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Abstract. In the current paper, we generalize the “compact operator” part of D. Voiculescu’s
non-commmutative Weyl-von Neumann theorem on approximately unitary equivalence of unital
∗ -homomorphisms of a separable commutative C∗ algebra A into a semifinite von Neumann
algebra. A result of D. Hadwin for approximate summands of representations into a finite von
Neumann factor R is also extended.

1. Introduction

In 1976, as a non-commutative version of the Weyl-von Neumann theorem [2,
11, 14], Voiculescu [13] characterized approximately unitary equivalence of two unital
representations φ ,ψ : A →B(H ) , where A is a separable unital C∗ -algebra and H
is a complex separable Hilbert space. A different beautiful proof was given by Arveson
[1] in 1977. Two representations φ and ψ of a C∗ -algebra A on a Hilbert space H
are said to be approximately (unitarily) equivalent, denoted by φ ∼a ψ , if there exists
a net {Uλ}λ∈Λ of unitary operators in B(H ) such that

lim
λ∈Λ

∥∥U∗
λ φ (A)Uλ −ψ (A)

∥∥= 0, ∀A ∈ A . (1.1)

When A is separable, {Uλ}λ∈Λ can be chosen to be a sequence. Let K (H ) denote
the set of the compact operators on H . We say that two representations φ and ψ of
a separable C∗ -algebra A into B(H ) are approximately unitarily equivalent relative
to K (H ) , denoted by φ ∼A ψ , mod K (H ) , if there exists a sequence {Un}∞

n=1
of unitary operators in B(H ) satisfying (1.1) and

U∗
n φ (A)Un−ψ (A) ∈ K (H )

for all n � 1 and every A ∈ A . If A is a non-unital C∗ -algebra and σ : A → B (H )
is a ∗ -homomorphism, then let H1 = ∩{kerσ (A) : A ∈ A } . It follows the equality

σ = 0⊕σ1
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relative to the direct sum H = H1 ⊕H ⊥
1 . Thus σ1 is said to be the nonzero part of

σ .
The following is the theorem that Voiculescu proved in [13].

THEOREM 1.1. Suppose A is a separable unital C*-algebra, H is a separable
Hilbert space and φ ,ψ : A → B (H ) are unital ∗ -homomorphisms. The following
are equivalent:

1. φ ∼a ψ .

2. φ ∼A ψ mod K (H ) .

3. kerφ = kerψ , φ−1 (K (H )) = ψ−1 (K (H )) , and the nonzero parts of the
restrictions φ |φ−1(K (H )) and ψ |ψ−1(K (H )) are unitarily equivalent.

In [7], the first author gave a different characterization of approximate equivalence.
For T ∈ B(H ) , we let rank(T ) denote the Hilbert-space dimension of the closure of
the range ran(T ) of T .

In the same paper, the first author (Lemma 2.3 of [7]) proved an analogue for
approximate summands as follows.

THEOREM 1.2. Suppose A is a separable unital C*-algebra, H and K are
Hilbert spaces, and φ : A →B(H ) , ψ : A →B(K ) are unital representations. The
following are equivalent:

1. There is a representation γ : A → B(K1) for some Hilbert space K1 such that

ψ ⊕ γ ∼a φ .

2. For every A ∈ A ,
rank(ψ (A)) � rank(φ (A)) .

In her 1994 doctoral dissertation (see also [6]), Huiru Ding extended some of
these results to the case in which B(H ) is replaced by a von Neumann algebra. The
following are some terms adopted in this paper.

Suppose R is a von Neumann algebra and T ∈ R . We define the R -rank of
T (denoted by R -rank(T )) to be the Murray-von Neumann equivalence class of the
projection onto the closure of ran(T ) . Suppose that A is a unital C*-algebra. Let φ
and ψ be unital ∗ -homomorphisms of A into R . Then, the homomorphisms φ and
ψ are said to be approximately equivalent in R , denoted by φ ∼a ψ in R , if there is
a net {Uλ}λ∈Λ of unitary operators in R such that, for every A ∈ A ,

lim
λ∈Λ

∥∥U∗
λ φ (A)Uλ −ψ (A)

∥∥= 0.

THEOREM 1.3. (Corollary 3 of [6]) Suppose that A is a unital C*-algebrawhich
is a direct limit of finite direct sums of commutative C*-algebras tensored with matrix
algebras. Let φ and ψ be unital ∗ -homomorphisms of A into R , a von Neumann
algebra acting on a separable Hilbert space, then the following are equivalent:



A NOTE ON REPRESENTATIONS OF C(X) IN SEMIFINITE VON NEUMANN ALGEBRAS 1131

1. φ ∼a ψ in R.

2. For every A ∈ A ,

R-rank(φ (A)) = R-rank(ψ (A)) .

In the setting of von Neumann algebras, the compact ideal K (H ) of B(H )
can be extended in the following way.

In the current paper, we let R be a countably decomposable, properly infinite von
Neumann algebra with a faithful normal semifinite tracial weight τ . Let

PF (R,τ) = {P : P = P∗ = P2 ∈ R and τ(P) < ∞},
F (R,τ) = {XPY : P ∈ PF (R,τ) and X ,Y ∈ R},
K (R,τ) = ‖ · ‖-norm closure of F (R,τ) in R,

(1.2)

be the sets of finite rank projections, finite rank operators, and compact operators in
(R,τ) , respectively.

For a von Neumann algebra R , denoted by K (R) the ‖ · ‖ -norm closed ideal
generated by finite projections in R . In general, K (R,τ) is a subset of K (R) . That
is because a finite projection might not be a finite rank projection with respect to τ .
However, if R is a countably decomposable semifinite factor, then Proposition 8.5.2
of [9] entails that

K (R,τ) = K (R)

for a faithful, normal, semifinite tracial weight τ .
To extend the definition of approximate equivalence of two unital ∗ -homomor-

phisms of a separable C∗ -algebra A into R (relative to K (R,τ)), we need to de-
velop the following notation and definitions.

Let H be an infinite dimensional separable Hilbert space and let B(H ) be the
set of bounded linear operators on H . Suppose that {Ei, j}∞

i, j=1 is a system of matrix
units of B(H ) .

For a countably decomposable, properly infinite von Neumann algebra R with a
faithful normal semifinite tracial weight τ , there exists a sequence {Vi}∞

i=1 of partial
isometries in R such that

ViV
∗
i = IR ,

∞

∑
i=1

V ∗
i Vi = IR , and VjV

∗
i = 0 when i �= j.

Let R⊗B(H ) be a von Neumann algebra tensor product of R and B(H ) .

DEFINITION 1.4. For all X ∈ R and all ∑∞
i, j=1 Xi, j ⊗Ei, j ∈ R ⊗B(H ) , define

φ : R → R ⊗B(H ) and ψ : R⊗B(H ) → R

by

φ(X) =
∞

∑
i, j=1

(ViXV ∗
j )⊗Ei, j and ψ(

∞

∑
i, j=1

Xi, j ⊗Ei, j) =
∞

∑
i, j=1

V ∗
i Xi, jVj.
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By Lemma 2.2.2 of [10], both φ and ψ are normal ∗ -homomorphisms satisfying

ψ ◦φ = idR and φ ◦ψ = idR⊗B(H ).

DEFINITION 1.5. Define a mapping τ̃ : (R⊗B(H ))+ → [0,∞] to be

τ̃(y) = τ(ψ(y)), ∀ y ∈ (R ⊗B(H ))+.

By the above Definition, the following are proved in Lemma 2.2.4 of [10]:

(i) τ̃ is a faithful, normal, semifinite tracial weight of R⊗B(H ) .

(ii) τ̃(
∞

∑
i, j=1

Xi, j ⊗Ei, j) =
∞

∑
i=1

τ(Xi,i) for all
∞

∑
i, j=1

Xi, j ⊗Ei, j ∈ (R ⊗B(H ))+ .

(iii)
PF (R ⊗B(H ), τ̃) = φ(PF (R,τ)),

F (R ⊗B(H ), τ̃) = φ(F (R,τ)),
K (R⊗B(H ), τ̃) = φ(K (R,τ)).

REMARK 1.6. It shows that τ̃ is a natural extension of τ from R to R⊗B(H ) .
If no confusion arises, τ̃ will be also denoted by τ . By Proposition 2.2.9 of [10], the
ideal K (R ⊗B(H ), τ̃) is independent of the choice of the system of matrix units
{Ei, j}∞

i, j=1 of B(H ) and the choice of the family {Vi}∞
i=1 of partial isometries in R .

Now we are ready to introduce the definition of approximate equivalence of ∗ -
homomorphisms of a separable C∗ -algebra into R relative to K(R,τ) .

Let A be a separable C∗ -subalgebra of R with an identity IA . Suppose that ψ
is a positive mapping from A into R such that ψ(IA ) is a projection in R . Then for
all 0 � X ∈ A , we have 0 � ψ(X) � ‖X‖ψ(IA ) . Therefore, it follows that

ψ(X)ψ(IA ) = ψ(IA )ψ(X) = ψ(X)

for all positive X ∈ A . In other words, ψ(IA ) can be viewed as an identity of ψ(A ) .
Or, ψ(A ) ⊆ ψ(IA )Rψ(IA ) .

DEFINITION 1.7. (Definition 2.3.1 of [10]) Suppose {Ei, j}i, j�1 is a system of
matrix units of B(H ) . Let M,N ∈ N∪{∞} . Suppose that ψ1, . . . ,ψM and φ1, . . . ,φN

are positive mappings from A into R such that ψ1(IA ), . . . ,ψM(IA ) , φ1(IA ), . . . ,
φN(IA ) are projections in R .

(a) Let F ⊆A be a finite subset and ε > 0. Say ψ1⊕·· ·⊕ψM is (F ,ε)-strongly-
approximately-unitarily-equivalent to φ1 ⊕·· ·⊕φN over A , denoted by

ψ1 ⊕ψ2⊕·· ·⊕ψM ∼(F ,ε)
A φ1⊕φ2⊕·· ·⊕φN , mod K(R,τ)

if there exists a partial isometry V in R⊗B(H ) such that
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(i) V ∗V =
M

∑
i=1

ψi(IA )⊗Ei,i and VV ∗ =
N

∑
i=1

φi(IA )⊗Ei,i ;

(ii)
M

∑
i=1

ψi(X)⊗Ei,i−V ∗
(

N

∑
i=1

φi(X)⊗Ei,i

)
V ∈K (R⊗B(H ),τ) for all X ∈

A ;

(iii) ‖
M

∑
i=1

ψi(X)⊗Ei,i−V ∗
(

N

∑
i=1

φi(X)⊗Ei,i

)
V‖ < ε for all X ∈ F .

(b) Say ψ1 ⊕·· ·⊕ψM is strongly-approximately-unitarily-equivalent to φ1 ⊕·· ·⊕
φN over A , denoted by

ψ1 ⊕ψ2⊕·· ·⊕ψM ∼A φ1⊕φ2⊕·· ·⊕φN , mod K(R,τ)

if, for any finite subset F ⊆ A and ε > 0,

ψ1 ⊕ψ2⊕·· ·⊕ψM ∼(F ,ε)
A φ1⊕φ2⊕·· ·⊕φN , mod K(R,τ).

In this paper we address the question of approximate summands and “compact”
operators for semifinite von Neumann algebras R and commutative separable C*-
algebras A . In Section 2, relative to finite von Neumann algebras, we characterize
the approximate summands of ∗ -homomorphisms by virtue of a natural condition. Pre-
cisely, we prove the following theorem.

THEOREM 2.2. Suppose A is a separable unital commutative C*-algebra and
R is a finite von Neumann algebra acting on a separable Hilbert space H . Suppose
P is a projection in R , π : A → R is a unital ∗ -homomorphism and ρ : A → PRP
is a unital ∗ -homomorphism such that, for every X ∈ A , we have

R-rank(ρ (X)) � R-rank(π (X)) .

Then there is a unital ∗ -homomorphism γ : A → P⊥RP⊥ such that

γ ⊕ρ ∼a π in R.

In Section 3, for two ∗ -homomorphisms φ and ψ of a commutative C∗ -algebra
into a semifinite von Neumann factor R with a faithful normal semifinite tracial weight
τ , the main theorem states that the approximately unitary equivalence of φ and ψ im-
plies that these two ∗ -homomorphisms are strongly-approximately-unitarily-equivalent
over A (defined as in Definition 1.7). Precisely, we obtian the following theorem.

THEOREM 3.3. Let X be a compact metric space. Suppose that φ and ψ are
two unital ∗ -homomorphisms of C(X) into a countably decomposable, properly infi-
nite, semifinite factor R with a faithful normal semifinite tracial weight τ acting on a
separable Hilbert space H . Then the following are equivalent:

1. φ ∼a ψ in R ,

2. φ ∼C(X) ψ , mod K(R,τ) .
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2. Representations relative to finite von Neumann algebras

THEOREM 2.1. Suppose A is a separable unital commutative C*-algebra and
R is a type II1 factor with a faithful normal normalized trace τ , acting on a sepa-
rable Hilbert space H . Suppose P is a projection in R , π : A → R is a unital
∗ -homomorphism and ρ : A → PRP is a unital ∗ -homomorphism such that, for every
X ∈ A , we have

R-rank(ρ (X)) � R-rank(π (X)) .

Then there is a unital ∗ -homomorphism γ : A → P⊥RP⊥ such that

γ ⊕ρ ∼a π in R.

Proof. It follows from Lemma 2.2 of [12] that π and ρ can be extended to normal
unital ∗ -homomorphisms with domain, the second dual A ## of A , so that

R-rank(ρ(X)) � R-rank(π(X))

holds for all X ∈ A ## . Since A is separable, we can choose a countable family
{Q1,Q2, . . .} of projections in A ## such that

A ⊆C∗ (Q1,Q2, . . .) .

However, if we let A = ∑∞
k=1 3−kQk , then C∗ (A) = C∗ (Q1,Q2, . . .) . It is also true that,

for every X ∈C∗ (A) ,

R-rank(ρ (X)) � R-rank(π (X)) .

It is easily seen that if we prove the theorem for the restrictions of π and ρ to
C∗ (A) , we will have proved the theorem for π and ρ on A . Hence, we can assume
that A = C∗ (A) and 0 � A � 1.

Let S = ρ (A) ∈ PRP and T = π (A) ∈ R . Thus the following inequality

R-rank( f (S)P) � R-rank( f (T ))

holds for every f ∈C (σ (A)) . This leads to the inequality

τ ( f (S)P) � τ ( f (T ))

for every f ∈ C (σ (A))+ . The Riesz representation theorem implies that there exist
two regular Borel measures μρ and μπ on σ(A) such that the inequality

τ ( f (S)P) =
∫

σ(A)
f dμρ �

∫
σ(A)

f dμπ = τ ( f (T ))

holds for every f ∈C (σ (A)) . It follows from Lusin’s theorem that the preceding line
holds for every bounded Borel measurable function f : σ (A) → C . Hence μρ � μπ
and, for every z ∈ σ (A) , we have τ

(
χ{z} (S)

)
� τ

(
χ{z} (T )

)
.
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Since τ is faithful, the set LS of z ∈ σ (S) satisfying χ{z} (S) �= 0 is countable.
Hence ∑z∈LS

zχ{z} (S) is a direct summand of S and ∑z∈LS
zχ{z} (T ) is a summand of

T .
Since, for each z ∈ LS , the projection χ{z} (S) is unitarily equivalent to a sub-

projection of χ{z} (T ) , without loss of generality, ∑z∈LS
zχ{z} (S) can be assumed to

be a direct summand of T . Thus this summand can be removed from both S and T .
Therefore, it can be assumed that S has no eigenvalues.

By the same way, the set LT =
{
z ∈ σ (T ) : χ{z} (T ) �= 0

}
is countable. Hence

SχLT (S) = 0. Therefore, for every bounded nonnegative measurable function f : R →
R , we have

τ ( f (S)P) = τ
((

χC\LT
f
)
(S)P

)
� τ

(
χC\LT

(T ) f (T )
)
dμπ .

This yields that T can be replaced with T
(
1− χC\LT

(T )
)

and R can be replaced with(
1− χC\LT

(T )
)
R
(
1− χC\LT

(T )
)
.

Hence we can assume that χLT (T ) = 0.
Similarly, since the equality

f (S) =
(
χσ(S) f

)
(S)

holds for every bounded measurable function f , the operator T can be replaced with
χσ(S) (T )T . Hence we can assume that σ (S) = σ (T ) = σ (A) . Thus μρ � μπ are both
non-atomic measures with supports satisfying σ (S) = σ (T ) = σ (A) . Moreover, we
have the equalities

μρ (σ (A)) = τ (P) and μπ (σ (A)) = 1.

It follows that ν = μπ − μρ is a nonatomic measure and ν (σ (A)) = 1− τ(P) . Thus
there is a unital weak*-continuous ∗ -isomorphism ΔS : L∞ [0,τ(P)] → L∞(μρ) such
that for every f ∈ L∞[0,τ(P)] ,

∫
σ(A)

ΔS ( f )dμρ =
∫ τ(P)

0
f (x)dx.

Similarly, there is an isomorphism Δν : L∞ [τ (P) ,1] → L∞ (ν) such that the equality
∫

σ(A)
Δν ( f )dν =

∫ 1

τ(P)
f (x)dx.

holds for every f ∈ L∞[τ(P),1] .
Moreover, we can choose a maximal chain C = {Qt : 0 � t � 1− τ(P)} of pro-

jections in P⊥RP⊥ with τ(Qt) = t for 0 � t � 1− τ(P) . Thus there exists a weak*-
continuous unital ∗ -homomorphism Δ1 : L∞[τ(P),1]→W ∗ (C ) such that, for every t ∈
[0,1− τ(P)] , we have Δ1(χ[τ(P),τ(P)+t)) = Qt , and such that, for every f ∈ L∞ [τ(P),1]
we have

τ (Δ1 ( f )) =
∫ 1

τ(P)
f (x)dx.
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Define Δ : C(σ(A)) → PRP+P⊥RP⊥ ⊂ R by

Δ(h) = h(S)⊕ (Δ1 ◦Δ−1
ν
)
(h) .

If z(λ ) = λ is the identity map on σ(A) , then Δ(z) = S⊕B and

τ(Δ(h)) = τ(h(S))+ τ(Δ1(Δ−1
ν (h)))

=
∫

σ(A)
hdμρ +

∫ 1

τ(P)
Δ−1

ν (h)(x)dx

=
∫

σ(A)
hdμρ +

∫
σ(A)

hdν =
∫

σ(A)
hdμπ = τ(h(T )).

Hence for every h ∈ C(σ(A)) , we have τ(h(S⊕B)) = τ(h(T )) . Define a unital ∗ -
homomorphism γ : C(σ(A)) → P⊥RP⊥ by

γ (h) = P⊥h(B).

By Theorem 1.3, the above equality yields that ρ ⊕ γ ∼a π in R . This completes the
proof. �

THEOREM 2.2. Suppose A is a separable unital commutative C*-algebra and
R is a finite von Neumann algebra acting on a separable Hilbert space H . Suppose
P is a projection in R , π : A → R is a unital ∗ -homomorphism and ρ : A → PRP
is a unital ∗ -homomorphism such that, for every X ∈ A , we have

R-rank(ρ (X)) � R-rank(π (X)) .

Then there is a unital ∗ -homomorphism γ : A → P⊥RP⊥ such that

γ ⊕ρ ∼a π in R.

Proof. First, we suppose R is a II1 von Neumann algebra acting on a separable
Hilbert space H . By applying the central decomposition technique of von Neumann
algebras, we can then write

H = L2 (μ , �2)=
∫ ⊕

Ω
�2dμ (ω) and R =

∫ ⊕

Ω
Rωdμ (ω) ,

where (Ω,μ) is a probability space and each Rω is a II1 factor with a unique trace
τω . Furthermore, a faithful normal tracial state τ on R can be defined in the following
form

τ
(∫ ⊕

Ω
A(ω)dμ (ω)

)
=
∫

Ω
τω (A(ω))dμ (ω) .

Similarly, the projection P ∈ R can be written in the form

P =
∫ ⊕

Ω
P(ω)dμ (ω) ,
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where P(ω) is a projection in Rω a.e. (μ) . Thus PRP can be written in the form

PRP =
∫ ⊕

Ω
P(ω)RωP(ω)dμ (ω) .

By Theorem 2.1, we can assume that A =C∗ (A) and 0 � A � 1. Thus, for the identity
map z(λ ) = λ on σ(A) , suppose that π (z) = T and ρ (z) = S ∈ PRP . Then we can
write

T =
∫ ⊕

Ω
T (ω)dμ (ω)

and

S = PSP =
∫ ⊕

Ω
S (ω)dμ (ω) =

∫ ⊕

Ω
P(ω)S (ω)P(ω)dμ (ω) .

It follows that, for every f ∈C (σ (A)) ,

π ( f ) = f (T ) =
∫ ⊕

Ω
f (T (ω))dμ (ω) =

∫ ⊕

Ω
πω ( f )dμ (ω) .

If f is in C (σ (A)) and Qf (T ) is the projection onto the closure of the range of f (T ) ,
then

Qf (T ) =
∫ ⊕

Ω
Qf (T (ω))dμ (ω) .

Similarly, if Qf (S)P is the range projection of f (S)P , then

Qf (S)P =
∫ ⊕

Ω
Qf (S(ω))P(ω)dμ (ω) .

If R - rank( f (S)P) � R - rank( f (T )) , then Qf (S)P is Murray-von Neumann equiv-
alent to a subprojection of Qf (T ) . Hence, for every central projection D , we have
DQf (S)P is Murray-von Neumann equivalent to a subprojection of DQf (T ) . Thus for
every measurable subset E ⊂ Ω ,

τ
(
χEQf (S)P

)
� τ

(
χEQf (T )

)
,

which means that∫
E

τω
(
Qf (S(ω))P(ω)

)
dμ (ω) �

∫
E

τω
(
Qf (T (ω))

)
dμ (ω) .

This yields that
τω
(
Qf (S(ω))P(ω)

)
� τω

(
Qf (T (ω))

)
a.e. (μ) .

Since C(σ(A)) is separable, we conclude that, except for a subset of Ω of measure 0,
for all f ∈C(σ(A)) ,

τω
(
Qf (S(ω))P(ω)

)
� τω

(
Qf (T(ω))

)
.

We can now use Theorem 2.1 and measurably choose B(ω)= B(ω)∗ ∈P(ω)⊥RωP(ω)
⊥

and define

γω : C (A) → P(ω)⊥RωP(ω)
⊥

by γω ( f ) = f (B(ω))P(ω)⊥



1138 D. HADWIN AND R. SHI

so that
πω ∼a ρω ⊕ γω in Rω .

It easily follows that if we define γ ( f ) =
∫ ⊕

Ω γω ( f )dμ (ω) , then π ∼a ρ ⊕ γ in R .
This completes the proof. �

3. Representations relative to semifinite infinite von Neumann algebras

As shown in the proof of Theorem 2.1, it is sufficient to replace a separable com-
mutative C*-algebra with some certain C(X) on a compact metric space X .

In the rest of this section, we assume that R is a countably decomposable, prop-
erly infinite, semifinite von Neumann factor with a faithful, normal, semifinite tracial
weight τ . For an operator T ∈R , denote by R(T ) the range projection onto the closure
of the range of T . The following two lemmas are useful in the sequel.

LEMMA 3.1. For an operator A in R , the following are equivalent:

1. A is in K (R,τ);

2. |A| is in K (R,τ);

3. for every ε > 0 , τ(χ[0,ε)(|A|)) = ∞ and τ(χ[ε,∞)(|A|)) < ∞;

4. for every ε > 0 , τ(χ[0,ε](|A|)) = ∞ and τ(χ(ε,∞)(|A|)) < ∞ .

Proof. For an operator A in R , Let A = V |A| be the polar decomposition of A .
If A is in K (R,τ) , then so is |A| = V ∗A . On the other hand, if |A| is in K (R,τ) ,
then so is A = V |A| . That (2) ⇔ (3) is equivalent to (2) ⇔ (4) . Thus, we only need
to prove (2) ⇔ (3) . Suppose that |A| belongs to K (R,τ) and π is the canonical ∗ -
homomorphism of R onto R/K (R,τ) . If τ(χ[0,ε)(|A|)) < ∞ , then π(χ[0,ε)(|A|)) =
π(χ[0,ε)(|A|)|A|) = 0. It follows that

π(|A|) = π(χ[0,ε)(|A|)+ χ[ε,∞)(|A|)|A|).

Note that χ[0,ε)(|A|)+ χ[ε,∞)(|A|)|A| is invertible in R , so π(|A|) is invertible in
R/K (R,τ) . This is a contradiction. By a similar method, if |A| belongs to K (R,τ) ,
then

χ[ε,∞)(|A|) = χ[ε,∞)(|A|)|A||A|−1χ[ε,∞)(|A|) ∈ K (R,τ).

If χ[ε,∞)(|A|) ∈ K (R,τ) , then, for every n ∈ N , there exists a positive operator An

such that

(i) τ(R(An)) < ∞ ;

(ii) 0 � An � χ[ε,∞)(|A|) ;
(iii) ‖χ[ε,∞)(|A|)−An‖ < 1/n .
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It is easy to obtain that 0 � An � R(An) � χ[ε,∞)(|A|) . Thus

‖χ[ε,∞)(|A|)−R(An)‖ < 1/n.

A routine calculation shows that χ[ε,∞)(|A|) is unitarily equivalent to R(An) . Therefore,
we obtain that τ(χ[ε,∞)(|A|)) < ∞ holds for every ε > 0. By the definition of K (R,τ) ,
we can prove (3) ⇒ (2) . This completes the proof. �

LEMMA 3.2. Let X be a compact metric space. Suppose that φ and ψ are two
unital ∗ -homomorphisms of C(X) into a countably decomposable, properly infinite,
semifinite factor R with a faithful normal semifinite tracial weight τ acting on a sep-
arable Hilbert space H . If φ ∼a ψ in R , then, for f in C(X) ,

φ( f ) ∈ K (R,τ) ⇔ ψ( f ) ∈ K (R,τ).

Proof. First, we need to extend φ and ψ to φ̂ and ψ̂ as two normal unital ∗ -
homomorphisms of C(X)## into R , respectively. Given any open subset Δ of X , there
exists a continuous function f such that{

0 < f (x) � 1, if x ∈ Δ,

f (x) = 0, if x /∈ Δ.

Thus, the increasing sequence { f 1/n}n∈N converges pointwise to χΔ . Furthermore, if
{ f 1/n}n∈N are viewed as elements in C(X)## , then f 1/n converges to χΔ in the weak∗
topology. Since φ( f 1/n) = φ( f )1/n and {φ( f )1/n}n∈N is a monotone increasing se-
quence of positive operators in R with the upper bound IR . By applying Lemma 5.1.5
of [8], φ( f )1/n converges to the projection R(φ( f )) in the strong operator topology.
Therefore, φ can be extended to a unital normal ∗ -homomorphism φ̂ of B(X) , the ∗ -
subalgebra of all the bounded Borel functions on X , into R unambiguously such that
φ̂(χΔ) = R(φ( f )) . For details, the reader is referred to Theorem 5.2.6 and Theorem
5.2.8 of [8].

By applying Lemma 3.1, it is sufficient to suppose that φ( f ) is a positive element
in K (R,τ) . Thus, for every ε > 0, we have τ(χ(ε,∞)(φ( f ))) < ∞ . Note that there
exists a continuous function h defined as

h(x) =

⎧⎨
⎩

x− ε
x

, ε < x,

0, 0 � x � ε

such that

χ(ε,∞)(φ( f )) = χ(ε,∞)(φ̂( f )) = φ̂ (χ(ε,∞)( f )) = φ̂(χ(0,∞)(h ◦ f )) = R(φ(h ◦ f )).

The same equality holds for ψ and ψ̂ . By applying Theorem 1.3, the relation φ ∼a ψ
in R yields the following equality

τ(χ(ε,∞)(φ( f ))) = τ(R(φ(h ◦ f ))) = τ(R(ψ(h ◦ f ))) = τ(χ(ε,∞)(ψ( f ))).
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A similar argument ensures that

τ(χ[0,ε)(φ( f ))) = τ(χ[0,ε)(ψ( f ))).

Therefore, φ( f ) in K (R,τ) implies ψ( f ) in K (R,τ) , and vice versa. �

Suppose that φ and ψ as assumed are two unital ∗ -homomorphisms of C(X)
into R . Then, by Definition 1.7, the relation φ ∼C(X) ψ , mod K(R,τ) implies that
φ ∼a ψ in R . In the rest of this section, we aim to prove the converse of this.

THEOREM 3.3. Let X be a compact metric space. Suppose that φ and ψ are
two unital ∗ -homomorphisms of C(X) into a countably decomposable, properly infi-
nite, semifinite factor R with a faithful normal semifinite tracial weight τ acting on a
separable Hilbert space H . Then the following are equivalent:

1. φ ∼a ψ in R ,

2. φ ∼C(X) ψ , mod K(R,τ) .

Proof. Assume that φ and ψ are approximately unitarily equivalent relative to
R . By applying Theorem 1.3, for every f in C(X) , the equality

R-rank(φ( f )) = R-rank(ψ( f ))

holds and yields that τ(R(φ( f ))) = τ(R(ψ( f ))) . Thus, the equality kerφ = kerψ
holds. This ensures that ψ ◦ φ−1 is a well-defined unital ∗ -isomorphism of φ(C(X))
onto ψ(C(X)) and we denote this isomorphism by ρ . That is, for every A in φ(C(X))
and every f in C(X) ,

ρ(A) = ψ ◦φ−1(A), ρ(φ( f )) = ψ( f ).

Therefore, the following two statements are equivalent

1. φ ∼C(X) ψ , mod K(R,τ) ;

2. id ∼φ(C(X)) ρ , mod K(R,τ) , where id stands for the identity mapping.

In the following, we need to partition X into two parts in order to reduce the proof
into two special cases. Then we assemble them to complete the proof.

By a routine computation, it is easy to verify that the set

I = { f ∈C(X) : φ( f ) ∈ K (R,τ)}

is a closed ideal in C(X) . Note that, by Lemma 3.2, the equality

φ(C(X))∩K (R,τ) = ψ(C(X))∩K (R,τ)

holds. This implies that the equality I = { f ∈C(X) : ψ( f ) ∈ K (R,τ)} also holds.
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By applying Theorem 3.4.1 of [8], there exists a closed subset F of the compact
metric space X such that

I = { f ∈C(X) : f (x) = 0,∀x ∈ F}.
As shown in Lemma 3.2, we denote by φ̂ and ψ̂ the normal extensions of B(X) into
R induced by φ and ψ , respectively. Note that, for every f in C(X) , the projections
φ̂(χF) and ψ̂(χF) reduce φ( f ) and ψ( f ) , respectively.

To deal with one of the two special cases mentioned above, we adopt the classical
method initiated by Voiculescu. That is, for every A ∈ φ(C(X)) and B ∈ ψ(C(X)) , we
can define representations ρe and ρ ′

e as follows

ρe(A) � ψ ◦φ−1(A)|ran ψ̂(χF ), ρ ′
e(B) � φ ◦ψ−1(B)|ran φ̂(χF ).

Note that

ρe(φ(C(X))∩K (R,τ)) = ρ ′
e(ψ(C(X))∩K (R,τ)) = 0.

By applying Theorem 5.3.1 of [10], we have

idφ(C(X)) ∼φ(C(X)) idφ(C(X))⊕ρe, mod K(R,τ),

idψ(C(X)) ∼ψ(C(X)) idψ(C(X)) ⊕ρ ′
e, mod K(R,τ).

Therefore, for every f ∈C(X) , it follows that

φ( f ) ∼C(X) φ( f )⊕ (ψ( f )|ran ψ̂(χF )), mod K(R,τ) (3.1)

and
ψ( f ) ∼C(X) ψ( f )⊕ (φ( f )|ran φ̂(χF )), mod K(R,τ). (3.2)

Note that, for every f ∈C(X) , the equalities

φ( f )⊕ (ψ( f )|ran ψ̂(χF )) = (φ( f )|ran φ̂(χ(X−F))
)⊕ (φ( f )|ran φ̂(χF ))⊕ (ψ( f )|ran ψ̂(χF ))

(3.3)
and

ψ( f )⊕ (φ( f )|ran φ̂(χF )) = (ψ( f )|ran ψ̂(χ(X−F)))⊕ (ψ( f )|ran ψ̂(χF ))⊕ (φ( f )|ran φ̂(χF ))
(3.4)

hold. Thus, the above relations from (3.1) to (3.4) imply that, to prove that

φ ∼C(X) ψ , mod K(R,τ),

it is sufficient to prove that

φ |ran φ̂(χ(X−F))
∼C(X) ψ |ran ψ̂(χ(X−F)), mod K(R,τ).

And this is the other special case.
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For every f in C(X) , write

φ0( f ) � φ( f )|ran φ̂(χ(X−F))
and ψ0( f ) � ψ( f )|ran ψ̂(χ(X−F)).

Since X is a compact metric space and F is a closed subset of X , we can construct
a continuous function h such that

h(x) = dist(x,F), ∀x ∈ X ,

where dist(x,F) is the distance between x and F . This construction of h ensures that
φ(h) is bounded and belongs to K (R,τ) . By applying Lemma 3.1, it follows that:

1. for every positive integer k , the projection φ̂ (χ( 1
k ,∞)(h)) is finite, i.e.,

τ(φ̂ (χ( 1
k ,∞)(h))) < ∞;

2. for every positive integer k ,

φ̂(χ( 1
k ,∞)(h)) � φ̂ (χ( 1

k+1 ,∞)(h));

3. as k goes to infinity, the projection φ̂ (χ( 1
k ,∞)(h)) converges to φ̂ (χ(X−F)) in the

strong operator topology.

For a fixed δ > 0, define a closed subset Δ of X by

Δ � {x ∈ X : dist(x,F) = δ}.

Then φ̂(χΔ) is a sub-projection of certain φ̂(χ( 1
k ,∞)(h)) . Therefore, there exist at most

countably many such φ̂(χΔ) satisfying τ(φ̂ (χΔ)) > 0. This implies that there exists a
decreasing sequence {αk}∞

k=1 in the unit interval converging to 0 such that

φ̂ (χ(αk+1,αk)(h)) = φ̂ (χ(αk+1,αk](h)) = φ̂(χ[αk+1,αk](h)). (3.5)

Write α0 = +∞ . For every k in N ,

τ(φ̂ (χ(αk+1,αk](h))) < ∞.

Note that, for every k � 1, Δk � {x ∈ X : αk < dist(x,F) < αk−1} is open in X .
Thus, there exists a positive continuous function hk satisfying

1. 0 � hk � 1, ∀k � 1;

2. hk(x) > 0, ∀x ∈ Δk ;

3. hk(x) = 0, ∀x ∈ X\Δk ;

4. R(φ(hk)) = φ̂ (χ(αk,αk−1)(h)) .
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Since τ(R(φ(hk))) = τ(R(ψ(hk))) < ∞ , the reduced von Neumann algebras

Nk = φ̂ (χ(αk,αk−1](h))Rφ̂ (χ(αk,αk−1](h))

and
Mk = ψ̂(χ(αk,αk−1](h))Rψ̂(χ(αk,αk−1](h))

are both type II1 factors.
Furthermore, for every f in C(X) and k � 1, define two ∗ -homomorphisms φk

and ψk of C(X) into R by

φk( f ) = φ̂ (χ(αk,αk−1](h) f ), ψk( f ) = ψ̂(χ(αk,αk−1](h) f )

belonging to Nk and Mk , respectively.
Note that the equality τ(R(φ(hk f ))) = τ(R(ψ(hk f ))) implies

τ(R(φk( f ))) = τ(R(φ̂ (χ(αk+1,αk](h) f ))) = τ(R(ψ̂(χ(αk+1,αk](h) f ))) = τ(R(ψk( f ))).
(3.6)

Therefore, by applying (3.6) and Theorem 1.3, for all k � 1, it follows the relation

φk ∼C(X) ψk, mod K(R,τ). (3.7)

Since X is a compact matric space, there exists a sequence B = { fi}i∈N dense in
C(X) . By applying (3.7), there exists a sequence {Vmk}∞

m,k=1 of unitary operators from
Mk to Nk such that

‖V ∗
mkφk( fi)Vmk −ψk( fi)‖ <

1
2m · 1

2k
, 1 � i � m+ k.

Define a partial isometry Vm by Vm � ⊕∞
k=1Vmk . Then, it follows that

(a) for every m � 1,

V ∗
mVm = ψ0(1) and VmV ∗

m = φ0(1);

(b) for every f in C(X) and every m � 1 the limit
∞

∑
k=1

‖V ∗
mkφk( f )Vmk −ψk( f )‖ < ∞

shows that V ∗
mφ0( f )Vm −ψ0( f ) is in K(R,τ) ;

(c) for every f in C(X) , there corresponds a sufficiently large m , such that

‖V ∗
mφ0( f )Vm −ψ0( f )‖ <

1
2m .

By the definition, the above (a), (b), and (c) lead to that

φ0 ∼C(X) ψ0, mod K(R,τ).

Thus, combining the above reductions, we obtain that

φ ∼C(X) ψ, mod K(R,τ).

This completes the proof. �
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[14] HERMANN WEYL, Über beschränkte quadratische formen, deren differenz vollstetig ist, Rend. Circ.
Mat. Palermo 27 (1) (1909), 373–392.

(Received January 19, 2018) Don Hadwin
Department of Mathematics & Statistics

University of New Hampshire
Durham, 03824, US

e-mail: don@math.unh.edu

Rui Shi
School of Mathematical Sciences
Dalian University of Technology

Dalian, 116024, P. R. China
e-mail: ruishi@dlut.edu.cn;

ruishi.math@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


