhaly Cesàro operator on c0 .

THEOREM 26. For 0 < α < 1 ,
a) σap (Aα ,c0) = S∪{0}
b) σδ (Aα ,c0) = S∪{0}
c) σco (Aα ,c0) = S.
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Proof. a) Since σ (Aα ,c0) = S∪{0} from Theorem 11, III3σ (Aα ,c0) = S from
Theorem 23 and II2σ (Aα ,c0) = {0} from Theorem 22, we get III1σ (Aα ,c0) = /0 from
Table 2. Hence, we have

σap (Aα ,c0) = σ (Aα ,c0)�III1σ (Aα ,c0) = S∪{0}

from Table 2.
b) We have I3σ (Aα ,c0) = /0 from Table 2, because σ (Aα ,c0) = S ∪ {0} ,

III3σ (Aα ,c0) = S and II2σ (Aα ,c0) = {0} from respectively Theorem 11, 23 and 22.
Hence, we get

σδ (Aα ,c0) = σ (Aα ,c0)�I3σ (Aα ,c0) = S∪{0}

from Table 2.
c) Since σ (Aα ,c0) = S∪{0} , III3σ (Aα ,c0) = S and II2σ (Aα ,c0) = {0} from

respectively Theorem 11, 23 and 22, we have III1σ (Aα ,c0) = /0 from Table 2. Conse-
quently,

σco (Aα ,c0) = III1σ (Aα ,c0)∪ III2σ (Aα ,c0)∪ III3σ (Aα ,c0) = S

from Table 2. �

LEMMA 5. For 0 < α < 1 ,
a) σap

(
A∗

α , �1
)

= S∪{0}
b) σδ

(
A∗

α , �1
)

= S∪{0} .

Proof. Since σap
(
A∗

α , �1
)
= σδ (Aα ,c0) and σδ

(
A∗

α , �1
)
= σap (Aα ,c0) from The-

orem 1, proof is clear. �

6.2. Subdivision of the spectrum of Aα on c

In this section, We will examine subdivision of the spectrum of the generalized
Rhaly Cesàro operator on c .

THEOREM 27. For 0 < α < 1 ,
a) σap (Aα ,c) = S∪{0}
b) σδ (Aα ,c) = S∪{0}
c) σco (Aα ,c) = S∪{0} .

Proof. a) We have III1σ (Aα ,c) = /0 from Table 2, because σ (Aα ,c) = S∪{0} ,
III3σ (Aα ,c) = S and III2σ (Aα ,c) = {0} from respectively Theorem 14, 25 and 24.
Hence, we get

σap (Aα ,c) = σ (Aα ,c)�III1σ (Aα ,c) = S∪{0}

from Table 2.
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b) Since σ (Aα ,c)= S∪{0} from Theorem 14, III2σ (Aα ,c) = {0} from Theorem
24 and III3σ (Aα ,c) = S from Theorem 25, we get I3σ (Aα ,c) = /0 . Hence,

σδ (Aα ,c) = σ (Aα ,c)�I3σ (Aα ,c) = S∪{0}

from Table 2.
c) Since σ (Aα ,c) = S∪ {0} , III2σ (Aα ,c) = {0} and III3σ (Aα ,c) = S from

respectively Theorem 14, 24 and 25, we get III1σ (Aα ,c) = /0 from Table 2.

σco (Aα ,c) = III1σ (Aα ,c)∪ III2σ (Aα ,c)∪ III3σ (Aα ,c) = S∪{0}

from Table 2. As a result, σco (Aα ,c) = S∪{0} from Table 2. �

LEMMA 6. For 0 < α < 1 ,
a) σap

(
A∗

α ,c∗ � �1
)

= S∪{0}
b) σδ

(
A∗

α ,c∗ � �1
)

= S∪{0} .

Proof. Since σap
(
A∗

α ,c∗ � �1
)

= σδ (Aα ,c) and σδ
(
A∗

α ,c∗ � �1
)

= σap (Aα ,c)
from Theorem 1, proof is clear. �

7. Conclusions

The spectra of summability methods and the Goldberg classification of the spec-
trum and the non-discrete spectral separation of these summability methods were dis-
cussed by various authors earlier. Still, a lot of mathematicians work on this subject.
Discrete generalized Cesàro operators’s spectrum on Hilbert space �2 was calculated
by Rhaly [29] in 1982. In this article, we have obtained the spectra and various spectral
separations of this operator over the sequence spaces c0 and c . In another our paper,
we gave the spectral and spectral division of this operator over the sequence spaces �p ,
where 1 < p < ∞ . The spectral and spectral separation of this operator over the other
sequence spaces are left clear problems.
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[21] M. GONZÁLEZ, The fine spectrum of the Cesàro operator in �p(1 < p < ∞) , Arch. Math. (Basel)

(1985) 44 (4), 355–358.
[22] J. FATHI AND R. LASHKARIPOUR, On the fine spectra of the generalized difference operator Δuv

over the sequence space c0 , J. Mahani Math. Research Center (jMMRC) (2012) 1 (1) 1–12.
[23] V. KARAKAYA AND M. ALTUN, Fine spectra of upper triangular double-band matrices, J. Comput.

Appl. Math. (2010) 234 (5), 1387–1394.
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