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Abstract. In this paper we study spectral properties of Jacobi operators. In particular, we prove
two main results: (1) that perturbing the diagonal coefficients of Jacobi operator, in an appropri-
ate sense, results in exponential localization, and purely pure point spectrum with exponentially
decaying eigenfunctions; and (2) we present examples of decaying potentials bn such that the
corresponding Jacobi operator has purely pure point spectrum.

1. Introduction and setting

We will use the Kunz-Souillard approach to localization for random Schrödinger
operators to prove that any Jacobi operator can be approximated by some random Ja-
cobi operator, in operator norm, with purely pure point spectrum, and to also provide
examples of Jacobi operators with decaying potentials having purely pure point spec-
trum.

Jacobi operators are important objects in mathematics. On one hand, the half line
Jacobi operators with bounded coefficients correspond to compactly supported mea-
sures on the real line – such correspondence can be established via orthogonal polyno-
mials or the Borel transform of the measure. So, as such, often many results from the
spectral theoretic part can be translated back into the OPRL setting which otherwise
would have been harder to achieve with direct tools. For a more elaborate discussion
see [19].

On the other hand, the study of random Jacobi operators is of particular importance
because of their usefulness in modeling disordered media (e.g. amorphous solids). In
some instances, as it is the case for crystals, the structure of the solid is completely
regular; that is, the atoms are distributed periodically on some lattice. Then, mathemat-
ically, in such regular crystals, the total potential that a single particle (e.g. electron) at
some position in Rd feels is periodic with respect to the lattice at hand. Schrödinger
operators with periodic potentials are well understood, see for example [16], [10], and
[21].

However, as it is often the case in nature, if the positions of the atoms in the solid
deviate from a lattice in some highly non-regular way, then it is natural to view the

Mathematics subject classification (2010): 47B37.
Keywords and phrases: Jacobi operators, decaying potentials, spectrum.
The author was supported in part by NSF grant DMS–1361625.

c© � � , Zagreb
Paper OaM-12-67

1099

http://dx.doi.org/10.7153/oam-2018-12-67


1100 V. BUCAJ

potential that a single particle feels at some position as some random quantity. Math-
ematically, this can be studied via Jacobi operators with random potentials. So, un-
derstanding spectral properties of such operators is of particular interest since, via the
RAGE theorem, we can obtain good insights into the quantum transport phenomena
of the quantum particles they model, something of great interest to physics and engi-
neering since it also relates to conducting materials and insulators. Said differently,
in some appropriate sense, one can answer the question of whether the wave packets
are localized in space-time or disperse to infinity. Researchers have long studied this
phenomenon, which in literature is known as the Anderson localization.

There are typically two separate statements referring to localization: a spectral
statement and a dynamical one. Spectral localization asserts that the operators almost
surely have pure point spectrum, with exponentially decaying eigenfunctions. On the
other hand, different notions of dynamical localization have been used in literature.
However, in essence, dynamical localization refers to an absence of transport in a ran-
dom medium. This is typically quantified via (almost-sure) bounds on the moments of
wave packets such as

sup
t

∑
n∈Z

|n|p ∣∣〈δn,e
−itJω δ0〉

∣∣2 < ∞, (1)

for all p > 0. In some instances, one can prove stronger statements, also referred to as
strong dynamical localization, such as replacing the almost sure condition by an expec-
tation E(·), as is the case via the Kunz-Souillard approach to localization in dimension
one, which is the main focus of this paper.

The first mathematically rigorous proof of strong dynamical localization at all en-
ergies for one dimensional discrete Schrödinger operators, was originally given by H.
Kunz and B. Souillard in 1980, see [13]. For a while it was not clear whether it was pos-
sible for a Schrödinger operator with slow enough decaying potential to exhibit purely
pure point spectrum. Two years later, in [18], Simon answered this question in affir-
mative by providing examples of Schrödinger operators with slow enough decaying
potentials who have purely pure point spectrum. In this paper we extend this result to
Jacobi operators. In loose terms, which will be made precise later, we prove that Jacobi
operators with slow-enough decaying potentials display strong dynamical localization,
and hence have purely pure point spectrum.

We wish to mention some of the main new challenges we faced in this paper that
resulted from the presence of the non-constant off-diagonal entries an in the Jacobi
matrices, Jω . The first such challenge resulted from the need to define two different
countable families of integral operators, in contrast to the original Schrödinger operator
case where only two different operators are needed (excluding the energy dependence,
which is true in both cases), and as a result many of the subsequent operator norm
bounds needed to be uniform in the single-site position parameter, or at the very least
hold for all indices, something that was not an issue before. Another challenge that re-
sulted from the presence of a′n s, was the necessity to be able to choose certain constants
uniformly in some crucial steps in the proofs of some essential lemmas. For example,
one such significant instance is in the proof of Lemma 4.7, which is crucial in produc-
ing quantitative bounds for some of the families of operators in question. The rest of
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the challenges were more superficial and were related mostly to finding the appropriate
ways of translating the old techniques in this new setting.

The Kunz-Souillard approach to localization has since attracted more interest be-
cause, while there are other methods that can be used to prove localization in one-
dimension (e.g. fractional moments method, spectral averaging, MSA), it is the only
one which establishes localization at all energies and any disorder without requiring
ergodicity. For example, it can handle models with decaying potentials and models
with a fixed background potential which in turn allows one to obtain these pertubative
statements, such as our main result below, Theorem 2.1 . It also tackles dynamical
localization directly and completely avoids appealing to positivity of Lyapunov expo-
nents, something that other methods typically need as an input.

On the other hand, the shortcomings of the method are mainly because it applies
only in one-dimension, and that it is known to work only for single-site distributions
that are purely absolutely continuous, nevertheless, the conclusions are very strong.
Whether this method can be extended to single-site distributions with a non-trivial sin-
gular part, still remains open.

Originally, the Kunz-Souillard work for Schrödinger operators was done in the
discrete setting, see [13]. There have been a few extensions of this method, including
the current work, in different directions, for example see [3], [5], and [7].

In this paper we consider the model where the diagonal entries of the Jacobi oper-
ators are generated by i.i.d random variables, and the off diagonal entries are uniformly
bounded away from zero. Specifically, suppose r : R → R�0 is bounded, measurable,
and compactly supported with ‖r‖1 = 1. Let c ∈ �∞(Z) . Define a measure μn on R

via dμn(E) = rn(E)dE, where rn(x) = d−1
n r
(
d−1

n x
)
, and dn is some fixed sequence.

Let

M = sup{|E| : E ∈ supp(r)}
Mn = sup{|E| : E ∈ supp(rn)}
In = [c(n)−Mn,c(n)+Mn]
Ω = ∏

n∈Z

In

dμ(x) = ∏
n∈Z

rn(xn− c(n))dxn.

We wish to point out that r quantifies the deviation of our random potential from
the background potential c . In the second situation we will consider, the sequence
dn will serve as a damping parameter that we will use to force decay of the random
potential.

Next, we define bω(n) = ω(n) for each ω ∈ Ω. Notice, that each bω(n) is the
sum of a random i.i.d with distribution μn and some fixed background potential c(n).
With this notation, we define a one parameter family of Jacobi operators, Jω , on �2(Z)
as follows

(Jωφ) (n) = a(n)φ(n+1)+a(n−1)φ(n−1)+bω(n)φ(n), (2)

where a ∈ �∞(Z) with a(n) � δ > 0 for all n ∈ Z.
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In general, if one assumes that supp r contains more than one element-by con-
struction, this is the case for us-the resulting family {Jω}ω∈Ω of operators, with a(n)≡
1 and dn ≡ 1, is referred to as the Anderson model. There is also a generalization of
this model, which in literature is known as discrete generalized Anderson model, for
which the Kunz-Souillard method has been shown to work as well, see [3]. The, sim-
plest non-trivial case, where supp r contains precisely two elements is known as the
Bernoulli-Anderson model.

As mentioned above, one interesting property to study for this model is the phe-
nomenon of Anderson localization. In an appropriate formulation, it is known that
dynamical localization implies spectral localization, while the converse is not true in
general. For example, the so called random dimer model serves as a counterexample
to this implication (see [14] and [15] for a more elaborate description). One typically
needs “spectral localization +ε ” to imply dynamical localization in some suitable for-
mulation. This relationship was studied by del Rio, Jitomirskaya, Last, and Simon in
[17].

There are different approaches to localization: Spectral averaging can be used
to study spectral localization; one can also study both spectral and dynamical local-
ization via methods such as, multi-scale analysis, developed around 1983 by Fröhlich
and Spencer in [11]; fractional moments method, initially introduced by Aizenman and
Molchanov in [1] (for a nice expository treatment of this method one may also consult
[20]); and also, which is what we do in this paper, the Kunz-Souillard method. For an-
other approach to localization based on positivity of the Lyapunov exponent and Large
Deviation Estimates you may consult [2].

The basic idea behind the Kunz-Souillard method is fairly simple. one begins by
restricting the operator Jω to some finite box, decomposing it in terms of its eigenspaces,
and then via a change of variables rewriting the latter in terms of some integral oper-
ators. So, the main challenge is figuring out the appropriate change of variables and
estimating the norms of the integral operators, which for the decaying case one needs
to have quantitative bounds. Another positive factor of this paper is that not only it
demonstrates the power of Kunz-Souillard even in the case of Jacobi operators but it
also gives further hope that one might be able to extend this technique to show strong
dynamical localization even for the CMV matrices, which is the next natural step.

2. Main results

Our main goal is to prove that given any Jacobi operator with bounded coefficients,
it is possible to completely destroy the absolutely continuous spectrum by perturbing
the diagonal entries with appropriate slow enough decaying potentials. In fact, if we
do not require the pertubation to be done by decaying potentials, then one can actually
obtain a stronger result, as stated below.

THEOREM 2.1. For all an,bn ∈R bounded, with an � δ > 0 , and for every ε > 0 ,
there exist ãn, b̃n , with ‖ã−a‖∞ < ε and

∥∥b̃−b
∥∥

∞ < ε , such that the Jacobi operator,

J̃
def
= J̃(ã, b̃) , has purely pure point spectrum with exponentially decaying eigenfunctions.
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REMARK 2.2. We wish to point out that if in Theorem 2.1 one wishes to approx-
imate by decaying diagonal entries, b̃n , then the first part of the conclusion still holds
but not necessarily the latter; that is, J̃(ã, b̃) , above, still has purely pure point spectrum,
but is no longer guaranteed to have exponentially decaying eigenfunctions.

This theorem is actually a rather straightforward consequence of Theorems 2.3 and 2.4
below, for the decaying and non-decaying case, respectively.

THEOREM 2.3. With the same notation as above, if dn is a fixed sequence with
0 � dn � 1 and dn �C|n|−ζ for ζ < 1

2 , then for μ -almost every ω , the Jacobi operator
Jω has purely pure point spectrum.

Because it is well known how to go from strong dynamical localization to spectral
localization, we would essentially be done if we could prove strong dynamical local-
ization for the family of Jacobi operators, Jω , defined above. Indeed, in Theorems 2.4
and 2.6 below, we prove precisely this, with exponential and sub-exponential bounds,
respectively.

THEOREM 2.4. With Ω , μ , and Jω as above, and dn = 1 for all n , there exist
constants C,γ ∈ (0,∞) such that∫

Ω

(
sup
t∈R

∣∣〈δm,e−itJω δ0〉
∣∣)dμ(ω) � Ce−γ|m|,

for all m ∈ Z.

Actually, we can loosen the condition on the sequence dn ; that is, the statement
holds true as long as dn ∈ �∞(R) is positive and uniformly bounded away from zero.

For more pleasant exposition let

a(m,n) =
∫

Ω

(
sup
t∈R

∣∣〈δm,e−itJω δn〉
∣∣)dμ(ω).

REMARK 2.5. We wish to point out that in a similar way one shows that

a(m,n) � Ce−γ|m−n|. (3)

For simplicity, we only work out the case n = 0.

PROPOSITION 1. If there are constants C,γ ∈ (0,∞) such that

max
n∈{0,1}

a(m,n) � Ce−γ|m|,

then for μ−almost every ω ∈ Ω , Jω , as defined in (2) , has pure point spectrum with
exponentially decaying eigenfunctions. More precisely, these eigenfunctions obey esti-
mates of the form

|u(m)| � Cω,ε,ue
−(γ−ε)|m|,

for small enough ε ∈ (0,γ).
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Proof. This is proved in almost identical way as in the case for randomSchrödinger
operators, so we direct the reader to [8] or [4]. �

Even if we do not insist on exponential bounds for max
n∈{0,1}

a(m,n) , we still obtain

pure point spectrum, but we no longer get exponentially decaying eigenfunctions. We
make this statement precise in the following two theorems.

THEOREM 2.6. Let dn be a fixed sequence with 0 � dn � 1 and dn � C|n|−ζ for
ζ < 1

2 and some constant C > 0 . With Ω , μ , and Jω as above, there exist constants
C′ > 0 and γ ′′ > 0, such that∫

Ω

(
sup
t∈R

∣∣〈δm,e−itJω δ0〉
∣∣)dμ(ω) � C′|m|ζ/2 exp

(
−γ ′′|m|1−2ζ

)
.

REMARK 2.7. As in Remark 2.5, we only work out the proof for a(m,0) , since
the other cases are completely analogous.

Going from a strong form of dynamical localization to spectral localization, even
with subexponential bounds such as in Theorem 2.6, is now considered a standard
result, so we state the following proposition without a complete proof.

PROPOSITION 2. If there exist constants C′′ > 0 and τ > 3
2 , such that

max
n∈{0,1}

a(m,n) � C′′

mτ , (4)

then for μ -almost every ω ∈ Ω , the Jacobi operator Jω , has purely pure point spec-
trum.

Proof. Since the bound in (4) is different from the one found in the standard
formulation of this result, we only provide the details of the beginning of the proof and
refer the reader to [4] for further reading. Let us define

a(m,n,ω) = sup
t∈R

∣∣〈δm,e−itJω δn〉
∣∣ ,

so that we have

a(m,n) =
∫

Ω
a(m,n,ω)dμ(ω).

Let 1
2 < β < τ −1 be given, and consider the set

Sβ ,m,n =
{

ω ∈ Ω : a(m,n,ω) >
1

mβ

}
.

Then

a(m,n) � 1

mβ μ
(
Sβ ,m,n

)
,
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for all m,n∈Z. So, by the above observation and the hypothesis, for all m , and n = 0,1
we get

μ
(
Sβ ,m,n

)
� mβ a(m,n) � C′′

mτ−β . (5)

Since the rest of the proof follows in an almost identical way as in [4] or [8], with the
appropriate changes resulting from the slightly different condition in (4) , we omit it
here. �

2.1. Proof of Theorem 2.1

Proof. Let J
def= J(an,bn) be a given Jacobi operator, where an,bn are as in the

statement of the theorem. We will actually prove a much stronger statement, indeed,
we will construct an uncountable family of Jacobi operators with the desired property.

Specifically, given ε > 0 we will construct J̃ω = J̃(ã, b̃ω) as follows. We pick ã
def= a ,

and for ω ∈ Ω we set b̃ω(n) def= bω(n) , where bω(n) is as above, with c(n) replaced by
b(n) , and M < ε . By construction, we clearly have ‖ã−a‖∞ < ε and

∥∥b̃−b
∥∥

∞ < ε .
Then, by Theorem 2.4 and Proposition 1, for the non-decaying case, and by Theorem
2.3 for the decaying case, respectively, it follows that for μ almost every ω , the Jacobi
operator J̃ω has purely pure point spectrum, which concludes the proof! �

2.2. Proof of Theorem 2.3

Proof. This is an immediate consequence of Proposition 2 and Theorem 2.6. The
main idea is that Theorem 2.6 implies the assumption of Proposition 2, given in (4) ,
and hence the conclusion follows. More specifically, we claim that for large enough m
and some τ > 3/2, we have

|m|ζ/2 exp
(
−γ ′′ |m|1−2ζ

)
� 1

mτ . (6)

A quick calculation shows that

lim
m→∞

|m|ζ/2+τ exp
(
−γ ′′ |m|1−2ζ

)
= 0,

which, in turn, implies (6) . Then, this observation and Theorem 2.6 imply that for
n = 0,1, we have

a(m,n) � C′′

mτ .

Thus, the result follows from Proposition 2. �

3. Preparatory work

We turn to the task of proving Theorems 2.4 and 2.6. Given L ∈ Z+ , denote by

J(L)
ω the restriction of Jω to �2(−L, . . . ,L) , and let

aL(m,n) =
∫

Ω

(
sup
t∈R

∣∣∣∣〈δm,e−itJ
(L)
ω δn〉

∣∣∣∣)dμ(ω).
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That is,

J(L)
ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

bω(−L) a(−L) 0
a(−L) bω(−L+1) 0

0 a(−L+1)
...

. . . a(L−2)
...

bω(L−1) a(L−1)
0 . . . a(L−1) bω(L)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let {EL,k
ω }k, and {ϕL,k

ω }k be the eigenvalues and the corresponding normalized eigen-

functions of J(L)
ω , respectively. Define,

ρL(m,n) =
∫

Ω

(
∑
k

∣∣∣〈δm,ϕL,k
ω 〉
∣∣∣ ∣∣∣〈δn,ϕL,k

ω 〉
∣∣∣)dμ(ω),

and notice that this is a (2L+ 1) fold integral, since J(L)
ω depends only on the entries

ω−L, . . .ωL.
The following two lemmas are standard results, for a discussion see [4, pp. 192–

193], and are easy to prove as well, so we state them here without proof.

LEMMA 3.1. For m,n ∈ Z we have

a(m,n) � liminf
L→∞

aL(m,n).

LEMMA 3.2. For L ∈ Z+ , and m,n ∈ Z we have

aL(m,n) � ρL(m,n).

Put
Σ0 = [−2‖a‖∞ −M−‖c‖∞ ,2‖a‖∞ +M +‖c‖∞] .

Notice that Σ0 contains the spectrum of both Jω , and J(L)
ω . Now, in the spirit of [13],

we define a family of operators appropriate for our setting.

DEFINITION 3.3. For E ∈ R , define the operators U,S(n)
E ,T (n)

E on Lp(R) by:

(U f ) (x) = |x|−1 f (x−1).

(
S(n)

E f
)

(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
an

∫
rn(E −anx−an−1y

−1) f (y)dy , n < 0

a0

∫
r0(E −a0x−a−1y

−1) f (y)dy , n = 0

an−1

∫
rn(E −an−1x−any

−1) f (y)dy , n > 0

and (
T (n)
E f
)

(x) =
√

an−1an

∫
rn(E −an−1x−any

−1)|y|−1 f (y)dy, n > 0.
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r(n)
k;E(x) = rk(E −an−1x)

For convenience of notation we set

S(n)
E;m

def= S(n)
E−c(m), T (n)

E;m
def= T (n)

E−c(m) and r(n)
k;E;m

def= r(n)
k;E−c(m).

We wish to point out that U is a unitary operator on L2(R).

From now on, we will drop the subscript ω on the sequence b (i.e. bn = bω(n) =
ω(n)), this should cause no confusion and should be clear from the context. We want
to compute the following:

ρL(m,0) =
∫

Ω

(
∑
k

∣∣∣〈δm,ϕL,k

b
〉
∣∣∣ ∣∣∣〈δ0,ϕL,k

b
〉
∣∣∣)dμ(ω)

=
∫

. . .

∫ (
∑
k

∣∣∣〈δm,ϕL,k

b
〉
∣∣∣ ∣∣∣〈δ0,ϕL,k

b
〉
∣∣∣) L

∏
n=−L

rn(bn− cn)db−L . . .dbL, (7)

where b = (b−L, . . . ,bL). Let {EL,k

b
}−L�k�L and {ϕL,k

b
} be the eigenvalues and the

corresponding normalized eigenvectors of

J(L)
ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b−L a−L 0
a−L b−L+1

0 a−L+1
...

. . . aL−2
...

bL−1 aL−1

0 . . . aL−1 bL

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let E be EL,k

b
and u be ϕL,k

b
, then we have

anun+1 +an−1un−1 +bnun = Eun, (8)

for −L � n � L , where u−L−1 = uL+1 = 0.
Rewriting (8) we get:

bn = E −an
un+1

un
−an−1

un−1

un
(9)

Let

xn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕL,k

b
(n+1)

ϕL,k

b
(n)

, n < 0

ϕL,k

b
(n−1)

ϕL,k

b
(n)

, n > 0
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so that

bn =

⎧⎪⎪⎨⎪⎪⎩
E −an−1x

−1
n−1−anxn, n < 0

E −a−1x
−1
−1−a0x

−1
1 , n = 0

E −anx
−1
n+1−an−1xn, n > 0

with the convention x−1
−L−1 = x−1

L+1 = 0.

This motivates the following change of variables

FL : (x−L, . . . ,x−1,E,x1, . . . ,xL) 
→ (b−L, . . . ,b0, . . . ,bL).

The next step is to rewrite (7) using this change of variables. In order to do so, we need
to compute the determinant of the Jacobian of this change of variables.

Observe that: ∂bn
∂E = 1, for all n; ∂bn

∂xn
= −an , for n < 0; ∂bn

∂xn
= −an−1 , for n > 0;

∂bn
∂xn−1

= an−1x
−2
n−1, for n � 0; ∂bn

∂xn+1
= anx−2

n+1 , for n � 0; and ∂bn
∂xm

= 0, for all other
m,n .

Thus, the corresponding matrix of FL is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a−L a−Lx−2
−L

−a−L+1 a−L+1x
−2
−L+1

−a−L+2

. . .
. . .

−a−1 a−1x
−2
−1

1 1 . . . 1 1 1 . . . 1 1
a0x

−2
1 −a0

a1x
−2
2 −a1

. . .
. . .

aL−2x
−2
L−1 −aL−2

aL−1x
−2
L −aL−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We claim that

detFL =

(
L−1

∏
n=−L

an

)(
1+ x−2

1 {1+ x−2
2 {1+ . . .x−2

L−1{1+ x−2
L } . . .}}

+ x−2
−1{1+ x−2

−2{1+ . . .x−2
−L+1{1+ x−2

−L} . . .}}
)

(10)

=

(
L−1

∏
n=−L

an

)(
ϕL,k

b
(0)
)−2

.

We prove this by induction on L . For L = 1 it is clear. Now, suppose that (10) holds
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for some L . Consider the determinant of matrix of FL+1 :⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a−L−1 a−L−1x
−2
−L−1

−a−L a−Lx
−2
−L

−a−L+1

. . .
. . .

−a−1 a−1x
−2
−1

1 1 . . . 1 1 1 . . . 1 1
a0x

−2
1 −a0

a1x
−2
2 −a1

. . .
. . .

aL−1x
−2
L −aL−1

aLx−2
L+1 −aL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Expanding along the first column we get:

(−a−L−1)det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a−L a−Lx−2
−L

−a−L+1

. . .
. . .

−a−1 a−1x
−2
−1

1 . . . 1 1 1 . . . 1 1
a0x

−2
1 −a0

a1x
−2
2 −a1

. . .
. . .

aL−1x
−2
L −aL−1

aLx−2
L+1 −aL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

(−1)L+1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a−L−1x
−2
−L−1

−a−L a−Lx−2
−L

−a−L+1

. . .
. . .

−a−1 a−1x
−2
−1

a0x
−2
1 −a0

a1x
−2
2 −a1

. . .
. . .

aL−1x
−2
L −aL−1

aLx−2
L+1 −aL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the second matrix is lower-triangular, so expanding along the first row, re-
peatedly, we eventually will get:

(
L

∏
n=−L−1

an

)
x−2
−L−1x

−2
−L . . .x−2

−1.
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Expanding the first determinant along the last column we get:

(−1)L det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a−L a−Lx−2
−L

−a−L+1

. . .
. . .

−a−1 a−1x
−2
−1

a0x
−2
1 −a0

a1x
−2
2 −a1

. . .
. . .

aL−1x
−2
L −aL−1

aLx−2
L+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

(−aL)det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a−L a−Lx−2
−L

−a−L+1

. . .
. . .

−a−1 a−1x
−2
−1

1 . . . 1 1 1 . . . 1
a0x

−2
1 −a0

a1x
−2
2 −a1

. . .
. . .

aL−1x
−2
L −aL−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As before, computing the fist determinant by expanding along the first columns, repeat-
edly, we eventually get: (

L

∏
n=−L

an

)
x−2
1 x−2

2 . . .x−2
L x−2

L+1.

Combining all of these, and noting that the last determinant is simply detFL we get:

detFL+1 = (−a−L−1)

((
L

∏
n=−L

an

)
x−2
1 . . .x−2

L+1 +(−aL)detFL

)
+

(
L

∏
n=−L−1

an

)
x−2
−L−1 . . .x−2

−1

= a−L−1aL detFL +

(
L

∏
n=−L−1

an

)
x−2
1 . . .x−2

L+1 +

(
L

∏
n=−L−1

an

)
x−2
−L−1 . . .x−2

−1

= a−L−1aL

L−1

∏
n=−L

an

(
1+x−2

1 {1+x−2
2 {1+ . . .x−2

L−1{1+x−2
L } . . .}}

+x−2
−1{1+x−2

−2{1+ . . .{x−2
−L+1{1+x−2

−L} . . .}}
)

+
L

∏
n=−L−1

anx−2
1 x−2

2 . . .x−2
L x−2

L+1 +
L

∏
n=−L−1

anx−2
−L−1x

−2
−L . . .x−2

−1

=
L

∏
n=−L−1

an

(
1+x−2

1 {1+x−2
2 {1+ . . . x−2

L−1{1+x−2
L } . . .}}

+x−2
−1{1+x−2

−2{1+ . . .{x−2
−L+1{1+x−2

−L} . . .}}

+x−2
1 x−2

2 . . .x−2
L x−2

L+1 +x−2
−L−1x

−2
−L . . .x−2

−1

)
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=
L

∏
n=−L−1

an

(
1+x−2

1 {1+x−2
2 {1+ . . . x−2

L {1+x−2
L+1} . . .}}

+x−2
−1{1+x−2

−2{1+ . . . x−2
−L{1+x−2

−L−1} . . .}}
)

as desired. The following two relations are straightforward computations:

x−2
1 {1+ x−2

2 {1+ . . .x−2
L−1{1+ x−2

L } . . .}} =
L

∑
n=1

ϕL,k

b
(n)2

ϕL,k

b
(0)2

x−2
−1{1+ x−2

−2{1+ . . .x−2
−L+1{1+ x−2

−L} . . .}} =
−L

∑
n=−1

ϕL,k

b
(n)2

ϕL,k

b
(0)2

Thus, using the fact that the eigenfunctions are normalized, we get the second expres-
sion for the determinant in (10) .

We also note that ∣∣x−1
1 . . .x−1

m

∣∣= ∣∣∣ϕL,k

b
(0)
∣∣∣−1 ∣∣∣ϕL,k

b
(m)
∣∣∣ .

Now, we are in a position to carry out the substitution:

ρL(m,0) =
∫

. . .
∫ (

∑
k

∣∣∣〈δm,ϕL,k

b
〉
∣∣∣ ∣∣∣〈δ0,ϕ

L,k

b
〉
∣∣∣) L

∏
n=−L

rn(bn −cn)db−L . . .dbL

= ∑
k

∫
. . .
∫ ∣∣∣ϕL,k

b
(m)
∣∣∣ ∣∣∣ϕL,k

b
(0)
∣∣∣ L

∏
n=−L

rn(bn −cn)db−L . . .dbL

=

(
L−1

∏
n=−L

an

)
∑
k

∫
. . .

∫ ∣∣∣ϕL,k

b
(m)
∣∣∣ ∣∣∣ϕL,k

b
(0)
∣∣∣−1 L

∏
n=−L

rn(bn −cn)

×
(

L−1

∏
n=−L

an

)−1 ∣∣∣ϕL,k

b
(0)
∣∣∣2 db−L . . .dbL

�
(

L−1

∏
n=−L

an

)∫
Σ0

∫
R2L

∣∣∣x−1
1 . . .x−1

m

∣∣∣( −L

∏
n=−1

rn(E −an−1x
−1
n−1 −anxn −cn)

)
× rn(E−a−1x

−1
−1 −a0x

−1
1 −c0)

×
(

L

∏
n=1

rn(E −anx
−1
n+1 −an−1xn −cn)

)
dx−L . . .dx−1dx1 . . .dxLdE

Let φ (n)
k;E;m(x) = rk(E−cm −anx) . Then, a quick computation shows:

(
S(0)
E;0 . . .S(−L+1)

E;−L+1φ (−L)
−L;E;−L

)
(x1) =

(−L+1

∏
n=0

an

)∫
RL

r0(E−a−1x
−1
−1 −a0x1 −c0)

×
−L

∏
n=−1

rn(E −an−1x
−1
n−1 −anxn −cn)dx−1 . . .dx−L.
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Thus,(
US(0)

E;0 . . .S(−L+1)
E;−L+1φ (−L)

−L;E;−L

)
(x1) =

(
−L+1

∏
n=0

an

)∫
RL

|x1|−1r0(E −a−1x
−1
−1−a0x

−1
1 − c0)

×
−L

∏
n=−1

rn(E −an−1x
−1
n−1−anxn− cn)dx−1 . . .dx−L.

Similarly,(
T (1)
E;1 . . .T (m−1)

E;m−1S(m)
E;m . . .S(L−1)

E;L−1φ (L−1)
L;E;L

)
(x1)

=
√

a0am−1

aL−1

(
L−1

∏
n=1

an

)∫
RL−1

∣∣x−1
2 . . .x−1

m

∣∣ L

∏
n=1

rn(E −anx
−1
n+1−an−1xn− cn)dxL . . .dx2.

Combining these results, we have thus proved the following lemma:

LEMMA 3.4. With notation as above we have

ρL(m,0)

�
√

a0am−1

a−LaL−1

∫
Σ0

〈
T (1)
E;1 . . .T (m−1)

E;m−1S(m)
E;m . . .S(L−1)

E;L−1φ (L−1)
L;E;L ,US(0)

E;0 . . .S(−L+1)
E;−L+1φ (−L)

−L;E;−L

〉
L2(R,dx1)

dE.

4. Norm estimates

DEFINITION 4.1. The norm of an operator A : Lp(R) → Lq(R) will be denoted
by ‖A‖p,q .

REMARK 4.2. We want to point out that the following results hold for any α ∈R ,
but since we will eventually care only for α ∈ Σ0 we state them in this form.

LEMMA 4.3. For all α ∈ Σ0 , we have∥∥∥S(n)
α

∥∥∥
1,1

� 1,

for all n .

Proof. We prove the statement for n > 0, the cases n = 0 and n < 0 are proved
similarly. For f ∈ L1(R) we have:∥∥∥S(n)

α f
∥∥∥

1
=
∫ ∣∣∣(S(n)

α f
)

(x)
∣∣∣dx

� an−1

∫ ∫ ∣∣d−1
n r
(
d−1

n

(
α −an−1x−any

−1))∣∣ | f (y)|dydx

=
an−1

dn

∫ (
dn

an−1

∫
r(x)dx

)
| f (y)|dy = ‖ f‖1 .

We have used the change of variables x = d−1
n

(
α −an−1x−any−1

)
, the fact that r is

nonnegative, and ‖r‖1 = 1. �
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LEMMA 4.4. For all α ∈ Σ0 and all n we have∥∥∥S(n)
α

∥∥∥
1,2

�
√

d−1
n an−1‖r‖∞ < ∞

Proof. We prove for the case n > 0, the cases n = 0 and n < 0 are proved simi-
larly. For f ∈ L1(R), we have∥∥∥S(n)

α f
∥∥∥2

2
=
∫ ∣∣∣∣(an−1

∫
rn(α−an−1x−any

−1) f (y)dy

)(
an−1

∫
rn(α−an−1x−anz

−1) f (z)dz

)∣∣∣∣dx

�
a2
n−1

dn
‖r‖∞

∫ (∫
| f (y)|dy

)(∫
rn(α −an−1x−anz

−1)| f (z)|dz

)
dx

=
a2
n−1

dn
‖r‖∞ ‖ f ‖1

∫
1

an−1

(∫
rn(x )d x

)
| f (z)|dz =

an−1

dn
‖r‖∞ ‖ f ‖2

1 .

So, ∥∥∥S(n)
α f
∥∥∥

2
�
√

d−1
n an−1‖r‖∞ ‖ f‖1 . �

LEMMA 4.5. For all α ∈ Σ0 we have∥∥∥T (n)
α

∥∥∥
2,2

� 1.

Proof. Define an operator U
(n)

by(
U

(n)
f
)

(x) =
√

an

an−1
|x|−1 f

(
− an

an−1
x−1
)

.

We first note that U
(n)

is an isometry on L2(R). Indeed, for any f ∈ L2(R) , we have∥∥∥U(n)
f
∥∥∥2

2
=
∫ ∣∣∣(U(n)

f
)

(x)
∣∣∣2 dx =

∫ ∣∣∣∣√ an

an−1
|x|−1 f

(
− an

an−1
x−1
)∣∣∣∣2 dx

=
an

an−1

∫ ∣∣∣∣an−1

an
|u| f (u)

∣∣∣∣2 an

an−1
u−2du =

∫
| f (u)|2du = ‖ f‖2

2 .

In the second line we have used the substitution u = − an

an−1
x−1. Since U

(n)
is linear,

it follows that, in fact, it is a unitary operator as surjectivity is easily established. Next,

let us define an operator K(n)
k;α by K(n)

k;α f = r(n)
k;α ∗ f ; that is(

K(n)
k;α f
)

(x) =
(
r(n)
k;α ∗ f

)
(x) =

∫
r(n)
k;α (x− y) f (y)dy =

∫
rk(α −an−1x+an−1y) f (y)dy.

Then,(
K(n)

n;αU
(n)

f
)

(x) =
(
r(n)
n;α ∗U

(n)
f
)

(x) =
∫

r(n)
n;α(x− y)

(
U

(n)
f
)

(y)dy

=
∫

rn(α −an−1x+an−1y)
√

an

an−1
|y|−1 f

(
− an

an−1
y−1
)

dy
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=
√

an

an−1

∫
rn(α −an−1x−anu

−1)
an−1

an
|u| f (u)

an

an−1
u−2du

=
√

an

an−1

∫
rn(α −an−1x−anu

−1)|u|−1 f (u)du =
1

an−1

(
T (n)

α f
)

(x).

We have used the substitution u =− an

an−1
y−1. So, we have T (n)

α = an−1K
(n)
n;αU

(n)
. Then,

it follows∥∥∥T (n)
α f
∥∥∥

2
=
∥∥∥an−1K

(n)
n;αU

(n)
f
∥∥∥

2
= an−1

∥∥∥r(n)
n;α ∗U

(n)
f
∥∥∥

2

= an−1

∥∥∥∥ ̂
r(n)
n;α ∗U

(n)
f

∥∥∥∥
2
= an−1

∥∥∥∥r̂(n)
n;α · ̂

U
(n)

f

∥∥∥∥
2

� an−1

∥∥∥∥r̂(n)
n;α

∥∥∥∥
∞

∥∥∥∥̂
U

(n)
f

∥∥∥∥
2
� an−1

∥∥∥r(n)
n;α

∥∥∥
1
‖ f‖2 = an−1‖ f‖2

∫ ∣∣∣r(n)
n;α(x)

∣∣∣dx

= an−1‖ f‖2

∫
rn(α −an−1x)dx = ‖ f‖2

∫
rn(x)dx = ‖rn‖1 ‖ f‖2 = ‖ f‖2 .

Hence, the result. �

LEMMA 4.6. For all α,β ∈ Σ0 the operator T (n)
α T (n+1)

β is compact.

Proof. Let K(n)
k;α and U

(n)
be as before, and let F be the Fourier transform, F :

f 
→ f̂ ; that is

F [ f ](s) = f̂ (s) =
∫

R

e−2π isx f (x)dx.

Consider the operators K
(n)
k;α = FK(n)

k;αF−1 and U (n) = FU
(n)

F−1. Then

T (n)
α T (n+1)

β =
(
an−1K

(n)
n;αU

(n))(
anK

(n+1)
n+1;βU

(n+1))
= an−1anF

−1K
(n)
n;αU (n)K

(n+1)
n+1;β U (n+1)F.

Since F and U (m) are unitary operators, it suffices to show that K
(n)
n;αU (n)K

(n+1)
n+1;β is

compact. We will actually show that it is a Hilbert-Schmidt operator, by showing that
it is an integral operator with an L2 kernel, and thus compact. Observe that

K
(n)
n;α f = FK(n)

n;αF−1 f =
̂
r(n)
n;α ∗ f̌ = r̂(n)

n;α · f .

Now, let g1 ∈C∞
c (R) be such that it is identically 1 in some neighborhood of zero, and

put g2 = 1−g1. We define the following two operators(
U (n)

1 f
)

(x) = g1

(
an−1

an
x

)(
U

(n)
f
)

(x)
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U (n)

2 f
)

(x) = g2

(
an−1

an
x

)(
U

(n)
f
)

(x).

Note that U
(n)

= U (n)
1 +U (n)

2 . Then,(
̂
U (n)

1 f

)
(k) =

∫
e−2π ikx

(
U (n)

1 f
)

(x)dx =
∫

e−2π ikxg1

(
an−1

an
x

)(
U

(n)
f
)

(x)dx

=
∫

e−2π ikxg1

(
an−1

an
x

)√
an

an−1
|x|−1 f

(
− an

an−1
x−1
)

dx

=
√

an

an−1

∫
e
−2π i an

an−1
kx−1

g1

(
x−1
) an−1

an
|x | f (−x)

an

an−1
x−2dx

=
√

an

an−1

∫
e
−2π i an

an−1
kx−1

g1

(
x−1
)
|x|−1

(∫
e−2π ixp f̂ (p)dp

)
dx

=
√

an

an−1

∫ (∫
e
−2π i an

an−1
kx−1−2π ixp

g1

(
x−1
)
|x |−1dx

)
f̂ (p)dp

=
√

an

an−1

∫ (∫
e
−2π i an

an−1
kx−2π ipx−1

g1 (x) |x|−1dx

)
f̂ (p)dp

=
√

an

an−1

∫
a(n)

1 (k, p) f̂ (p)dp,

where

a(n)
1 (k, p) def=

∫
e
−2π i an

an−1
kx−2π ipx−1

g1 (x) |x|−1dx

We have used the following two substitutions in this order x =
an

an−1
x−1 and x = x−1 ,

in lines four and seven, respectively.
Similarly (

̂
U (n)

2 f

)
(k) =

√
an

an−1

∫
a(n)

2 (k, p) f̂ (p)dp,

where

a(n)
2 (k, p) def=

∫
e
−2π i an

an−1
kx−2π ipx−1

g2 (x) |x|−1dx

We claim that (
K

(n)
n;αU (n)K

(n+1)
n+1;β f

)
(k) =

√
an

an−1

∫
b(n)(k, p) f (p)dp, (11)

where

b(n)(k, p) = r̂(n)
n;α(k)

(
a(n)

1 (k, p)+a(n)
2 (k, p)

)
̂
r(n+1)
n+1;β (p).

Observe that

K
(n)
n;αU (n)K

(n+1)
n+1;β = K

(n)
n;αFU (n)

1 F−1K
(n+1)
n+1;β +K

(n)
n;αFU (n)

2 F−1K
(n+1)
n+1;β ,
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where we have used the fact that U
(n)

= U (n)
1 +U (n)

2 . Next(
K

(n)
n;αFU (n)

1 F−1K
(n+1)
n+1;β f

)
(k) = r̂(n)

n;α(k) ·
(
FU (n)

1 F−1K
(n+1)
n+1;β f

)
(k)

=
√

an

an−1

∫
r̂(n)
n;α(k)a(n)

1 (k, p)
̂
r(n+1)
n+1;β (p) f (p)dp.

Similarly,(
K

(n)
n;αFU (n)

2 F−1K
(n+1)
n+1;β f

)
(k) = r̂(n)

n;α(k) ·
(
FU (n)

2 F−1K
(n+1)
n+1;β f

)
(k)

=
√

an

an−1

∫
r̂(n)
n;α(k)a(n)

2 (k, p)
̂
r(n+1)
n+1;β (p) f (p)dp.

Combining these two expressions, we get (11) . Next, we need to show that b(n) is in
L2. We have,∥∥∥b(n)(k, p)

∥∥∥
L2(R,dk)×L2(R,dp)

�
∥∥∥∥r̂(n)

n;α (k)a(n)
1 (k, p)

̂
r(n+1)
n+1;β (p)

∥∥∥∥
L2(R,dk)×L2(R,dp)

+
∥∥∥∥r̂(n)

n;α(k)a(n)
2 (k, p)

̂
r(n+1)
n+1;β (p)

∥∥∥∥
L2(R,dk)×L2(R,dp)

. (12)

Note that, ∥∥∥∥r̂(n)
n;α (k)a(n)

1 (k, p)
̂
r(n+1)
n+1;β (p)

∥∥∥∥
L2(dk)×L2(dp)

=

(∫
R×R

∣∣∣∣r̂(n)
n;α (k)a(n)

1 (k, p)
̂
r(n+1)
n+1;β (p)

∣∣∣∣2 dkdp

)1/2

�
(∫

R

∫
R

∣∣∣∣r̂(n)
n;α (k)

∣∣∣∣2 ∣∣∣a(n)
1 (k, p)

∣∣∣2 dkdp

)1/2 ∥∥∥∥̂
r(n+1)
n+1;β

∥∥∥∥
L∞(R,dp)

�
(∫

R

∣∣∣∣r̂(n)
n;α (k)

∣∣∣∣2(∫
R

∣∣∣a(n)
1 (k, p)

∣∣∣2 dp

)
dk

)1/2 ∥∥∥∥̂
r(n+1)
n+1;β

∥∥∥∥
L∞(R,dp)

�
∥∥∥∥r̂(n)

n;α

∥∥∥∥
L2(R,dk)

sup
k

(∫
R

∣∣∣a(n)
1 (k, p)

∣∣∣2 dp

)1/2∥∥∥∥̂
r(n+1)
n+1;β

∥∥∥∥
L∞(R,dp)

=
∥∥∥∥r̂(n)

n;α

∥∥∥∥
L2(R,dk)

sup
k

∥∥∥a(n)
1 (k, ·)

∥∥∥
L2(R,dp)

∥∥∥∥̂
r(n+1)
n+1;β

∥∥∥∥
L∞(R,dp)

.

Similarly, ∥∥∥∥r̂(n)
n;α(k)a(n)

2 (k, p)
̂
r(n+1)
n+1;β (p)

∥∥∥∥
L2(R,dk)×L2(R,dp)

�
∥∥∥∥r̂(n)

n;α

∥∥∥∥
L∞(dk)

sup
p

∥∥∥a(n)
2 (·, p)

∥∥∥
L2(dk)

∥∥∥∥̂
r(n+1)
n+1;β

∥∥∥∥
L2(dp)

.
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Since, r ∈ L1(R)∩ L∞(R) , then r ∈ L1(R)∩ L2(R). So, by Plancherel’s theorem, it
follows that r̂ ∈ L2(R)∩L∞(R). Thus, it remains to show that

i. sup
k

∥∥∥a(n)
1 (k, ·)

∥∥∥
L2(R,dp)

< ∞ , and

ii. sup
p

∥∥∥a(n)
2 (·, p)

∥∥∥
L2(R,dk)

< ∞.

We begin by proving the first claim. To this end let

f (k)
N (x) = e

−2π i an
an−1

kx−1 g1(x−1)
|x | · χ[−N,N](x)

f (k)(x) = e
−2π i an

an−1
kx−1 g1(x−1)

|x | .

Since g1 is compactly supported and is identically equal to 1 in a neighborhood of 0,
it is not difficult to see that f (k) is an L2 function, and that its L2 norm is independent

of k . From this, it is, also, not difficult to see that f (k)
N converges to f (k) in L2 sense.

As a result, it is straightforward to see that f̂ (k)
N converges to f̂ (k) in L2 sense; where

f̂ (k)(p) =
∫

f (k)(x)e−2π ipxd x =
∫

e
−2π i an

an−1
kx−1−2π ipx g1(x−1)

|x| dx

f̂ (k)
N =

∫
|x|<N

e
−2π i an

an−1
kx−1−2π ipx g1(x

−1)
|x| dx.

Note that,

a(n)
1 (k, p) · χ{x:|x|> 1

N }(x) =
∫
|x|> 1

N

e
−2π i an

an−1
kx−2π ipx−1

g1(x)|x|−1dx

=
∫
|x|<N

e
−2π i an

an−1
kx−1−2π ipx g1(x−1)

|x | dx

= f̂ (k)
N (p).

Then, from our discussion above, it follows that a(n)
1 (k, p) = f̂ (k)(p). Hence, by unitar-

ity of the Fourier transform, and the fact that f (k) has L2 norm independent of k , we
get

sup
k

∥∥∥a(n)
1 (k, ·)

∥∥∥
L2(R,dp)

= sup
k

∥∥∥ f̂ (k)
∥∥∥

L2(R,dp)
= sup

k

∥∥∥ f (k)
∥∥∥

L2(R,dp)
=
∥∥∥ f (k)

∥∥∥
L2(R,dp)

< ∞.

(13)
Next, let

f (p)(x) = e
−2π i an

an−1
px−1

g2

(
an−1

an
x

)
|x |−1.
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Since g2 vanishes in a neighborhood of 0, it is easy to see that f (p) is an L2 function,
and that its norm is independent of p . Then,

f̂ (p)(k) =
∫

e−2π ikx f (p)(x)x =
∫

e
−2π ikx−2π i an

an−1
px−1

g2

(
an−1

an
x

)
|x |−1dx

=
∫

e
−2π i an

an−1
kx−2π ipx−1

g2(x)|x|−1dx = a(n)
2 (k, p).

Hence,

sup
p

∥∥∥a(n)
2 (·, p)

∥∥∥
L2(R,dk)

= sup
p

∥∥∥ f̂ (p)
∥∥∥

L2(R,dk)
= sup

p

∥∥∥ f (p)
∥∥∥

L2(R,dk)
=
∥∥∥ f (p)

∥∥∥
L2(R,dk)

< ∞.

(14)
This concludes that b(n) is an L2 function. So, T (n)

α T (n+1)
β is Hilbert-Schmidt, and thus

compact. �
Next, we adopt the technique developed in [18] to prove the following lemma.

LEMMA 4.7. For some fixed constant C0 we have∥∥∥T (n)
α T (n+1)

β f
∥∥∥

2
� A(n,n+1)‖ f‖2 ,

where

A(n,n+1)
def
=

⎛⎜⎝15
16

+
1
16

sup
|k|�tn

C0
‖a‖∞

|r̂(k)|2
⎞⎟⎠

1
2

,

where tn = min(dn,dn+1) .

Proof. Above we have shown that, in particular, T (n)
α T (n+1)

β is a Hilbert-Schmidt
operator. Specifically,

T (n)
α T (n+1)

β = F−1
(
an−1anK

(n)
n;αU (n)K

(n+1)
n+1;β

)
U (n+1)F.

So, it suffices to show that for ‖ϕ‖2 = ‖ψ‖2 = 1 we have∣∣∣〈ϕ ,an−1anK
(n)
n;αU (n)K

(n+1)
n+1;β ψ〉

∣∣∣� A(n,n+1). (15)

Pick C0 , such that

B

(∫
|k|�C0

∫
|p|�C0

∣∣∣a(n)(k, p)
∣∣∣2 dkdp

)1/2

� 7
16

, (16)

where B = sup
√

an
an−1

. We claim that, this is possible, since the left hand side of (16)

goes to zero, as C0 → 0, and also that such a C0 can be chosen independently of n .
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Both of these facts are a byproduct of the proof of Lemma 4.6. More precisely, note
that ∥∥∥a(n)(k, p)

∥∥∥
L2([−C0,C0]2,dkdp)

�
∥∥∥a(n)

1 (k, p)
∥∥∥

L2([−C0,C0]2,dkdp)
+
∥∥∥a(n)

2 (k, p)
∥∥∥

L2([−C0,C0]2,dkdp)
(17)

�
√

2C0

(
sup

k

∥∥∥a(n)
1 (k, ·)

∥∥∥
L2([−C0,C0],dp)

+ sup
p

∥∥∥a(n)
2 (·, p)

∥∥∥
L2([−C0,C0],dk)

)
�
√

2C0

(
sup

k

∥∥∥a(n)
1 (k, ·)

∥∥∥
L2(R,dp)

+ sup
p

∥∥∥a(n)
2 (·, p)

∥∥∥
L2(R,dk)

)
=
√

2C0

(∥∥∥ f (k)
∥∥∥

L2(R,dp)
+
∥∥∥ f (p)

∥∥∥
L2(R,dk)

)

�
√

2C0 ×
√

2π

⎛⎝(∫
R

∣∣g1(p−1)
∣∣2

|p|2 dp

)1/2

+

√
‖a‖∞

δ

(∫
R

|g2(y)|2
|y|2 dy

)1/2
⎞⎠ , (18)

where, going from line three to four, we have used expressions (13) and (14) , and
from line four to five we have performed a change of variables and used the fact that
0 < δ � an � ‖a‖∞ , for all n. So, using the fact that, as seen before, the integrals that
appear above are finite, we can pick C0 independently of n , such that the right hand
side of (17) is less than 7

16 .

Let ϕ+ = ϕχ{|k|�C0} and ψ+ = ψχ{|k|�C0}. We consider two cases

(i) ‖ϕ+‖2 � 1
4 or ‖ψ+‖2 � 1

4 ;

(ii) ‖ϕ+‖2 � 1
4 and ‖ψ+‖2 � 1

4 .

First, using the fact that K
(n)
n;α f = r̂(n)

n;α · f and the fact that ‖ĝ‖∞ � ‖g‖1, we get that

∥∥∥K(n)
n;α f
∥∥∥

2
� 1

an−1
‖ f‖2 , (19)

and also

r̂(n)
n;α (s) =

∫
e−2π isxrn(α −an−1x)dx =

1
an−1

e
−2π is α

an−1
1√
2π

∫
e
−2π i

(
− dn

an−1
s
)
x
r(x)dx

=
1

an−1
e
−2π is α

an−1 r̂

(
− dn

an−1
s

)
.

So, ∣∣∣∣r̂(n)
n;α(s)

∣∣∣∣= 1
an−1

∣∣∣∣r̂(− dn

an−1
s

)∣∣∣∣ . (20)
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Now, suppose that ‖ψ+‖2 � 1
4 . Then,

∥∥∥anK
(n+1)
n+1;β ψ

∥∥∥2

2

= a2
n

∫
R

∣∣∣(K(n+1)
n+1;β ψ

)
(k)
∣∣∣2 dk

= a2
n

∫
R

∣∣∣r̂(n+1)
n+1;β (k)ψ(k)

∣∣∣2 dk = a2
n

∫
R

∣∣∣r̂(n+1)
n+1;β (k)

∣∣∣2 |ψ(k)|2 dk

= a2
n

∫
R

∣∣∣∣ 1
an

r̂

(
−dn+1

an
k

)∣∣∣∣2 |ψ(k)|2 dk =
∫

R

∣∣∣∣r̂(−dn+1

an
k

)∣∣∣∣2 |ψ(k)|2 dk

=
∫
{|k|�K0}

∣∣∣∣r̂(−dn+1

an
k

)∣∣∣∣2 |ψ(k)|2 dk+
∫
{|k|<C0}

∣∣∣∣r̂(−dn+1

an
k

)∣∣∣∣2 |ψ(k)|2 dk

� sup
|k|�C0

∣∣∣∣r̂(−dn+1

an
k

)∣∣∣∣2 ∫{|k|�C0}
|ψ(k)|2 dk+

∫
{|k|<C0}

|ψ(k)|2 dk

= sup
|k|� dn+1

an
C0

|r̂ (k)|2
∫
{|k|�C0}

|ψ(k)|2 dk+
∫
{|k|<C0}

|ψ(k)|2 dk

� sup
|k|� C0

‖a‖∞
dn+1

|r̂ (k)|2
∫
{|k|�C0}

|ψ(k)|2 dk+
∫
{|k|<C0}

|ψ(k)|2 dk

+
∫
{|k|�C0}

|ψ(k)|2 dk−
∫
{|k|�C0}

|ψ(k)|2 dk

=

⎛⎜⎝ sup
|k|� C0

‖a‖∞
dn+1

|r̂ (k)|2−1

⎞⎟⎠∫
{|k|�C0}

|ψ(k)|2 dk+1

= 1+
(
−
∫
{|k|�C0}

|ψ(k)|2 dk

)⎛⎜⎝1− sup
|k|� C0

‖a‖∞
dn+1

|r̂ (k)|2
⎞⎟⎠

� 1− 1
16

⎛⎜⎝1− sup
|k|� C0

‖a‖∞
dn+1

|r̂ (k)|2
⎞⎟⎠

=
15
16

+
1
16

sup
|k|� C0

‖a‖∞
dn+1

|r̂ (k)|2 .

Now, using Cauchy-Schwarz, (19) , and the fact that U (n) is unitary, we get∣∣∣〈ϕ ,an−1anK
(n)
n;αU (n)K

(n+1)
n+1;β ψ〉

∣∣∣� ‖ϕ‖2

∥∥∥an−1anK
(n)
n;αU (n)K

(n+1)
n+1;β ψ〉

∥∥∥
2

�
∥∥∥anK

(n+1)
n+1;β ψ

∥∥∥
2
.
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Thus, from above, in this case the result follows. Next, if ‖ϕ+‖2 � 1
4 , then

∣∣∣〈ϕ,an−1anK
(n)
n;αU (n)K

(n+1)
n+1;β ψ〉

∣∣∣
=
∣∣∣∣∫

R
ϕ(k)an−1an

(
K

(n)
n;αU (n)K

(n+1)
n+1;β ψ

)
(k)dk

∣∣∣∣
�
∫

R

∣∣∣ϕ(k)an−1 r̂
(n)
n;α (k)

∣∣∣ ∣∣∣an

(
U (n)K

(n+1)
n+1;β ψ

)
(k)
∣∣∣dk

�
(∫

R

∣∣∣ϕ(k)an−1 r̂
(n)
n;α (k)

∣∣∣2 dk

)1/2(∫
R

∣∣∣an

(
U (n)K

(n+1)
n+1;β ψ

)
(k)
∣∣∣2 dk

)1/2

=

(∫
R

∣∣∣∣r̂(− dn

an−1
k

)∣∣∣∣2 |ϕ(k)|2dk

)1/2

an

∥∥∥U (n)K
(n+1)
n+1;β ψ

∥∥∥
2

=

(∫
R

∣∣∣∣r̂(− dn

an−1
k

)∣∣∣∣2 |ϕ(k)|2dk

)1/2

an

∥∥∥K(n+1)
n+1;β ψ

∥∥∥
2

�
(∫

R

∣∣∣∣r̂(− dn

an−1
k

)∣∣∣∣2 |ϕ(k)|2dk

)1/2

�

⎛⎝15
16

+
1
16

sup
|k|� C0

‖a‖∞
dn

|r̂ (k)|2
⎞⎠1/2

.

The last inequality follows via the same argument as before. Thus, again, the result
follows.

Before we consider the second case, let ϕ− = ϕχ{|k|<C0}, and ψ− = ψχ{|k|<C0}.
Then

∣∣∣〈ϕ−,an−1anK
(n)
n;αU (n)K

(n+1)
n+1;β ψ−〉

∣∣∣
=
∣∣∣∣∫

R
ϕ−(k)an−1an

(
K

(n)
n;αU (n)K

(n+1)
n+1;β ψ−

)
(k)dk

∣∣∣∣
=
∣∣∣∣∫

R
ϕ−(k)

√
an

an−1
an−1an

∫
R

r̂(n)
n;α(k)a(n)(k, p)r̂(n+1)

n+1;β (p)ψ−(p)dpdk

∣∣∣∣
=
∣∣∣∣∫{|k|�C0}

∫
{|p|�C0}

√
an

an−1
an−1anϕ(k)r̂(n)

n;α (k)a(n)(k, p)r̂(n+1)
n+1;β (p)ψ(p)dpdk

∣∣∣∣
�
∫
{|k|�C0}

∫
{|p|�C0}

√
an

an−1
an−1an|ϕ(k)ψ(p)|

∣∣∣r̂(n)
n;α (k)

∣∣∣ ∣∣∣a(n)(k, p)
∣∣∣ ∣∣∣r̂(n+1)

n+1;β (p)
∣∣∣dpdk

�
√

an

an−1

∫
{|k|�C0}

∫
{|p|�C0}

|ϕ(k)ψ(p)|
∣∣∣a(n)(k, p)

∣∣∣dpdk

�
√

an

an−1

(∫
{|k|�C0}

∫
{|p|�C0}

|ϕ(k)|2|ψ(p)|2dpdk

)1/2

×
(∫

{|k|�C0}

∫
{|p|�C0}

∣∣∣a(n)(k, p)
∣∣∣2 dpdk

)1/2
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=
√

an

an−1

(∫
{|p|�C0}

|ψ(p)|2dp

)1/2(∫
{|k|�C0}

|ϕ(k)|2dk

)1/2

×
(∫

{|k|�C0}

∫
{|p|�C0}

∣∣∣a(n)(k, p)
∣∣∣2 dpdk

)1/2

� B

(∫
{|k|�C0}

∫
{|p|�C0}

∣∣∣a(n)(k, p)
∣∣∣2 dpdk

)1/2

� 7
16

.

Finally, if ‖ϕ+‖2 � 1
4 , and ‖ψ+‖2 � 1

4 , we have∣∣∣〈ϕ,an−1anK
(n)
n;αU (n)K

(n+1)
n+1;β ψ〉

∣∣∣
=
∣∣∣〈ϕ+,an−1anK

(n)
n;αU (n)K

(n+1)
n+1;β ψ〉+ 〈ϕ−,an−1anK

(n)
n;αU (n)K

(n+1)
n+1;β ψ〉

∣∣∣
� ‖ϕ+‖2 +

∣∣∣〈ϕ−,an−1anK
(n)
n;αU (n)K

(n+1)
n+1;β ψ+〉

∣∣∣+ ∣∣∣〈ϕ−,an−1anK
(n)
α U (n)K

(n+1)
β ψ−〉

∣∣∣
� ‖ϕ+‖2 +‖ψ+‖2 +

∣∣∣〈ϕ−,an−1anK
(n)
n;αU (n)K

(n+1)
n+1;β ψ−〉

∣∣∣
� 1

4
+

1
4

+
7
16

=
15
16

< A(n,n+1).

This concludes the proof of the lemma. �
We record the following as a corollary, so we can refer to it later.

COROLLARY 4.8. Let dn be such that dn = 1 for all n . Then, there exists some
constant 0 < q < 1 , such that ∥∥∥T (n)

α T (n+1)
β

∥∥∥
2,2

� q

for all n and all α,β .

Proof. This is an immediate consequence of Lemma 4.7 with

q
def=

⎛⎜⎝15
16

+
1
16

sup
|k|� C0

‖a‖∞

|r̂(k)|2
⎞⎟⎠

1
2

. �

If the sequence dn ≡ 1 we can no longer bound
∥∥∥T (n)

α T (n+1)
β

∥∥∥
2,2

uniformly away

from 1, however, we can still control the rate at which this norm converges to 1, as is
established in the following Lemma.

LEMMA 4.9. Let dn be a fixed sequence with 0 � dn � 1 and dn � C|n|−ζ for
ζ < 1

2 , and some constant C > 0 . Then,

A(s)
def
=

⎛⎜⎝15
16

+
1
16

sup
|k|�ts

C0
‖a‖∞

|r̂(k)|2
⎞⎟⎠

1
2

� exp
(
−γ ′|s|−2ζ

)
,
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for some γ ′ > 0 , where ts = min(d2s−1,d2s) .

Proof. First let us show that d2

dk2 |r̂(k)|2
∣∣∣
k=0

< 0. We compute,

d2

dk2 |r̂(k)|2
∣∣∣
k=0

=
d2

dk2 r̂(k)r̂(k)
∣∣∣
k=0

=
d
dk

(
r̂(k)

d
dk

r̂(k)+ r̂(k)
d
dk

r̂(k)
)∣∣∣

k=0

= 2
d
dk

r̂(k)
d
dk

r̂(k)
∣∣∣
k=0

+ r̂(k)
d2

dk2 r̂(k)
∣∣∣
k=0

+ r̂(k)
d2

dk2 r̂(k)
∣∣∣
k=0

= 2
∫

xe−ikxr(x)dx
∫

xeikxr(x)dx
∣∣∣
k=0

−2ℜ
(∫

e−ikxr(x)dx
∫

x2eikxr(x)dx

)∣∣∣
k=0

= 2

(∫
xr(x)dx

)2

−2

(∫
x2r(x)dx

)
< 0,

where the strict inequality, in the last line, follows by Cauchy-Schwarz. Before we
proceed, we need the following result to be able to complete the proof of the lemma.
Though this is a standard result, since we were unable to find a reference, for reader’s
convenience, we provide a proof as well.

CLAIM 4.10. For k = 0 we have

|r̂(k)| < 1.

Proof of Claim. First, we know that in general we have |r̂(k)| � ‖r‖1 = 1 with
|r̂(0)| = 1. So, suppose that there is some k = 0 such that |r̂(k)| = 1. First, by taking
the real part of r̂(k) we get

ℜr̂(k) =
∫

cos(kx)r(x)dx <
∫

r(x)dx = 1, (21)

where the strict inequality follows from the fact that r(k) � 0 and for k = 0 we have
cos(kx) < 1, away from a set of measure zero. So, we can rotate r̂(k) by an angle θ
such that it is equal to one. That is, let θ ∈ (0,2π) be such that r̂(k)e−iθ = 1. On the
other hand, observe that for any such θ we also have

ℜ
(
r̂(k)e−iθ

)
=
∫

cos(kx+ θ )r(x)dx <

∫
r(x)dx = 1,

where, again, the strict inequality follows from the fact that cos(kx+θ ) < 1 away from
a countable set. This is clearly a contradiction to our choice of θ . �

Thus, since |r̂(k)| < 1 for k = 0 and |r̂(0)| = 1, with d2

dk2 |r̂(k)|2
∣∣∣
k=0

< 0, by a

Taylor series expansion around zero, for λ small enough we have

sup
|k|�λ

|r̂(k)|2 � 1− cλ 2 � e−c̃λ 2
,
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with c
def= − d2

dk2 |r̂(k)|2
∣∣∣
k=0

> 0, and some c̃ > 0. Then,

(
15
16

+
1
16

sup
|k|�λ

|r̂(k)|2
)1/2

�
(

15
16

+
1
16

− c1λ 2
)1/2

=
(
1− c1λ 2)1/2 � e−c2λ 2

.

As a result, up to possibly shrinking C0 , we have

A(s) def=

⎛⎜⎝15
16

+
1
16

sup
|k|�ts

C0
‖a‖∞

|r̂(k)|2
⎞⎟⎠

1
2

� exp

(
−c2

(
ts

C0

‖a‖∞

)2
)

� exp
(
−γ ′|s|−2ζ

)
.

�
The following corollary is an immediate consequence of the arguments above.

COROLLARY 4.11. Let dn be a fixed sequence with 0 � dn � 1 and dn �C|n|−ζ

for ζ < 1
2 . Then, ∥∥∥T (2s−1)

α T (2s)
β

∥∥∥
2,2

� exp
(
−γ ′|s|−2ζ

)
.

Proof. From Lemma 4.7 we clearly have,∥∥∥T (2s−1)
α T (2s)

β

∥∥∥
2,2

� A(s),

hence the result follows from Lemma 4.9. �

LEMMA 4.12. With notation as above we have

A(1)× . . .×A(s) � exp
(
−γ ′|s|1−2ζ

)
,

for some constant γ ′ > 0.

Proof. We have,

A(1)× . . .×A(s) = exp
(
−γ ′
(
1+2−2ζ + . . .+(s−1)−2ζ + s−2ζ

))
= exp

(
−γ ′s−2ζ

(
s2ζ +2−2ζs2ζ + . . .+(s−1)−2ζs2ζ +1

))
� exp

(
−γ ′s1−2ζ

)
.

The last inequality follows from the fact that

s2ζ +2−2ζ s2ζ + . . .+(s−1)−2ζs2ζ +1 � 1+2−2ζ22ζ + . . .+(s−1)−2ζ (s−1)2ζ +1 = s.

�
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4.1. Proof of Theorem 2.4

Proof. With the same notation as in the statement of the theorem, we have∫
Ω

(
sup
t∈R

∣∣∣〈δm,e−itJω δ0〉
∣∣∣)dμ(ω)

= a(m,0) � liminf
L→∞

aL(m,0) � liminf
L→∞

ρL(m,0)

� liminf
L→∞

√
a0am−1

a−LaL−1

×
∫

Σ0

〈
T (1)
E;1 . . .T (m−1)

E;m−1S(m)
E;m . . .S(L−1)

E;L−1φ (L−1)
L;E;L ,US(0)

E;0 . . .S(−L+1)
E;−L+1φ (−L)

−L;E;−L

〉
L2(R,dx1)

dE

� ‖a‖∞ ·δ−2 liminf
L→∞

∫
Σ0

∥∥∥T (1)
E;1 . . .T (m−1)

E;m−1S(m)
E;m . . .S(L−1)

E;L−1φ (L−1)
L;E;L

∥∥∥
2

∥∥∥US(0)
E;0 . . .S(−L+1)

E;−L+1φ (−L)
−L;E;−L

∥∥∥
2
dE

= ‖a‖∞ ·δ−2 liminf
L→∞

∫
Σ0

∥∥∥T (1)
E;1 . . .T (m−1)

E;m−1S(m)
E;m . . .S(L−1)

E;L−1φ (L−1)
L;E;L

∥∥∥
2

∥∥∥S(0)
E;0 . . .S(−L+1)

E;−L+1φ (−L)
−L;E;−L

∥∥∥
2
dE

� ‖a‖∞ ·δ−2 liminf
L→∞

∫
Σ0

∥∥∥T (1)
E;1 . . .T (m−1)

E;m−1

∥∥∥
2,2

∥∥∥S(m)
E;m

∥∥∥
1,2

∥∥∥S(m+1)
E;m+1

∥∥∥
1,1

. . .
∥∥∥S(L−1)

E;L−1

∥∥∥
1,1

∥∥∥φ (L−1)
L;E;L

∥∥∥
1

×
∥∥∥S(0)

E;0

∥∥∥
1,2

∥∥∥S(1)
E;1

∥∥∥
1,1

. . .
∥∥∥S(−L+1)

E;−L+1

∥∥∥
1,1

∥∥∥φ (−L)
−L;E;−L

∥∥∥
1
dE

� ‖a‖∞ ·δ−4 liminf
L→∞

∫
Σ0

q
m−2

2
√

am−1 ·a−1 ‖r‖∞ dE � ‖a‖2
∞ ·δ−4 ‖r‖∞ Leb(Σ0)q

m−2
2 = C · e−γ |m|,

where C = ‖a‖2
∞ ·δ−4‖r‖∞ Leb(Σ0)q−1 , and γ =

1
2

log
(
q−1) . �

4.2. Proof of Theorem 2.6

Proof. With the same notation as in the statement of the theorem, we have∫
Ω

(
sup
t∈R

∣∣∣〈δm,e−itJω δ0〉
∣∣∣)dμ(ω)

= a(m,0) � liminf
L→∞

aL(m,0) � liminf
L→∞

ρL(m,0)

� liminf
L→∞

√
a0am−1

a−LaL−1

×
∫

Σ0

〈
T (1)
E;1 . . .T (m−1)

E;m−1S(m)
E;m . . .S(L−1)

E;L−1φ (L−1)
L;E;L ,US(0)

E;0 . . .S(−L+1)
E;−L+1φ (−L)

−L;E;−L

〉
L2(R,dx1)

dE

� ‖a‖∞ ·δ−2 liminf
L→∞

∫
Σ0

∥∥∥T (1)
E;1 . . .T (m−1)

E;m−1S(m)
E;m . . .S(L−1)

E;L−1φ (L−1)
L;E;L

∥∥∥
2

∥∥∥US(0)
E;0 . . .S(−L+1)

E;−L+1φ (−L)
−L;E;−L

∥∥∥
2
dE

= ‖a‖∞ ·δ−2 liminf
L→∞

∫
Σ0

∥∥∥T (1)
E;1 . . .T (m−1)

E;m−1S(m)
E;m . . .S(L−1)

E;L−1φ (L−1)
L;E;L

∥∥∥
2

∥∥∥S(0)
E;0 . . .S(−L+1)

E;−L+1φ (−L)
−L;E;−L

∥∥∥
2
dE

� ‖a‖∞ ·δ−2 liminf
L→∞

∫
Σ0

∥∥∥T (1)
E;1 . . .T (m−1)

E;m−1

∥∥∥
2,2

∥∥∥S(m)
E;m

∥∥∥
1,2

∥∥∥S(m+1)
E;m+1

∥∥∥
1,1

. . .
∥∥∥S(L−1)

E;L−1

∥∥∥
1,1

∥∥∥φ (L−1)
L;E;L

∥∥∥
1

×
∥∥∥S(0)

E;0

∥∥∥
1,2

∥∥∥S(1)
E;1

∥∥∥
1,1

. . .
∥∥∥S(−L+1)

E;−L+1

∥∥∥
1,1

∥∥∥φ (−L)
−L;E;−L

∥∥∥
1
dE

� ‖a‖∞ δ−4 liminf
L→∞

∫
Σ0

A(1)× . . .×A

(⌊
m−1

2

⌋)√
d−1
m am−1

√
d−1
0 a−1 ‖r‖∞ dE
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�
√

d−1
0 ‖r‖∞ ‖a‖2

∞ δ−4d−1/2
m A(1)× . . .×A(k) = C̃ d−1/2

m A(1)× . . .×A

(⌊
m−1

2

⌋)
� C̃ d−1/2

m exp
(
−γ ′|k|1−2ζ

)
� C̃×C1|m|ζ/2 exp

(
−γ ′
∣∣∣∣⌊m−1

2

⌋∣∣∣∣1−2ζ
)

� C′|m|ζ/2 exp
(
−γ ′′|m|1−2ζ

)
where C̃ =

√
d−1

0 ‖r‖∞ ‖a‖2
∞ δ−4Leb(Σ0), and C′ = C̃×C1.

The first two inequalities follow from Lemmas 3.1 and 3.2. The third inequality
follows from Lemma 3.4. The fourth inequality follows from the fact that an ∈ �∞ with
an � δ > 0, and the Cauchy-Schwartz inequality. The sixth inequality follows from
Lemmas 4.3, 4.4, 4.5, and 4.7. Inequality eight follows from Lemma 4.12, and the rest
are simple algebraic manipulations. �
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