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WEYL’S THEOREM AND ITS PERTURBATIONS

FOR THE FUNCTIONS OF OPERATORS
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(Communicated by R. Curto)

Abstract. In this paper, we study the stability of Weyl’s theorem under compact perturbations,
and characterize those operators satisfying that the stability of Weyl’s theorem does not hold for
any integer powers of the operator.

1. Introduction

Throughout this paper, C and N denote the set of complex numbers and the set of
positive integers, respectively. H will always denote an infinite dimensional separable
complex Hilbert space and let B(H) (K (H ) ) denote the algebra of all bounded linear
operators (compact operators) on H .

For an operator T ∈ B(H), we denote by σ(T ), N(T ) and R(T ) the spectrum,
the kernel and the range of T, respectively. Also, we write n(T ) = dimN(T ) and
d(T ) = codimR(T ). The ascent asc(T ) and the descent des(T ) of T are defined by

asc(T )= in f{n � 0 : N(Tn)= N(Tn+1)} and des(T )= in f{n � 0 : R(Tn)= R(Tn+1)},
respectively. Let

F+(H) := {T ∈ B(H) : n(T ) < ∞ and R(T ) is closed}
be the class of all upper semi-Fredholm operators, and let

F−(H) := {T ∈ B(H) : d(T ) < ∞ and R(T ) is closed}
be the class of all lower semi-Fredholm operators. The class of all semi-Fredholm
operators is defined by F±(H) := F+(H)∪F−(H) and the class of all Fredholm
operators is defined by

F (H) := F+(H)∩F−(H).

Also, the semi-Fredholm spectrum σSF(T ) is defined by

σSF(T ) = {λ ∈ C : T −λ I /∈ F±(H)}
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and let ρSF(T ) = C\σSF(T ) . If T is an upper(or lower) semi-Fredholm operator, the
index of T is written as ind(T ) = n(T )−d(T ) . As we all know, ρSF(T ) = ρSF(T +K)
and ind(T ) = ind(T +K) for any K ∈ K(H) . In addition, if T ∈ F+(H) , then there

exists an ε > 0 such that N(T −λ I) ⊆
∞⋂

n=1
R[(T −λ I)n] if 0 < |λ | < ε .

Recall that an operator T is said to be a Weyl operator if it is a Fredholm operator
of index zero and T is said to be a Browder operator if it is a Fredholm operator of finite
ascent and descent, equivalently, T is a Browder operator if and only if T is a Fredholm
operator and 0 is the boundary point of σ(T ) . The classes of operators defined above
generate the following spectra: The Weyl spectrum σw(T ) and the Browder spectrum
σb(T ) are defined by

σw(T ) = {λ ∈ C : T −λ I is not a Weyl operator},

σb(T ) = {λ ∈ C : T −λ I is not a Browder operator}.
Let ρw(T ) = C\σw(T ) and ρb(T ) = C\σb(T ) . The set of all normal eigenvalues of T
consists with σ0(T ) , that is, σ0(T ) = σ(T )\σb(T ) .

Let T ∈ B(H) . If σ is a clopen subset of σ(T ) , then there exists an analytic
Cauchy domain Ω such that σ ⊆ Ω and [σ(T )\σ ]∩Ω = /0 . We let E(σ ;T ) denote
the Riesz idempotent of T corresponding to σ , i.e.,

E(σ ;T ) =
1

2π i

∫
T

(λ I−T )−1dλ ,

where T = ∂Ω is positively oriented with respect to Ω in the sense of complex variable
theory. In this case, we denote by H(σ ;T ) = R(E(σ ;T )) . Clearly, if λ ∈ isoσ(T ) ,
then {λ} is a clopen subset of σ(T ) . We write H(λ ;T ) instead of H({λ};T ) ; if, in
addition, dimH(λ ;T ) < ∞ , then λ ∈ σ0(T ) .

It follows from [4] that Weyl’s theorem holds for T ∈ B(H) if there is an equality
σ(T )\σw(T ) = π00(T ) , where π00(T ) = {λ ∈ isoσ(T ) : 0 < n(T − λ I) < ∞} . Re-
call that Browder’s theorem ([6, Definition 1]) holds for T if σw(T ) = σb(T ) . Evi-
dently “Weyl’s theorem” implies “Browder’s theorem”. The study of Weyl’s theorem
for bounded linear operators has a long history. In 1909, Weyl ([16]) proved that Weyl’s
theorem held for self-adjoint operators. Later, this Weyl’s theorem has been studied by
many mathematicians. Variants and Perturbations of Weyl’s theorem have been con-
sidered by P. Aiena and M. T. Biondi([1]), R.Harte and W. Y. Lee ([6]) and others.
Nowadays, Weyl’s theorem has been extended to more and more different classes of
Banach and Hilbert space operators ([2], [3], [4], [9], [12]). Also Weyl’s theorem for
functions of operators and the stability of Weyl’s theorem under some compact opera-
tors are investigated by many mathematicians ([5]).

The organization of this paper is as follows. Using the property of generalized
Weyl spectrum which is defined in section 2, we investigate the stability of Weyl’s
theorem for T ∈ B(H) under compact perturbations. In addition, we characterize those
operators satisfying that the stability of Weyl’s theorem does not hold for any integer
powers of the operator.
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2. Main results

DEFINITION 2.1. Let T ∈ B(H) . We say that T is a generalized Weyl operator if
there exist two closed T invariant subspaces M and N such that H = M⊕N , where T
acts as a Weyl operator on M and acts as a quasinilpotent operator on N .

It is easy to verify that if T ∈ B(H) is a generalized Weyl operator, then there

exists an ε > 0 such that T −λ I is a Weyl operator and N(T −λ I)⊆
∞⋂

n=1
R[(T −λ I)n]

if 0 < |λ | < ε . Now we study a variant of the Weyl spectrum. Let

ρgw(T ) = {λ ∈ C : there exists an ε > 0 such that T − μI is generalized Weyl if

0 < |μ −λ |< ε}

and let σgw(T ) = C\ρgw(T ) . Clearly, ρgw(T ) is an open set and ρw(T )∪ isoσ(T )∪
isoσw(T ) ⊆ ρgw(T ) .

DEFINITION 2.2. Let T ∈ B(H) . We say that T has the stability of Weyl’s theo-
rem if T +K satisfies Weyl’s theorem for all K ∈ K (H ) .

LEMMA 2.1. ([11, Theorem 1.4]) Let T ∈ B(H) . Then for any ε > 0 , there exists
a K ∈ K (H ) with ‖K‖ < ε such that T +K does not satisfy Weyl’s theorem if and
only if at least one of the following conditions hold:

(1) T does not satisfy Weyl’s theorem;
(2) iso[σ(T )\σ0(T )] �= /0 ;
(3) ρw(T ) consists of infinitely many connected components.

By the similar way as in the proof of [11, Theorem 1.4], we can obtain the follow-
ing corollary whose proof is left to the reader.

COROLLARY 2.1. Let T ∈ B(H) . Then T + K satisfies Weyl’s theorem for all
K ∈ K (H ) if and only if the following conditions hold:

(1) T satisfies Weyl’s theorem;
(2) iso[σ(T )\σ0(T )] = /0 ;
(3) ρw(T ) is connected.

Here and elsewhere in this paper, for each λ0 ∈ C and for a δ > 0, we denote by
B(λ0;δ ) the neighborhood of λ0 as the center and δ as the radius, that is, B(λ0;δ ) =
{λ ∈ C : |λ −λ0| < δ} . Moreover, we write B0(λ0;δ ) = B(λ0;δ )\{λ0} .

LEMMA 2.2. Let T ∈ B(H) . Then T has the stability of Weyl’s theorem if and
only if ρgw(T ) = ρw(T ) is connected.

Proof. Assume T has the stability of Weyl’s theorem. Since ρgw(T ) ⊇ ρw(T ) is
clear, for the opposite inclusion we only need to show ρgw(T ) ⊆ ρw(T ). Suppose λ0 ∈
ρgw(T ). From the definition of ρgw(T ) , there exists an ε > 0 such that, for each λ ∈
B0(λ0;ε) , T −λ I is a generalized Weyl operator. Set λ ∈B0(λ0;ε), from the definition
of the generalized Weyl operator, there exists a δ > 0 such that B(λ ;δ ) ⊆ B0(λ0;ε)

and, for any μ ∈ B0(λ ;δ ) , T − μI is Weyl and N(T − μI) ⊆
∞⋂

n=1
R[(T − μI)n] . Since



1148 X. CAO, J. DONG AND J. LIU

T satisfies Weyl’s theorem, it follows that T −μI is a Browder operator, which implies
asc(T − μI) < ∞. Then, from [14, Theorem 3.4], T − μI is invertible. Now we claim
that λ ∈ isoσ(T )∪ ρ(T ). By Corollary 2.1, we have λ ∈ isoσ(T )∪ρ(T ) ⊆ ρw(T ),
which means λ0 ∈ isoσw(T )∪ρw(T ). Apply Corollary 2.1 again, it is easy to get that
isoσw(T )= /0 if T has the stability of Weyl’s theorem, so λ0 ∈ρw(T ). Hence ρgw(T )⊆
ρw(T ). Also, since T satisfies the stability of Weyl’s theorem, it follows from Corollary
2.1 that ρw(T ) is connected. Consequently, we can conclude that ρgw(T ) = ρw(T ) is
connected.

On the other hand, assume ρgw(T ) = ρw(T ) is connected. Since isoσ(T ) ⊆
ρgw(T ), it follows that isoσ(T ) = σ0(T ) = π00(T ) . Also, from [7, Corollary 1.14],
we can get that σ(T )\σw(T ) = σ(T )\σb(T ) = σ0(T ) . Thus, from Corollary 2.1, T
has the stability of Weyl’s theorem. �

Next, we will use σgw(T ) to investigate the stability of Weyl’s theorem for Tn for
any n ∈ N . In order to state our main theorem we first need to state the following fact.

REMARK 2.1. Let T ∈ B(H) . If intσgw(T ) = /0 , we can not conclude that Tn has
the stability of Weyl’s theorem for any n ∈ N . Here are two examples to explain this
conclusion.

(1) Suppose A = (ai j) ∈ B(�2) , where ai j = 1 for |i− j| = 1 and ai j = 0 for
|i− j| �= 1. Then σ(A) consists of the interval [−2, 2] of the real axis ([15, P286 ]).
Let T = A+2I

4 . Then intσgw(T ) = /0 . Also, for any n ∈ N , σgw(Tn) = σw(Tn) = [0,1]
is easily justified, which implies that ρgw(Tn) = ρw(Tn) is connected, and hence, from
Lemma 2.2, Tn has the stability of Weyl’s theorem for any n ∈ N .

(2) Let A ∈ B(�2) and B ∈ B(�2) be defined by:

A(x1,x2,x3, · · ·) = (0,x1,x2, · · ·), B(x1,x2,x3, · · ·) = (x2,x3,x4, · · ·),

and suppose T ∈ B(�2 ⊕ �2) and T =
(

A 0
0 B

)
. It is easy to verify intσgw(T ) = /0 .

In addition, since σgw(Tn) = σw(Tn) = {λ ∈ C : |λ | = 1} for any n ∈ N , we have
ρgw(Tn) = ρw(Tn) = {λ ∈ C : |λ | < 1}∪ {λ ∈ C : |λ | > 1} , which and is not con-
nected, then it follows from Lemma 2.2 that Tn does not have the stability of Weyl’s
theorem. �

The following theorems are concerned with the stability of Weyl’s theorem for Tn

for any n ∈ N.

THEOREM 2.1. Suppose T ∈ B(H) does not have the stability of Weyl’s theorem
and intσgw(T ) = /0 . If {μ ∈ C : μn = λ n} ⊆ σgw(T )∪ ρw(T ) for λ ∈ σgw(T ) and
n ∈ N , then Tn does not have the stability of Weyl’s theorem for any n � 2 .

Proof. Assume, to the contrary, Tn has the stability of Weyl’s theorem for some
n � 2. Then we will use the following four steps to get the contradiction.

Step 1. Browder’s theorem holds for T.
Obviously, we only need to show that ρw(T ) ⊆ ρb(T ) . Let λ1 ∈ ρw(T ) .
If λ1 = 0, then T is a Weyl operator, which implies that Tn is Weyl. Since Weyl’s

theorem holds for Tn, it follows that Tn is Browder and hence T is Browder.
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If λ1 �= 0, then there exists a δ > 0 such that, for each λ ∈ B0(λ1;δ ) , T −λ I

is a Weyl operator and N(T − λ I) ⊆
∞⋂

n=1
R[(T − λ I)n] . We choose λi ∈ C satisfying

λ n
i = λ n

1 for i = 2,3, · · · ,n . According to the condition that intσgw(T ) = /0, we can
find a λ21 ∈ B(λ2;δ ) such that λ21 ∈ ρgw(T ). From the definition of ρgw(T ) , there
exists a λ22 ∈ ρw(T )∩B0(λ2;δ ) , and thus there exists a δ2 > 0 such that B(λ22;δ2) ⊆
ρw(T )∩B0(λ2;δ ) . Similarly, we let λ31 ∈ B0(λ3;δ ) satisfy λ n

31 = λ n
22. Applying the

fact intσgw(T ) = /0 again, we can find a λ32 ∈ B(λ31;δ2) such that λ32 ∈ ρgw(T ). Then
there exists a λ33 ∈ ρw(T )∩B0(λ31;δ2) ⊆ ρw(T )∩B0(λ3;δ ) , and thus there exists a
δ3 > 0 such that B(λ33;δ3) ⊆ ρw(T )∩B0(λ3;δ ) . Take the same step and keep going,
for each λi(i = 2, · · · ,n) , there exists a λii ∈ ρw(T )∩B0(λi;δ ) , and thus there exists
a δi > 0 such that B(λii;δi) ⊆ ρw(T )∩B0(λi;δ ) . From the above mentioned, we can
choose λ ′

1 ∈B0(λ1;δ ) and λ ′
i ∈ B(λii;δi)(i = 2, · · · ,n) satisfying that λ ′n

1 = λ ′n
2 = · · ·=

λ ′n
n = μ and λ ′

i ∈ ρw(T )( i = 1,2, · · · ,n ). Then

Tn− μI = (T −λ ′
1I)(T −λ ′

2I) · · · (T −λ ′
nI)

is Weyl. Since Weyl’s theorem holds for Tn , we have Tn − μI is Browder, which
follows from [14, Theorem 7.2] that T −λ ′

1I is a Browder operator. Moreover, since

N(T − λ ′
1I) ⊆

∞⋂
n=1

R[(T − λ ′
1I)

n], we can conclude that T − λ ′
1I is invertible by [14,

Theorem 3.4]. Since δ can be small enough, it follows that λ1 ∈ ∂σ(T ) , and thus
λ1 ∈ ρb(T ) , hence Browder’s theorem holds for T .

Step 2. isoσw(T ) = /0.
Assume isoσw(T ) �= /0 . If λ1 ∈ isoσw(T ) , then it is clear that λ1 ∈ ρgw(T )∩

σw(T ) .
Case 1. λ1 = 0. Since Browder’s theorem holds for T, we can find a δ > 0 such

that σ1 = B(0;δ )∩σ(T ) is a clopen subset of σ(T ) and σ1 consists of 0 and at most
countable normal eigenvalues of T. If there exist limit points in σ1 , then 0 is the unique
limit point of σ1. Without loss of generality, we suppose dimH(σ1;T ) = ∞ . From [13,
Theorem 2.10], T can be represented as

T =
(

A ∗
0 B

)
H(σ1;T )
H(σ1;T )⊥ ,

where σ(A) = σ1 = {0}∪σ0(A) and σ(B) = σ(T )\σ1. It is not difficult to verify
that σ(A) = σw(A)∪σ0(A) . By [7, Theorem 3.48], there exists a compact operator K

acting on H(σ1;T ) such that σ(A+K) = σw(A+K) = {0}. Suppose K =
(

K 0
0 0

)
is

a compact operator. Then (T +K)n = Tn +K1 =
(

(A+K)n ∗
0 Bn

)
and 0 ∈ isoσ((T +

K)n) = isoσ(Tn +K1), where K1 = Tn−1K + · · ·+TKn−1 +Kn is a compact operator.
Since Tn has the stability of Weyl’s theorem, it follows from Lemma 2.2 that Tn +K1

is Weyl and hence T is a Weyl operator, which is in contradiction with the assumption
that 0 ∈ isoσw(T ). Therefore, in this case, isoσw(T ) = /0.

Case 2. λ1 �= 0. Let μ0 = λ n
1 = λ n

2 = · · · = λ n
n , where λi ∈ C(1 � i � n) . We

claim that λi ∈ ρgw(T ) for all 1 � i � n. In fact, if λi ∈ σgw(T ) for some 2 � i � n, it
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follows from {μ ∈ C : μn = λ n
i } ⊆ σgw(T )∪ρw(T ) that λ1 ∈ σgw(T )∪ρw(T ), which

is in contradiction with λ1 ∈ ρgw(T )∩ σw(T ) . Consequently, there exists a δ > 0
such that, for each λi , T − μiI is a generalized Weyl operator with any μi ∈ B0(λi;δ ) .
Since Browder’s theorem holds for T , it follows from the definition of the generalized
Weyl operator that B0(λi;δ ) ⊆ isoσ(T )∪ ρ(T ) . Let λ ′

1 ∈ B0(λ1;δ ), there exists a
λ ′

i ∈ B0(λi;δ ) ( i � 2) satisfying (λ ′
1)

n = (λ ′
2)

n = · · · = (λ ′
n)

n = μ . Without loss of
generality, suppose λ ′

i ∈ isoσ(T ) for all i = 1,2, · · · ,n. By [13, Theorem 2.10], T can
be written as

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

T1 0 0 · · · 0 0
0 T2 0 · · · 0 0
0 0 T3 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · Tn 0
0 0 0 · · · 0 Tn+1

⎞
⎟⎟⎟⎟⎟⎟⎠

H(λ ′
1;T )

H(λ ′
2;T )

H(λ ′
3;T )
· · ·

H(λ ′
n;T )

M

,

where σ(Ti) = {λ ′
i }(i = 1, · · · ,n) , M = H(σ ;T ) and σ = σ(T )\{λ ′

1,λ
′
2, · · · ,λ ′

n} . Con-
sequently,

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎝

Tn
1 0 0 · · · 0 0
0 Tn

2 0 · · · 0 0
0 0 Tn

3 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · Tn

n 0
0 0 0 · · · 0 Tn

n+1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and μ ∈ isoσ(Tn) , which yields that μ ∈ ρgw(Tn) = ρw(Tn) = ρb(Tn) from Lemma
2.2, and then T −λ ′

i I is Weyl for each i . Hence λi ∈ isoσw(T )∪ρw(T ) for any 1 �
i � n . Without loss of generality, we may suppose λi ∈ σ(T ) for all i = 1,2, · · · ,n
and let λi ∈ ρw(T ) for 2 � i � k and λ j ∈ isoσw(T ) for k + 1 � j � n. Note that
Browder’s theorem holds for T , if 2 � i � K , it follows that λi ∈ isoσ(T ) , if j = 1
or k + 1 � j � n , then there exists a δ j > 0 such that B(λ j;δ j)∩σ(T ) is a clopen
subset of σ(T ) and B(λ j;δ j)∩σ(T ) consists of λ j and countable normal eigenvalues
of T . Suppose σi = {λi} for 2 � i � k and σ j = B(λ j;δ j)∩σ(T ) for k + 1 � j � n
and j = 1. Without loss of generality, we suppose dimH(σ j;T ) = ∞ , and if there exist
limit points in σ j , then λ j is the unique limit point of σ j . From [7, Corollary 3.22]
and [13, Theorem 2.10] together, T has the following operator matrix form

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

T1 ∗ ∗ · · · ∗ ∗
0 T2 ∗ · · · ∗ ∗
0 0 T3 · · · ∗ ∗
· · · · · · · · · · · · · · · ∗
0 0 0 · · · Tn ∗
0 0 0 · · · 0 Tn+1

⎞
⎟⎟⎟⎟⎟⎟⎠

H(σ1;T )
H(σ2;T )
H(σ3;T )

· · ·
H(σn;T )

N

∼

⎛
⎜⎜⎜⎜⎜⎜⎝

T1 0 0 · · · 0 0
0 T2 0 · · · 0 0
0 0 T3 · · · 0 0
0 · · · · · · · · · · · · 0
0 0 0 · · · Tn 0
0 0 0 · · · 0 Tn+1

⎞
⎟⎟⎟⎟⎟⎟⎠

H(σ1;T )
H(σ2;T )
H(σ3;T )

· · ·
H(σn;T )

N

,

where σ(T1) = σ1 , σ(Ti) = {λi} for 2 � i � k , σ(Tj) = σ j for all k + 1 � j � n ,
N = H(σ ;T ) and σ = σ(T )\{σ1,σ2, · · · ,σn} .
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For any k+1 � j � n and j = 1, it follows from [7, Theorem 3.48] that there exist
compact operators Kj acting on H(σ j;T ) with σ(Tj +Kj) = {λ j} . Let

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1 0 · · · · · · · · · · · · · · · 0
0 0 · · · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · · · · 0
0 · · · · · · 0 · · · · · · · · · 0
0 · · · · · · 0 Kk+1 0 · · · 0
0 · · · · · · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · 0 Kn 0
0 · · · · · · · · · · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H(σ1;T )
H(σ2;T )

· · ·
H(σk;T )

H(σk+1;T )
· · ·

H(σn;T )
N

.

Then it is clear that K ∈ B(H) is a compact operator and
(T +K)n = Tn +K1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(T1 +K1)n 0 · · · · · · · · · · · · · · · 0
0 T2

n 0 · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · · · · 0
0 · · · 0 Tk

n 0 · · · · · · 0
0 · · · · · · 0 (Tk+1 +Kk+1)n 0 · · · 0
0 · · · · · · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · 0 (Tn +Kn)n 0
0 · · · · · · · · · · · · · · · 0 Tn

n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where K1 = Tn−1K + · · ·+TKn−1 +Kn is a compact operator. It is easy to verify that
σ(Tn

i ) = {λ n
i } = {μ0} (2 � i � k ) and σ((Tj +Kj)n) = {μ0} ( j = 1 and k+1 � j �

n ), but μ0 /∈ σ(Tn
n+1). Hence, μ0 ∈ isoσ((T +K)n) = isoσ(Tn + K1) ⊆ isoσw(Tn +

K1)∪ ρw(Tn + K1) = isoσw(Tn)∪ ρw(Tn). Note that Tn has the stability of Weyl’s
theorem, it then follows from Lemma 2.2 that μ0 ∈ ρgw(Tn) = ρw(Tn) = ρb(Tn) . Since

Tn− μ0I = (T −λ1I)(T −λ2I) · · · (T −λnI),

it follows that λi ∈ ρw(T ) for all 1 � i � n, which is in contradiction with λ j ∈
isoσw(T ) for j = 1 and k+1 � j � n . Hence isoσw(T ) = /0.

Step 3. ρgw(T ) = ρw(T ).
We only need to show that ρgw(T ) ⊆ ρw(T ) . Take λ0 ∈ ρgw(T ) , since Browder’s

theorem holds for T , then there exists a δ > 0 such thatB0(λ0;δ ) ⊆ isoσ(T )∪ρ(T ) .
Furthermore, it follows from isoσ(T )⊆ isoσw(T )∪ρw(T ) and isoσw(T ) = /0 together
that B0(λ0;δ ) ⊆ ρw(T ) , and thus λ0 ∈ isoσw(T ) ∪ ρw(T ) . Applying the fact that
isoσw(T ) = /0 again, we get λ0 ∈ ρw(T ), which yields ρgw(T ) ⊆ ρw(T ) .

Step 4. ρw(T ) is connected.
Assume ρw(T ) is not connected. Then there is a bounded connected component

Ω of ρw(T ) , it is clear that ∂Ω ⊆ σSF(T ) , where ∂Ω is the set of the boundary points
of Ω . From [10, Lemma 2.10], we can find a compact operator K1 such that T +K1 =(

N ∗
0 A

)
, where N is normal and σ(N) = σSF(T ) = ∂Ω . By [8, Theorem 3.1], we
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may choose a compact operator K2 such that T +K1 +K2 =
(

N ∗
0 A

)
and σ(N) = Ω ,

where N is a compact perturbation of N and Ω is the closure of Ω , and then Ω ⊆
σ(N)\σw(N) . If λ1 ∈ Ω ⊆ ρw(T ) , then T −λ1I is Weyl. As in the proof of “Step 1”
in the beginning of this theorem, there exists a small enough δ1 > 0 such that δ1 ⊆ Ω ,
and there exists a sequence {λ ′

i }n
i=1 ∈ ρw(T )∩B0(λi;δ1) such that (λ ′

1)
n = (λ ′

2)
n =

· · · = (λ ′
n)

n = μ . Suppose K = K1 +K2 . Then

(T +K)n− μI = Tn +K3− μI = (T +K−λ ′
1I)(T +K−λ ′

2I) · · · (T +K−λ ′
nI)

is Weyl, where K3 is a compact operator. Since Tn has the stability of Weyl’s theorem,
then (T +K)n−μI is Browder, which implies that T +K−λ ′

1I is a Browder operator.
Since λ1 ∈ ρw(T ) = ρw(T + K) and δ1 > 0 is small enough, so N(T + K − λ ′

1I) ⊆
∞⋂

n=1
R[(T +K−λ ′

1I)
n] for λ ′

1 ∈ B0(λ1;δ1) ⊆ Ω . From [14, Theorem 3.4], we get that

T +K−λ ′
1I is invertible. Now we can find a λ0 ∈ Ω such that T +K−λ0I is invertible,

which generates N −λ0I is injective. Moreover, since N −λ0I is Weyl, we now have
N−λ0I is consequently invertible. It is in contradiction with the fact that σ(N) = Ω .
So ρw(T ) is connected.

Combining step 3 and step 4 together, we can show that T has the stability of
Weyl’s theorem, which is a contradiction. Therefore Tn does not have the stability of
Weyl’s theorem for any n � 2. �

EXAMPLE 2.1. Let T ∈ B(�2⊕ �2) be defined as example 2 in Remark 2.1. Since
σgw(T ) = {λ ∈ C : |λ | = 1} , it follows that intσgw(T ) = /0 . In addition, T does not
have the stability of Weyl’s theorem and {μ ∈ C : μn = λ n} ⊆ σgw(T )∪ ρw(T ) for
λ ∈ σgw(T ) and n ∈ N . Hence, from Theorem 2.1, Tn does not have the stability of
Weyl’s theorem for any n � 2.

As an immediate application of Theorem 2.1, we have the following result.

COROLLARY 2.2. Let T ∈ B(H) . Suppose intσgw(T ) = /0 and T does not have
the stability of Weyl’s theorem. If for some k∈N , {μ ∈C : μk = λ k}⊆ σgw(T )∪ρw(T )
with λ ∈ σgw(T ) , then Tk does not have the stability of Weyl’s theorem.

REMARK 2.2. (1) If intσgw(T ) = /0 while intσ(T ) �= /0 , then T does not satisfy
Browder’s theorem.

In fact, if Browder’s theorem holds for T , we let λ0 ∈ intσ(T ) . Then there exists
a δ > 0 such that B(λ0;δ ) ⊆ σ(T ) . Since intσgw(T ) = /0 , we can find a λ1 ∈ B(λ0;δ )
satisfying λ1 ∈ ρgw(T ) , and from the definition of ρgw(T ) , there exists a λ2 ∈ B(λ0;δ )
such that T −λ2I is a Weyl operator. Since Browder’s theorem holds for T , if follows
that T −λ2I is a Browder operator, and then we can choose an element λ ∈ B(λ0;δ )
such that λ ∈ ρ(T ) , which is in contradiction with B(λ0;δ ) ⊆ σ(T ) .

(2) If σgw(T ) = /0 , then ρgw(T ) = C , but ρw(T ) �= C since σw(T ) is not an empty
set, it follows from Theorem 2.1 that T does not have the stability of Weyl’s theorem.

From the two cases and the proof of Theorem 2.1 together, we can immediately
get the following corollaries.
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COROLLARY 2.3. Let T ∈ B(H) . Then the following statements hold:
(1) If intσgw(T ) = /0 while intσ(T ) �= /0 , then Tn does not have the stability of

Weyl’s theorem for any n ∈ N;
(2) If σgw(T ) = {λ ∈ C : |λ | = R} for some R > 0 , then Tn does not have the

stability of Weyl’s theorem for any n ∈ N;
(3) If σgw(T ) = /0 , then Tn does not have the stability of Weyl’s theorem for any

n ∈ N .

COROLLARY 2.4. Suppose T does not have the stability of Weyl’s theorem. If
{μ ∈ C : μn = λ n} ⊆ σgw(T )∪ρ(T ) for λ ∈ σgw(T ) and n ∈ N , then Tn does not
have the stability of Weyl’s theorem for any n � 2 .

Proof. According to the condition that “{μ ∈ C : μn = λ n} ⊆ σgw(T )∪ρ(T ) for
λ ∈ σgw(T ) and n ∈ N”, we can conclude that Browder’s theorem holds for T . The
remaining steps of the proof is the same to the proof of Theorem 2.1. �

REMARK 2.3. The conditions in Theorem 2.1 are essential.
(1) The condition that “ intσgw(T ) = /0” is essential, which can be verified by the

following example.
Suppose A ∈ B(�2) is the forward shift and B ∈ B(�2) is the backward shift. Let

T ∈ B(�2⊕ �2⊕ �2) be defined by: T =

⎛
⎝A+ I 0 0

0 B+ I 0
0 0 A− I

⎞
⎠ . Then

(a) σgw(T ) = {λ ∈ C : |λ −1|= 1}∪{λ ∈ C : |λ +1|� 1} , thus intσgw(T ) �= /0 ;
(b) T does not have the stability of Weyl’s theorem since ρgw(T ) is not connected;
(c) {μ ∈ C : μn = λ n} ⊆ σgw(T )∪ρ(T ) for λ ∈ σgw(T ) and n ∈ N .
In addition, it is easy to show that σ(T 2) = σw(T 2) = σgw(T 2) = {reiθ : r �

2(1+ cosθ )} is connected. Hence, T 2 has the stability of Weyl’s theorem by Lemma
2.2.

(2) The condition that “T does not have the stability of Weyl’s theorem” is essen-
tial. We will give an example to explain the statement.

Let A ∈ B(�2) be defined as example (1) in Remark 2.1, and write T = A+2I
4 . It is

clear that
(a) intσgw(T ) = /0 ;
(b) {μ ∈ C : μn = λ n} ⊆ σgw(T )∪ρw(T ) for λ ∈ σgw(T ) and n ∈ N ;
(c) T has the stability of Weyl’s theorem since ρw(T ) = ρgw(T ) is connected.
However, since σ(Tn) = [0,1] , it follows that ρgw(Tn) = ρw(Tn) is connected.

From Lemma 2.2, we can conclude that Tn has the stability of Weyl’s theorem for any
n � 2.

(3) The condition that “{μ ∈C : μn = λ n}⊆ σgw(T )∪ρw(T ) for λ ∈ σgw(T ) and
n ∈ N” is essential. Here is an example.

Assume A ∈ B(�2) is defined as example (1) in Remark 2.1 and B ∈ B(�2) is

defined by B(x1,x2,x3, · · ·) = (0,x1,
x2
3 , x3

3 , · · ·) . Let T =
(

A+2I
4 0
0 B− I

)
. Then,

(a) intσgw(T ) = /0 ;
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(b) T does not have the stability of Weyl’s theorem since 0 /∈ ρw(T ) while 0 ∈
ρgw(T ) ;

(c) 1 ∈ σgw(T ) but −1 /∈ σgw(T )∪ρw(T ) .
For each n ∈ N , since σ(T 2n) = [0,1] , then ρgw(T 2n) = ρw(T 2n) is connected,

which implies that T 2n has the stability of Weyl’s theorem.

REMARK 2.4. (1) From the following example, we can find that the conditions in
Theorem 2.1 are only sufficient, but not necessary.

Suppose A ∈ B(�2) is the forward shift and B ∈ B(�2) is the backward shift, and

let T ∈ B(�2 ⊕ �2) be defined by T =
(

A+ I 0
0 B− I

)
. Obviously, T has the stability

of Weyl’s theorem, intσgw(T ) �= /0 and {μ ∈ C : μn = λ n} ⊆ σgw(T )∪ρw(T ) for λ ∈
σgw(T ) and n ∈ N . We claim that Tn does not have the stability of Weyl’s theorem for
any n � 2.

Indeed, for T 2n ∈ B(H)(n ∈ N) , let 0 < a < 2−2cos 2π
n and

λk = aie−
kπ
n i = aei( π

2 − kπ
n ), μk = aie

kπ
n i = aei( π

2 + kπ
n ), k = 1,2, · · · ,n−1.

Since λk and μk are symmetrical with respect to y axis, it follows that λk ∈ {λ ∈ C :
|λ −1|< 1} , μk ∈ {λ ∈ C : |λ +1|< 1} and ind(T −λkI)+ ind(T −μkI) = 0 for any
1 � k � n−1. Suppose that

T 2n−(ai)2n

= (T−aiI)(T+aiI)(T−λ1I)(T−μ1I)(T−λ2I)(T−μ2I) · · · (T−λn−1I)(T−μn−1I).

Then T 2n − (ai)2n is Weyl. But since T −λiI is not Browder, it follows that T 2n does
not have the stability of Weyl’s theorem for any n ∈ N .

For T 2n+1 ∈ B(H) , take λk = ie−
2kπ

2n+1 for k = 1,2, · · · ,2n . Note that λk and
λ2n−k+1 are symmetrical with respect to y axis, we have λi ∈ {λ ∈ C : |λ − 1| <
1}∪{λ ∈ C : |λ +1|< 1}∪ρ(T) and ind(T −λkI)+ ind(T −λ2n−k+1I) = 0. Let

T 2n+1− (i)2n+1 = (T − iI)(T −λ1I)(T −λ2I) · · · (T −λ2nI).

Then T 2n+1− (i)2n+1 is Weyl. But since T −λiI is not Browder, it follows that T 2n+1

does not have the stability of Weyl’s theorem for any n ∈ N .
(2) Suppose intσgw(T ) = /0 and Tn does not have the stability of Weyl’s theorem

for any n � 2. If {μ ∈ C : μn = λ n} ⊆ σgw(T )∪ρw(T ) for λ ∈ σgw(T ) and n ∈ N ,
we can not conclude that T does not have the stability of Weyl’s theorem. We use the
following example explain the statement:

Let A∈ B(�2) be defined as example (1) in Remark 2.1, and let T = e
A+2I

4 π i . Then
(a) σ(T ) = {λ ∈ C : λ = eiθ ,0 � θ � π} and intσgw(T ) = /0 ;
(b) {μ ∈ C : μn = λ n} ⊆ σgw(T )∪ρw(T ) for λ ∈ σgw(T ) and n ∈ N ;
(c) For any n � 2, σ(Tn) = {λ ∈ C : |λ | = 1} , which implies that σ(Tn) =

σw(Tn) = σgw(Tn) .
By Theorem 2.1, we can find that Tn does not have the stability of Weyl’s theorem

for any n � 2, but T has the stability of Weyl’s theorem.
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From the statement (2) in Remark 2.4, we want to get that Tn does not have the
stability of Weyl’s theorem for any n � 2 if and only if T does not have the stability of
Weyl’s theorem. First, let us explore the equivalence of the stability of Weyl’s theorem
for T and T 2 .

LEMMA 2.3. Suppose T ∈ B(H) with intσgw(T ) = /0 . If σgw(T ) is symmetrical
about the origin, then T has the stability of Weyl’s theorem if and only if T 2 has the
stability of Weyl’s theorem.

Proof. First, we claim that ρSF(T ) = ρw(T ) . From the inclusion we only need to
show that ρSF(T )⊆ ρw(T ) . If λ0 ∈ ρSF(T ) , then we can find a δ > 0 such that T −λ I
is a semi-Fredholm operator and ind(T −λ I) = ind(T −λ0I) if λ ∈ B(λ0;δ ) . Since
intσgw(T ) = /0 , it follows that there exists a λ1 ∈ B(λ0;δ ) such that λ1 ∈ ρgw(T ) , then
from the definition of ρgw(T ) , we can choose a λ2 ∈ B(λ0;δ ) such that T −λ2I is a
Weyl operator. Hence ind(T −λ0I) = ind(T −λ2I) = 0, which means that λ0 ∈ ρw(T ) .
So ρSF(T ) = ρw(T ) .

Suppose T has the stability of Weyl’s theorem.
(1) ρw(T 2) = [ρw(T )]2 is connected.
Obviously, ρw(T ) = ρgw(T ) is connected, which implies that [ρw(T )]2 is con-

nected. Note that ρSF(T ) = ρw(T ) , which follows that ρw(T 2) ⊆ [ρw(T )]2 . For the
converse inclusion, take μ0 = λ 2

0 ∈ [ρw(T )]2 with λ0 ∈ ρw(T ) . Since σw(T ) is sym-
metrical about the origin, it follows that −λ0 ∈ ρw(T ) . Hence μ0 ∈ ρw(T 2) , that is,
[ρw(T )]2 ⊆ ρw(T 2) .

(2) ρgw(T 2) = ρw(T 2) .
We only need to show ρgw(T 2) ⊆ ρw(T 2). Suppose μ0 ∈ ρgw(T 2) such that μ0 =

(±λ0)
2 , then we can get an ε > 0 such that T 2 − μI is a generalized Weyl operator if

μ ∈ B0(μ0;ε) . For any μ ∈ B0(μ0;ε) , if 0 < |μ ′ − μ | is small enough, then T 2 − μ ′I

is a Weyl operator and N(T 2− μ ′I) ⊆
∞⋂

n=1
R[(T 2− μ ′I)n] . Now we suppose

T 2− μ ′I = (T −λ ′
1I)(T + λ ′

1I),

where μ ′ = (±λ1)
2 . Since ρSF(T ) = ρw(T ) , then both T − λ ′

1I and T + λ ′
1I are

Weyl operators. By the condition that Weyl’s theorem holds for T , it follows that
T −λ ′

1I and T +λ ′
1I are Browder operators and hence T 2−μ ′I is a Browder operator.

Moreover, it follows from [14, Theorem 3.4] that T 2 − μ ′I is invertible, which means
that μ ∈ isoσ(T 2)∪ρ(T 2) . Let

T 2 − μI = (T −λ1I)(T + λ1I).

Then ±λ1 ∈ isoσ(T )∪ρ(T ) ⊆ ρgw(T ) = ρw(T ) , and thus T 2−μI is a Weyl operator.
Hence μ0 ∈ isoσw(T 2)∪ρw(T 2) . Since

T 2 − μ0I = (T −λ0I)(T + λ0I),

and ρSF(T ) = ρw(T ) , we can get ±λ0 ∈ isoσw(T )∪ρw(T ) ⊆ ρgw(T ) ⊆ ρw(T ) , and
thus μ0 ∈ ρw(T 2) .
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From the preceding proof and Lemma 2.2, we see that T 2 has the stability of
Weyl’s theorem.

Suppose T 2 has the stability of Weyl’s theorem. It follows from Corollary 2.2 that
T has the stability of Weyl’s theorem. �

If {μ ∈ C : μn = λ n} ⊆ σgw(T ) for λ ∈ σgw(T ) and n ∈ N , then σgw(T ) is
symmetrical about the origin. Combining Lemma 2.3 and Theorem 2.1 together, we
can immediately obtain the following theorem.

THEOREM 2.2. Suppose T ∈ B(H) with intσgw(T ) = /0 . If {μ ∈ C : μn = λ n} ⊆
σgw(T ) for λ ∈ σgw(T ) and n ∈ N , then

(1) Tn does not have the stability of Weyl’s theorem for any n � 2 if and only if
T does not have the stability of Weyl’s theorem;

(2) Tn has the stability of Weyl’s theorem for any n � 2 if and only if T has the
stability of Weyl’s theorem;

(3) Tn has the stability of Weyl’s theorem for any n ∈ N if and only if T k has the
stability of Weyl’s theorem for some k ∈ N .

By (2) in Remark 2.4, the condition “If {μ ∈ C : μn = λ n} ⊆ σgw(T ) for λ ∈
σgw(T ) and n ∈ N” in Theorem 2.2 is essential.
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