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COMPLEMENTARITY OF SUBSPACES OF �∞ REVISITED

RYOTARO TANAKA

(Communicated by T. S. S. R. K. Rao)

Abstract. We present a simple criterion for complementarity of subspaces of �∞ induced by
certain bounded linear operators. As applications, it is shown that some typical and well-known
subspaces such as mean or almost convergent sequence spaces are uncomplemented in �∞ . We
also note that there exists a weak ∗ closed uncomplemented subspace of �∞ .

1. Introduction

Let �∞ , c and c0 denote the Banach spaces of bounded, convergent or null se-
quences, respectively. The first example of an uncomplemented subspace of �∞ is c
(and c0 ). This folklore result was given by Phillips in his 1940 paper [14]. The original
proof is based on a detailed study of representation of linear operators. Nearly a quarter
century later, Whitley [16] drastically simplified the proof of Phillips’ result by using
an idea due to Nakamura and Kakutani [13]. Precisely, he showed that (�∞/c0)∗ has
no countable total subset; and it suffices to conclude that c0 is not complemented in �∞
since the property that the dual space has a countable total subset is preserved under
taking subspaces or by linear isomorphisms.

Complementarity of subspaces of �∞ had been deeply studied as a part of the main
stream of the isomorphic theory. In 1967, Lindenstrauss [10] gave an important char-
acterization of complemented subspaces of �∞ by showing that �∞ is a prime Banach
space, that is, an infinite dimensional complemented subspace of �∞ must be isomor-
phic to �∞ . (The converse implication follows from the fact that �∞ is an injective
Banach space; see, for example, [1, Proposition 2.5.2].) It follows that, at least, there is
no separable infinite dimensional complemented subspace of �∞ . At this point, Phillips’
result was significantly improved by Lindenstrauss.

The theoretical development for the study of Banach space structure of comple-
mented subspaces of �∞ has been mostly reached the stage of satisfaction (since such
spaces are isomorphically “the same” as �∞ ). However, this well-known character-
ization is not always effective in determining the complementarity of concrete non-
separable subspaces of �∞ . To do this, we still have to investigate for case by case;
because we do not know whether checking an infinite dimensional subspace of �∞ is
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(not) isomorphic to �∞ is easier than examining the complementarity of the subspace
directly.

In this paper, we present a simple criterion for complementarity of subspaces of
�∞ induced by bounded linear operators admitting matrix representations. The proof
employs the above mentioned argument of Whitley, that is, we check whether the dual
spaces of the quotient of �∞ by such subspaces have countable total subsets. As an
application, among other examples, we show that closed subspaces between c0 and
the mean convergent sequence space are all uncomplemented in �∞ . From this and
Lorentz’s theorem [11], in particular, we conclude that the space of almost convergent
sequences is also uncomplemented in �∞ . On the other hand, we provide an exam-
ple of a weak∗ closed uncomplemented subspace of �∞ . It is known that if M is a
weak∗ closed subspace of �∞ then (�∞/M)∗ always has a countable total subset. Con-
sequently, we see that there is a limit to determining the complementarity of subspaces
of �∞ by using Whitley’s method.

2. Subspaces of �∞ induced by matrices

Let B(�∞) denote the Banach space of bounded linear operators on �∞ . Sup-
pose that T ∈ B(�∞) . We consider the closed subspaces c(T ) := T−1(c) and c0(T ) :=
T−1(c0) of �∞ , respectively. We note that c(I)= c and c0(I) = c0 while c(0)= c0(0)=
�∞ .

A linear operator T on �∞ is said to admits a matrix representation if there exists
an infinite matrix (ti j) of complex numbers such that (Ta)n = ∑∞

j=1 tn ja j for each a =
(an) ∈ �∞ . If T ∈ B(�∞) admits a matrix representation, the spaces c(T ) and c0(T )
are closely related to objects studied in the monograph [4]. In particular, c(T ) is called
the bounded summability field of T ; see also [5, 7]. For further information of the
“summability domains” of matrices in normed spaces and the matrix transformations,
the readers are referred to [2]

Let X be a Banach space. A subset F of X∗ is said to be total if f (x) = 0 for
each f ∈ F implies that x = 0. Now suppose that M is a subspace of X , and that Y is
a Banach space isomorphic to X . If X∗ has a countable total subset then M∗ and Y ∗
also have countable total subsets. Since �∗∞ has a countable total subset consisting of
coordinate functionals, it follows that each complemented subspace of �∞ must have
such a set.

Now we present the main theorem. The proof is based on a combination of a
gliding hump argument and Whitley’s method [16].

THEOREM 2.1. Let T ∈ B(�∞) with a matrix representation (ti j) . Suppose that
c0 ⊂ c0(T ) � �∞ . If M is a closed subspace with c0 ⊂ M ⊂ c(T ) , then (�∞/M)∗ has
no countable total subsets. Consequently, M is not complemented in �∞ .

Proof. Let en = (0, . . . ,0,1,0, . . .) for each n∈N , where 1 is in the n -th position;
and let e∗na = an for each n ∈ N and each a = (an) ∈ �∞ . We note that ti j = e∗i Te j for
each i, j ∈ N . Let γi j be a complex number such that |γi j| = 1 and γi jti j = |ti j| for
each i, j ∈N . Since T is bounded, we have that ∑∞

j=1 |ti j|� ‖T‖ for each i . Moreover,
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since T (c0) ⊂ c0 , we have ti j = e∗i Te j → 0 as i → ∞ . This also shows ∑m
j=1 |ti j| → 0

for each m ∈ N as i → ∞ .
Take an arbitrary a = (an) ∈ �∞ \ c0(T ) . Then there exists an increasing sequence

(ik) of natural numbers such that e∗ikTa → α �= 0. Removing finite number of elements
from (ik) if necessary, we have

|e∗ikTa−α|< |α|/2

for each k . Since e∗ikTa = ∑∞
j=1 tik ja j , it follows that

‖a‖∞

∞

∑
j=1

|tik j| �
∣∣∣∣∣ ∞

∑
j=1

tik ja j

∣∣∣∣∣= |e∗ikTa| > |α|/2.

Hence, putting M = |α|/(2‖a‖∞) > 0 yields M < ∑∞
j=1 |tik j| � ‖T‖ for each k .

If we put n1 = i1 then there exists an m1 such that ∑∞
j=m1+1 |tn1 j| < M/4. In this

case, we have
m1

∑
j=1

|tn1 j| =
∞

∑
j=1

|tn1 j|−
∞

∑
j=m1+1

|tn1 j| > M/2.

Now we assume that there exist strictly increasing sequences (np)
q
p=1,(mp)

q
p=1 satis-

fying

(i) ∑
mp−1
j=1 |tnp j| < M/2p+1 ;

(ii) ∑∞
j=mp+1 |tnp j| < M/2p+1 ; and

(iii) ∑mp
j=mp−1+1 |tnp j| > (1−1/2p)M

for each p = 1,2, . . . ,q , where m0 = 0. Since ∑mq
j=1 |ti j| → 0 as i → ∞ , there exists an

nq+1 ∈ (ik) such that ∑
mq
j=1 |tnq+1 j| < M/2q+2 . For this nq+1 , there exists an mq+1 ∈ N

with mq+1 > mq such that ∑∞
j=mq+1+1 |tnq+1 j| < M/2q+2 . It follows that

mq+1

∑
j=mq+1

|tnq+1 j| =
∞

∑
j=1

|tnq+1 j|−
mq

∑
j=1

|tnq+1 j|−
∞

∑
j=mq+1+1

|tnq+1 j|

> (1−1/2q+1)M.

Thus, by an induction, we have infinite sequences (np)∞
p=1,(mp)∞

p=1 satisfying

(i) ∑
mp−1
j=1 |tnp j| < M/2p+1 ;

(ii) ∑∞
j=mp+1 |tnp j| < M/2p+1 ; and

(iii) ∑mp
j=mp−1+1 |tnp j| > (1−1/2p)M

for each p∈N . Let Np = {mp−1+1,mp−1+2, . . . ,mp} for each p∈N , where m0 = 0.
It is known that there exists a family (Aλ )λ∈I of subsets of N with the following

properties:
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(i) The index set I is uncountable.

(ii) Aλ is an infinite set for each λ ∈ I .

(iii) Aλ ∩Aμ is finite whenever λ �= μ .

See, for example, [12, Lemma 3.2.19]. For each λ ∈ I , define the bounded sequence

a(λ ) = (a(λ )
n ) by

a(λ )
n =

{
γnp,n (n ∈ Np, p ∈ Aλ )
0 (n ∈ Np, p �∈ Aλ ) .

We show that a(λ ) �∈ c(T ) . Indeed, we have

e∗np
Ta(λ ) =

mp−1

∑
j=1

tnp ja
(λ )
j +

mp

∑
j=mp−1+1

tnp ja
(λ )
j +

∞

∑
j=mp+1

tnp ja
(λ )
j ,

and hence, if p ∈ Aλ then

|e∗np
Ta(λ )| �

mp

∑
j=mp−1+1

|tnp j|−
mp−1

∑
j=1

|tnp j|−
∞

∑
j=mp+1

|tnp j| > (1−1/2p−1)M.

However, in the case of p �∈ Aλ , one obtains

|e∗np
Ta(λ )| �

mp−1

∑
j=1

|tnp j|+
∞

∑
j=mp+1

|tnp j| < M/2p.

Since Aλ and N\Aλ are both infinite set, the sequence Ta(λ ) cannot converge.
Next, we shall see that a(λ )−a(μ) �∈ c(T ) whenever λ �= μ . If p ∈ Aλ \Aμ , as in

the preceding paragraph, we have

Re[e∗np
(Ta(λ )−Ta(μ))] > (1−3/2p)M,

while
Re[e∗np

(Ta(λ )−Ta(μ))] < −(1−3/2p)M,

for the case of p ∈ Aμ \Aλ . Remark that, in either case, one has

| Im[e∗np
(Ta(λ )−Ta(μ))]| < M/2p−1.

From these estimations, we deduce that the sequence Ta(λ )−Ta(μ) is not Cauchy, and
thus it does not converge.

We now consider the value of ‖(∑n
j=1 α ja(λ j))+c0‖ , where α1,α2, . . . ,αn ∈C and

λ1,λ2, . . . ,λn are mutually distinct elements of I . Since Aλi
∩Aλ j

is finite whenever i �=
j , after removing finitely many coordinates, we can easily show that ‖(∑n

j=1 α ja(λ j))+
c0‖ � max1� j�n |α j| .



COMPLEMENTARITY OF SUBSPACES OF �∞ 1093

Finally, let M be a closed subspace of �∞ with c0 ⊂ M ⊂ c(T ) . Then one has
a(λ ),a(λ )−a(μ) �∈ M whenever λ �= μ . Let ϕ ∈ (�∞/M)∗ . For each λ ∈ I , there exists
a δλ ∈ C such that |δλ | = 1 and δλ ϕ(a(λ ) +M) = |ϕ(a(λ ) +M)| . Take an arbitrary
finite subset J of I . Then we obtain

‖ϕ‖ � ‖ϕ‖
∥∥∥∥∥(∑

λ∈J

δλ a(λ ))+ c0

∥∥∥∥∥� ‖ϕ‖
∥∥∥∥∥(∑

λ∈J

δλ a(λ ))+M

∥∥∥∥∥
�
∣∣∣∣∣ϕ
(

(∑
λ∈J

δλ a(λ ))+M

)∣∣∣∣∣= ∑
λ∈J

|ϕ(a(λ ) +M)|,

which implies that Iϕ,n = {λ ∈ I : |ϕ(a(λ ) + M)| > 1/n} is finite for each n . Hence
Iϕ = {λ ∈ I : ϕ(a(λ ) + M) �= 0} =

⋃
n Iϕ,n is countable. Now suppose that C is a

countable subset of (�∞/M)∗ . Then it follows that

{λ ∈ I : ϕ(a(λ ) +M) �= 0 for some ϕ ∈ C } =
⋃

ϕ∈C

Iϕ

is countable, and therefore C cannot be total. This completes the proof. �

REMARK 2.2. We remark that the preceding theorem is not true in general with-
out the assumption on matrix representability. Indeed, there exists an operator T ∈
B(�∞) which satisfies c0 ⊂ c0(T ) � �∞ , but the conclusion of Theorem 2.1 does not
hold. Indeed, let ϕ be a Banach limit on �∞ , and let Ta = ϕ(a)1 for each a ∈ �∞ .
Then T (c0) = {0} ⊂ c0 and T (�∞) = C1 �⊂ c0 . However the identity c(T ) = �∞ holds.
Hence the conclusion of Theorem 2.1 fails for this T .

The rest of this section is devoted to presenting some applications of Theorem 2.1.
Recall that a sequence a = (an) ∈ �∞ is said to be convergent in the sense of Cesáro
mean of order 1 to α if the sequence (n−1 ∑n

j=1 a j) converges to α , and almost conver-
gent to the almost limit α if ϕ(a) = α for each Banach limit ϕ on �∞ . It is well-known
as Lorentz’s theorem [11] that a = (an) ∈ �∞ is almost convergent to α if and only if

lim
m

sup
n∈N

∣∣∣∣∣ 1m m

∑
j=1

an+ j−1−α

∣∣∣∣∣= 0.

The spaces of all bounded sequences convergent in the sense of Cesáro mean of order
1 is denoted by c̃ . In [15], a similar sequence space (containing unbounded ones) was
investigated by using the same symbol. The Banach spaces consisting of all almost
convergent or almost null sequences are denoted by f and f0 , respectively. We note
that c0 ⊂ f0 ⊂ f ⊂ c̃ holds.

COROLLARY 2.3. All the spaces c̃, f , f0 are closed and uncomplemented in �∞ .
Moreover, f0 contains an isometric copy of �∞ . Consequently, c̃, f , f0 are not prime.
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Proof. For each a = (an) ∈ �∞ , let

Ta =
(

a1,
a1 +a2

2
, . . . ,

a1 +a2 + · · ·+an

n
, . . .

)
.

Then T ∈ B(�∞) and admits a matrix representation (ti j) , where

ti j =
{

1/i (i � j)
0 (i < j) .

Moreover, we have T (1) = 1 �∈ c0 . Hence, by Theorem 2.1, all closed subspaces M of
�∞ satisfying c0 ⊂ M ⊂ c(T ) = c̃ are not complemented in �∞ .

For the fact that f0 contains an isometric copy of �∞ , we refer the readers to
Lorentz [11] (see also [3, Theorem 3.2]). The proof is complete. �

COROLLARY 2.4. Let d and d0 be subspaces of �∞ given by

c(Δ) = {a = (an) ∈ �∞ : (an−an+1) converges}
c0(Δ) = {a = (an) ∈ �∞ : (an−an+1) converges to 0}

Then c(Δ),c0(Δ) are closed and uncomplemented in �∞ . Moreover, c0(Δ) contains an
isomorphic copy of �∞ . Consequently, c(Δ),c0(Δ) are not prime.

Proof. Let Δ be a bounded linear operator on �∞ given by Δa = (an −an+1) for
each a = (an) ∈ �∞ . Then Δ admits a matrix representation (ti j) , where tii = 1 and
ti(i+1) = −1 for each i , and ti j = 0 for otherwise. We note that Δ(c) ⊂ c0 since each
convergent sequence is Cauchy. Moreover, one has

Δ(1,0,1,0, . . .) = (1,−1,1,−1, . . .) �∈ c.

Hence Δ satisfies the assumption of Theorem 2.1. Now, it follows from c0 ⊂ c0(Δ) ⊂
c(Δ) that c(Δ) and c0(Δ) are closed and not complemented in �∞ .

We shall show that c0(Δ) has an isomorphic copy of �∞ in it. Since ∑n 1/n = ∞ ,
we have an infinite sequence (mk) such that 1/2 � ∑mk

j=mk−1+1 1/ j � 1, where m0 = 0.

Put Mk = ∑mk
j=mk−1+1 1/ j for each k . Then there exists an nk ∈ N such that Mk/nk �

1/mk . Put q0 = 0. Define pk and qk inductively by pk = qk−1 + mk −mk−1 and
qk = pk +nk for each k ∈ N . It follows that q0 < p1 < q1 < p2 < · · · . Let Ik = {qk−1 +
1,qk−1+2, . . . , pk} and Jk = {pk+1, pk+2, . . . ,qk} for each k . Then |Ik|= mk−mk−1 ,
|Jk| = nk and

Ik ∪ Jk = {qk−1 +1,qk−1 +2, . . . ,qk}.
Let a = (an) be an element of �∞ given by

aqk−1+l =
mk−1+l

∑
j=mk−1+1

1/ j
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for each 1 � l � mk −mk−1 , and

apk+l = apk −Mkl/nk = (1− l/nk)Mk

for each 1 � l � nk . In particular, one has that apk = Mk and aqk = 0. Moreover, if k ∈
N , then we note that aqk−1+l −aqk−1+l+1 = 1/(mk−1 + l) for each 1 � l � mk −mk−1 ,
and apk+l − apk+l+1 = Mk/nk � 1/mk for each 1 � l � nk . One has aqk − aqk+1 =
−1/(mk +1) . These show that

max
n∈Ik∪Jk

|an−an+1| = 1/(mk−1 +1)

for each k ∈ N .
Now, for each b = (bn) ∈ �∞ , we define (Φb)n = anbk for each n ∈ Ik ∪ Jk . By

the preceding paragraph and the fact that aqk+1 = 1/(mk + 1) for each k , we have
Φb ∈ c0(Δ) . Moreover, since 1/2 � apk = Mk � 1 and ‖a‖∞ � 1, it follows that

‖b‖∞/2 � ‖Φb‖∞ � ‖b‖∞.

This proves that Φ(�∞) is an isomorphic copy of �∞ in c0(Δ) . �
We remark that the symbols c(Δ) and c0(Δ) are used in [8] to denoting the spaces

of all (possibly unbounded) difference convergent or difference null sequences.

3. A weak∗ closed subspace

In this section, we construct a weak∗ closed uncomplemented subspace of �∞ .
For this, we refer some results on projection constants; see König [9] and Foucart and
Skrzypek [6]. Let M be a closed subspace of a Banach space X . Then the relative
projection constant of M in X is given by

λ (M,X) := inf{‖P‖ : P is a bounded projection from X onto M}.
For each m,N ∈ N , we consider the value

λ (m,N) := max{λ (M, �N
∞) : dimM = m}.

THEOREM 3.1. There exists an uncomplemented weak∗ closed subspace W of
�∞ . Moreover, W contains an isometric copy of �∞ .

Proof. Let (pm) be the increasing sequence of prime numbers with p1 = 5. As in

[9] (or [6]), for each m , there exists an pm -dimensional subspace Mm of �
p2
m∞ such

that limm λ (Mm, �
p2
m∞ )/

√
m = 1. Fix an m ∈ N . Let {e(m)

1 ,e(m)
2 , . . . ,e(m)

pm } be a ba-

sis for Mm . Then we have a basis {e(m)
1 ,e(m)

2 , . . . ,e(m)
p2
m
} for the whole space �

p2
m∞ .

Let f (m)
j (∑Nm

i=1 aie
(m)
i ) = am+ j for each j = 1,2, . . . , p2

m − pm . Then one has Mm =⋂p2
m−pm

j=1 ker f (m)
j .
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Now let A1 = {1,2, . . . , p2
1} and

Am =

{(
m−1

∑
i=1

p2
i

)
+1,

(
m−1

∑
i=1

p2
i

)
+2, . . . ,

m

∑
i=1

p2
i

}
.

Put Pm(a) = a · χAm for each m and for each a ∈ �∞ . Then, for each m , there exists a

natural identification Qm : �
p2
m∞ → Pm(�∞) . Define a subspace W of �∞ by the internal

direct sum ∑∞
m=1⊕Qm(Mm) . In other words, a ∈W if and only if Pma ∈ Qm(Mm) for

each m . It follows that the space W can be written as

W =
⋂
{ker(Q−1

m Pm)∗ f (m)
j : m ∈ N, 1 � j � p2

m− pm}.
Since each projection Pm is weak∗ -to-norm continuous, all the functional of the form

(Q−1
m Pm)∗ f (m)

j are weakly∗ continuous, which proves that W is weak∗ closed.
Suppose that P is a bounded projection from �∞ onto W . Then the operator

Q−1
m PmPQm is a bounded projection from �

p2
m∞ onto Mm . Indeed, we have PmPa ∈

Qm(Mm) ⊂W for each a ∈ �∞ , which implies that (PmP)2 = PmP . Hence one has

1 = lim
m

λ (Mm, �
p2
m∞ )√

m
� limsup

m

‖Q−1
m PmPQm‖√

m
� lim

m

‖P‖√
m

= 0,

a contradiction. Thus there is no bounded projection from �∞ onto W , that is, W is
uncomplemented in �∞ .

Finally, take an arbitrary xm ∈ SQm(Mm) for each m . Define T : �∞ → W by
T (an) = w∗- limm ∑m

i=1 aixi . It is routine to check that T is well-defined and isomet-
ric. The proof is complete. �

On the other hand, it is known that if M is a weak∗ closed subspace of �∞ then
(�∞/M)∗ always has a countable total subset. As a consequence, the property that
(�∞/M)∗ has a countable total subset is necessary but not sufficient for assuring the
complementarity of M in �∞ . Hence there exists a limit to determining the comple-
mentarity of subspaces of �∞ by using Whitley’s method while it still has interesting
applications.
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