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COMPLEMENTARITY OF SUBSPACES OF /.. REVISITED

RYOTARO TANAKA

(Communicated by T. S. S. R. K. Rao)

Abstract. We present a simple criterion for complementarity of subspaces of /.. induced by
certain bounded linear operators. As applications, it is shown that some typical and well-known
subspaces such as mean or almost convergent sequence spaces are uncomplemented in (... We
also note that there exists a weak ™ closed uncomplemented subspace of /...

1. Introduction

Let /w, ¢ and ¢y denote the Banach spaces of bounded, convergent or null se-
quences, respectively. The first example of an uncomplemented subspace of (. is ¢
(and cg). This folklore result was given by Phillips in his 1940 paper [14]. The original
proof is based on a detailed study of representation of linear operators. Nearly a quarter
century later, Whitley [16] drastically simplified the proof of Phillips’ result by using
an idea due to Nakamura and Kakutani [13]. Precisely, he showed that (fw./co)* has
no countable total subset; and it suffices to conclude that ¢g is not complemented in /..
since the property that the dual space has a countable total subset is preserved under
taking subspaces or by linear isomorphisms.

Complementarity of subspaces of /.. had been deeply studied as a part of the main
stream of the isomorphic theory. In 1967, Lindenstrauss [10] gave an important char-
acterization of complemented subspaces of /.. by showing that /.. is a prime Banach
space, that is, an infinite dimensional complemented subspace of /.. must be isomor-
phic to f... (The converse implication follows from the fact that /. is an injective
Banach space; see, for example, [1, Proposition 2.5.2].) It follows that, at least, there is
no separable infinite dimensional complemented subspace of /... At this point, Phillips’
result was significantly improved by Lindenstrauss.

The theoretical development for the study of Banach space structure of comple-
mented subspaces of /.. has been mostly reached the stage of satisfaction (since such
spaces are isomorphically “the same” as /). However, this well-known character-
ization is not always effective in determining the complementarity of concrete non-
separable subspaces of /... To do this, we still have to investigate for case by case;
because we do not know whether checking an infinite dimensional subspace of (.. is
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(not) isomorphic to /. is easier than examining the complementarity of the subspace
directly.

In this paper, we present a simple criterion for complementarity of subspaces of
ls induced by bounded linear operators admitting matrix representations. The proof
employs the above mentioned argument of Whitley, that is, we check whether the dual
spaces of the quotient of /., by such subspaces have countable total subsets. As an
application, among other examples, we show that closed subspaces between ¢y and
the mean convergent sequence space are all uncomplemented in {.. From this and
Lorentz’s theorem [1 1], in particular, we conclude that the space of almost convergent
sequences is also uncomplemented in /... On the other hand, we provide an exam-
ple of a weak™® closed uncomplemented subspace of /... It is known that if M is a
weak* closed subspace of /., then (¢./M)* always has a countable total subset. Con-
sequently, we see that there is a limit to determining the complementarity of subspaces
of /.. by using Whitley’s method.

2. Subspaces of /.. induced by matrices

Let B({s) denote the Banach space of bounded linear operators on f... Sup-
pose that T € B({..). We consider the closed subspaces ¢(T) := T~ !(c) and ¢(T) :=
T~ 1(co) of L., respectively. We note that ¢(I) = c¢ and co(I) = co while ¢(0) = co(0) =
loo.

A linear operator T on /.. is said to admits a matrix representation if there exists
an infinite matrix (#;;) of complex numbers such that (7a), = X7 tja; for each a =
(an) € bes. If T € B({) admits a matrix representation, the spaces ¢(7) and co(7T)
are closely related to objects studied in the monograph [4]. In particular, ¢(T) is called
the bounded summability field of T; see also [5, 7]. For further information of the
“summability domains” of matrices in normed spaces and the matrix transformations,
the readers are referred to [2]

Let X be a Banach space. A subset F of X™ is said to be total if f(x) =0 for
each f € F implies that x = 0. Now suppose that M is a subspace of X, and that ¥ is
a Banach space isomorphic to X . If X* has a countable total subset then M* and Y*
also have countable total subsets. Since ¢Z, has a countable total subset consisting of
coordinate functionals, it follows that each complemented subspace of /., must have
such a set.

Now we present the main theorem. The proof is based on a combination of a
gliding hump argument and Whitley’s method [16].

THEOREM 2.1. Let T € B({.,) with a matrix representation (t;j). Suppose that
co Cco(T) S le. If M is a closed subspace with ¢co C M C ¢(T), then ({w/M)* has
no countable total subsets. Consequently, M is not complemented in {o..

Proof. Let e, =(0,...,0,1,0,...) foreach n € N, where 1 is in the n-th position;
and let eja = a, for each n € N and each a = (a,) € l... We note that #;; = ¢ Te; for
each i,j € N. Let y; be a complex number such that |y;| =1 and y;t;; = |t;;| for
each i, j € N. Since T is bounded, we have that 37 |¢;;| < || T[| for each i. Moreover,
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since T'(co) C co, we have #;j = ejTe; — 0 as i — co. This also shows ¥ [¢;;] — 0
foreach m € N as i — oo.

Take an arbitrary a = (a,) € £ \ co(T). Then there exists an increasing sequence
(ix) of natural numbers such that e Ta — o # 0. Removing finite number of elements
from (i) if necessary, we have

lej Ta— o] < |a|/2

for each k. Since ¢} Ta =37, #; ja;, it follows that

lalles D [t = | X, tijaj| = lef, Tal > |ex] /2.
=1 =1

Hence, putting M = |o|/(2(|al|«) > 0 yields M < 37, [t;, ;| < ||T| for each k.
If we put ny =i then there exists an m; such that 37, 1, |ta,j| < M /4. In this

case, we have
mj oo oo

Z |tn1j| = Z |tn1j‘ - Z ‘tn1j| >M/2~
j=1 j=1

j=mi+1
Now we assume that there exist strictly increasing sequences (np);’,zl, (mp);’,:1 satis-
fying

@ X070 [ty < M/20T

i) 57 1t < M/2771 s and
(lll) 2;'n=pmp,1-'rl ‘tn,,j| > (l - I/ZP)M

foreach p =1,2,...,q, where mg = 0. Since Zr;zl |t;j| — 0 as i — oo, there exists an
ng+1 € (ix) such that 2’;;"1 ltngi] < M /29%2 . For this n,1, there exists an m,4; € N

with mg.q >mg such that 37, .y [tn,,j| < M/27%2. It follows that

Mgi1 oo mg oo
Z ‘tnq+1j| = Z |tnq+1j‘ - Z ‘tanrlj‘ - Z ‘tanrlj‘
Jj=mg+1 j=1 j=1 J=mgii+l1

> (1—1/29" M.

=

Thus, by an induction, we have infinite sequences (1) ey

(mp),_, satisfying
Q) 277" [ty | < M/20H

(i) 7, 1 |tn, i < M/2P%!; and

(i) E?L,np,lﬂ ltn,j| > (1 —1/2P)M

foreach pe N. Let N, = {m,_1+1,mp_1+2,...,mp} foreach p € N, where mo=0.
It is known that there exists a family (A, ), <; of subsets of N with the following
properties:
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(i) The index set I is uncountable.
(ii) A, is an infinite set foreach A € 1.
(iii) Az NAy is finite whenever A # u.
See, for example, [12, Lemma 3.2.19]. For each A € I, define the bounded sequence

a®) = (a,(f)) by

o) _ [ty (RENp, p€Ay)
" 0 (nENlhpgA?L) .

We show that a*) ¢ ¢(T'). Indeed, we have

mp—1

en’)Ta Ztnp,a) 2 tnpja + z tnp,a ,

J=mp_i1+1 Jj=mp+1
and hence, if p € A) then
mp mp,l oo
A —
|€:pTa( )‘ > Z |t"p]" - Z |t"p]" - Z |t"pj| > (1 - 1/2[7 I)M
Jj=mp_1+1 j=1 Jj=mp+1

However, in the case of p & A, , one obtains

mpl

ey, Ta'™ 2 [tny | + Z [ty < M /2.
Jj=mp+1

Since A; and N\ A, are both inﬁnite set the sequence Ta*) cannot converge.
Next, we shall see that a'* W) & c(T) whenever A # p. If p € A; \ Ay, asin
the preceding paragraph, we have

Rele;, (Ta™) — Ta))] > (1-3/2")M
while
Rele;, (Ta™) — TalM))] < —(1-3/2")M

for the case of p € Ay \ A, . Remark that, in either case, one has
* A —
|Tmle;, (Ta'™) — Tal))]| < M/27~",

From these estimations, we deduce that the sequence Ta*) — TaM) is not Cauchy, and
thus it does not converge.

We now consider the value of [|(X_, oja*)) + ¢y, where oy, 00,..., 0 € C and
A1, 22,..., Ay are mutually distinct elements of 7. Since Aj,MA, is finite whenever i #

J» after removing finitely many coordinates, we can easily show that |[(¥}_; & jati)) 4
col| < max;j<alayl.
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Finally, let M be a closed subspace of f.. with ¢o C M C ¢(T). Then one has
a®) a*) —a) & M whenever A # . Let @ € (fo/M)*. For each A €1, there exists
a &, € C such that |8;| = 1 and & @(a™ +M) = |@(a) +M)|. Take an arbitrary
finite subset J of I. Then we obtain

2 5;La )+ co
red

() ((Z 5/10(“)4'1"1) ' = lo(@?®
red red

which implies that I, = {A € I : |p(a*) + M)| > 1/n} is finite for each n. Hence

Ip={A €I:¢9@* +M)+#0}=,lp, is countable. Now suppose that ¢ is a
countable subset of (&Q /M)*. Then it follows that

ol > llel > el

red

5 S;La(l))—l-MH

{el:p(@?) +M)#0forsome pe €} = | Iy
(IS

is countable, and therefore 4" cannot be total. This completes the proof. [

REMARK 2.2. We remark that the preceding theorem is not true in general with-
out the assumption on matrix representability. Indeed, there exists an operator T €
B({..) which satisfies ¢ C ¢o(T) C ¢, but the conclusion of Theorem 2.1 does not
hold. Indeed, let ¢ be a Banach limit on /., and let Ta = @(a)l for each a € lo.
Then T(co) = {0} C ¢ and T (¢-) = C1 ¢ ¢¢. However the identity ¢(T) = £. holds.
Hence the conclusion of Theorem 2.1 fails for this 7.

The rest of this section is devoted to presenting some applications of Theorem 2.1.
Recall that a sequence a = (a,) € l- is said to be convergent in the sense of Cesdro
mean of order 1 to o if the sequence (n~! >/i_jaj) convergesto a,and almost conver-
gent to the almost limit o if @(a) = o for each Banach limit ¢ on /... It is well-known
as Lorentz’s theorem [1 1] that a = (a,) € /- is almost convergent to ¢ if and only if

limsup | — =0.

m peN

Zan+, 1— O

The spaces of all bounded sequences convergent in the sense of Cesdro mean of order
1 is denoted by ¢. In [15], a similar sequence space (containing unbounded ones) was
investigated by using the same symbol. The Banach spaces consisting of all almost
convergent or almost null sequences are denoted by f and fj, respectively. We note
that ¢y C foy C f C ¢ holds.

COROLLARY 2.3. All the spaces ¢, f, fo are closed and uncomplemented in (s,.
Moreover, fy contains an isometric copy of l. Consequently, ¢, f, fo are not prime.
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Proof. For each a = (ay) € l, let

< a)+ap aytay+---+ay )
Ta = ag, ) IR 0 guos ]

Then T € B({..) and admits a matrix representation (z;;), where

_Ji(i=))

Moreover, we have T (1) =1 & ¢¢. Hence, by Theorem 2.1, all closed subspaces M of
Lo, satisfying ¢ C M C ¢(T) = ¢ are not complemented in /e..

For the fact that f; contains an isometric copy of /.., we refer the readers to
Lorentz [11] (see also [3, Theorem 3.2]). The proof is complete. [

COROLLARY 2.4. Let d and dy be subspaces of {s given by

c(A) ={a= (an) € b : (an — ans+1) converges}
co(A) = {a= (an) € b : (ay — an+1) convergesto 0}

Then c¢(A),co(A) are closed and uncomplemented in le.. Moreover, co(A) contains an
isomorphic copy of Le. Consequently, c(A),co(A) are not prime.

Proof. Let A be a bounded linear operator on /.. given by Aa = (a, — a,+1) for
each a = (a,) € l-.. Then A admits a matrix representation (z;;), where 7; = 1 and
tiiv1) = —1 for each i, and #;; = 0 for otherwise. We note that A(c) C o since each
convergent sequence is Cauchy. Moreover, one has

A(1,0,1,0,...)=(1,-1,1,—1,...) Zc.

Hence A satisfies the assumption of Theorem 2.1. Now, it follows from ¢o C ¢o(A) C
¢(A) that ¢(A) and c(A) are closed and not complemented in £, .

We shall show that ¢o(A) has an isomorphic copy of f. in it. Since Y, 1/n = oo,
we have an infinite sequence (m;) such that 1/2 < Z;"imkil 1 1/7 <1, where my=0.
Put M; = Z;kailﬂ 1/j for each k. Then there exists an n; € N such that M /n; <
1/my. Put go =0. Define p; and ¢; inductively by py = qx_1 +mg — my—; and
qrx = px+ny foreach k€ N. It follows that go < p; < q1 < pa <---. Let I, ={qx_1 +
l,qk_1+27...,pk} and J; = {pk+ l7pk+2,...,qk} foreach k. Then |Ik‘ =my—my_1,
|Jk| = ng and

LUk ={qr—1 + L qx—1+2,....q}

Let a = (ay) be an element of 4., given by

my_ 1+l

Ag_y+1 = 2 1/j

J=m_+1
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foreach 1 <1 < my;—my_q,and
Ap+1 = dp,; —Mkl/nk = (l — l/}’lk)Mk

for each 1 </ < ng. In particular, one has that a,, = M; and a,, = 0. Moreover, if k €
N, then we note that ag, 11 —ag, ,+i+1 = 1/(mx—1+1) foreach 1 <I <my —my_y,
and ap, 1 — ap, 141 = My /mg < 1/my for each 1 <1 <. One has ag, —ag, 41 =
—1/(mg+1). These show that

. —1/(my_y+1
ng}gﬁlan apy1| =1/(m_1+1)

for each k € N.

Now, for each b = (b,) € (.., we define (®b), = a,b; for each n € I, UJ;. By
the preceding paragraph and the fact that a,, | = 1/(m;+ 1) for each k, we have
Db € ¢o(A). Moreover, since 1/2 < ap, =M < 1 and ||al. < 1, it follows that

1Blles/2 < (| @D lcc < [[B]]eo-

This proves that @ (/) is an isomorphic copy of e in cp(A). O

We remark that the symbols ¢(A) and ¢y(A) are used in [8] to denoting the spaces
of all (possibly unbounded) difference convergent or difference null sequences.

3. A weak™ closed subspace

In this section, we construct a weak* closed uncomplemented subspace of /..
For this, we refer some results on projection constants; see Konig [9] and Foucart and
Skrzypek [6]. Let M be a closed subspace of a Banach space X. Then the relative
projection constant of M in X is given by

A(M,X) :=inf{||P|| : P is a bounded projection from X onto M}.
For each m,N € N, we consider the value
A(m,N) :=max{A(M,(Y) : dimM = m}.

THEOREM 3.1. There exists an uncomplemented weak™ closed subspace W of
leo. Moreover, W contains an isometric copy of {e.

Proof. Let (p) be the increasing sequence of prime numbers with p; = 5. Asin
2
[9] (or [6]), for each m, there exists an p,,-dimensional subspace M,, of 2m such
2
that lim,, A(M,,,/2")//m = 1. Fix an m € N. Let {egm),egm),...,e%)} be a ba-

2
sis for M,,. Then we have a basis {egm),egm),...,egg)} for the whole space (2.

Let f;m) (Z?i"l a,-el(m)) = ayy; for each j=1,2,...,p2 — py. Then one has M,, =
2 — 'm m
ﬂfglp kerfj( )



1096 R. TANAKA

Now let Ay = {1,2,...,p3} and

I m
An=9 | X7+ L Xt ) +2. Epz

Put P,(a) =a- ya,, for each m and for each a € (... Then, for each m, there exists a

2
natural identification Q,, : /2" — P,,({..). Define a subspace W of /.. by the internal
direct sum Y, ®0;n(My,). In other words, a € W if and only if P,a € Op(M,,) for
each m. It follows that the space W can be written as

W = ({ker(Q;, ' Pu)* 1" s m € N, 1 < j < p2— pu}-

Since each projection P, is weak *-to-norm continuous, all the functional of the form

(O, 'P)" f ;m) are weakly * continuous, which proves that W is weak* closed.
Suppose that P is a bounded projection from /.. onto W. Then the operator

2
0;,'PwPQ,, is a bounded projection from (2" onto M,,. Indeed, we have P, Pa €
Om(M,,) CW foreach a € (.., which implies that (B,,P)> = F,,P. Hence one has

P 1
1:1imMMm’g°° ) < limsu ||Qm Iy PQm|| HPH
T S <

a contradiction. Thus there is no bounded projection from /.. onto W, that is, W is
uncomplemented in £

Finally, take an arbitrary x,, € Sp, (u,,) for each m. Define T : {c — W by
T(a,) = w*-lim, X" | a;x;. It is routine to check that 7 is well-defined and isomet-
ric. The proof is complete. [

=0,

On the other hand, it is known that if M is a weak™ closed subspace of /.. then
(lw/M)* always has a countable total subset. As a consequence, the property that
(lw/M)* has a countable total subset is necessary but not sufficient for assuring the
complementarity of M in f... Hence there exists a limit to determining the comple-
mentarity of subspaces of ¢ by using Whitley’s method while it still has interesting
applications.
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