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OPERATOR-WEIGHTED COMPOSITION
OPERATORS ON VECTOR-VALUED BLOCH SPACES

MOSTAFA HASSANLOU

(Communicated by I. M. Spitkovsky)

Abstract. Let ¢ be an analytic self-map of D and y be an analytic operator-valued function on
D. Then the operator-weighted composition operator Wy, , is defined by

Wy.of)(2) = ¥(2)f(e(2), z€D,

where f is an analytic function D — X, X is any complex Banach space. In this paper by
considering Wy, on vector-valued Bloch spaces, some qualitative properties of these operators
will be characterized.

1. Introduction

Let D be the open unit disc in the complex plane C and, for any complex Banach
space X, H(ID,X) denotes the space of all analytic functions f: D — X. Recall a
vector-valued function f: D — X is analytic if for every x* € X* the function x* o
f: D — C is analytic in the classical sense. Let L(X,Y) be the space of bounded linear
operators X — Y where X and Y are complex Banach spaces. Let y: D — L(X,Y)
be an analytic function and ¢ an analytic self-map of ID. Then we define the operator-
weighted composition operator Wy, o by f+— y(fo @), thatis

Wyof)(2) =¥ (@) f(9(), zeD, (1.1)

for f € H(D,X). Wy, is alinear map H(ID,X) — H(D,Y). We have Wy, o = MyCyp,
where My, is the operator-valued multiplier f — yf and C, is the composition op-
erator f — fo . Thus the operator-weighted composition operators are a large class
of operators contains other classes in the vector-valued or scalar-valued setting. For
example, if X =Y = C then we have weighted composition operators Wy o f(z) =
v(z)f(@(z)), which are the generalization of multiplication operators My f(z) =
v(z)f(z) and composition operators Cyf(z) = f(¢(z)). These operators have been
studied extensively on several analytic Banach spaces. In the vector-valued setting,
weighted composition operators have been studied widely on vector-valued Hardy,
Bergman, Dirichlet, Bloch and BMOA spaces, see [2, 6, 8, 9, 10, 11, 12, 13, 18].
Weighted compositions appear naturally: for a large class of Banach spaces X, all
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linear onto isometries between X -valued H* spaces are of the form (1.1) for suitable
v and @.

Operator-weighted composition operators are a new subject in the study of oper-
ators on analytic function spaces and are defined in [14] and [11]. Laitila and Tylli
[11] characterized boundedness and (weak) compactness of these operators on H;*(X)
spaces and the author(s) in [14] and [3] obtained the same results for locally convex
spaces of analytic vector-valued functions.

In this paper we are going to investigate operator-weighted composition operators
on vector-valued Bloch spaces. Boundedness and (weak) compactness of these opera-
tors will be characterized.

Let X be a complex Banach space and o > 0. The vector-valued Bloch space
P*(X) is the set of all analytic functions f : D — X such that

= [1£(0)Ix +sup(1 = [z * || f' (@) l|x < o=
z€eD

Also the little vector-valued Bloch space % (X) is the closed subspace of %% (X)
consisting of the analytic functions f with the property limy,_; (1 — |z[*)*|| //(z)[lx =
0. If oo =1, we simply write #(X) and %y(X). In the scalar-valued case X = C,
B (X)=A“. Itis proved that (see [15])

1/l = sup ||f o @a — f(a)||,,
ach

where @, is the Mobius transformation ¢,(z) = (a—z)/(1 —az) and B, is the Bergman
space consisting of all analytic functions f: 1D — C for which

1715, = [ 1rGIraae) <

Here dA(z) is the normalized area measure on I and p > 0. Moreover, an analytic
function f :ID — X is in the vector-valued Bergman space if

1710 = [ I @Il dA@) <

The organization of the paper is as follows. In section 2, a norm estimate of the
operator is obtained. Section 3 is related to the compactness and weak compactness
of the operator-weighted composition operator. Finally, (weak) compactness of the
operator Ty, which is essential for the study of Wy, , will be discussed. The operator
Ty : X — A(Y) is defined by x — y/(.)x which is a new ingredient in the vector-valued
context. We also present some examples.

Throughout the paper all constants are denoted by ¢ which may vary from one
position to another. For two values A and B, A =~ B means that there are positive
constants ¢; and ¢ such that ¢;B <A < ¢pB. Also A < B means that there exists a
positive constant ¢ such that A < ¢B.
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2. Boundedness

In this section we find norm estimate of Wy, ,, : Z(X) — Z(Y ). First we recall the
following lemma which is essential for our proof.

LEMMA 1. [19, Lemma 2.1] For o > 0 and any complex Banach space X, if
feB*X), then

LAlf@)lx <cllf

2. 1f@)llx < clog T If

zo(x) forany z€D and 0 <o < 1;

o (x) forany z€ D and o0 = 1;
3 @)Ix <cW|\f\|,%a(X) forany ze DD and o > 1.
For estimation of ||f'(z)||x, f € #%*(X), we have

(=PI @llx < IFO)Ix +Sg£(1 =[N @llx = 1£1l 0 x)-

v Il
Sl zex)
/ < LAY
7@l < (=
In the following theorem we need a differentiation of w(z)(f(¢(z))). We can dif-
ferentiate y(z)(f(¢(z))) similarly as in the scalar-valued case. In fact, by the product
rule,

(W@ (f(92)) =¥ () (f(e() +¥(2)(f (k) ¢'(z)

which is a Y -valued analytic function. Note that although for each z, y(z) is a linear
operator from X to Y, the function z — y/(z) is analytic, so it does have a derivative.
Indeed, since ¥'(z) and f’(z) exist, we have

lim 1 (y() ~ ¥(2)
exists in L(X,Y) and
lim —— (/) ~ /(2)

exists in X. Then one must verify that

lim
W=z W —Z

(W (w) = (v/)(2)

exists in X with the limit equal to the usual product form.
First, define

1— |Z|2 /
QI((ple/vZ) = |2HW(Z)HL(X7Y)‘(/) (Z)|7

I=1lo(z)
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1
112
q2((p’ W’Z) - (1 |Z| )IOg 1— |(P(Z)|2 HV/(Z>HL(X,Y)'
‘We then set

Ql((p7l//) =Sllpq1((p,l[/,z) and Q2((p7l//) :Sllqu((p,l//,Z).

zeD z€eD

THEOREM 2. Let X and Y be complex Banach spaces. Then for Wy o : B(X) —
B(Y), we have Wy o is bounded if Q1(@,y) and Q»(@,y') are finite. Moreover,

maX{Ql((p7 W)7Q2((p7 W/)} 5 HWVL,QD” 5 maX{‘D((pv W?O)le((pv W)7Q2((pv W/)}

Proof. Suppose [ € AB(X). For every z € D we have

Wy (1@l = | W@ s
= IV + VA (00 )l
< IV @l L)+ 1w e £ (00 o)
< clog T W (@l I n HIW i) T L.
So

1
Wy,ofllzr) < clog T=To(O0)]2 1w (O) | Lex vyl f 1l z0x)
1
+csup(1 — |z*) log —— || v/ P
Z€]§( ‘Z| ) g 1— |(P(Z)|2 ||W (Z)”L(XY)”JCHLZ(X)
— |z?
+su
b = oz

This proves the boundedness claim and the upper estimate of the norm. Fix xy € X.
Let w € D and define the functions f,, as

L filemr
0= | T

As in the proof of Theorem 2.1 [16], f,, € Z(X) and M = sup{|| fu | z(x): w €D} <eo.
Also f,,(@(w)) =0 and f},(¢(w)) =x0/(1—|@(w)|?), which implies (Wy.ofis)' (W) =
v(w) S (@(w)e'(w). So

MWy oll = [Wy.gfiull r) = Sup(l — )| Wy fir)' (@)lly

s (1 WP Fynay )l

= (1= WP W09 (7 (0 () ()
— (1= W) ) o) — 2,
T

I

o @ W@ el e
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Since x is arbitrary, then

L= P/ ow)
W > ———|y(w .
Wil > 371 oty 100 e

Again for w € D being arbitrary, we have

L (1-[z?)|e'(2)]
Wyl =2 —sup————F—|V(z . (2.1)
Wyl Mzelg 1~ ()] v ( )HL(X,Y)

Now we define other functions

2
1 1 !
e T G R

hy(2) = gw(z)Xo-

By using the same method in [16], hy, € #(X) and L = sup{||hy|lzx): we D}
< oo, Also R, (@(w)) =0 and hy,(@(w)) = xolog(1/(1 — |@(w)|?)), which implies
(Wypfiw)' (W) = v/ (w) (hyy (¢ (w))) . Then

LIWy.oll Z [Wy.phwll 2r)

=sg¥1—&FHKwahWTQHY

> (1= [wP) | (Wy.phw) (w)l¥
= (L= wP) 1y () (@ () ¥

= (1= o) log s /() )l

So

1 1
Wy ol = =sup(l — |z]*) log ——— || W/ (z . (2.2)
Wl > 7 501~ ) o8 1= 1W @i

The equations (2.1) and (2.2) imply that

1—[g?
[Wyoll 2 max { W@l nle' @)

sup —m———=
1 e()

1
+sup(1 — |z]*)log ———— ||¥/(z .
sup(1 — 2" og T 1 @l |

The above result can be applied to other cases 0 < & < 1 and a > 1 between
different Bloch spaces Wy, o : B%(X) — %P (Y), where 8 > 0. The proofs are similar.
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3. (Weak) compactness

A bounded linear operator between two Banach spaces X and Y is called com-
pact, weakly compact, if it maps the closed unit ball of X onto a relatively compact,
a relatively weakly compact set in Y. The class of all (weakly) compact operators be-
tween X and Y is denoted by K(X,Y) (W(X,Y)). The essential and weak essential
norm of an operator 7 : X — Y are defined by

HTHE = dlSt(T,K(X,Y)), ||T||W = dlSt(T,W(X,Y))

The operator T is compact if and only if |7 || = 0O and is weakly compact if and only
it |7 = 0.

Here we use the linear operator (C.f)(z) = f(rz) for f: D — X analytic and
0<r<l1.

LEMMA 3. The operators C, : B*(X) — B*(X) satisfy the following properties.
1. ||| <1 forany 0 <r< 1.

2. Forevery Re (0,1),

lim sup sup max{||(f — C.f)"(@)lIx. [|(f = Cf)(2)lIx } = 0.

"1\l gy <1 ISR

3. Suppose that Wy o : B%(X) — B*(Y) is bounded. If Ty : X — B*(Y) is a
(weakly) compact operator, then Wy, o 0 C, : B%(X) — B*(Y) is (weakly) com-
pact operator.

Proof. For (1), we have

IC:[= " sup sup(1—[z)*||rf'(r2)lIx

[1£1l 0 (x)<12€D

(1= [z)” (1—[z)”
SSUPp 57 SSUPp———517 =
zeD (l - |,,.Z‘2)0£ zeD (1 - ‘Z|2)a

Let 0 <r,R<1 and f:DD — X be an analytic function and z € D. By setting p =
(lz2] +1)/2, we have

1£(2) —rf’ rz|X_H/2”<Pf’ pe®)  prf(pe® ))de

—ze7®  p—rze=i® ) 21
1— / i0
¢ wp 0l
6¢[0,27) |P—Z€ ||lp —rze~|

1f1] e x)
SC(I—V)W,
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where c is a positive constant. Moreover, since

. || .
(r=cnE=e? [ r=CrYae) ar

where z = |z]e’?, we get
|2 1
H(f—Crf)(Z)HX<C(1—V)||f|\92a(x)/0 W‘h

l2] 1
=c(l —V)||f|\92a(x)/0 m dt

c 1
- 2+a_1(l_r)”f PB(X) ((1_|Z|)2+a1 _1>

Now, the proof of (2) is complete.

Finally, for f € 2% (X) with f(z) = 5o x5, put Py(f) = Xr_o 02k, n >0 and
ai(f) =x, k€ N. Here g, are operators %% (X) — X . Since Zx; = [ f(ze'®)e 040
then

ll2xklx < ellf

B (X) O<a<l,

2
[EEAPES Clogl_—‘ZPHfH,%a(x) a=1,

k I1f Be(X)
X L<c———
H kHX (1 ‘Z|2)a71

a>1,

where ¢ > 0 is a constant. The above relations hold for every z € D. Let z € D and
|zl =1/2. So

[l lx < 21 fll gy O<a <1,
[l lx < 2 1og8/3[| ]l ey =1,

c2kq0-1
|l [x < ﬁ”fﬂ,@wx) a>1.

Therefore gy are bounded on #%(X) in each case. So Ty o g : B*(X) — B*(Y) are
compact operators. Since

n n

(Wy.oPuf) () = Y, 0@  w()x = 0() (Tyaqef)(z),

k=0 k=0

it follows that Wy, »P, are compact operators A% (X) — #*(Y) for all n. Fix 0 <
r<1,let € >0 and fix ng so that Zf=n0+1kr" < €. Then, for any f e #%(X) with
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f(z) = S gmz®,
[[(Cr = PuyCr) fl| o (x) = [|((Cr — Py Cr) £)(0) ] x
+ Slel]g(l — 2 (1((Cr = PoyCr) f) ()] 1x

- 525(1 — 2 *((Cr = PoyC) f) (2)]1x

<l Y kfud Y Ix < cellfllgux)
k=no+1

The above relation holds for every n > ng. It follows that ||C, — P,C,|| — 0, as n — eo.
Then ||[Wy, oCr — Wy, o P,Cr|| — 0 as n — eo. Thus Wy, ,C, is compact operator. The
proof in the case of weakly compact is similar. [

To characterize compactness, the two conditions we use are

. 1— |22 /
lim sup —— Z ) =0 G.1)
sl \<P(z)1|)>s 1—|o(z) (@l @' ()]

1
lim sup (1—|z*)log———||¥/(z =0. (3.2)
S_’llw(z)\>s( [21%) 1— \(p(z)|2”l’/( My

Weak compactness and compactness of the operator Wy, , are related to the operator
Ty .
v

THEOREM 4. Let X and Y be complex Banach spaces and Wy,  : B(X) — HB(Y)
be bounded. Then Wy, o : B(X) — AB(Y) is (weakly) compact if and only if
1. Ty:X — B(Y) is (weakly) compact, and
2. The conditions (3.1) and (3.2) hold.

Since Ty = Wy oA where A : X — (X)) is defined by A(x) = fx, fi(z) =x, the
(weak compactness) compactness of Wy, , implies Ty, is (weakly) compact.

Proof of sufficiency in Theorem 4. Suppose that Ty, : X — (Y is weakly com-
pact and (3.1) and (3.2) hold. It will be enough to prove that

p 1— |Z‘2 /
Wy olw <2lim sup ——— Z nloe(z
Wyolle < 2lim sup = eVl |¢C)

1
+2lim sup (1—|z[*)log————||¥/(z .
le(zﬁls( ) g1—|<p(z>|2”l’/( Heer)

By Lemma 3(3), the operators Wy, ,C, are weakly compact too. So

Wy ollw < Wy, — Wy,oCr-
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Forevery f € #(X) and z € D we have

(1= &)1 (Wy.of = Wy.oCrf)' (2)lly

< max{‘ S(U)? (1= 2P [ (Wyp f — Wy oCrf) (@)l
P(z)|>s

sup (1= |2*)|(Wy.o.f = Wy.oCrf)' (@) Iy}
lp(2)]<s
=max{/,J}.
For I, using Lemma 1 we have

1< sup (L= [2P)[W (@) (f(9(2) =¥ ()(C(f(9))ly

lo()[>s
+‘ Sup (@) (f'(0(2)))9"(2) = w2 ((Crf) (9(2) @' (2) ¥
p(z)|>s
<‘ ?uﬁ) L=z @I/ (9(2) = Cr(f(9(2)))lIx
®(2)|>s
+‘ Sup (L= Pl 1 (9(2)9' (2) = (Cof ) (9(2) @' (2)Ix
®(2)|>s

1
<2 sup (1—[g )logizllllf( Dl I f Lz
lo(2)|>s lp(2)]

—|z/? /
2 S TR Ve o'(2)] 171l
062 \>81—\<p< S V@ lxnle' @Il

Put

E =sup(1— 2|V @)lxy) and F=sup(1—[z]*)[w(2)llrixy) 19/ (2)]-
z€eD zeD

To see that E and F are finite, take fi(z) = xo and f>(z) = xoz, where xo € X is
arbitrary with |[xo|[x = 1. Then using the boundedness of Wy, implies the results.
For J,

J< supsup (1= [PV @)y 1 (@(2) = C(f(0(2)lIx
Il aex) <1lo()|<s

+ supsup (L= P W@l 1F(9(2)9'(2) = (Cof) (9(2) @' (2) 1x

171200 <1lo()[<s

SE sup sup [|f(e(z)) = Cr(f(9(2))lx

/1l 0y <1lp(2)|<s

+F supsup [ (9(z)) = (Cof) (0 (2)) x-

Il zx)<tlp(z)<s
Letting » — 1, according to Lemma 3(2), we have

limJ=0. O
r—1
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The idea for the proof of the necessity part is to use a Leibov-type argument similar
to the one in [10].

LEMMA 5. Let {fu} be a sequence in Bo(X), || full zx) =1 and | fullg,x) — 0
as n — co. Then there exists a subsequence {f, } such that it is equivalent to the
natural basis of co, that is, the map (Ay) — i Ak fu, is an isomorphism from cq into

Bo(X).

Proof. Tt can be proved that || f|| z(x) < sup|j<i [[X" 0 ful| 2. So there exists an
x* € X* such that || fu| zx) < [Jx" o full 2. lz < I fall zx)
Now we define g, = x" o f,,. Then g, € %o, ||gnl|lz =1 and ||g,||p, — 0 as n — eo.
Set

Y(gn: @) = [1gn© 0a — gn(a)||5,-
The change of variable implies that ¥(g,,a) < ||gx© @ul|B, < callgnllp, Where ¢, is an
increasing function of |a|. Fix any 0 < r <1 and |a| < r, ¢4 < ¢r. It follows from
|gnllB, — O that
sup ¥(gn,a) — 0

la|<r
as n — oo. Since {g,} € %o, Y(gn,a) — 0 as |a| — 1 for each n. These properties
imply that there exist increasing sequences of positive integers {n;} and numbers 0 <
re < 1 such that for each &, ||g,, |5, <27%! and

Sup 7(gn@) <2751, sup Y(gna) <27,

|a|<ry |a|>ry1

For every a € D we then have ¥(gy,,a) < 27%~! for all but possibly one index &,

for which y(g,,,a) < 1. Hence ¥, ¥(gn,,a) < 1+% = % Now we define the map

S co — @0 by
SA = Z Akgnk
k=1

for A = (A4) € co. Since || X7 AgnllB, < 252y [Mklllgn, ||B, - the series converges in
B,,. It can be seen from the inequality

i 3
SA‘ Cl Z A‘k‘y gl’lka EHA’HW

< 3¢||A]|w. Since A € ¢y, we have A; — 0. So there exists an integer K
such that [A| < € for k > K. Then

Y(SA,a) < Y | Al v(gn,.a)

k=1

8

Al ¥(gn @)+ X Al v(8ne,a)

k=K+1

K 3
Aleo D |kl ¥(gny ) + =&
k=1

M=

k

I
—_

2
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Since Y(gn,,a) — 0 as |a| — 1 for each k, and € > 0 was arbitrary, this implies that
SA € Ay. Therefore S is a bounded linear operator from cg into %.

To check that S is one to one, we prove that S is bounded below. For A =
(Ak) € co, there exists an index K for which |Ax| = ||A||.. We know that |g,,(0)] <
lgnk B, < % and ||gncllz = 1. So there exists a positive constant ¢ such that
Sup,ep Y(8ng @) ~ 1 —|gn(0)] > 1 — 1. Hence there is a point a € D such that

Y(gng-a) > 1 — 1. Note that for k # K, we have y(gy,,a) <27*~!. Therefore

1SA]12 = cv(SA,a) Z |Ak|V(gng @) = D, | Al (g, @)
k£K

1 1
> (1-3) IRlle= 5140 = I

We have proved that S is an isomorphism from ¢ into %;. An easy calculation
shows that SA =x*(TA) where TA = ¥;7 | A fn,. Then T is an isomorphism from ¢
into %y(X) and we are done. [

Proof of necessity in Theorem 4. Suppose that the conditions (3.1) and (3.2) fail.
We will complete the proof by proving that Wy, o : (X)) — (Y fixes a copy of cg
and therefore it is not weakly compact.

If the condition (3.1) fails, then there exist ¢ > 0 and a sequence {a,} € D such
that |@(a,)| — 1 as n — e and

‘an‘z /
ap)| > c.

Let x € X with ||x||x = 1. Define the functions f;, by f,(z) = g.(z)x where

(
(

Then M = || fullz(x) < . fu(¢(an)) =0 and f(@(an)) = ¢(an)/(1 — |@(an))x.
Furthermore f, € %y(X) and

il = |

_ —lola) ) (1

=401 lolal)* || = =A@
232 1

HA = lol@)) [ e dAl)
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The last line of the above relation is due to Theorem 1.12 of [20]. So || fu|/g,(x) — O as
n— oo, Also

Wy full x) = (1= lanl*) Wy (fu) (an) |1
= (1~ |anl) [y (an) (f1(@(an)) 9" (an)lx
L) an]* an)(x '(a a
= o V@ lle (@) (),
forevery x € X. So

Wy, full zx) =

N o

1—|a,)?

e vla o o)) >
For using Lemma 5, we should have ||f, ]| #(x) = 1. This can be done by normalizing
the norm of the sequence {f,}. Without loss of generality we use {f,} again. So we
can find a subsequence {f;, } which is equivalent to the natural basis of ¢y which im-
plies that {Wy, o f, } is a weak-null sequence in (X). Using the Bessaga-Polczynski
selection principle (see [1, 1.3.10]) to {Wy o f3, } , there exists a subsequence, say { fy, }
again, such that {Wy ¢ f, } is a semi-normalized basic sequence in #(X). Hence there
are constants A, B > 0 such that

Al o < 1Y AWy fu | o) < Wyl Y Al )
k=1 k=1

< B Wyl |12l

forevery A = (A) € co. These estimates state that the restriction of Wy, , to the closed
subspace of Z(X) spanned by the sequence {fj, } is an isomorphism onto a linearly
isomorphic copy of ¢y, and we are done.

If condition (3.2) fails, then we have the same result by using the functions

2 3
-1 1 1
) = gt o) 3(“%) ‘2<‘°g1—7 m) o

4. Compactness properties of T,

EXAMPLE 6. There is an analytic operator-valued map y € H*(L(¢)), w(z) €
K(¢Y), but Ty, : ¢ — (¢ is not even weakly conditionally compact.

Proof. Define the bounded operator-valued analytic map y: D — L(£!) by y(z) =
S zke,t ® ex, where (e;) denotes the standard unit vector basis of ¢! and (€f) Cco
its biorthogonal sequence. In other words,

V(z)x = Z kakek7 x=(x) € El, zeD.
k=1
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The claim is that Ty, is not weakly conditionally compact as an operator ¢ U 2").
Suppose to the contrary that Ty, is weakly conditionally compact. So there exists a
weakly Cauchy subsequence (Ty(en;)) such that the difference sequence (Ty (en,;,, —

en,;)) is weak-null in %(¢"). By Mazur’s theorem,

il 1
| Z CjTW(en2j+1 _ean) () < )
j=1
for a suitable convex combination, where 23':1 ci=landc; >0 for j=1,---,5. On

the other hand, we have

l chTl[/(eWZjJrl - 6"2_/)”%(/«'1)
=1

s
= Sug(l — Y, €22 eny =27 e, )
Z€ j=1

= sup(1 - [z*) 2 (naje1 |21 7 gl
zeD j=1

N

2 (najy1+noj) > 1,

which is a contradiction. [

LEMMA 7. Let X be a complex Banach spaces, Xo C X be a closed subspace and
feBX). Then f € Bo(Xo) if and only if f € By(X) and (D) C Xp.

Proof. Tt is obvious that if f € %(Xp) then f € By(X) and f(D) C Xy. Suppose
that f € %y(X) and f(D) C Xo. Define f,(z) = f(rz), 0<r<1.So

1l x0) = 1L (O)]Ixo +Sug(1 — 127 (r2)lx,
z€

<[I£0)1x +Sup(1 — )£ (r2) I,

<|l5(0 )||X0+Sup(1— Iz Lf (r2)lx <

It means that f. € #(Xo). Then
lim (1= )11 (@)lly = lim (1= [ lf(r2) g

< lim (1= P2,

< lim (1= |21 (72) [ =0
Z‘}
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Hence f, € Bo(Xo). There are polynomials p,(z) = Zl;/io iji-") such that p, — f in
P (X) as n — . By using the same way we have (p,), — f, as n — oo. Also

1w — (pa)rll ) —sup(l—\z| szz“ W1 —r)x
J

Ny )
< sup(1—[z*)( sup ||x NN Y (1=r7) =0,
z€eD 1<j<N, j=1

as r — 1. Since
If = Frllaey) = If = frllaex)
<f = pall ey + |pn— (Pu) el mx) + 11(Pn)r — frll x)
we deduce that f, — f in %y(Xp) as r— 1. O

THEOREM 8. Let X and Y be complex Banach spaces and v € By(L(X,Y)).
Then Ty : X — B(Y) is compact (weakly compact) if and only if y(D) C K(X,Y)
(v(D) cW(X,Y)).

Proof. Suppose that y(D) C K(X,Y). The previous lemma implies that y €
HBo(K(X,Y)). Find K(X,Y)-valued polynomials y,(z) = X}_, ku,gn) such that y,, —
v in BK(X.Y)). Since [Tyl = |l suer) we have [Ty — Ty, | — 0 as n— .
So it will be sufficient to prove that Ty, : X — Z(Y) is compact. Define the maps
0 :Y — B(Y) by (6;y)(z) = zXy. Each 6 is bounded, then 6 o Uk(") is compact and
s0 Ty, = Xj_obko Uk(n)

Now, suppose that Ty, : X — Z(Y) is compact. Fix z € D and define y: A(Y) —Y
by y(f) = f(z). Then 7 is a bounded linear operator and yo Ty, = y(z). So y(z):
X —Y is a compact operator. [J

EXAMPLE 9. (1) Let X be any Banach space, y(z) = U and ¢(z) = % for
z€ D, where U € K(X) is a fixed operator. Then Wy, , is compact Z(X) — #(X).
Indeed

2
Z — |2
im0 By 0160 < Ul i sup =5 o,

e |>s1—\<P( o()>s — 12

lim 1= 2P)log — ||y’ =0.
lim |<P?u)$>‘( 2" log -— PIBIE v @y =0
Also Ty, is compact by Theorem 8 since y/(z) = U € K(X). So Theorem 4 implies that
Wy, is compact.

(2) Let X be any reflexive Banach space, y(z) =V and ¢(z) = <L for z € D,
where V & K(X) is a fixed operator. Then Wy, is weakly compact, but not compact.
Non-compactness of Wy, is because of non-compactness of Ty, (Theorem 8, y/(z) =
V € K(X)). Since X is reflexive, V is weakly compact. So Ty, is weakly compact by
Theorem 8. Also the conditions (3.1) and (3.2) hold. Now Wy, , is weakly compact.
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