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THE NEW REVERSES OF YOUNG TYPE INEQUALITIES
FOR NUMBERS, OPERATORS AND MATRICES

LEILA NASIRI AND WENSHI LIAO

(Communicated by C.-K. Li)

Abstract. In this note, we give reverses of Young inequality for numbers. Then we establish
operator and matrix inequalities corresponding the obtained numerical inequalities.
1. Introduction
The inequality
a’b'V < va+(1—-v)b, (1.1)

is the famous Young inequality for non-negative real numbers a,b and O < v < 1. In
(1.1), the equality holds if and only if a = b. The inequality (1.1) is also called v-
weighted arithmetic-geometric mean inequality. For the special case, when v = %, we
obtain

\/Eg a;b’

which is called the fundamental arithmetic-geometric mean inequality.

2
The quantity K(7,2) = (tztl ) , for t > 0 is the so called Kantorovich constant and

satisfies the following conditions:

(i) K(1,2) =1 and K(t,2) = K(+,2) > 1 for t > 0.

(i) K(z,2) is monotone increasing on the interval [1,0) and monotone decreasing
on the interval (0, 1].

In 2011, Zou et. al. [15] proved the following result that is a refined version of
(1.1) in terms of Kantorovich constant.

va+(1-v)b>K(h,2) b Va" (1.2)

where 7 =min{v,1—v} and h = 2.
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X. Hu [7] presented the following inequalities which can be viewed as refinement
of the inequality (1.1).

1
V2@ +(1-v)b? = v (a—b)* +[(va)'p'V]?, 0<v< 5 (1.3)
1
V2@ + (1—v)?p?* = (1—v)*(a—b)* +[a"((1—v)b)' ], S<v<L (14
A. Burgan and M. Khandagqji [4] gave reverses of Young type inequalities as follows:
1
vZa+(1—v)’b<(1=v)3(Va—Vb)*+a"[(1-v)?b]'™, 0<v< )
1
vZa+(1-v)?b < V2 (Va—Vb)> +v¥Va"b' ™, SSv<L (1.6)

Throughout this paper, let B(H) denote the C*-algebra of all bounded linear operators
on the Hilbert space H, while B(H)" and B(H)™ ™, respectively, denote the class of all
positive bounded linear operators and the class of all invertible positive bounded linear
operators in B(H). Also, I stands for the identity operator. Let A,B € B(H). We say
A is positive and we write A > 0, if (Ax,x) > 0 for every x € H. Moreover, we say
A= B(B>A)if A—B>0(B—A > 0) respectively. Also, the adjoint of A and the
absolute value of A, respectively, are defined by A* and |A| = (AA*) 3,

Let M, (C) be the space of all n x n matrices with entries in complex field C. The
unitarily invariance of the norm ||.|| means that ||UAV|| = ||A| for all A € M,(C) and
for all unitary matrices U,V € M,(C). An example of a unitary invariant norm is the

Hilbert-Schmidt norm defined by
_ )
Il = /354,
j=

where s1(A) = s(A) > ........ > s5,(A) are the singular values of A, that is, the eigen-

values of the positive semidefinite matrix |A| = (A*A)%, arranged in decreasing order
and repeated according to multiplicity.

It should be mentioned here that the theory of operator means was started by Ando
and was developed in paper [1 1] by Kubo and Ando.

For A,B € B(H)™ and 0 < v < 1, the v-weighted geometric mean Af, B, the
v-weighted arithmetic mean AV, B and the v-weighted harmonic mean A!, B, respec-
tively, are defined by

Vv
At B = A? (A%BA%) A2,
AV,B=(1—V)A+VB

and

-1
Al B = ((1 —v) A~ ¢ vBl> .
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For the special case, when v = %7 we define respectively, by AiB, AVB and A!B
for brevity. A operator version of (1.1) proved in [5] as follows:

AtyB < AV,B,
where A,B € B(H)*" and 0 < v < 1. It is well-known that
A4B < Hy(A,B) < AVB, (1.7)

for A,B€ B(H)™™" and 0 < v < 1. The inequality (1.7) is called Heinz double operator
inequality and Hy (A, B) is called Heinz mean and is defined as

AfyB+Af_vB
Hv(A,B): ﬁV +2 ﬁl \4 .

For more information about Young and Heinz inequalities (see [1, 2, 3, 6, 8, 9, 10, 12,
13, 14]).

2. Main results

2.1. Scalar versions for reverse Young type inequalities

First, we give reverses of the inequalities (1.3), (1.4), (1.5) and (1.6) using Kan-
torovich constant.

THEOREM 2.1. Let a,b be two non-negative real numbers and 0 < v < %, then
(1—=v)2[(1=2v)a+2vb]+ (1 —v)>* 2a® b " 2VK(h,2) " > 2(1 - v)Vab, (2.1)
and
(1—=v)222va+ (1 —=2v)b]+ (1 = v)¥a "2 b?YK(h,2) " > 2(1 — v)Vab, (2.2)

where h = § and r = min{2v,1 —2v}.

Proof. Letting 0 < v < %, by inequality (1.2), we get

(1—=v)2[(1=2v)a+2vb]+ (1 —v)> 2a® b "2YK(h,2) " —2(1 — v)Vab

> (1—=v)>V[a"" b K (h,2)" ]+ (1 = v)> 2 a?' b "2V K (h,2) " = 2(1 — v)Vab
2
= (1= v)"a" T B K(h,2)F — (1 —v)"Va'b' T K (h,2)" ¢

WV

0,
which implies that

(1—v)?Y[(1=2V)a+2vb]+ (1 —v)* 2a® b 2K (h,2) " > 2(1 — v)Vab.



1066

L. NASIRI AND W. L1AO

Analogously, by employing (1.2), we have
(1—=v)2"2[2va+ (1 =2v)b] + (1 — v)?Ya' "2Vb?YK(h,2) " —2(1 — v)Vab

> (1-v)22[@@p 2K (1,2) ]+ (1 = v)?Ya' "2 b¥ K (h,2) " —2(1 — v)Vab
2

= (1= T K (1,2)E — (1—v)¥a T bYK(h,2)" ¢
>0,
and so,
(1—=v)22V2va+ (1 —=2v)b] + (1 — v)¥a' "2Vb¥ K (h,2) " = 2(1 — v)Vab.
This completes the proof. [

THEOREM 2.2. Let a,b be two non-negative real numbers and 0 < v < % Then
1=V 2[va+(1—=v)b+ (1—=v)¥a "VBYK(h,2) " > 2(1 —v)Vab, (2.3)
and

(1=V)[(1=V)a+ v+ (1—v)>2a"b' VK (h,2) " = 2(1 —v)Vab, (2.4)

where h = § and r = min{v,1 —v}.

Proof. For 0 < v < %7 by inequality (1.2), we find that

(1=v)>2[va+ (1 -v)b]+(1—=v)>a'"Vb'K(h,2) " —2(1 — v)Vab

(1=v)>2a"b" VK (h,2)" + (1 —v)®a' Vb K (h,2) " —2(1 — v)Vab
2

WV

(1= v)Va T b3K(1,2) 5 — (1 —v) Vaib T K (h,2)"

WV

0,
i.e.,

(1=v)* P [va+ (1 =v)bl+ (1 —v)?a" Vb K(h,2)™" = 2(1 — v)Vab.
Again by inequality (1.2), it follows that

(1—=v)2[(1 = V)a+vb]+ (1 —v)>2a"b' "VK(h,2) ™" —2(1 — v)Vab

> (1-v)?a' VYK (h,2) 4+ (1 = v)> 2Va"p' VK (h,2) "= 2(1 — v)Vab

2

= |(1=v)"a T BIK(h,2)s — (1—v) Yaib 2 K5
>0,

and so (2.4) is proved. This completes the proof. [J

The following results are immediate consequences of Theorem 2.1 and Theorem
2.2.
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COROLLARY 2.3. Let a,b be two non-negative real numbers and 0 < v <
then

b 2vb1—2v 1—2vb2v
(1-v)2v<‘“2L )+(1_v)2_2v(a ta )K(h,Z)")Z(I—v)\/E,

2
(2.5)
and
1-2v2v 2vy1-2v
(1—v)22v<azib>+(1—v)2v<a b JZF“ b )K(h72)’>2(1—v)\/ﬁ,
(2.6)

where h = § and r = min{2v,1 —2v}.

COROLLARY 2.4. Let a,b be two non-negative real numbers and 0 < v < %7
then
b vbl—v 1—vbv
(1—v)>% (%) +(1—v)?Y (%)K(k@)" >2(1 — v)Vab,
2.7
and
b lfvbv vblfv
(1—v)? (a; ) (1= v)> (%)K(h,z)’ > 2(1 - v)Vab,
(2.8)

where h = § and r = min{v,1 —v}.

2.2. Operator versions for reverse Young type inequalities

In this section, we present operator versions based on Theorem 2.1 and Theorem
2.2.

Techniques are based on the monotonicity property of operator functions stated in
following form:

Let X € B(H)*" with Sp(X) and f and g be continuous real-valued functions
so that f(7) > g(¢) on Sp(X), then f(X) > g(X).

THEOREM 2.5. Suppose that A,B € B(H)™ satisfy 0 <ml < A,B < MI where
M ,m are positive real numbers such that m < M. Then for 0 < v < %

(1—=v)*Y(AVB)+ (1= v)* *"Hy, (A, B)K(h,2) " > 2(1 — v)(AtB) (2.9)
and
(1—v)>"2Y(AVB) + (1 —Vv)*VHy, (A,B)K(h,2) ™" > 2(1 — v)(AtB), (2.10)

where h=" and r = min{2v,1—2v}.
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Proof. For 0 <v < by inequality (2.1), it follows that
(I=v)P[(1=2v)+2va] + (1 = v)7 22K (x,2) " > 2(1 = V)V, (2.11)

for x > 0. Considering X = A‘%BA‘%7 the property 0 < ml < A,B < MI ensure us
that
O0<hI<X<hl

and therefore Sp(X) C [h',h] C (1,4o0). Setting X —A"2BA"2>0in(2.11)and using
above monotonicity principle for operator functions yield the following inequality:

(1—v)? [(1 —2v)1+2v(A%BA%)]

1 1-2v
+(1—v)>2v <A2BA ) K(h,2)™"
1
1 12
>2(1-v) (AZBAZ) . (2.12)
Finally, multiplying both sides (2.12) by A2 , we obtain
(1—=v)?Y[(1=2v)A+2vB] + (1 = v)* 2(At_2B)K(h,2)"" > 2(1 — v)(A%B).
Replacing A and B by B and A (respectively) in the inequality above, we get
(1=v)?[(1 —2v)B+2vA]+ (1 — v)*2Y(AtlyB)K (h,2) " = 2(1 — v)(AtB).
Summing two latter inequalities, we have
(1—Vv)¥(AVB) + (1 —Vv)*2VH,, (A, B)K(h,2)"" > 2(1 — v)(AB).
The inequality (2.10) prove in similar way. This completes the proof. [

THEOREM 2.6. With the same assumptions as in Theorem 2.5. Then the follow-
ing inequalities hold:

(1—v)*2Y(AVB) + (1 — v)*YHy(A,B)K (h,2) " > 2(1 — v)(A#B) (2.13)
and
(1=v)*(AVB)+ (1 — v)>"VH, (A, B)K (h,2) " > 2(1 — v)(AtB), (2.14)

where, h =" and r = min{v,1—v}.

Proof. The proof follows by utilizing of (2.3) and (2.4) and by applying a similar
manner as in Theorem 2.5. [
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2.3. Matrix versions for reverse Young type inequalities

In this section, we give some matrix versions based on Corollary 2.3 and Corollary
2.4.

The famous spectral theorem says that every positive semidefinite matrix is uni-
tarily diagonalizable, so for positive semidefinite matrices A and B there are unitary
matrices Uy and U, such that A = U DU and B = U>EU; where

D =diag(Ay,...,A)
and

E =diag(ly,...,Un)
(Ah[.li 20) for Oglgn

THEOREM 2.7. Let A,B,X € M,,(C) such that A and B are positive definite and
0<vK %7 then

AX +XB AZVXBlf2v A172VXBZV 2
H (1— v)2"+ +(1—v)Z er K(h,2)™"
2
2
> (2(1-v))?|laxBE| | (2.15)
2
and
AX +XB AZVXBlf2v A172VXBZV 2
H (1— v)HV+ +(1=v) er K(h,2)™"
2
2
> (2(1-v))?|lAxBE| | (2.16)
2

where h=" and r = min{2v, 1 —2v}.
Proof. For our computations, let Y = U;XU, = [y;;] (1 <1i,j<n). Then, we have
L1 1 N
A2ZXB? =U, Aizu,?y,-j Uy,

and so
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Similarly, one can show

>y AX +XB

(1—v) T—i—(l—v)

D(U{XUs) + (Ui XUn)E
2

272\}A2VXBlf2v _|_A172VXB2V
2

K" (h,2)

(1—v)?Y

2 2y DY (Ui XUy E'"? + D' "2V (U{ XUy E*"

+(1-v) 5

K" (h,2)|Us

5y DY +YE oy D¥VYE!"2V 4 DIZ2VYE?Y
(1)

(1-v) -

K" (h2)|U;.

From the inequality (2.5) and the unitarily invariant property of ||.|3, we have

2

2
:i(z(l_wm)zmz

n AH‘.U‘ ., B Ai2vu172v+ki172v‘u2v 2
<Z((1-v>2VT’+K (1-v)? 2V< s i )) il

2

(1 v)szX tXB v)272VA2"XBI*2" +A!"2VX B .
2 2 >

The inequality (2.16) can be proven in a similar method, we omit its details. []

K(h2)™"

THEOREM 2.8. With the assumptions of Theorem 2.7, we have the following es-
timates:

AX +XB AYXB'"V+A'"VXBY P
e A )
2
2
> (2(1-v))?|[azxB?]| | (2.17)
2
and
AX+XB AYXB'"Y 4+ Al-VXBY 2
H(l — v)z"+ +(1—v)>72Y ;L K(h,2)™"
2
2
> (2(1-v))?|[azxB3]| | (2.18)
2

where h = % and r =min{v,1 —v}.

Proof. According to the inequalities (2.7) and (2.8) and by a process similar to the
proof of Theorem 2.7, we can deduce the desired inequalities. [J
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