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THE NEW REVERSES OF YOUNG TYPE INEQUALITIES

FOR NUMBERS, OPERATORS AND MATRICES

LEILA NASIRI AND WENSHI LIAO

(Communicated by C.-K. Li)

Abstract. In this note, we give reverses of Young inequality for numbers. Then we establish
operator and matrix inequalities corresponding the obtained numerical inequalities.

1. Introduction

The inequality

aνb1−ν � νa+(1−ν)b, (1.1)

is the famous Young inequality for non-negative real numbers a,b and 0 � ν � 1. In
(1.1), the equality holds if and only if a = b. The inequality (1.1) is also called ν -
weighted arithmetic-geometric mean inequality. For the special case, when ν = 1

2 , we
obtain

√
ab � a+b

2
,

which is called the fundamental arithmetic-geometric mean inequality.

The quantity K(t,2) = (t+1)2
4t , for t > 0 is the so called Kantorovich constant and

satisfies the following conditions:
(i) K(1,2) = 1 and K(t,2) = K( 1

t ,2) � 1 for t > 0.
(ii) K(t,2) is monotone increasing on the interval [1,∞) and monotone decreasing

on the interval (0,1].
In 2011, Zou et. al. [15] proved the following result that is a refined version of

(1.1) in terms of Kantorovich constant.

νa+(1−ν)b � K(h,2)rb1−νaν (1.2)

where r = min{ν,1−ν} and h = b
a .
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X. Hu [7] presented the following inequalities which can be viewed as refinement
of the inequality (1.1).

ν2a2 +(1−ν)2b2 � ν2(a−b)2 +[(νa)νb1−ν ]2, 0 � ν � 1
2
, (1.3)

ν2a2 +(1−ν)2b2 � (1−ν)2(a−b)2 +[aν((1−ν)b)1−ν ]2,
1
2

� ν � 1. (1.4)

A. Burqan and M. Khandaqji [4] gave reverses of Young type inequalities as follows:

ν2a+(1−ν)2b � (1−ν)2(
√

a−
√

b)2 +aν [(1−ν)2b]1−ν , 0 � ν � 1
2
, (1.5)

ν2a+(1−ν)2b � ν2(
√

a−
√

b)2 + ν2νaνb1−ν ,
1
2

� ν � 1. (1.6)

Throughout this paper, let B(H) denote the C∗ -algebra of all bounded linear operators
on the Hilbert space H, while B(H)+ and B(H)++, respectively, denote the class of all
positive bounded linear operators and the class of all invertible positive bounded linear
operators in B(H) . Also, I stands for the identity operator. Let A,B ∈ B(H). We say
A is positive and we write A � 0, if 〈Ax,x〉 � 0 for every x ∈ H. Moreover, we say
A � B(B � A) if A−B � 0(B−A � 0) respectively. Also, the adjoint of A and the

absolute value of A , respectively, are defined by A∗ and |A| = (AA∗)
1
2 .

Let Mn(C) be the space of all n×n matrices with entries in complex field C. The
unitarily invariance of the norm ‖.‖ means that ‖UAV‖ = ‖A‖ for all A ∈ Mn(C) and
for all unitary matrices U,V ∈ Mn(C). An example of a unitary invariant norm is the
Hilbert-Schmidt norm defined by

‖A‖2 =

√
n

∑
j=1

s2
j(A),

where s1(A) � s2(A) � . . . . . . .. � sn(A) are the singular values of A, that is, the eigen-

values of the positive semidefinite matrix |A| = (A∗A)
1
2 , arranged in decreasing order

and repeated according to multiplicity.
It should be mentioned here that the theory of operator means was started by Ando

and was developed in paper [11] by Kubo and Ando.
For A,B ∈ B(H)++ and 0 � ν � 1, the ν -weighted geometric mean A�νB, the

ν -weighted arithmetic mean A∇νB and the ν -weighted harmonic mean A!νB , respec-
tively, are defined by

A�νB = A
1
2

(
A− 1

2 BA− 1
2

)ν
A

1
2 ,

A∇νB = (1−ν)A+ νB

and

A!νB =
(

(1−ν)A−1 + νB−1
)−1

.
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For the special case, when ν = 1
2 , we define respectively, by A�B, A∇B and A!B

for brevity. A operator version of (1.1) proved in [5] as follows:

A�νB � A∇νB,

where A,B ∈ B(H)++ and 0 � ν � 1. It is well-known that

A�B � Hν(A,B) � A∇B, (1.7)

for A,B∈B(H)++ and 0 � ν � 1. The inequality (1.7) is called Heinz double operator
inequality and Hν(A,B) is called Heinz mean and is defined as

Hν(A,B) =
A�νB+A�1−νB

2
.

For more information about Young and Heinz inequalities (see [1, 2, 3, 6, 8, 9, 10, 12,
13, 14]).

2. Main results

2.1. Scalar versions for reverse Young type inequalities

First, we give reverses of the inequalities (1.3), (1.4), (1.5) and (1.6) using Kan-
torovich constant.

THEOREM 2.1. Let a,b be two non-negative real numbers and 0 � ν � 1
2 , then

(1−ν)2ν [(1−2ν)a+2νb]+ (1−ν)2−2νa2νb1−2νK(h,2)−r � 2(1−ν)
√

ab, (2.1)

and

(1−ν)2−2ν [2νa+(1−2ν)b]+ (1−ν)2νa1−2νb2νK(h,2)−r � 2(1−ν)
√

ab, (2.2)

where h = a
b and r = min{2ν,1−2ν}.

Proof. Letting 0 � ν � 1
2 , by inequality (1.2), we get

(1−ν)2ν [(1−2ν)a+2νb]+ (1−ν)2−2νa2νb1−2νK(h,2)−r −2(1−ν)
√

ab

� (1−ν)2ν [a1−2νb2νK(h,2)r]+ (1−ν)2−2νa2νb1−2νK(h,2)−r −2(1−ν)
√

ab

=
[
(1−ν)νa

1−2ν
2 bνK(h,2)

r
2 − (1−ν)1−νaνb

1−2ν
2 K(h,2)−

r
2

]2

� 0,

which implies that

(1−ν)2ν [(1−2ν)a+2νb]+ (1−ν)2−2νa2νb1−2νK(h,2)−r � 2(1−ν)
√

ab.
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Analogously, by employing (1.2), we have

(1−ν)2−2ν [2νa+(1−2ν)b]+ (1−ν)2νa1−2νb2νK(h,2)−r −2(1−ν)
√

ab

� (1−ν)2−2ν [a2νb1−2νK(h,2)r]+ (1−ν)2νa1−2νb2νK(h,2)−r −2(1−ν)
√

ab

=
[
(1−ν)1−νaνb

1−2ν
2 K(h,2)

r
2 − (1−ν)νa

1−2ν
2 bνK(h,2)−

r
2

]2

� 0,

and so,

(1−ν)2−2ν [2νa+(1−2ν)b]+ (1−ν)2νa1−2νb2νK(h,2)−r � 2(1−ν)
√

ab.

This completes the proof. �

THEOREM 2.2. Let a,b be two non-negative real numbers and 0 � ν � 1
2 . Then

(1−ν)2−2ν [νa+(1−ν)b]+ (1−ν)2νa1−νbνK(h,2)−r � 2(1−ν)
√

ab, (2.3)

and

(1−ν)2ν [(1−ν)a+ νb]+ (1−ν)2−2νaνb1−νK(h,2)−r � 2(1−ν)
√

ab, (2.4)

where h = a
b and r = min{ν,1−ν}.

Proof. For 0 � ν � 1
2 , by inequality (1.2), we find that

(1−ν)2−2ν [νa+(1−ν)b]+ (1−ν)2νa1−νbνK(h,2)−r −2(1−ν)
√

ab

� (1−ν)2−2νaνb1−νK(h,2)r +(1−ν)2νa1−νbνK(h,2)−r −2(1−ν)
√

ab

=
[
(1−ν)νa

1−ν
2 b

ν
2 K(h,2)−

r
2 − (1−ν)1−νa

ν
2 b

1−2ν
2 K(h,2)

r
2

]2

� 0,

i.e.,

(1−ν)2−2ν [νa+(1−ν)b]+ (1−ν)2νa1−νbνK(h,2)−r � 2(1−ν)
√

ab.

Again by inequality (1.2), it follows that

(1−ν)2ν [(1−ν)a+ νb]+ (1−ν)2−2νaνb1−νK(h,2)−r −2(1−ν)
√

ab

� (1−ν)2νa1−νbνK(h,2)r +(1−ν)2−2νaνb1−νK(h,2)−r −2(1−ν)
√

ab

=
[
(1−ν)νa

1−ν
2 b

ν
2 K(h,2)

r
2 − (1−ν)1−νa

ν
2 b

1−ν
2 K− r

2

]2

� 0,

and so (2.4) is proved. This completes the proof. �
The following results are immediate consequences of Theorem 2.1 and Theorem

2.2.
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COROLLARY 2.3. Let a,b be two non-negative real numbers and 0 � ν � 1
2 ,

then

(1−ν)2ν
(

a+b
2

)
+(1−ν)2−2ν

(
a2νb1−2ν +a1−2νb2ν

2

)
K(h,2)−r � 2(1−ν)

√
ab,

(2.5)

and

(1−ν)2−2ν
(

a+b
2

)
+(1−ν)2ν

(
a1−2νb2ν +a2νb1−2ν

2

)
K(h,2)−r � 2(1−ν)

√
ab,

(2.6)

where h = a
b and r = min{2ν,1−2ν}.

COROLLARY 2.4. Let a,b be two non-negative real numbers and 0 � ν � 1
2 ,

then

(1−ν)2−2ν
(

a+b
2

)
+(1−ν)2ν

(
aνb1−ν +a1−νbν

2

)
K(h,2)−r � 2(1−ν)

√
ab,

(2.7)

and

(1−ν)2ν
(

a+b
2

)
+(1−ν)2−2ν

(
a1−νbν +aνb1−ν

2

)
K(h,2)−r � 2(1−ν)

√
ab,

(2.8)

where h = a
b and r = min{ν,1−ν}.

2.2. Operator versions for reverse Young type inequalities

In this section, we present operator versions based on Theorem 2.1 and Theorem
2.2.

Techniques are based on the monotonicity property of operator functions stated in
following form:

Let X ∈ B(H)++ with Sp(X) and f and g be continuous real-valued functions
so that f (t) � g(t) on Sp(X), then f (X) � g(X).

THEOREM 2.5. Suppose that A,B ∈ B(H)++ satisfy 0 < mI � A,B � MI where
M,m are positive real numbers such that m < M. Then for 0 � ν � 1

2

(1−ν)2ν(A∇B)+ (1−ν)2−2νH2ν(A,B)K(h,2)−r � 2(1−ν)(A�B) (2.9)

and

(1−ν)2−2ν(A∇B)+ (1−ν)2νH2ν(A,B)K(h,2)−r � 2(1−ν)(A�B), (2.10)

where h = M
m and r = min{2ν,1−2ν}.
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Proof. For 0 � ν � 1
2 , by inequality (2.1), it follows that

(1−ν)2ν [(1−2ν)+2νx]+ (1−ν)2−2νx1−2νK(x,2)−r � 2(1−ν)
√

x, (2.11)

for x > 0. Considering X = A− 1
2 BA− 1

2 , the property 0 < mI � A,B � MI ensure us
that

0 < h
′
I � X � hI

and therefore Sp(X)⊂ [h
′
,h]⊂ (1,+∞). Setting X = A− 1

2 BA− 1
2 � 0 in (2.11) and using

above monotonicity principle for operator functions yield the following inequality:

(1−ν)2ν
[
(1−2ν)I +2ν(A− 1

2 BA− 1
2 )

]

+(1−ν)2−2ν
(

A− 1
2 BA− 1

2

)1−2ν
K(h,2)−r

� 2(1−ν)
(

A− 1
2 BA− 1

2

) 1
2

. (2.12)

Finally, multiplying both sides (2.12) by A
1
2 , we obtain

(1−ν)2ν [(1−2ν)A+2νB]+ (1−ν)2−2ν(A�1−2νB)K(h,2)−r � 2(1−ν)(A�B).

Replacing A and B by B and A (respectively) in the inequality above, we get

(1−ν)2ν [(1−2ν)B+2νA]+ (1−ν)2−2ν(A�2νB)K(h,2)−r � 2(1−ν)(A�B).

Summing two latter inequalities, we have

(1−ν)2ν(A∇B)+ (1−ν)2−2νH2ν(A,B)K(h,2)−r � 2(1−ν)(A�B).

The inequality (2.10) prove in similar way. This completes the proof. �

THEOREM 2.6. With the same assumptions as in Theorem 2.5. Then the follow-
ing inequalities hold:

(1−ν)2−2ν(A∇B)+ (1−ν)2νHν (A,B)K(h,2)−r � 2(1−ν)(A�B) (2.13)

and

(1−ν)2ν(A∇B)+ (1−ν)2−2νHν(A,B)K(h,2)−r � 2(1−ν)(A�B), (2.14)

where, h = M
m and r = min{ν,1−ν}.

Proof. The proof follows by utilizing of (2.3) and (2.4) and by applying a similar
manner as in Theorem 2.5. �
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2.3. Matrix versions for reverse Young type inequalities

In this section, we give some matrix versions based on Corollary 2.3 and Corollary
2.4.

The famous spectral theorem says that every positive semidefinite matrix is uni-
tarily diagonalizable, so for positive semidefinite matrices A and B there are unitary
matrices U1 and U2 such that A = U1DU∗

1 and B = U2EU∗
2 where

D = diag(λ1, . . . ,λn)

and

E = diag(μ1, . . . ,μn)

(λi,μi � 0) for 0 � i � n.

THEOREM 2.7. Let A,B,X ∈ Mn(C) such that A and B are positive definite and
0 � ν � 1

2 , then

∥∥∥∥(1−ν)2ν AX +XB
2

+(1−ν)2−2ν A2νXB1−2ν +A1−2νXB2ν

2
K(h,2)−r

∥∥∥∥
2

2

� (2(1−ν))2

∥∥∥∥A
1
2 XB

1
2

∥∥∥∥
2

2
, (2.15)

and

∥∥∥∥(1−ν)2−2ν AX +XB
2

+(1−ν)2ν A2νXB1−2ν +A1−2νXB2ν

2
K(h,2)−r

∥∥∥∥
2

2

� (2(1−ν))2

∥∥∥∥A
1
2 XB

1
2

∥∥∥∥
2

2
, (2.16)

where h = M
m and r = min{2ν,1−2ν}.

Proof. For our computations, let Y =U∗
1 XU2 = [yi j] (1 � i, j � n). Then, we have

A
1
2 XB

1
2 = U1

(
λ

1
2
i μ

1
2
j yi j

)
U∗

2 ,

and so ∥∥∥∥A
1
2 XB

1
2

∥∥∥∥
2

2
=

∥∥∥∥U1(λ
1
2
i μ

1
2
j yi j)U∗

2

∥∥∥∥
2

2
=

n

∑
i, j=1

(
λ

1
2
i μ

1
2
j

)2

|yi j|2.
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Similarly, one can show

(1−ν)2ν AX +XB
2

+(1−ν)2−2ν A2νXB1−2ν +A1−2νXB2ν

2
K−r(h,2)

=U1

[
(1−ν)2ν D(U∗

1 XU2)+ (U∗
1 XU2)E

2

+(1−ν)2−2ν D2ν(U∗
1 XU2)E1−2ν +D1−2ν(U∗

1 XU2)E2ν

2
K−r(h,2)

]
U∗

2

=U1

[
(1−ν)2ν DY +YE

2
+(1−ν)2−2ν D2νYE1−2ν +D1−2νYE2ν

2
K−r(h,2)

]
U∗

2 .

From the inequality (2.5) and the unitarily invariant property of ‖.‖2
2, we have

(2(1−ν))2

∥∥∥∥A
1
2 XB

1
2

∥∥∥∥
2

2

=
n

∑
i, j

(
2(1−ν)

√
λiμ j

)2

|yi j|2

�
n

∑
i, j

(
(1−ν)2ν λi + μ j

2
+K−r(1−ν)2−2ν

(λ 2ν
i μ1−2ν

j + λ 1−2ν
i μ2ν

j

2

))2

|yi j|2

=
∥∥∥∥(1−ν)2ν AX +XB

2
+(1−ν)2−2ν A2νXB1−2ν +A1−2νXB2ν

2
K(h,2)−r

∥∥∥∥
2

2
.

The inequality (2.16) can be proven in a similar method, we omit its details. �

THEOREM 2.8. With the assumptions of Theorem 2.7, we have the following es-
timates: ∥∥∥∥(1−ν)2−2ν AX +XB

2
+(1−ν)2ν AνXB1−ν +A1−νXBν

2
K(h,2)−r

∥∥∥∥
2

2

� (2(1−ν))2

∥∥∥∥A
1
2 XB

1
2

∥∥∥∥
2

2
, (2.17)

and ∥∥∥∥(1−ν)2ν AX +XB
2

+(1−ν)2−2ν AνXB1−ν +A1−νXBν

2
K(h,2)−r

∥∥∥∥
2

2

� (2(1−ν))2

∥∥∥∥A
1
2 XB

1
2

∥∥∥∥
2

2
, (2.18)

where h = M
m and r = min{ν,1−ν}.

Proof. According to the inequalities (2.7) and (2.8) and by a process similar to the
proof of Theorem 2.7, we can deduce the desired inequalities. �
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