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Abstract. For given A,B,C ∈B(H ) , if there exists X ∈B(H ) such that XAB = B , CAX =C ,
R(X) = R(B) and R(X∗) = R(C∗), then A is called (B,C) -invertible and X is called the
(B,C) -inverse of A . In this paper, we find some explicit properties of the one sided-inverses and
(B,C) -inverses for linear bounded operators. Moreover, the solution X of the operator equations
XAB = B and CAX = C is expressed in terms of the inner inverses of the operators A , B and
C . We also present the equivalent conditions for the existence and expressions of the inverses
along operators B and C .

1. Introduction and preliminaries

Let H and K be separable, infinite dimensional, complex Hilbert spaces. We
denote the set of all bounded linear operators from H into K by B(H ,K ) and
by B(H ) when H = K . For A ∈ B(H ,K ) , let A∗ , R(A) and N (A) be the
adjoint, the range and the null space of A , respectively. Let M denote the closure of
M ⊆ H . IM denotes the identity onto M or I if there is no confusion. By A− we
denote an inner inverse of A ∈ B(H ) , i.e, AA−A = A . In addition, Y is said to be an
outer inverse of A , if YAY =Y . For two operators P,Q∈B(H ) , the commutator of P
and Q is the operator [P,Q] =: PQ−QP . Commutators arise naturally in many aspects
of operator theory, and they play an important role in this theory. It is well known that
the set of commutators is dense in the set of all operators [4, page 124] and [5].

Inverses along an operator were introduced in [12], (B,C)-inverses were intro-
duced in [8] and also studied in [16]. In the aforementioned papers both notions were
defined in the context of semigroups. Then these classes of inverses were extended
to the context of rectangular matrices in [3]. In [12, Theorem 6] it was proved that if
an element of a semigroup S has inverse along other element in S then, the inverse is
unique. In [8, Theorem 2.1] the uniqueness of the inverse along a pair of elements in
a semigroup was also proved. The uniqueness of these kind of inverse is also true in
the context of rectangular matrices [3, Proposition 3.5 and Corollary 3.8]. The equiv-
alent conditions for the existence and the formula of the inverse along a regular lower
triangular matrix and so on are derived in [3, 8, 13]. Recently, a new concept called
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left (right) g-MP inverse in a ∗ -semigroup was introduced in [15] in the context of
∗ -monoids. More results on the inverse along some elements can be found in mathe-
matical literature [9] and [14, 16]. Motivated by these papers we investigate the inverse
along a pair of operators B and C on a Hilbert space. For given A,B,C ∈ B(H ) , if
there exists X ∈ B(H ) such that

XAB = B, CAX = C, R(X) = R(B) and R(X∗) = R(C∗),

then A is called (B,C)-invertible and X is called the (B,C)-inverse of A (see [8, 9]
for the definition on any semigroup). We find some explicit properties of the one sided-
inverses and (B,C)-inverses. The solution X of the operator equations XAB = B and
CAX = C is expressed in terms of the inner inverses of the operators A , B and C . The
equivalent conditions for the existence and expressions of the inverses along operators
B and C are obtained.

2. Some lemmas

In this section, we begin with some lemmas which play important roles in the
sequel. The following lemma is a standard result.

LEMMA 2.1. ([6, Theorem 3.1]) Let A,B,C ∈ B(H ) be such that R(A) and
R(B) are closed. The equation AXB =C has a solution if and only if AA−CB−B =C.
The general solution is of the form

X = A−CB− +U −A−AUBB−, ∀U ∈ B(H ).

LEMMA 2.2. For an operator T ∈ B(H ) , R(T ) is closed if and only if there
exists X ∈ B(H ) such that TXT = T .

We need the following well-known criteria about ranges. The following item (ii)
is from [10, Theorem 2.2].

LEMMA 2.3. ([7, 10, 11]) Let A,B ∈ B(H ) . Then

(i) R(A)+R(B) = R((AA∗ +BB∗)
1
2 );

(ii) R(A) is closed if and only if R(A) = R(AA∗) if and only if R(A∗) is closed;

(iii) If S and T are invertible, then R(SAT ) is closed if and only if R(A) is closed.

Throughout this work the next well-known criterion due to Douglas [7] (see also
Fillmore-Williams [10]) about range inclusions and factorization of operators will be
crucial.

LEMMA 2.4. ([7, 10]) If A,B ∈ B(H ) , then the following are equivalent:

(i) A = BC for some operator C ∈ B(H );

(ii) ‖A∗x‖ � k‖B∗x‖ for some k > 0 and all x ∈ H ;
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(iii) R(A) ⊆ R(B) .

If one of these conditions holds, then there exists a unique solution C0 ∈ B(H )
of the equation BX = A such that R(C0)⊂R(B∗) and N (C0) = N (A) . This solution
is called the Douglas reduced solution.

3. The inverse along an element C ∈ B(H )

In this section we consider the inverse along an element C ∈ B(H ) . As for the
operator case, it is defined as follows. One can refer to [3, 8, 9, 12, 13, 14] for more
details on the inverse along an element C ∈ B(H ) .

DEFINITION 3.1. ([3, 8, 9, 12, 13, 14]) For given A,C ∈ B(H ) , if there exists
X ∈ B(H ) such that

(i)
XAC = C and R(X∗) ⊆ R(C∗),

then A is called left invertible along C and X is called a left inverse of A along C ,
denoted by X = ALC .

(ii)
CAX = C and R(X) ⊆ R(C),

then A is called right invertible along C and X is called a right inverse of A along C ,
denoted by X = ARC .

(iii)
XAC = C = CAX , R(X) = R(C) and R(X∗) = R(C∗),

then A is called invertible along C and X is called the inverse of A along C , denoted
by X = AC .

Recall that asc(T ) (resp. des(T )) , the ascent (resp. descent) of T ∈ B(H ) , is
the smallest non-negative integer k such that N (Tk+1) = N (Tk) (resp. R(Tk+1) =
R(Tk)). If no such k exists, then asc(T ) = ∞ (resp. des(T ) = ∞) . It is well known,
des(T ) = asc(T ) if asc(T ) and des(T ) are finite [17]. For T ∈ B(H ) , if there exists
an operator X ∈B(H ) satisfying TX = XT , XTX = X and Tk+1X = Tk , where k =
ind(T ), then X is called a Drazin inverse of T , denoted by X = TD [2]. Particularly,
if ind(T ) = 1, then X is called the group inverse, denoted by X = T � . An operator
T ∈ B(H ) has its Drazin inverse TD if and only if it has finite ascent and descent,
which is equivalent with that 0 is a finite order pole of the resolvent operator Rλ (T ) =
(λ I−T )−1 , say of order k . In such case ind(T ) = asc(T ) = des(T ) = k [5, 17].

THEOREM 3.1. For C ∈B(H ) , there exist X ,Y ∈B(H ) such that XC2 =C =
C2Y if and only if C is group invertible. In this case,

X ∈
{
C� +S(I−CC�) : S ∈ B(H )

}
, Y ∈

{
C� +(I−CC�)T : T ∈ B(H )

}
.

In particular, if X = Y , R(X) = R(C) and R(X∗) = R(C∗), then X =CC = C� .
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Proof. ⇐ If C is group invertible, then there exist X = C� + S(I −CC�) and
Y = C� +(I−CC�)T for arbitrary S,T ∈ B(H ) such that XC2 = C = C2Y .

⇒ If XC2 = C = C2Y , then R(C) = R(C2) and N (C) = N (C2) . It follows
ind(C) = 1 and C is group invertible. We can write C as 2×2 matrix form C =C11⊕0
with respect to space decomposition H = R(C)⊕N (C) , where C11 ∈ B(R(C)) is
invertible. Correspondingly, put X = (Xi j)1�i, j�2 and Y = (Yi j)1�i, j�2. By C = XC2 =
C2Y we get

(
C11 0
0 0

)
=

(
X11 X12

X21 X22

)(
C2

11 0
0 0

)
=

(
C2

11 0
0 0

)(
Y11 Y12

Y21 Y22

)
.

So, (
C11 0
0 0

)
=

(
X11C2

11 0
X21C2

11 0

)
=

(
C2

11Y11 C2
11Y12

0 0

)
.

Since C11 is invertible, we derive that X11 = Y11 = C−1
11 , Y12 = 0 and X21 = 0. Hence,

X =
(

C−1
11 X12

0 X22

)
∈

{
C� +(I−CC�)S : S ∈ B(H )

}

and

Y =
(

C−1
11 0

Y21 Y22

)
∈

{
C� +(I−CC�)T : T ∈ B(H )

}
.

In particular, if X = Y , R(X) = R(C) and R(X∗) = R(C∗), then X12 = 0 , Y21 = 0
and X22 = Y22 = 0. By Definition 3.1 (iii), X =CC = C� . �

Next, we consider the case that [A,C] = 0.

THEOREM 3.2. Let A,B,C ∈B(H ) be such that [A,C] = 0 . If AC and BC exist,
then

(i) CC exists, [AC,CC] = 0 and (AC)C = CCAC ;

(ii) AC is unique and AC =C(AC)C = (CA)CC;

(iii) [AC,A] = 0 and [AC,C] = 0 ;

(iv) (AB)C and (BA)C exist with (AB)C = BCAC and (BA)C = ACBC .

Proof. Since AC exists, by Definition 3.1, there exists X = AC ∈B(H ) such that
XAC = C = CAX with R(X) ⊆ R(C) and R(X∗) ⊆ R(C∗). By Lemma 2.4, there
exist M,N ∈ B(H ) such that X = MC = CN . If [A,C] = 0, then

MAC2 = C = C2AN.

It implies that R(C) = R(C2) and N (C) = N (C2) . Hence, ind(C) = 1 and C is
group invertible with CC = C� by Theorem 3.1. Let H = R(C)⊕N (C) . Then C ∈
B(H ) has the form C = C11 ⊕0, where C11 ∈ B(R(C)) is invertible. The condition
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[A,C] = 0 implies that A = A11 ⊕A22 with A11 ∈ B(R(C)) , A22 ∈ B(N (C)) and
A11C11 = C11A11 . From R(X) = R(C) one has

X =
(

X11 X12

0 0

)
.

From XAC = C = CAX one gets
(

C11 0
0 0

)
=

(
X11 X12

0 0

)(
A11 0
0 A22

)(
C11 0
0 0

)

=
(

C11 0
0 0

)(
A11 0
0 A22

)(
X11 X12

0 0

)
.

So
C11 = X11A11C11 = C11A11X11 and C11A11X12 = 0.

The invertibility of C11 implies that A11 is invertible, X11 = A−1
11 and X12 = 0. Hence

AC = A11C11⊕0 and X = AC = A−1
11 ⊕0. Similarly, we have (AC)C =C−1

11 A−1
11 ⊕0. So

we have the following results.
(i) CC exists, [AC,CC] = 0 and (AC)C = CCAC ;
(ii) AC is unique and AC = C(AC)C = (CA)CC ;
(iii) [AC,A] = 0 and [AC,C] = 0;
(iv) Since BC exists, there exist Y = BC,M′,N′ ∈ B(H ) such that YBC = C =

CBY and Y = M′C = CN′ . So

YXABC = YAXBC = M′CAXBC = M′CBC = YBC = C,

CABYX = ACBYX = ACX = C and YX = YMC = CN′MC, i.e.,

R(YX) ⊆ R(C) = R(YXABC) ⊆ R(YX)

and
R((YX)∗) ⊆ R(C∗) = R((CABYX)∗) ⊆ R((YX)∗).

Hence YX = BCAC = (AB)C . Similarly we have (BA)C = ACBC . �
Theorem 3.2 shows that, if [A,C] = 0 and AC exists, then C must be group invert-

ible. Specially, if C = A (resp. C = Ak , where k = ind(A)) in above theorem, one has
the following corollary.

COROLLARY 3.1. ([12, Theorem 11]) Let A ∈ B(H ) .

(i) A is invertible if and only if A is invertible along I . In this case, A−1 = AI .

(ii) A is group invertible if and only if A is invertible along A. In this case, A# = AA .

(iii) A is Drazin invertible if and only if A is invertible along Ak . In this case, AD =
AAk .

As we know, AC and CA have the same Drazin invertibility and C(AC)D =
C[(AC)D]2AC = (CA)DC [2].
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THEOREM 3.3. Let A,C ∈ B(H ) such that AC is Drazin invertible. Then ALC

exists if and only if ARC exists. More precisely, if ALC exists, then ALC = ARC = AC =
C(AC)D . If ARC exists, then ARC = ALC = AC = (CA)DC.

Proof. ⇒ Let X = ALC and k = ind(AC) . Then there exists M ∈ B(H ) such
that X = MC and

C = XAC = MCAC = M2C(AC)2 = · · · = MkC(AC)k

= MkC(AC)k(AC)(AC)D = C(AC)(AC)D = CA
[
C(AC)D

]
.

Then ARC exists with ALC = ARC = AC = C(AC)D .
⇐ Dually, it follows that C =

[
(CA)DC

]
AC and ARC = ALC = AC = (CA)DC . �

In Theorem 3.3, if AC is Drazin invertible, left C -invertibility and right C -inverti-
bility both coincide with C -invertibility. Note that an operator T is Moore-Penrose
invertible if and only if R(T ) is closed. The Moore-Penrose inverse of T is denoted
by T † [2].

DEFINITION 3.2. For given A ∈ B(H ) , we call A is left (resp. right) g-MP
invertible if there exist X ,Y ∈ B(H ) such that A = XA2 = YAA∗A (resp. A = A2X =
AA∗AY ).

Let X = YA . Then R(X∗) ⊆ R(A∗) by Lemma 2.4. It is obvious that there exists
Y ∈ B(H ) such that A = YAA∗A (resp. A = AA∗AY ) if and only if (A∗)LA (resp.
(A∗)RA ) exists. For the left g-MP invertible operator, we get the following results.

THEOREM 3.4. For given A ∈ B(H ) , there exist X ,Y ∈ B(H ) such that

A = XA2 = YAA∗A

if and only if there exists N ∈ B(H ) such that

A = NA2A∗A.

In this case, R(A) is closed, [NA2,AA∗] = 0 ,

XA ∈ {
AA† +SA(I−AA†) : S ∈ B(H )

}
and

Y ∈ {
(AA∗)† +T (I−AA†) : T ∈ B(H )

}
.

Proof. ⇐ Since A = NA2A∗A ,

A∗A = (NA2A∗A)∗(NA2A∗A) = A∗A
[
(NA2)∗NA2]A∗A.

By Lemmas 2.2 and 2.3, R(A∗) = R(A∗A) and R(A) are closed. Then H = R(A)⊕
R(A)⊥ ,

A =
(

A11 A12

0 0

)
, A† =

(
A11 A12

0 0

)†

=
(

A∗
11Δ−1 0

A∗
12Δ−1 0

)
,
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where Δ = A11A∗
11 +A12A∗

12 . Put N = (Ni j)1�i, j�2. By A = NA2A∗A we get(
A11 A12

0 0

)
=

(
N11 N12

N21 N22

)(
A2

11 A11A12

0 0

)(
A∗

11 0
A∗

12 0

)(
A11 A12

0 0

)

=
(

N11A11ΔA11 N11A11ΔA12

N21A11ΔA11 N21A11ΔA12

)
.

By the relations A11 = N11A11ΔA11 and A12 = N11A11ΔA12 one derives that N11A11 =
Δ−1 . By the relations N21A11ΔA11 = 0 and N21A11ΔA12 = 0 we derive that N21A11 = 0.
So

NA2 =
(

N11 N12

N21 N22

)(
A2

11 A11A12

0 0

)
=

(
Δ−1A11 Δ−1A12

0 0

)
= (A†)∗

and
NA2A∗A = A = AA∗(A†)∗ = AA∗NA2, i.e., [NA2,AA∗] = 0.

Hence, there exist X = AA∗N and Y = NA such that A = XA2 and A = YAA∗A.
⇒ Since there exist X and Y such that

A = XA2 = YAA∗A = (YXA)AA∗A,

R(A) is closed and there exists N = YX such that A = NA2A∗A . Now, put X =
(Xi j)1�i, j�2 and Y = (Yi j)1�i, j�2. By A = XA2 = YAA∗A one gets(

A11 A12

0 0

)
=

(
X11 X12

X21 X22

)(
A2

11 A11A12

0 0

)
=

(
Y11 Y12

Y21 Y22

)(
ΔA11 ΔA12

0 0

)

=
(

X11A2
11 X11A11A12

X21A2
11 X21A11A12

)
=

(
Y11ΔA11 Y11ΔA12

Y21ΔA11 Y21ΔA12

)
.

By the relations A11 = X11A2
11 = Y11ΔA11 and A12 = X11A11A12 = Y11ΔA12 one de-

rives that Y11 = Δ−1 and X11A11 = I . By the relations X21A2
11 = 0, X21A11A12 = 0,

Y21ΔA11 = 0 and Y21ΔA12 = 0 one derives that Y21 = 0 and X21A11 = 0. Hence

Y =
(

Δ−1 Y12

0 Y22

)
∈ {

(AA∗)† +T (I−AA†) : T ∈ B(H )
}

and

XA =
(

I X11A12

0 X21A12

)
∈ {

AA† +SA(I−AA†) : S ∈ B(H )
}

. �

According to the proof of Theorem 3.4, the relations among left inverse, right
inverse and the Moore-Penrose inverse are given below.

COROLLARY 3.2. For given A ∈ B(H ) , R(A) is closed if and only if there
exists Y1 ∈ B(H ) such that A = Y1AA∗A if and only if there exists Y2 ∈ B(H ) such
that A = AA∗AY2 if and only if A∗

LA exists if and only if A∗
RA exists if and only if A is

MP-invertible. In this case, (A†)∗ = Y1A = AY2 , where

Y1 ∈
{
(AA∗)† +T (I−AA†) : T ∈ B(H )

}
and

Y2 ∈
{
(A∗A)† +(I−A†A)S : S ∈ B(H )

}
.
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We have the following main result.

THEOREM 3.5. Let A,C ∈ B(H ) . Then AC exists if and only if there exists
X ∈ B(H ) such that X = XAX ,

N (C) = N (X) = N (AX) = N (AC)

and
R(C) = R(X) = R(XA) = R(CA).

Moreover, for given A,C, if X exists, then X is unique.

Proof. ⇒ If X = AC exists, then XAC =C =CAX , R(X)⊆R(C) and R(X∗)⊆
R(C∗) . There exist M,N ∈ B(H ) such that X = MC = CN . By Lemma 2.4,

N (X) ⊆ N (AX) ⊆ N (C) ⊆ N (X), N (C) ⊆ N (AC) ⊆ N (C)

and
R(C) ⊆ R(XA) ⊆ R(X) ⊆ R(C), R(C) ⊆ R(CA) ⊆ R(C).

One gets
N (C) = N (X) = N (AX) = N (AC)

and
R(C) = R(X) = R(XA) = R(CA).

Moreover, (I−XA)C = 0 and R(X) = R(C) imply that (I−XA)X = 0.
⇐ If X = XAX , N (X) = N (C) and R(X) = R(C) , then R(X) and R(C) are

closed by Lemma 2.2. Hence, R(X∗) and R(C∗) are closed by Lemma 2.3 and

R(X∗) = N (X)⊥ = N (C)⊥ = R(C∗).

From (I−XA)X = 0 one gets

R(C) = R(X) ⊆ N (I−XA),

which implies that C = XAC . From X(I−AX) = 0 one gets

R(I−AX)⊆ N (X) = N (C),

which implies that C = CAX .
Finally, for given A,C , if X ,X ′ are two inverses of A along C , then

N (X) = N (C) = N (X ′)

and
R(X) = R(C) = R(X ′),

which imply

(I−XA)X ′ = (I−XA)X = 0, X(I−AX ′) = X ′(I−AX ′) = 0,
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i.e., X ′ = XAX ′ = X . �

Theorem 3.5 implies that the solution of CAX = C = XAC is an out inverse of
an operator A over complex field with prescribed range space R(C) and null space
N (C) (see [1, 2]).

REMARK 3.1. Theorem 3.5 shows that, if AC exists then:

(i) AC is the out inverse of A . R(AC) = R(C) is closed and N (AC) = N (C).

(ii) AAC and ACA are idempotents with

R(AAC) = R(AC), R(ACA) = R(CA),
N (AAC) = N (AC), N (ACA) = N (CA).

In fact, by Theorem 3.5, N (AAC) = N (AC) and R(ACA) = R(CA). If X = AC ex-
ists, then there exist X ,M,N ∈ B(H ) such that XAC = C = CAX , X = CN = MC.
Multiplying by A on the left, one has AC = AXAC and AX = ACN, which implies
that R(AC) = R(AX). Multiplying by A on the right, one has CA = CAXA and
XA = MCA, which implies that N (XA) = N (CA).

(iii) By the conjugate transformation we have X∗ = (AC)∗ = (A∗)C∗ ,

N (C∗) = N (X∗) = N (A∗X∗) = N (A∗C∗),
R(C∗) = R(X∗) = R(X∗A∗) = R(C∗A∗).

If A is invertible along C , then A and C have the following operator structure.

THEOREM 3.6. Let A,B,C ∈ B(H ) .

(i) AC exists if and only if the following conditions (a) and (b) hold:
(a) C is a closed range operator, i.e., there exists an invertible operator C11 ∈

B(R(C∗),R(C)) such that C = C11⊕0.

(b) A = (Ai j)1�i, j�2 as an operator from R(C)⊕N (C∗) into R(C∗)⊕N (C)
has the property that A11 is invertible.

In this case, AC is unique and AC = A−1
11 ⊕0.

(ii) If AC exists, then (ACC∗)C and (C∗CA)C exist. In this case,

(C∗CA)C = AC(C∗C)† = ACC†(C∗)†

and

(ACC∗)C = (CC∗)†AC = (C∗)†C†AC.

(iii) If AC and BC exist, then (ACB)C and (BCA)C exist. In this case,

(ACB)C = BCC−AC and (BCA)C = ACC−BC.
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Proof. (i) ⇐ It is obvious.
⇒ Theorem 3.5 and Remark 3.1 (iii) had proved that the solution X is unique and

R(C) = R(X) is closed with

N (C) = N (X), N (C∗) = N (X∗), R(C) = R(X), R(C∗) = R(X∗).

We know there exists an invertible operator C11,X11 ∈B(R(C∗),R(C)) such that C =
C11⊕0 and X = X11⊕0. Let A = (Ai j)1�i, j�2 . From XAC = C = CAX we get

X11A11C11 = C11 = C11A11X11.

So X11 = A−1
11 and AC = A−1

11 ⊕0.
(ii) By item (i), AC exists if and only if there exists an invertible operator C11

and A11 such that C = C11⊕0 and A = (Ai j)1�i, j�2 . Since ACC∗ and C∗CA have the
invertible (1,1)-entries A11C11C∗

11 and C∗
11C11A11 , respectively. By item (i), (ACC∗)C

and (C∗CA)C exist. Note that C† = C−1
11 ⊕0.

(C∗CA)C = (C∗
11C11A11)−1 ⊕0 = AC(C∗C)† = ACC†(C∗)†

and
(ACC∗)C = (A11C11C

∗
11)

−1 ⊕0 = (CC∗)†AC = (C∗)†C†AC.

(iii) Let B = (Bi j)1�i, j�2 . By item (i), BC exists if and only if B11 is invertible.
Since B11 is invertible if and only if B11C11A11 is invertible if and only if A11C11B11

is invertible, which are the (1,1)-entries of B , BCA and ACB , respectively. Note that
C− = (C0

i j)1�i, j�2 , where C0
11 = C−1

11 is invertible. C0
12 , C0

21 and C0
22 are arbitrary

operators on corresponding subspaces. By above item (i) we know

(ACB)C = (A11C11B11)−1⊕0 = BCC−AC

and
(BCA)C = (B11C11A11)−1⊕0 = ACC−BC. �

Theorem 3.6 shows that A is Moore-Penrose invertible if and only if A is invertible
along A∗ . In this case, A† = AA∗ . The closedness of R(C) implies that C has an inner
inverse C− . If AC exists, then

AC+ I−C−C and CA+ I−CC−

are invertible (see [14, Corollary 2.5]). If AC and BC exist, then

CACB+ I−CC−, CBCA+ I−CC−, ACBC+ I−C−C, BCAC+ I−C−C

are invertible. But (AC)C , (CA)C , (ABC)C and (CAB)C may not exist.
As for the operator matrix T = (Ti j)1�i, j�2 on the Hilbert space H1⊕H2 , where

operator Ti j acts from H j into Hi , i, j = 1,2. Denote by T11 = T |H1 . We have the
following results.
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THEOREM 3.7. Let A,C ∈ B(H ) . Denote by P = CC− and Q = C−C.

(i) If AC exists, then (CA)P = ACC− and (AC)Q = C−AC .

(ii) If C|R(C) is invertible, then

AC exists ⇐⇒ (AC)C exists ⇐⇒ (CA)C exists.

In this case, (CA)C = ACCC and (AC)C = CCAC.

Proof. If AC exists, then C,A and AC have the matrix forms as in Theorem 3.6
item (i). Then C− has the matrix representation as C− = (C0

i j)1�i, j�2 , where C0
11 =

C−1
11 . Then

P = CC− =
(

I C11C0
12

0 0

)
, Q = C−C =

(
I 0

C0
21C11 0

)

and

ACC− =
(

A−1
11 C−1

11 A−1
11 C0

12
0 0

)
, C−AC =

(
C−1

11 A−1
11 0

C0
21A

−1
11 0

)
.

Note that R(ACC−) = R(P) , R((ACC−)∗) = R(P∗) and
[
ACC−]

CAP = P = PCA
[
ACC−]

.

By uniqueness of (CA)P , we obtain (CA)P = ACC− . Similarly we have (AC)Q =
C−AC .

(ii) If C|R(C) is invertible, then there exist C12 ∈ B(R(C)⊥,R(C)) , an invertible
operator C|R(C) = C11 ∈ B(R(C)) and invertible operator S ∈ B(H ) such that

C =
(

C11 C12

0 0

)
, S =

(
I C−1

11 C12

0 I

)
, SCS−1 =

(
C11 0
0 0

)
.

In the following we divide the proof into three steps.
Step 1. By Definition 3.1, X = AC exists if and only if XAC =C =CAX , R(X) =

R(C) and R(X∗)= R(C∗). By Lemma 2.4, R(X)= R(C) if and only if R(SXS−1)=
R(SCS−1) . And R(X∗) = R(C∗) if and only if R

[
(SXS−1)∗

]
= R

[
(SCS−1)∗

]
. Fur-

thermore,

SXS−1 ·SAS−1 ·SCS−1 = SCS−1 = SCS−1 ·SAS−1 ·SXS−1.

Hence, AC exists if and only if (SAS−1)SCS−1 exists.
Step 2. By Theorem 3.6 (i), (SAS−1)SCS−1 exists if and only if there exists an

invertible operator A0
11 ∈ B(R(C)) such that

SAS−1 = (A0
i j)1�i, j�2.

In this case, (SAS−1)SCS−1 is unique with

(SAS−1)SCS−1 = SXS−1 = (A0
11)

−1⊕0.
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Hence, A = S−1(A0
i j)1�i, j�2S and

AC = X = S−1
(

(A0
11)

−1 0
0 0

)
S =

(
(A0

11)
−1 (A0

11)
−1C−1

11 C12

0 0

)
.

Step 3. Note that the (1,1)-entries of SAS−1 , SACS−1 and SCAS−1 have the same
invertibility. So

(SAS−1)SCS−1 exists ⇐⇒ (SACS−1)SCS−1 exists ⇐⇒ (SCAS−1)SCS−1 exists.

In this case,

(SACS−1)SCS−1 = C−1
11 (A0

11)
−1 ⊕0 = (SCS−1)SCS−1(SAS−1)SCS−1

and
(SCAS−1)SCS−1 = (A0

11)
−1C−1

11 ⊕0 = (SAS−1)SCS−1(SCS−1)SCS−1 .

Step 4. By Step 2, one has that

AC = S−1 [
(SAS−1)SCS−1

]
S.

Hence, by Step 3, we get (AC)C = CCAC and (CA)C = ACCC . �

4. The (B,C)-inverses

In this section, we investigate the inverse along a pair of operators B and C . We
find some explicit properties of the one sided-inverses and (B,C)-inverses. One can
refer to [3, 8, 9, 12, 13, 14] for more details on the inverse along a pair of B and C .

DEFINITION 4.1. ([3, 8, 9, 12, 13, 14]) For given A,B,C ∈B(H ) , if there exists
X ∈ B(H ) such that

(i)
XAB = B and R(X∗) ⊆ R(C∗),

then A is called left (B,C)-invertible and X is called a left (B,C)-inverse of A , denoted
by X = ALBC .

(ii)
CAX = C and R(X) ⊆ R(B),

then A is called right (B,C)-invertible and X is called a right (B,C)-inverse of A ,
denoted by X = ARBC .

(iii)
XAB = B, CAX = C, R(X) = R(B) and R(X∗) = R(C∗),

then A is called (B,C)-invertible and X is called the (B,C)-inverse of A , denoted by
X = ABC .
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By Definition 4.1, we observe that

(ALBC)∗ = A∗
RC∗B∗ , (ARBC)∗ = A∗

LC∗B∗ and (ABC)∗ = A∗
C∗B∗ .

If X = ABC exists, then the relations XAB = B and R(X) = R(B) imply that 0 =
(I −XA)B = (I −XA)X . Hence, ABC is an outer inverse. It is obvious that A is both
left and right (B,C)-invertible if and only if A is (B,C)-invertible. And in this case,
ALBC = ARBC = ABC . In the following theorem, the representation parts of ALBC and
ARBC relating the finite matrix by using the Moore-Penrose inverse can be found in [3,
Theorem 3.19]

THEOREM 4.1. Let A,B,C ∈ B(H ) .

(i) ALBC exists if and only if R(B∗) = R(B∗A∗C∗) . In addition, if R(B) is closed, then

ALBC ∈
{

[B(CAB)− +S(I−CAB(CAB)−)]C : S ∈ B(H )
}

.

(ii) ARBC exists if and only if R(C) = R(CAB) . In addition, if R(C) is closed, then

ARBC ∈
{

B[(CAB)−C+(I− (CAB)−CAB)T ] : T ∈ B(H )
}

.

(iii) ABC exists if and only if

R(B∗) = R(B∗A∗C∗), R(C) = R(CAB).

In addition, if R(C) or R(B) is closed, ABC is unique with ABC = B(CAB)−C.

Proof. If B and C ∈ B(H ) , then there exist injective dense defined operators
B11 ∈ B(R(B∗),R(B)) and C11 ∈ B(R(C∗),R(C)) such that B = B11 ⊕0 and C =
C11⊕0. Correspondingly, A and X∗ , as operators from R(B)⊕N (B∗) into R(C∗)⊕
N (C) , are denoted by A = (Ai j)1�i, j�2 and X = (Xi j)1�i, j�2 , respectively.

(i) Note that X = ALBC if and only if XAB = B and R(X∗) ⊆ R(C∗) if and
only if there exists M ∈ B(H ) such that MCAB = B , where X = MC if and only if
R(B∗) = R(B∗A∗C∗) .

Now, let A,B,C and X have the matrices forms as above. From R(X∗) ⊆ R(C∗)
one has X12 = 0 and X22 = 0. From XAB = B one gets

XAB =
(

X11 0
X21 0

)(
A11 A12

A21 A22

)(
B11 0
0 0

)
=

(
X11A11B11 0
X21A11B11 0

)
=

(
B11 0
0 0

)
.

Since B11 is dense defined operator, one gets X11A11 = I and X21A11 = 0.
In addition, if R(B) is closed, then R(B∗) = R(B∗A∗C∗) is closed. By Lemma

2.3, R(CAB) is closed and the inner inverse (CAB)− exists with B(CAB)−CAB = B .
By Lemma 2.1, MCAB = B has the general solution of the form

M = B(CAB)− +S[I−CAB(CAB)−], ∀S ∈ B(H ).
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Hence, the general representation of ALBC is of the form

X = MC =
[
B(CAB)− +S(I−CAB(CAB)−)

]
C, ∀S ∈ B(H ).

(ii) Similar to (i). We can prove that X = ARBC exists if and only if R(C) =
R(CAB) . If R(C) is closed, then

X = B
[
(CAB)−C+(I− (CAB)−CAB)T

]
, ∀T ∈ B(H ).

Moreover, if A,B,C,X have matrix forms as above, one has X21 = 0, X22 = 0, A11X11 =
I and A11X12 = 0.

(iii) Since A is (B,C)-invertible if and only if A is both left and right (B,C)-
invertible, we get A is (B,C)-invertible if and only if

R(B∗) = R(B∗A∗C∗), R(C) = R(CAB).

By (i) and (ii) we get X = ABC = X11⊕0 with X11A11 = I and A11X11 = I . So, if R(C)
or R(B) is closed, ABC is unique with

ABC =
(

A−1
11 0
0 0

)
= B(CAB)−C. �

By Theorem 4.1 (iii), if ABC exists, from ABC = A−1
11 ⊕0 and A = (Ai j)1�i, j�2 we

get two idempotents

ABCA =
(

I A−1
11 A12

0 0

)
:

(
R(B)

N (B∗)

)

and

AABC =
(

I 0
A21A

−1
11 0

)
:

(
R(C∗)
N (C)

)
.

Hence, one has
R(ABCA) = R(B), N [(ABCA)∗] = N (B∗)

and
R((AABC)∗) = R(C∗), N (AABC) = N (C).

In fact, there are more range and kernel relations can be obtained by using the ma-
trix representations of A,B,C and ABC . In particular, if B = C we get the following
corollary.

COROLLARY 4.1. Let A,C ∈ B(H ) .

(i) ALC exists if and only if R(C∗) = R(C∗A∗C∗) . In addition, if R(C) is closed, then

ALC ∈
{

[C(CAC)− +S(I−CAC(CAC)−)]C : S ∈ B(H )
}

.
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(ii) ARC exists if and only if R(C) = R(CAC) . In addition, if R(C) is closed, then

ARC ∈
{

C
[
(CAC)−C+(I− (CAC)−CAC)T

]
: T ∈ B(H )

}
.

(iii) AC exists if and only if

R(C∗) = R(C∗A∗C∗), R(C) = R(CAC).

In addition, if R(C) is closed, then AC is unique with AC = C(CAC)−C.

If A is (B,C)-invertible, then R(ABC) , R(B) and R(C) must be closed. And
B11,C11 in Theorem 4.1 are invertible. In fact, R(X) = R(B) implies there exists
N ∈ B(H ) such that X = BN . So B = XAB = BNAB , which follows that R(B) is
closed. Similarly, R(C) is also closed. Note that R(ALBC) (resp. R(ARBC)) may not
be closed. If B = C = I , then

R(ALBC) = R(A∗
RBC) = H .

As we know, if A1,A2 ∈ B(H ) are invertible, then BA1 = A2B ⇐⇒ A−1
2 B =

BA−1
1 . If A1 has right invertible A−1

R and A2 has left invertible A−1
L , i.e., A1A

−1
R = I =

A−1
L A2 , then

BA1 = A2B =⇒ A−1
L B = A−1

L BA1A
−1
R = A−1

L A2BA−1
R = BA−1

R .

This was generalized in [8, Theorem 5.1] to the case in the ring. More generally, for
right and left (B,C)-inverses of operators, we have the following extension.

THEOREM 4.2. Let A,B,C,A′,B′,C′ ∈ B(H ) be such that DA = A′D, DB =
B′D and DC = C′D. If ARBC and A′

LB′C′ exist, then A′
LB′C′D = DARBC.

Proof. The argument runs parallel to that for [8, Theorem 5.1]. If X =: ARBC and
Y =: A′

LB′C′ exist, then there exist M,N ∈B(H ) such that X = BM and Y = NC′ . So,

A′
LB′C′D = NC′D = NDC = NDCAX = NC′A′DX = YA′DX

and
DARBC = DBM = B′DM = YA′B′DM =YA′DBM = YA′DX .

Hence, A′
LB′C′D = DARBC. �
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