OPERATOR-WEIGHTED COMPOSITION OPERATORS ON VECTOR-VALUED BLOCH SPACES

MOSTAFA HASSANLOU

(Communicated by I. M. Spitkovsky)

Abstract. Let φ be an analytic self-map of \mathbb{D} and ψ be an analytic operator-valued function on \mathbb{D} . Then the operator-weighted composition operator $W_{\psi,\varphi}$ is defined by

$$(W_{\psi,\varphi}f)(z) = \psi(z)f(\varphi(z)), \quad z \in \mathbb{D},$$

where f is an analytic function $\mathbb{D} \to X$, X is any complex Banach space. In this paper by considering $W_{\psi,\varphi}$ on vector-valued Bloch spaces, some qualitative properties of these operators will be characterized.

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} and, for any complex Banach space X, $H(\mathbb{D},X)$ denotes the space of all analytic functions $f: \mathbb{D} \to X$. Recall a vector-valued function $f: \mathbb{D} \to X$ is analytic if for every $x^* \in X^*$ the function $x^* \circ$ $f: \mathbb{D} \to \mathbb{C}$ is analytic in the classical sense. Let L(X,Y) be the space of bounded linear operators $X \to Y$ where X and Y are complex Banach spaces. Let $\psi: \mathbb{D} \to L(X,Y)$ be an analytic function and φ an analytic self-map of \mathbb{D} . Then we define the operatorweighted composition operator $W_{\psi,\varphi}$ by $f \mapsto \psi(f \circ \varphi)$, that is

$$(W_{\psi,\varphi}f)(z) = \psi(z)f(\varphi(z)), \quad z \in \mathbb{D},$$
(1.1)

for $f \in H(\mathbb{D}, X)$. $W_{\psi,\varphi}$ is a linear map $H(\mathbb{D}, X) \to H(\mathbb{D}, Y)$. We have $W_{\psi,\varphi} = M_{\psi}C_{\varphi}$, where M_{ψ} is the operator-valued multiplier $f \mapsto \psi f$ and C_{φ} is the composition operator $f \mapsto f \circ \varphi$. Thus the operator-weighted composition operators are a large class of operators contains other classes in the vector-valued or scalar-valued setting. For example, if $X = Y = \mathbb{C}$ then we have weighted composition operators $W_{\psi,\varphi}f(z) =$ $\psi(z)f(\varphi(z))$, which are the generalization of multiplication operators $M_{\psi}f(z) =$ $\psi(z)f(z)$ and composition operators $C_{\varphi}f(z) = f(\varphi(z))$. These operators have been studied extensively on several analytic Banach spaces. In the vector-valued setting, weighted composition operators have been studied widely on vector-valued Hardy, Bergman, Dirichlet, Bloch and BMOA spaces, see [2, 6, 8, 9, 10, 11, 12, 13, 18]. Weighted compositions appear naturally: for a large class of Banach spaces X, all

Keywords and phrases: Analytic functions, Banach space, compactness, composition operator, weak compactness, vector-valued function.

Mathematics subject classification (2010): 47B33, 46E15, 46E40, 47B07.

linear onto isometries between X-valued H^{∞} spaces are of the form (1.1) for suitable ψ and φ .

Operator-weighted composition operators are a new subject in the study of operators on analytic function spaces and are defined in [14] and [11]. Laitila and Tylli [11] characterized boundedness and (weak) compactness of these operators on $H_{\nu}^{\infty}(X)$ spaces and the author(s) in [14] and [3] obtained the same results for locally convex spaces of analytic vector-valued functions.

In this paper we are going to investigate operator-weighted composition operators on vector-valued Bloch spaces. Boundedness and (weak) compactness of these operators will be characterized.

Let *X* be a complex Banach space and $\alpha > 0$. The vector-valued Bloch space $\mathscr{B}^{\alpha}(X)$ is the set of all analytic functions $f : \mathbb{D} \to X$ such that

$$||f||_{\mathscr{B}^{\alpha}(X)} = ||f(0)||_{X} + \sup_{z \in \mathbb{D}} (1 - |z|^{2})^{\alpha} ||f'(z)||_{X} < \infty.$$

Also the little vector-valued Bloch space $\mathscr{B}_0^{\alpha}(X)$ is the closed subspace of $\mathscr{B}^{\alpha}(X)$ consisting of the analytic functions f with the property $\lim_{|z|\to 1}(1-|z|^2)^{\alpha}||f'(z)||_X = 0$. If $\alpha = 1$, we simply write $\mathscr{B}(X)$ and $\mathscr{B}_0(X)$. In the scalar-valued case $X = \mathbb{C}$, $\mathscr{B}^{\alpha}(X) = \mathscr{B}^{\alpha}$. It is proved that (see [15])

$$\|f\|_{\mathscr{B}} \approx \sup_{a \in \mathbb{D}} \|f \circ \varphi_a - f(a)\|_{B_p},$$

where φ_a is the Mobius transformation $\varphi_a(z) = (a-z)/(1-\overline{a}z)$ and B_p is the Bergman space consisting of all analytic functions $f : \mathbb{D} \to \mathbb{C}$ for which

$$||f||_{B_p}^p = \int_{\mathbb{D}} |f(z)|^p dA(z) < \infty.$$

Here dA(z) is the normalized area measure on \mathbb{D} and p > 0. Moreover, an analytic function $f: \mathbb{D} \to X$ is in the vector-valued Bergman space if

$$||f||_{B_p(X)}^p = \int_{\mathbb{D}} ||f(z)||_X^p dA(z) < \infty.$$

The organization of the paper is as follows. In section 2, a norm estimate of the operator is obtained. Section 3 is related to the compactness and weak compactness of the operator-weighted composition operator. Finally, (weak) compactness of the operator T_{ψ} which is essential for the study of $W_{\psi,\varphi}$ will be discussed. The operator $T_{\psi}: X \to \mathscr{B}(Y)$ is defined by $x \mapsto \psi(.)x$ which is a new ingredient in the vector-valued context. We also present some examples.

Throughout the paper all constants are denoted by c which may vary from one position to another. For two values A and B, $A \approx B$ means that there are positive constants c_1 and c_2 such that $c_1B \leq A \leq c_2B$. Also $A \leq B$ means that there exists a positive constant c such that $A \leq cB$.

2. Boundedness

In this section we find norm estimate of $W_{\psi,\varphi} : \mathscr{B}(X) \to \mathscr{B}(Y)$. First we recall the following lemma which is essential for our proof.

LEMMA 1. [19, Lemma 2.1] For $\alpha > 0$ and any complex Banach space X, if $f \in \mathscr{B}^{\alpha}(X)$, then

- *1.* $||f(z)||_X \leq c||f||_{\mathscr{B}^{\alpha}(X)}$ for any $z \in \mathbb{D}$ and $0 < \alpha < 1$;
- 2. $||f(z)||_X \leq c \log \frac{2}{1-|z|^2} ||f||_{\mathscr{B}^{\alpha}(X)}$ for any $z \in \mathbb{D}$ and $\alpha = 1$;
- 3. $||f(z)||_X \leq c \frac{1}{(1-|z|^2)^{\alpha-1}} ||f||_{\mathscr{B}^{\alpha}(X)} \text{ for any } z \in \mathbb{D} \text{ and } \alpha > 1.$

For estimation of $||f'(z)||_X$, $f \in \mathscr{B}^{\alpha}(X)$, we have

$$(1-|z|^2)^{\alpha}||f'(z)||_X \leq ||f(0)||_X + \sup_{z \in \mathbb{D}} (1-|z|^2)^{\alpha}||f'(z)||_X = ||f||_{\mathscr{B}^{\alpha}(X)}.$$

So

$$||f'(z)||_X \leq \frac{||f||_{\mathscr{B}^{\alpha}(X)}}{(1-|z|^2)^{\alpha}}.$$

In the following theorem we need a differentiation of $\psi(z)(f(\varphi(z)))$. We can differentiate $\psi(z)(f(\varphi(z)))$ similarly as in the scalar-valued case. In fact, by the product rule,

$$(\psi(z)(f(\varphi(z))))' = \psi'(z)(f(\varphi(z))) + \psi(z)(f'(\varphi(z))) \cdot \varphi'(z)$$

which is a Y-valued analytic function. Note that although for each z, $\psi(z)$ is a linear operator from X to Y, the function $z \mapsto \psi(z)$ is analytic, so it does have a derivative. Indeed, since $\psi'(z)$ and f'(z) exist, we have

$$\lim_{w\to z}\frac{1}{w-z}(\psi(w)-\psi(z))$$

exists in L(X,Y) and

$$\lim_{w \to z} \frac{1}{w - z} (f(w) - f(z))$$

exists in X. Then one must verify that

$$\lim_{w \to z} \frac{1}{w - z} ((\psi f)(w) - (\psi f)(z))$$

exists in X with the limit equal to the usual product form.

First, define

$$q_1(\varphi, \psi, z) = \frac{1 - |z|^2}{1 - |\varphi(z)|^2} \|\psi(z)\|_{L(X,Y)} |\varphi'(z)|,$$

$$q_2(\varphi, \psi, z) = (1 - |z|^2) \log \frac{1}{1 - |\varphi(z)|^2} \|\psi(z)\|_{L(X,Y)}.$$

We then set

$$Q_1(\varphi, \psi) = \sup_{z \in \mathbb{D}} q_1(\varphi, \psi, z) \quad \text{and} \quad Q_2(\varphi, \psi) = \sup_{z \in \mathbb{D}} q_2(\varphi, \psi, z).$$

THEOREM 2. Let X and Y be complex Banach spaces. Then for $W_{\psi,\varphi} : \mathscr{B}(X) \to \mathscr{B}(Y)$, we have $W_{\psi,\varphi}$ is bounded if $Q_1(\varphi, \psi)$ and $Q_2(\varphi, \psi')$ are finite. Moreover,

 $\max\{Q_1(\varphi,\psi),Q_2(\varphi,\psi')\} \lesssim \|W_{\psi,\varphi}\| \lesssim \max\{q_2(\varphi,\psi,0),Q_1(\varphi,\psi),Q_2(\varphi,\psi')\}$

$$\begin{array}{l} \textit{Proof. Suppose } f \in \mathscr{B}(X) \text{. For every } z \in \mathbb{D} \text{ we have} \\ \|(W_{\psi,\varphi}(f)'(z))\|_{Y} &= \| \left[\psi(z)(f(\varphi(z))) \right]' \|_{Y} \\ &= \| \psi'(z)(f(\varphi(z))) + \psi(z)(f'(\varphi(z))\varphi'(z)) \|_{Y} \\ &\leq \| \psi'(z)\|_{L(X,Y)} \| f(\varphi(z)) \|_{X} + \| \psi(z)\|_{L(X,Y)} \| f'(\varphi(z)) \|_{X} |\varphi'(z)| \\ &\leq c \log \frac{1}{1 - |\varphi(z)|^{2}} \| \psi'(z)\|_{L(X,Y)} \| f \|_{\mathscr{B}(X)} + \| \psi(z)\|_{L(X,Y)} \frac{|\varphi'(z)| \| f \|_{\mathscr{B}(X)}}{1 - |\varphi(z)|^{2}}. \end{array}$$

So

$$\begin{split} \|W_{\psi,\varphi}f\|_{\mathscr{B}(Y)} &\leqslant c \log \frac{1}{1-|\varphi(0)|^2} \|\psi(0)\|_{L(X,Y)} \|f\|_{\mathscr{B}(X)} \\ &+ c \sup_{z \in \mathbb{D}} (1-|z|^2) \log \frac{1}{1-|\varphi(z)|^2} \|\psi'(z)\|_{L(X,Y)} \|f\|_{\mathscr{B}(X)} \\ &+ \sup_{z \in \mathbb{D}} \frac{1-|z|^2}{1-|\varphi(z)|^2} |\varphi'(z)| \|\psi(z)\|_{L(X,Y)} \|f\|_{\mathscr{B}(X)}. \end{split}$$

This proves the boundedness claim and the upper estimate of the norm. Fix $x_0 \in X$. Let $w \in \mathbb{D}$ and define the functions f_w as

$$f_w(z) = \frac{1}{\overline{\varphi(w)}} \left\{ \frac{1 - |\varphi(w)|^2}{1 - \overline{\varphi(w)}z} - 1 \right\} x_0.$$

As in the proof of Theorem 2.1 [16], $f_w \in \mathscr{B}(X)$ and $M = \sup\{||f_w||_{\mathscr{B}(X)} : w \in \mathbb{D}\} < \infty$. Also $f_w(\varphi(w)) = 0$ and $f'_w(\varphi(w)) = x_0/(1 - |\varphi(w)|^2)$, which implies $(W_{\psi,\varphi}f_w)'(w) = \psi(w)f'_w(\varphi(w))\varphi'(w)$. So

$$\begin{split} M \| W_{\psi,\varphi} \| &\ge \| W_{\psi,\varphi} f_w \|_{\mathscr{B}(Y)} = \sup_{z \in \mathbb{D}} (1 - |z|^2) \| (W_{\psi,\varphi} f_w)'(z) \|_Y \\ &\ge (1 - |w|^2) \| (W_{\psi,\varphi} f_w)'(w) \|_Y \\ &= (1 - |w|^2) \| \psi(w) (f'_w(\varphi(w))) \varphi'(w) \|_Y \\ &= (1 - |w|^2) \| \psi(w) (x_0) \frac{\varphi'(w)}{1 - |\varphi(w)|^2} \|_Y \\ &= \frac{(1 - |w|^2) |\varphi'(w)|}{1 - |\varphi(w)|^2} \| \psi(w) (x_0) \|_Y. \end{split}$$

Since x_0 is arbitrary, then

$$\|W_{\psi,\varphi}\| \ge \frac{1}{M} \frac{(1-|w|^2)|\varphi'(w)|}{1-|\varphi(w)|^2} \|\psi(w)\|_{L(X,Y)}.$$

Again for $w \in \mathbb{D}$ being arbitrary, we have

$$\|W_{\psi,\varphi}\| \ge \frac{1}{M} \sup_{z \in \mathbb{D}} \frac{(1-|z|^2)|\varphi'(z)|}{1-|\varphi(z)|^2} \|\psi(z)\|_{L(X,Y)}.$$
(2.1)

Now we define other functions

$$g_w(z) = 2\log\frac{1}{1 - \varphi(w)z} - \left(\log\frac{1}{1 - \varphi(w)z}\right)^2 / \log\frac{1}{1 - |\varphi(w)|^2},$$
$$h_w(z) = g_w(z)x_0.$$

By using the same method in [16], $h_w \in \mathscr{B}(X)$ and $L = \sup\{\|h_w\|_{\mathscr{B}(X)} : w \in \mathbb{D}\}$ $< \infty$. Also $h'_w(\varphi(w)) = 0$ and $h_w(\varphi(w)) = x_0 \log(1/(1 - |\varphi(w)|^2)))$, which implies $(W_{\psi,\varphi}f_w)'(w) = \psi'(w)(h_w(\varphi(w)))$. Then

$$\begin{split} L \| W_{\psi,\varphi} \| &\geq \| W_{\psi,\varphi} h_w \|_{\mathscr{B}(Y)} \\ &= \sup_{z \in \mathbb{D}} (1 - |z|^2) \| (W_{\psi,\varphi} h_w)'(z) \|_Y \\ &\geq (1 - |w|^2) \| (W_{\psi,\varphi} h_w)'(w) \|_Y \\ &= (1 - |w|^2) \| \psi'(w) (h_w(\varphi(w))) \|_Y \\ &= (1 - |w|^2) \log \frac{1}{1 - |\varphi(w)|^2} \| \psi'(w)(x_0) \|_Y. \end{split}$$

So

$$\|W_{\psi,\varphi}\| \ge \frac{1}{L} \sup_{z \in \mathbb{D}} (1 - |z|^2) \log \frac{1}{1 - |\varphi(z)|^2} \|\psi'(z)\|_{L(X,Y)}.$$
(2.2)

The equations (2.1) and (2.2) imply that

$$\begin{split} \|W_{\psi,\varphi}\| \gtrsim \max \Big\{ \sup_{z\in\mathbb{D}} \frac{1-|z|^2}{1-|\varphi(z)|^2} \|\psi(z)\|_{L(X,Y)} |\varphi'(z)| \\ + \sup_{z\in\mathbb{D}} (1-|z|^2) \log \frac{1}{1-|\varphi(z)|^2} \|\psi'(z)\|_{L(X,Y)} \Big\}. \quad \Box \end{split}$$

The above result can be applied to other cases $0 < \alpha < 1$ and $\alpha > 1$ between different Bloch spaces $W_{\psi,\varphi} : \mathscr{B}^{\alpha}(X) \to \mathscr{B}^{\beta}(Y)$, where $\beta > 0$. The proofs are similar.

3. (Weak) compactness

A bounded linear operator between two Banach spaces X and Y is called compact, weakly compact, if it maps the closed unit ball of X onto a relatively compact, a relatively weakly compact set in Y. The class of all (weakly) compact operators between X and Y is denoted by K(X,Y) (W(X,Y)). The essential and weak essential norm of an operator $T: X \to Y$ are defined by

$$||T||_e = dist(T, K(X, Y)), \quad ||T||_w = dist(T, W(X, Y)).$$

The operator *T* is compact if and only if $||T||_e = 0$ and is weakly compact if and only if $||T||_w = 0$.

Here we use the linear operator $(C_r f)(z) = f(rz)$ for $f : \mathbb{D} \to X$ analytic and 0 < r < 1.

LEMMA 3. The operators $C_r: \mathscr{B}^{\alpha}(X) \to \mathscr{B}^{\alpha}(X)$ satisfy the following properties.

- *1.* $||C_r|| \leq 1$ for any 0 < r < 1.
- 2. *For every* $R \in (0, 1)$ *,*

$$\lim_{r \to 1} \sup_{||f||_{\mathscr{B}^{\alpha}(X)} \leq 1} \sup_{|z| \leq R} \max\{||(f - C_r f)'(z)||_X, ||(f - C_r f)(z)||_X\} = 0.$$

3. Suppose that $W_{\psi,\varphi} : \mathscr{B}^{\alpha}(X) \to \mathscr{B}^{\alpha}(Y)$ is bounded. If $T_{\psi} : X \to \mathscr{B}^{\alpha}(Y)$ is a (weakly) compact operator, then $W_{\psi,\varphi} \circ C_r : \mathscr{B}^{\alpha}(X) \to \mathscr{B}^{\alpha}(Y)$ is (weakly) compact operator.

Proof. For (1), we have

$$\begin{split} ||C_r|| &= \sup_{||f||_{\mathscr{B}^{\alpha}(X)} \leq 1} \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} ||rf'(rz)||_X \\ &\leq \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\alpha}}{(1 - |rz|^2)^{\alpha}} \leq \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\alpha}}{(1 - |z|^2)^{\alpha}} = 1. \end{split}$$

Let 0 < r, R < 1 and $f : \mathbb{D} \to X$ be an analytic function and $z \in \mathbb{D}$. By setting $\rho = (|z|+1)/2$, we have

$$\begin{split} ||f'(z) - rf'(rz)||_X &= \left\| \int_0^{2\pi} \left(\frac{\rho f'(\rho e^{i\theta})}{\rho - z e^{-i\theta}} - \frac{\rho r f'(\rho e^{i\theta})}{\rho - rz e^{-i\theta}} \right) \frac{d\theta}{2\pi} \right\|_X \\ &\leqslant \sup_{\theta \in [0, 2\pi)} \frac{(1 - r)||f'(\rho e^{i\theta})||_X}{|\rho - z e^{-i\theta}||\rho - rz e^{-i\theta}|} \\ &\leqslant c(1 - r) \frac{||f||_{\mathscr{B}^\alpha(X)}}{(1 - |z|)^{2 + \alpha}}, \end{split}$$

where c is a positive constant. Moreover, since

$$(f-C_rf)(z) = e^{i\theta} \int_0^{|z|} (f-C_rf)'(te^{i\theta}) dt,$$

where $z = |z|e^{i\theta}$, we get

$$\begin{aligned} ||(f - C_r f)(z)||_X &\leq c(1 - r)||f||_{\mathscr{B}^{\alpha}(X)} \int_0^{|z|} \frac{1}{(1 - |te^{i\theta}|)^{2 + \alpha}} dt \\ &= c(1 - r)||f||_{\mathscr{B}^{\alpha}(X)} \int_0^{|z|} \frac{1}{(1 - t)^{2 + \alpha}} dt \\ &= \frac{c}{2 + \alpha - 1} (1 - r)||f||_{\mathscr{B}^{\alpha}(X)} \left(\frac{1}{(1 - |z|)^{2 + \alpha - 1}} - 1\right) \end{aligned}$$

Now, the proof of (2) is complete.

Finally, for $f \in \mathscr{B}^{\alpha}(X)$ with $f(z) = \sum_{k=0}^{\infty} x_k z^k$, put $P_n(f) = \sum_{k=0}^n x_k z^k$, $n \ge 0$ and $q_k(f) = x_k$, $k \in \mathbb{N}$. Here q_k are operators $\mathscr{B}^{\alpha}(X) \to X$. Since $z^k x_k = \int_0^{2\pi} f(ze^{i\theta}) e^{-ik\theta} \frac{d\theta}{2\pi}$, then

$$\begin{split} ||z^{k}x_{k}||_{X} &\leq c||f||_{\mathscr{B}^{\alpha}(X)} \quad 0 < \alpha < 1, \\ ||z^{k}x_{k}||_{X} &\leq c\log\frac{2}{1-|z|^{2}}||f||_{\mathscr{B}^{\alpha}(X)} \quad \alpha = 1, \\ ||z^{k}x_{k}||_{X} &\leq c\frac{||f||_{\mathscr{B}^{\alpha}(X)}}{(1-|z|^{2})^{\alpha-1}} \quad \alpha > 1, \end{split}$$

where c > 0 is a constant. The above relations hold for every $z \in \mathbb{D}$. Let $z \in \mathbb{D}$ and |z| = 1/2. So

$$\begin{split} ||x_k||_X &\leqslant c 2^k ||f||_{\mathscr{B}^{\alpha}(X)} \quad 0 < \alpha < 1, \\ ||x_k||_X &\leqslant c 2^k \log 8/3 ||f||_{\mathscr{B}^{\alpha}(X)} \quad \alpha = 1, \\ ||x_k||_X &\leqslant \frac{c 2^k 4^{\alpha - 1}}{3^{\alpha - 1}} ||f||_{\mathscr{B}^{\alpha}(X)} \quad \alpha > 1. \end{split}$$

Therefore q_k are bounded on $\mathscr{B}^{\alpha}(X)$ in each case. So $T_{\psi} \circ q_k : \mathscr{B}^{\alpha}(X) \to \mathscr{B}^{\alpha}(Y)$ are compact operators. Since

$$(W_{\psi,\varphi}P_nf)(z) = \sum_{k=0}^n \varphi(z)^k \cdot \psi(z) x_k = \sum_{k=0}^n \varphi(z)^k \cdot (T_{\psi}q_k f)(z),$$

it follows that $W_{\psi,\varphi}P_n$ are compact operators $\mathscr{B}^{\alpha}(X) \to \mathscr{B}^{\alpha}(Y)$ for all n. Fix 0 < r < 1, let $\varepsilon > 0$ and fix n_0 so that $\sum_{k=n_0+1}^{\infty} kr^k < \varepsilon$. Then, for any $f \in \mathscr{B}^{\alpha}(X)$ with

$$\begin{split} f(z) &= \sum_{k=0}^{\infty} x_k z^k, \\ &||(C_r - P_{n_0} C_r) f||_{\mathscr{B}^{\alpha}(X)} = ||((C_r - P_{n_0} C_r) f)(0)||_X \\ &+ \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} ||((C_r - P_{n_0} C_r) f)'(z)||_X \\ &= \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} ||((C_r - P_{n_0} C_r) f)'(z)||_X \\ &\leqslant ||r \sum_{k=n_0+1}^{\infty} kr^k x_k z^{k-1}||_X < c\varepsilon ||f||_{\mathscr{B}^{\alpha}(X)} \end{split}$$

The above relation holds for every $n > n_0$. It follows that $||C_r - P_n C_r|| \to 0$, as $n \to \infty$. Then $||W_{\psi,\phi}C_r - W_{\psi,\phi}P_n C_r|| \to 0$ as $n \to \infty$. Thus $W_{\psi,\phi}C_r$ is compact operator. The proof in the case of weakly compact is similar. \Box

To characterize compactness, the two conditions we use are

$$\lim_{s \to 1} \sup_{|\varphi(z)| > s} \frac{1 - |z|^2}{1 - |\varphi(z)|^2} \|\psi(z)\|_{L(X,Y)} |\varphi'(z)| = 0$$
(3.1)

$$\lim_{s \to 1} \sup_{|\varphi(z)| > s} (1 - |z|^2) \log \frac{1}{1 - |\varphi(z)|^2} \|\psi'(z)\|_{L(X,Y)} = 0.$$
(3.2)

Weak compactness and compactness of the operator $W_{\psi,\varphi}$ are related to the operator T_{ψ} .

THEOREM 4. Let X and Y be complex Banach spaces and $W_{\psi,\varphi} : \mathscr{B}(X) \to \mathscr{B}(Y)$ be bounded. Then $W_{\psi,\varphi} : \mathscr{B}(X) \to \mathscr{B}(Y)$ is (weakly) compact if and only if

- 1. $T_{\Psi}: X \to \mathscr{B}(Y)$ is (weakly) compact, and
- 2. The conditions (3.1) and (3.2) hold.

Since $T_{\psi} = W_{\psi,\varphi}A$ where $A: X \to \mathscr{B}(X)$ is defined by $A(x) = f_x$, $f_x(z) = x$, the (weak compactness) compactness of $W_{\psi,\varphi}$ implies T_{ψ} is (weakly) compact.

Proof of sufficiency in Theorem 4. Suppose that $T_{\psi} : X \to \mathscr{B}(Y)$ is weakly compact and (3.1) and (3.2) hold. It will be enough to prove that

$$\begin{split} \|W_{\psi,\varphi}\|_{w} &\leq 2 \lim_{s \to 1} \sup_{|\varphi(z)| > s} \frac{1 - |z|^{2}}{1 - |\varphi(z)|^{2}} \|\psi(z)\|_{L(X,Y)} |\varphi'(z)| \\ &+ 2 \lim_{s \to 1} \sup_{|\varphi(z)| > s} (1 - |z|^{2}) \log \frac{1}{1 - |\varphi(z)|^{2}} \|\psi'(z)\|_{L(X,Y)}. \end{split}$$

By Lemma 3(3), the operators $W_{\psi,\varphi}C_r$ are weakly compact too. So

$$\|W_{\psi,\varphi}\|_{w} \leq \|W_{\psi,\varphi} - W_{\psi,\varphi}C_{r}\|.$$

For every $f \in \mathscr{B}(X)$ and $z \in \mathbb{D}$ we have

$$(1 - |z|^{2}) \| (W_{\psi,\varphi}f - W_{\psi,\varphi}C_{r}f)'(z) \|_{Y} \\ \leqslant \max \{ \sup_{|\varphi(z)| > s} (1 - |z|^{2}) \| (W_{\psi,\varphi}f - W_{\psi,\varphi}C_{r}f)'(z) \|_{Y}, \\ \sup_{|\varphi(z)| \le s} (1 - |z|^{2}) \| (W_{\psi,\varphi}f - W_{\psi,\varphi}C_{r}f)'(z) \|_{Y} \} \\ = \max\{I, J\}.$$

For I, using Lemma 1 we have

$$\begin{split} I &\leqslant \sup_{|\varphi(z)| > s} (1 - |z|^2) \| \psi'(z)(f(\varphi(z))) - \psi'(z)(C_r(f(\varphi(z)))) \|_Y \\ &+ \sup_{|\varphi(z)| > s} \| \psi(z)(f'(\varphi(z)))\varphi'(z) - \psi(z)((C_rf)'(\varphi(z)))\varphi'(z) \|_Y \\ &\leqslant \sup_{|\varphi(z)| > s} (1 - |z|^2) \| \psi'(z) \| \| f(\varphi(z)) - C_r(f(\varphi(z))) \|_X \\ &+ \sup_{|\varphi(z)| > s} (1 - |z|^2) \| \psi(z) \| \| f'(\varphi(z))\varphi'(z) - (C_rf)'(\varphi(z))\varphi'(z) \|_X \\ &\leqslant 2 \sup_{|\varphi(z)| > s} (1 - |z|^2) \log \frac{1}{1 - |\varphi(z)|^2} \| \psi'(z) \|_{L(X,Y)} \| f \|_{\mathscr{B}(X)} \\ &+ 2 \sup_{|\varphi(z)| > s} \frac{1 - |z|^2}{1 - |\varphi(z)|^2} \| \psi(z) \|_{L(X,Y)} |\varphi'(z)| \| f \|_{\mathscr{B}(X)}. \end{split}$$

Put

$$E = \sup_{z \in \mathbb{D}} (1 - |z|^2) \| \psi'(z) \|_{L(X,Y)} \quad and \quad F = \sup_{z \in \mathbb{D}} (1 - |z|^2) \| \psi(z) \|_{L(X,Y)} \| \varphi'(z) \|.$$

To see that *E* and *F* are finite, take $f_1(z) = x_0$ and $f_2(z) = x_0 z$, where $x_0 \in X$ is arbitrary with $||x_0||_X = 1$. Then using the boundedness of $W_{\psi,\varphi}$ implies the results. For *J*,

$$\begin{split} J &\leqslant \sup_{\|f\|_{\mathscr{B}(X)} \leqslant 1} \sup_{\|\varphi(z)| \leqslant s} (1 - |z|^2) \|\psi'(z)\|_{L(X,Y)} \|f(\varphi(z)) - C_r(f(\varphi(z)))\|_X \\ &+ \sup_{\|f\|_{\mathscr{B}(X)} \leqslant 1} \sup_{\|\varphi(z)| \leqslant s} (1 - |z|^2) \|\psi(z)\|_{L(X,Y)} \|f'(\varphi(z))\varphi'(z) - (C_r f)'(\varphi(z))\varphi'(z)\|_X \\ &\leqslant E \sup_{\|f\|_{\mathscr{B}(X)} \leqslant 1} \sup_{\|\varphi(z)| \leqslant s} \|f(\varphi(z)) - C_r(f(\varphi(z)))\|_X \\ &+ F \sup_{\|f\|_{\mathscr{B}(X)} \leqslant 1} \sup_{\|\varphi(z)\| \leqslant s} \|f'(\varphi(z)) - (C_r f)'(\varphi(z))\|_X. \end{split}$$

Letting $r \rightarrow 1$, according to Lemma 3(2), we have

$$\lim_{r\to 1} J = 0. \quad \Box$$

The idea for the proof of the necessity part is to use a Leibov-type argument similar to the one in [10].

LEMMA 5. Let $\{f_n\}$ be a sequence in $\mathscr{B}_0(X)$, $||f_n||_{\mathscr{B}(X)} = 1$ and $||f_n||_{B_2(X)} \to 0$ as $n \to \infty$. Then there exists a subsequence $\{f_{n_k}\}$ such that it is equivalent to the natural basis of c_0 , that is, the map $(\lambda_k) \mapsto \sum_k \lambda_k f_{n_k}$ is an isomorphism from c_0 into $\mathscr{B}_0(X)$.

Proof. It can be proved that $||f_n||_{\mathscr{B}(X)} \leq \sup_{||x^*|| \leq 1} ||x^* \circ f_n||_{\mathscr{B}}$. So there exists an $x^* \in X^*$ such that $||f_n||_{\mathscr{B}(X)} \leq ||x^* \circ f_n||_{\mathscr{B}}$. On the other hand $||x^* \circ f_n||_{\mathscr{B}} \leq ||f_n||_{\mathscr{B}(X)}$. Now we define $g_n = x^* \circ f_n$. Then $g_n \in \mathscr{B}_0$, $||g_n||_{\mathscr{B}} = 1$ and $||g_n||_{\mathscr{B}_2} \to 0$ as $n \to \infty$. Set

$$\gamma(g_n,a) = \|g_n \circ \varphi_a - g_n(a)\|_{B_2}.$$

The change of variable implies that $\gamma(g_n, a) \leq ||g_n \circ \varphi_a||_{B_2} \leq c_a ||g_n||_{B_2}$ where c_a is an increasing function of |a|. Fix any 0 < r < 1 and $|a| \leq r$, $c_a \leq c_r$. It follows from $||g_n||_{B_2} \to 0$ that

$$\sup_{|a|\leqslant r}\gamma(g_n,a)\to 0$$

as $n \to \infty$. Since $\{g_n\} \in \mathscr{B}_0$, $\gamma(g_n, a) \to 0$ as $|a| \to 1$ for each *n*. These properties imply that there exist increasing sequences of positive integers $\{n_k\}$ and numbers $0 < r_k < 1$ such that for each k, $||g_{n_k}||_{B_2} < 2^{-k-1}$ and

$$\sup_{|a| \leqslant r_k} \gamma(g_{n_k}, a) < 2^{-k-1}, \qquad \sup_{|a| \geqslant r_{k+1}} \gamma(g_{n_k}, a) < 2^{-k-1}.$$

For every $a \in \mathbb{D}$ we then have $\gamma(g_{n_k}, a) < 2^{-k-1}$ for all but possibly one index k, for which $\gamma(g_{n_k}, a) \leq 1$. Hence $\sum_k \gamma(g_{n_k}, a) < 1 + \frac{1}{2} = \frac{3}{2}$. Now we define the map $S: c_0 \to \mathscr{B}_0$ by

$$S\lambda = \sum_{k=1}^{\infty} \lambda_k g_{n_k}$$

for $\lambda = (\lambda_k) \in c_0$. Since $\|\sum_{k=1}^{\infty} \lambda_k g_{n_k}\|_{B_2} \leq \sum_{k=1}^{\infty} |\lambda_k| \|g_{n_k}\|_{B_2}$, the series converges in B_p . It can be seen from the inequality

$$\gamma(S\lambda,a) \leqslant \sum_{k=1}^{\infty} |\lambda_k| \gamma(g_{n_k},a) \leqslant \frac{3}{2} \|\lambda\|_{\infty}$$

that $||S\lambda||_{\mathscr{B}} \leq \frac{3}{2}c||\lambda||_{\infty}$. Since $\lambda \in c_0$, we have $\lambda_k \to 0$. So there exists an integer *K* such that $|\lambda_k| < \varepsilon$ for k > K. Then

$$egin{aligned} &\gamma(S\lambda,a)\leqslant\sum_{k=1}^{\infty}|\lambda_k|\gamma(g_{n_k},a)\ &=\sum_{k=1}^{K}|\lambda_k|\gamma(g_{n_k},a)+\sum_{k=K+1}^{\infty}|\lambda_k|\gamma(g_{n_k},a)\ &\leqslant\|\lambda\|_{\infty}\sum_{k=1}^{K}|\lambda_k|\gamma(g_{n_k},a)+rac{3}{2}arepsilon. \end{aligned}$$

Since $\gamma(g_{n_k}, a) \to 0$ as $|a| \to 1$ for each k, and $\varepsilon > 0$ was arbitrary, this implies that $S\lambda \in \mathscr{B}_0$. Therefore S is a bounded linear operator from c_0 into \mathscr{B}_0 .

To check that *S* is one to one, we prove that *S* is bounded below. For $\lambda = (\lambda_k) \in c_0$, there exists an index *K* for which $|\lambda_K| = ||\lambda||_{\infty}$. We know that $|g_{n_K}(0)| \leq ||g_{n_K}||_{B_2} < \frac{1}{4}$ and $||g_{n_K}||_{\mathscr{B}} = 1$. So there exists a positive constant *c* such that $\sup_{a \in \mathbb{D}} \gamma(g_{n_K}, a) \approx 1 - |g_{n_K}(0)| > 1 - \frac{1}{4}$. Hence there is a point $a \in \mathbb{D}$ such that $\gamma(g_{n_K}, a) > 1 - \frac{1}{4}$. Note that for $k \neq K$, we have $\gamma(g_{n_k}, a) < 2^{-k-1}$. Therefore

$$\begin{split} \|S\lambda\|_{\mathscr{B}} &\geqslant c\gamma(S\lambda, a) \gtrsim |\lambda_{K}|\gamma(g_{n_{K}}, a) - \sum_{k \neq K} |\lambda_{k}|\gamma(g_{n_{k}}, a) \\ &\geqslant \left(1 - \frac{1}{4}\right) \|\lambda\|_{\infty} - \frac{1}{2} \|\lambda\|_{\infty} = \frac{1}{4} \|\lambda\|_{\infty}. \end{split}$$

We have proved that *S* is an isomorphism from c_0 into \mathscr{B}_0 . An easy calculation shows that $S\lambda = x^*(T\lambda)$ where $T\lambda = \sum_{k=1}^{\infty} \lambda_k f_{n_k}$. Then *T* is an isomorphism from c_0 into $\mathscr{B}_0(X)$ and we are done. \Box

Proof of necessity in Theorem 4. Suppose that the conditions (3.1) and (3.2) fail. We will complete the proof by proving that $W_{\psi,\varphi} : \mathscr{B}(X) \to \mathscr{B}(Y)$ fixes a copy of c_0 and therefore it is not weakly compact.

If the condition (3.1) fails, then there exist c > 0 and a sequence $\{a_n\} \in \mathbb{D}$ such that $|\varphi(a_n)| \to 1$ as $n \to \infty$ and

$$\frac{1-|a_n|^2}{1-|\varphi(a_n)|^2}\|\psi(a_n)\|_{L(X,Y)}|\varphi'(a_n)|>c.$$

Let $x \in X$ with $||x||_X = 1$. Define the functions f_n by $f_n(z) = g_n(z)x$ where

$$g_n(z) = \frac{(1 - |\varphi(a_n)|^2)^2}{(1 - \overline{\varphi(a_n)}z)^2} - \frac{1 - |\varphi(a_n)|^2}{1 - \overline{\varphi(a_n)}z}.$$

Then $M = ||f_n||_{\mathscr{B}(X)} < \infty$, $f_n(\varphi(a_n)) = 0$ and $f'_n(\varphi(a_n)) = \overline{\varphi(a_n)}/(1 - |\varphi(a_n)|^2)x$. Furthermore $f_n \in \mathscr{B}_0(X)$ and

$$\begin{split} \|f_n\|_{B_2(X)}^2 &= \int_{\mathbb{D}} \left\| \frac{(1 - |\varphi(a_n)|^2)^2}{(1 - \overline{\varphi(a_n)}z)^2} - \frac{1 - |\varphi(a_n)|^2}{1 - \overline{\varphi(a_n)}z} x \right\|_X^2 \, dA(z) \\ &\leqslant 4 \int_{\mathbb{D}} \frac{(1 - |\varphi(a_n)|^2)^4}{|1 - \overline{\varphi(a_n)}z|^4} + \frac{(1 - |\varphi(a_n)|^2)^2}{|1 - \overline{\varphi(a_n)}z|^2} \, dA(z) \\ &= 4(1 - |\varphi(a_n)|^2)^4 \int_{\mathbb{D}} \frac{(1 - |\varphi(a_n)|^2)^4}{|1 - \overline{\varphi(a_n)}z|^4} \, dA(z) \\ &\quad + 4(1 - |\varphi(a_n)|^2)^2 \int_{\mathbb{D}} \frac{1}{|1 - \overline{\varphi(a_n)}z|^2} \, dA(z) \\ &\leqslant 4c(1 - |\varphi(a_n)|^2)^2 + 4c(1 - |\varphi(a_n)|^2)^2 \log \frac{1}{1 - |\varphi(a_n)|^2}. \end{split}$$

The last line of the above relation is due to Theorem 1.12 of [20]. So $||f_n||_{B_2(X)} \to 0$ as $n \to \infty$. Also

$$\begin{split} \|W_{\psi,\varphi}f_n\|_{\mathscr{B}(X)} &\ge (1-|a_n|^2) \|W_{\psi,\varphi}(f_n)'(a_n)\|_X \\ &= (1-|a_n|^2) \|\psi(a_n)(f_n'(\varphi(a_n)))\varphi'(a_n)\|_X \\ &= \frac{1-|a_n|^2}{1-|\varphi(a_n)|^2} \|\psi(a_n)(x)\|_X |\varphi'(a_n)||\varphi(a_n)|_S \end{split}$$

for every $x \in X$. So

$$\|W_{\psi,\varphi}f_n\|_{\mathscr{B}(X)} \ge \frac{1-|a_n|^2}{1-|\varphi(a_n)|^2} \|\psi(a_n)\|_{L(X,Y)} |\varphi'(a_n)| |\varphi(a_n)| \ge \frac{c}{2}.$$

For using Lemma 5, we should have $||f_n||_{\mathscr{B}(X)} = 1$. This can be done by normalizing the norm of the sequence $\{f_n\}$. Without loss of generality we use $\{f_n\}$ again. So we can find a subsequence $\{f_n\}$ which is equivalent to the natural basis of c_0 which implies that $\{W_{\psi,\varphi}f_{n_k}\}$ is a weak-null sequence in $\mathscr{B}(X)$. Using the Bessaga-Polczynski selection principle (see [1, 1.3.10]) to $\{W_{\psi,\varphi}f_{n_k}\}$, there exists a subsequence, say $\{f_{n_k}\}$ again, such that $\{W_{\psi,\varphi}f_{n_k}\}$ is a semi-normalized basic sequence in $\mathscr{B}(X)$. Hence there are constants A, B > 0 such that

$$A.\|\lambda\|_{\infty} \leqslant \|\sum_{k=1}^{\infty} \lambda_{k} W_{\psi,\varphi} f_{n_{k}}\|_{\mathscr{B}(X)} \leqslant \|W_{\psi,\varphi}\|.\|\sum_{k=1}^{\infty} \lambda_{k} f_{n_{k}}\|_{\mathscr{B}(X)}$$
$$\leqslant B.\|W_{\psi,\varphi}\|\|\lambda\|_{\infty},$$

for every $\lambda = (\lambda_k) \in c_0$. These estimates state that the restriction of $W_{\psi,\varphi}$ to the closed subspace of $\mathscr{B}(X)$ spanned by the sequence $\{f_{n_k}\}$ is an isomorphism onto a linearly isomorphic copy of c_0 , and we are done.

If condition (3.2) fails, then we have the same result by using the functions

$$g_n(z) = \frac{-1}{\log(1-|\varphi(z_n)|^2)} \left(3\left(\log\frac{1}{1-\overline{\varphi(z_n)z}}\right)^2 - 2\left(\log\frac{1}{1-\overline{\varphi(z_n)z}}\right)^3 \right). \quad \Box$$

4. Compactness properties of T_{ψ}

EXAMPLE 6. There is an analytic operator-valued map $\psi \in H^{\infty}(L(\ell^1)), \ \psi(z) \in K(\ell^1)$, but $T_{\psi}: \ell^1 \to \mathscr{B}(\ell^1)$ is not even weakly conditionally compact.

Proof. Define the bounded operator-valued analytic map $\psi : \mathbb{D} \to L(\ell^1)$ by $\psi(z) = \sum_{k=1}^{\infty} z^k e_k^* \otimes e_k$, where (e_k) denotes the standard unit vector basis of ℓ^1 and $(e_k^*) \subset c_0$ its biorthogonal sequence. In other words,

$$\Psi(z)x = \sum_{k=1}^{\infty} z^k x_k e_k, \quad x = (x_k) \in \ell^1, \ z \in \mathbb{D}.$$

The claim is that T_{ψ} is not weakly conditionally compact as an operator $\ell^1 \to \mathscr{B}(\ell^1)$. Suppose to the contrary that T_{ψ} is weakly conditionally compact. So there exists a weakly Cauchy subsequence $(T_{\psi}(e_{n_j}))$ such that the difference sequence $(T_{\psi}(e_{n_{2j+1}} - e_{n_{2j}}))$ is weak-null in $\mathscr{B}(\ell^1)$. By Mazur's theorem,

$$\|\sum_{j=1}^{s} c_{j} T_{\Psi}(e_{n_{2j+1}} - e_{n_{2j}})\|_{\mathscr{B}(\ell^{1})} < \frac{1}{2}$$

for a suitable convex combination, where $\sum_{j=1}^{s} c_j = 1$ and $c_j \ge 0$ for $j = 1, \dots, s$. On the other hand, we have

$$\begin{split} &|\sum_{j=1}^{s} c_{j} T_{\Psi}(e_{n_{2j+1}} - e_{n_{2j}})||_{\mathscr{B}(\ell^{1})} \\ &= \sup_{z \in \mathbb{D}} (1 - |z|^{2}) ||\sum_{j=1}^{s} c_{j}(n_{2j+1} z^{n_{2j+1}-1} e_{n_{2j+1}} - n_{2j} z^{n_{2j}-1} e_{n_{2j}})||_{\ell^{1}} \\ &= \sup_{z \in \mathbb{D}} (1 - |z|^{2}) \sum_{j=1}^{s} c_{j}(n_{2j+1} |z|^{n_{2j+1}-1} + n_{2j} |z|^{n_{2j}-1}) \\ &\geqslant \sum_{j=1}^{s} c_{j}(n_{2j+1} + n_{2j}) \geqslant 1, \end{split}$$

which is a contradiction. \Box

LEMMA 7. Let X be a complex Banach spaces, $X_0 \subset X$ be a closed subspace and $f \in \mathscr{B}(X)$. Then $f \in \mathscr{B}_0(X_0)$ if and only if $f \in \mathscr{B}_0(X)$ and $f(\mathbb{D}) \subset X_0$.

Proof. It is obvious that if $f \in \mathscr{B}_0(X_0)$ then $f \in \mathscr{B}_0(X)$ and $f(\mathbb{D}) \subset X_0$. Suppose that $f \in \mathscr{B}_0(X)$ and $f(\mathbb{D}) \subset X_0$. Define $f_r(z) = f(rz)$, 0 < r < 1. So

$$\begin{split} \|f_r\|_{\mathscr{B}(X_0)} &= ||f(0)||_{X_0} + \sup_{z \in \mathbb{D}} (1 - |z|^2) \|rf'(rz)\|_{X_0} \\ &< ||f(0)||_{X_0} + \sup_{z \in \mathbb{D}} (1 - |z|^2) \|f'(rz)\|_{X_0} \\ &< ||f(0)||_{X_0} + \sup_{z \in \mathbb{D}} (1 - |rz|^2) \|f'(rz)\|_X \leqslant \|f\|_{\mathscr{B}(X)} \end{split}$$

It means that $f_r \in \mathscr{B}(X_0)$. Then

$$\begin{split} \lim_{|z| \to 1} (1 - |z|^2) \|f_r'(z)\|_{X_0} &= \lim_{|z| \to 1} (1 - |z|^2) \|rf'(rz)\|_{X_0} \\ &< \lim_{|z| \to 1} (1 - |z|^2) \|f'(rz)\|_{X_0} \\ &< \lim_{|z| \to 1} (1 - |rz|^2) \|f'(rz)\|_X = 0 \end{split}$$

Hence $f_r \in \mathscr{B}_0(X_0)$. There are polynomials $p_n(z) = \sum_{j=0}^{N_n} z^j x_j^{(n)}$ such that $p_n \to f$ in $\mathscr{B}(X)$ as $n \to \infty$. By using the same way we have $(p_n)_r \to f_r$ as $n \to \infty$. Also

$$\begin{split} \|p_n - (p_n)_r\|_{\mathscr{B}(X)} &= \sup_{z \in \mathbb{D}} (1 - |z|^2) \|\sum_{j=1}^{N_n} j z^{j-1} x_j^{(n)} (1 - r^j) \|_X \\ &< \sup_{z \in \mathbb{D}} (1 - |z|^2) (\sup_{1 \le j \le N_n} \|x_j^{(n)}\|_X) N_n \sum_{j=1}^{N_n} (1 - r^j) \to 0, \end{split}$$

as $r \to 1$. Since

$$\|f - f_r\|_{\mathscr{B}(X_0)} = \|f - f_r\|_{\mathscr{B}(X)}$$

 $\leq \|f - p_n\|_{\mathscr{B}(X)} + \|p_n - (p_n)_r\|_{\mathscr{B}(X)} + \|(p_n)_r - f_r\|_{\mathscr{B}(X)},$

we deduce that $f_r \to f$ in $\mathscr{B}_0(X_0)$ as $r \to 1$. \Box

THEOREM 8. Let X and Y be complex Banach spaces and $\psi \in \mathscr{B}_0(L(X,Y))$. Then $T_{\psi}: X \to \mathscr{B}(Y)$ is compact (weakly compact) if and only if $\psi(\mathbb{D}) \subset K(X,Y)$ $(\psi(\mathbb{D}) \subset W(X,Y))$.

Proof. Suppose that $\psi(\mathbb{D}) \subset K(X,Y)$. The previous lemma implies that $\psi \in \mathscr{B}_0(K(X,Y))$. Find K(X,Y)-valued polynomials $\psi_n(z) = \sum_{k=0}^n z^k U_k^{(n)}$ such that $\psi_n \to \psi$ in $\mathscr{B}(K(X,Y))$. Since $||T_{\psi}|| = ||\psi||_{\mathscr{B}(L(X,Y))}$, we have $||T_{\psi} - T_{\psi_n}|| \to 0$ as $n \to \infty$. So it will be sufficient to prove that $T_{\psi_n} : X \to \mathscr{B}(Y)$ is compact. Define the maps $\theta_k : Y \to \mathscr{B}(Y)$ by $(\theta_k y)(z) = z^k y$. Each θ_k is bounded, then $\theta_k \circ U_k^{(n)}$ is compact and so $T_{\psi_n} = \sum_{k=0}^n \theta_k \circ U_k^{(n)}$.

Now, suppose that $T_{\psi}: X \to \mathscr{B}(Y)$ is compact. Fix $z \in \mathbb{D}$ and define $\gamma: \mathscr{B}(Y) \to Y$ by $\gamma(f) = f(z)$. Then γ is a bounded linear operator and $\gamma \circ T_{\psi} = \psi(z)$. So $\psi(z): X \to Y$ is a compact operator. \Box

EXAMPLE 9. (1) Let X be any Banach space, $\psi(z) \equiv U$ and $\varphi(z) = \frac{z+1}{2}$ for $z \in \mathbb{D}$, where $U \in K(X)$ is a fixed operator. Then $W_{\psi,\varphi}$ is compact $\mathscr{B}(X) \to \mathscr{B}(X)$. Indeed

$$\begin{split} \lim_{s \to 1} \sup_{|\varphi(z)| > s} \frac{1 - |z|^2}{1 - |\varphi(z)|^2} \|\psi(z)\|_{L(X,Y)} |\varphi'(z)| &\leq \frac{1}{2} \|U\|_{L(X,Y)} \lim_{s \to 1} \sup_{|\varphi(z)| > s} \frac{1 - |z|^2}{-|z|^2} = 0, \\ \lim_{s \to 1} \sup_{|\varphi(z)| > s} (1 - |z|^2) \log \frac{1}{1 - |\varphi(z)|^2} \|\psi'(z)\|_{L(X,Y)} &= 0. \end{split}$$

Also T_{ψ} is compact by Theorem 8 since $\psi(z) \equiv U \in K(X)$. So Theorem 4 implies that $W_{\psi,\varphi}$ is compact.

(2) Let X be any reflexive Banach space, $\psi(z) \equiv V$ and $\varphi(z) = \frac{z+1}{2}$ for $z \in \mathbb{D}$, where $V \notin K(X)$ is a fixed operator. Then $W_{\psi,\varphi}$ is weakly compact, but not compact. Non-compactness of W_{ψ} is because of non-compactness of T_{ψ} (Theorem 8, $\psi(z) \equiv V \notin K(X)$). Since X is reflexive, V is weakly compact. So T_{ψ} is weakly compact by Theorem 8. Also the conditions (3.1) and (3.2) hold. Now $W_{\psi,\varphi}$ is weakly compact.

Acknowledgement. The author would like to thank professor Jussi Laitila for giving the idea of this paper and for valuable comments. Also I wish to thank the referee for the time spent studying the manuscript and for his/her suggestions which improved the manuscript.

REFERENCES

- [1] F. ALBIAC AND N. J. KALTON, Topics in Banach Space Theory, Springer, 2006.
- [2] J. BONET, P. DOMANSKI AND M. LINDSTROM, Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001), 233–248.
- [3] J. BONET, M. C. GÓMEZ-COLLADO, D. JORNET AND E. WOLF, Operator-weighted composition operators between weighted spaces of vector-valued analytic functions, Ann. Acad. Sci. Fenn. Math. 37 (2012), 319–338.
- [4] C. C. COWEN AND B. D. MACCLUER, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.
- [5] J. DIESTEL, H. JARCHOW AND A. TONGE, Absolutely Summing Operators, Cambridge Univ. Press, Cambridge 1995.
- [6] M. HASSANLOU, J. LAITILA AND H. VAEZI, Weighted composition operators between weak spaces of vector-valued analytic functions, Analysis, 37 (1) (2017), 39–45.
- [7] E. HILLE AND R. S. PHILLIPS, Functional Analysis and Semigroups, Amer. Math. Soc. Providence, R. I. 1957.
- [8] J. LAITILA, Weakly compact composition operators on vector-valued BMOA, J. Math. Anal. Appl. 308 (2005), 730–745.
- [9] J. LAITILA, Composition operators and vector-valued BMOA, Integr. Equ. Oper. Theory, 58 (2007), 487–502.
- [10] J. LAITILA, P. J. NIEMINEN, E. SAKSMAN AND H.-O. TYLLI, Compact and weakly compact composition operators on BMOA, Complex Analysis and Operator Theory 7 (2013), 163–181.
- [11] J. LAITILA AND H.-O. TYLLI, Operator-weighted composition operators on vector-valued analytic function spaces, Illinois J. Math. 53 (2009), 1019–1032.
- [12] J. LAITILA, H.-O. TYLLI, AND M. WANG, Composition operators from weak to strong spaces of vector-valued analytic functions, J. Operator Theory 62 (2009), 281–295.
- [13] P. LIU, E. SAKSMAN AND H.-O. TYLLI, Small composition operators on analytic vector-valued function spaces, Pacific J. Math. 184 (1998), 295–309.
- [14] J. S. MANHAS, Weighted composition operators on weighted spaces of vector-valued analytic functions, J. Korean Math. Soc. 45 (2008), 1203–1220.
- [15] M. NOWAK, On Bloch space in the unit ball of \mathbb{C}^n , Ann. Acad. Sci. Fenn. 23 (1998), 461–473.
- [16] S. OHNO, K. STROETHOFF AND R. ZHAO, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (1) (2003), 191–215.
- [17] J.H. SHAPIRO, Composition operator and classical function theory, Springer-Verlag, New York, 1993.
- [18] M. WANG, Weighted composition operators between Dirichlet spaces, Acta Math. Sci. 2011, 31B (2): 641–651.
- [19] M. WANG, Riemann-Stieltjes operators between vector-valued weighted Bloch spaces, J. Ineq. Appl., (2008), doi:10.1155/2008/348208.
- [20] K. ZHU, Spaces of holomorphic functions in the unit ball, Springer, New York, 2005.

(Received February 21, 2018)

Mostafa Hassanlou Engineering Faculty of Khoy Urmia University Urmia, Iran e-mail: m.hassanlou@urmia.ac.ir

Operators and Matrices www.ele-math.com oam@ele-math.com