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ON THE COMMUTATIVITY OF TOEPLITZ

OPERATORS WITH HARMONIC SYMBOLS

HASHEM AL SABI AND ISSAM LOUHICHI

(Communicated by R. Curto)

Abstract. In this paper we prove that if the polar decomposition of a symbol f is truncated
above, i.e., f (reiθ ) = ∑N

k=−∞ eikθ fk(r) where the fk ’s are radial functions, and if the associated
Toeplitz operator Tf commutes with Tz2+ z2 , then Tf = Q(Tz2+ z2 ) where Q is a polynomial of
degree at most 1 .

1. Introduction

Let D be the unit disk of the complex plane C , and dA = rdr dθ
π , where (r,θ )

are polar coordinates, be the normalized Lebesgue measure, so that the area of D is
one. We define the analytic Bergman space, denoted L2

a(D) , to be the set of all analytic
functions on D that are square integrable with respect to the measure dA . It is well
know that L2

a(D) is a closed subspace of the Hilbert space L2(D,dA) and has the set
{√n+1zn | n � 0} as an orthonormal basis (see [4]). Thus, L2

a(D) is itself a Hilbert
space with the usual inner product of L2(D,dA) . Moreover the orthogonal projection,
denoted P , from L2(D,dA) onto L2

a(D) , often called the Bergman projection, is well
defined. Let f be a bounded function on D . We define on L2

a(D) the Toeplitz operator
Tf with symbol f by Tf (u) = P( f u), for any u ∈ L2

a(D) .
A natural question to ask is under which conditions is the product (in a sense

of composition) of two Toeplitz operators commutative? In other words, when is
Tf Tg = TgTf for given two Toeplitz operators Tf and Tg ? It is easy to see from the
definition of Toeplitz operators that if the symbol f is analytic and bounded on D ,
then Tf is simply the multiplication operator by f , i.e., Tf (u) = f u for all u ∈ L2

a(D) .
Thus, any two analytic Toeplitz operators (i.e., Toeplitz operators with analytic sym-
bols) commute with each other. Again from the definition of Toeplitz operators, we
have that the adjoint of Tf is Tf where f is the complex conjugate of f . It follows

that if f is antianalytic (i.e., f is analytic), then T ∗ is the multiplication operator by
f . Hence, if two symbols f , and g are antianalytic, then their associated Toeplitz op-
erators commute since their adjoints commute. This situation in which the symbols are
both analytic (resp. antianalytic) is known to us as the trivial situation. One might ask
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what if the symbols were harmonic but not necessarily analytic or antianalytic. The
answer to this question was given by S. Axler and Ž. Čučković in [1]. They proved the
following:

THEOREM 1. (Axler & Čučković) If f and g are two bounded harmonic func-
tions in D , then Tf Tg = TgTf if and only if

(a) both f and g are analytic in D , or

(b) both f and g are antianalytic in D , or

(c) there exist constants α,β ∈ C , not both 0 , such that α f + βg is a constant
function on D .

So basically if both symbols are harmonic, then the product is commutative only in
the trivial case. In fact, the sufficient condition (a) (resp. (b)) says that the operators Tf

and Tg (resp. their adjoints Tf and Tg ) are multiplication operators and so they com-
mute. For the sufficient condition (c), since Toeplitz operators are linear with respect
to their symbol, we can write Tf = αTg + β I where I = T1 is the identity operator on
L2

a(D) , and hence, since Tg commutes with itself and with the identity, Tg commutes
with Tf .

The next natural step was to relax the hypothesis of the previous theorem in order
to obtain results for a larger class of symbols. In [2], S. Axler, Ž. Čučković, and N. V.
Rao proved that analytic Toeplitz operators commute only with other such operators.
Their result can be stated as follows:

THEOREM 2. (Axler, Čučković & Rao) If g is a nonconstant analytic function in
D and if f is bounded in D such that Tf Tg = TgTf , then f must be analytic too.

For Theorem 2, the authors do not ask the function f to be harmonic but only
bounded. However this was not without cost. In fact the hypothesis on the symbol g is
stronger than the one in Theorem 1 since here g has to be analytic. Finally, the authors
conclude [2, p. 1953] by asking the following open problem: “Suppose g is a bounded
harmonic function in D that is neither analytic nor antianalytic. If f is a bounded
function in D such that Tf and Tg commute, must f be of the form αg+ β for some
constants α,β ?” The first partial answers to this problem can be found in [6] and [7].

2. Quasihomogeneous Toeplitz operators

DEFINITION 1. A symbol f is said to be quasihomogeneous of order p , and the
associated Toeplitz operator Tf is also called a quasihomogeneous Toeplitz operator of
order p , if f (reiθ ) = eipθ φ(r) , where φ is an arbitrary radial function.

The motivation behind considering such a family of symbols is that any function
f in L2(D,dA) has the following polar decomposition (Fourier series)

L2(D,dA) =
⊕
k∈Z

eikθ R,
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where R = L2([0,1],rdr) . In other words f (reiθ ) = ∑k∈Z eikθ fk(r) , where the fk ’s are
radial functions in R . So the study of quasihomogeneous Toeplitz operators will allow
us to obtain interesting results about Toeplitz operators with more general symbols.

Another interesting property of a quasihomogeneous operator is that it acts on the
elements zn of the orthogonal basis of L2

a(D) as a shift operator with weight. In fact, if
k ∈ Z+ (the case where k is a negative integer can be done in the exact same way) and
fk is a bounded radial function, then for any n � 0 we have

Teikθ fk
(zn) = P(eikθ fkz

n) = ∑
j�0

( j +1)〈eikθ fkz
n,z j〉z j

= ∑
j�0

( j +1)
(∫ 1

0

∫ 2π

0
fk(r)rn+ jei(n+k− j)θ dθ

π
rdr

)
z j,

Now, since ∫ 2π

0
ei(k+n− j)θ dθ

π
=
{

0 if k+n �= j
2 if k+n = j

we obtain that

Teikθ fk
(zn) = 2(n+ k+1)

∫ 1

0
fk(r)r2n+k+1drzn+k. (1)

The integral
∫ 1

0
fk(r)r2n+k+1dr that appears in the weight is known as the Mellin trans-

form.

DEFINITION 2. We define the Mellin transform of a function φ in L1([0,1],rdr) ,
denoted φ̂ , to be

φ̂ (z) =
∫ 1

0
φ(r)rz−1dr, for ℜz � 2.

It is well known that the Mellin transform is related to the Laplace transform via
the change of variable r = e−u . Moreover, for φ ∈ L1([0,1],rdr) , φ̂ is bounded in the
right-half plane {z ∈ C : ℜz � 2} and analytic in {z ∈ C : ℜz > 2} .

Using the Mellin transform, we can rewrite Equation (1) as follows

Teikθ fk
(zn) = 2(n+ k+1) f̂k(2n+ k+2)zn+k.

Therefore, we can summarize the above calculation in the following lemma which we
shall be using often.

LEMMA 1. Let k ∈ Z and n ∈ N be two integers, and let φ be a bounded radial
function in D . If k � 0 , then

Teikθ φ (zn) = 2(n+ k+1)φ̂(2n+ k+2)zn+k,

and if k < 0 , then

Teikθ φ (zn) =
{

0 if n < |k|
2(n+ k+1)φ̂(2n+ k+2)zn+k if n � |k|
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The Mellin transform is going to play a major role in our arguments for the proofs.
In fact a function is well determined by its Mellin transform on any arithmetic sequence.
We have the following important lemma that can be found in [5, Remark 2, p. 1466]

LEMMA 2. If φ ∈ L1([0,1],rdr) is such that φ̂ (an) = 0 , where (an)n is a se-
quence of integers satisfying the condition ∑n

1
an

= ∞ , then φ̂ (z) = 0 on {z ∈ C : ℜz >

2} , and therefore φ is the zero function.

In other words, the lemma is saying that the Mellin transform is injective, and
so two functions whose Mellin transforms coincide on an arithmetic sequence will be
equal to each other.

Another classical lemma which we shall use often can be stated as follows:

LEMMA 3. If H is a bounded analytic function in {z ∈ C : ℜz > 2} such that
H(z+ p) = H(z) , i.e., H is p-periodic, then H must be constant.

When dealing with the product of quasihomogeneous Toeplitz operators, we are
often confronted with the Mellin convolution of the radial functions in their quasiho-
mogeneous symbols. We define the Mellin convolution of two radial functions φ and
ψ in L1([0,1],rdr) , denoted φ ∗M ψ , to be

(φ ∗M ψ)(r) =
∫ 1

r
φ
(r

t

)
ψ(t)

dt
t

.

It is well known that the Mellin transform converts the Mellin convolution into a product
of Mellin transforms. In fact (

φ̂ ∗M ψ
)

(r) = φ̂(r)ψ̂(r), (2)

and so if φ and ψ are in L1(D,dA) , then so is φ ∗M ψ . We are now ready to present
our main result.

3. Commutant of Tz2+z2

In this section we shall extend the work started in [6] and [7]. We consider the
Toeplitz Tz2+z2 (the symbol z2 + z2 is harmonic but neither analytic nor antianalytic).
It is known to us that such operator raised to any power n � 2 is not a Toeplitz operator.
We shall prove that if the symbol f has truncated polar decomposition i.e., f (reiθ ) =
∑N

k=−∞ eikθ fk(r) where N is a positive integer, and if Tf commutes with Tz2+z2 , then
Tf is polynomial of degree at most one in Tz2+z2 . This result goes in the direction of
the open problem we mentioned previously. We would like to emphasize the fact that
though we are using the same tools and techniques as in [6], new ideas and tricks were
needed to overcome numerous obstacles we faced in the proof of the main result.

In our presentation of the main theorem, we shall proceed as follows: First we
prove that if f (reiθ ) = ∑N

k=−∞ eikθ fk(r) is such that Tf commutes with Tz2+z2 , then
N has to be an even number. Second, we shall demonstrate that this same N cannot
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exceed 4. Finally, we shall exhibit all the radial functions fk for k � 4, and shall show
that fk(r) = 0 for k �= {−2,0,2} , fk(r) = cr2 for k = {2,−2} , and f0(r) = c0 where
c,c0 are constants. Hence, by reconstructing the symbol f , we shall obtain that

f (reiθ ) = ce2iθ r2 + c0 + ce−2iθr2 = cz2 + c0 + cz2,

and therefore Tf = cTz2+z2 + c0I .

PROPOSITION 1. Let N be a positive odd integer. If f (reiθ ) = ∑N
k=−∞ eikθ fk(r) is

a nonzero symbol such that Tf commutes with Tz2+z2 , then fN(r) = 0 . In other words,

f is of the form f (reiθ ) = ∑M
k=−∞ eikθ fk(r) where M is even.

Proof. If Tf commutes with Tz2+z2 , then

Tz2+z2Tf (zn) = Tf Tz2+z2(zn), ∀n � 0,

or (
N

∑
k=−∞

Teikθ fk

)
Tz2+z2(zn) = Tz2+z2

(
N

∑
k=−∞

Teikθ fk

)
(zn), ∀n � 0.

In the above equation, the term with the highest degree is zn+N+2 . It comes on the
left hand side from the product TeiNθ fN

Tz2(z
n) only, and on the right hand side from the

product Tz2TeiNθ fN
(zn) only. Thus, by equality, we must have

TeiNθ fN
Tz2(z

n) = Tz2TeiNθ fN
(zn), ∀n � 0.

Since z2 is analytic, eiNθ fN must be analytic too. Which is possible if and only if
fN = cNrN , i.e., eiNθ fN = cNzN .

Redoing the same argument for the term in z of degree N +n−2, we obtain

cNTzNTz2(zn)+Tei(N−4)θ fN−4
Tz2(z

n) = cNTz2TzN (zn)+Tz2Tei(N−4)θ fN−4
(zn), ∀n � 0,

which, using Lemma 1, is equivalent to

cN
n−1
n+1

+2(n+N−1) f̂N−4(2n+N +2) = cN
n+N−1
n+N +1

+2(n+N−3) f̂N−4(2n+N−2),

for all n � 2. Thus, Lemma 2 implies

(z+2N−2) f̂N−4(z+N+2)−(z+2N−6) f̂N−4(z+N−2)= cN

[
z+2N−2
z+2N +2

− z−2
z+2

]
,

(3)
for ℜz � 4. Now, we introduce the function

f∗(r) = −4cNr2 1− r2N

1− r4 . (4)
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By direct calculation and simple algebraic operations, we can see that

f̂∗(z+4)− f̂∗(z) =
∫ 1

0
−4cN(r4 −1)

1− r2N

1− r4 rz−1dr

= 4cN

[
1

z+2
− 1

z+2N +2

]
= cN

[
z+2N−2
z+2N +2

− z−2
z+2

]
.

We denote by F(z) = (z+2N −6) ̂rN−2 fN−4(z) and G(z) = f̂∗(z) . Then Equation (3)
can be rewritten as

F(z+4)−F(z) = G(z+4)−G(z),

and so Lemma 3 implies

F(z) = cN−4 +G(z), for some constant cN−4,

or
(z+2N−6) ̂rN−2 fN−4(z) = cN−4 + f̂∗(z).

Since 1
z+2N−6 = r̂2N−6(z) , the above equation becomes

̂rN−2 fN−4(z) = cN−4r̂2N−6(z)+ r̂2N−6(z) f̂∗(z). (5)

Since by Equation (2), r̂2N−6(z) f̂∗(z) = ̂(r2N−6 ∗M f∗)(z) , we have

fN−4(r) = cN−4r
N−4 +

1
rN−2

(
r2N−6 ∗M f∗

)
(r).

Let us denote by

IN =
(
r2N−6 ∗M f∗

)
(r) = −4cN

∫ 1

r

r2N−6

t2N−6 t2
1− t2N

1− t4
dt
t

.

Next, we need to determine the conditions on N under which 1
rN−2 IN , as a function of

r , is in L1([0,1],rdr) . Otherwise cN must be zero, in which case fN(r) = 0 and we are
done. Since

1
rN−2 IN = rN−4

∫ 1

r

1
t2N−7

1− t2N

1− t4
dt � rN−4

∫ 1

r

1
t2N−7 dt, whenever N � 3,

it follows that
1

rN−2 IN � 1
8−2N

(
rN−4 − r4−N) .

Now the function on the right hand side of the above inequality is in L1([0,1],rdr) if
and only if

“N−4+1 � 0 and 4−N +1 � 0”, i.e., 3 � N � 5.
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But since N is an odd positive integer, we have either N = 3 or N = 5. We recall that
the previous inequality was obtained after the assumption N � 3, and so we shall look
at the case where N = 1 separately.

Case N = 1 . If we set N = 1, then

I1 = −4c1

∫ 1

r

r−4

t−4 t2
1− t2

1− t4
dt
t

=
−4c1

r4

[
4ln2−2

8
− r4

4
+

r2

2
− ln(1+ r2)

2

]
,

and we have

f−3(r) =
c−3

r3 +
−4c1

r3

[
4ln2−2

8
− r4

4
+

r2

2
− ln(1+ r2)

2

]
.

Now, it is easy to see that f−3 is in L1([0,1],rdr) if and only if c−3 = 0 and c1 = 0.
Hence f1(r) = c1r = 0.

Case N = 3 . If we let N = 3, then the terms in zn+1 comes from the following
equality:

c3Tz3Tz2(zn)+Te−iθ f−1
Tz2(z

n) = c3Tz2(zn)+Tz2Te−iθ f−1
(zn),∀n � 0.

In particular, for n = 1 we have

6 f̂−1(7)z2 = 2 f̂−1(3)z2 i.e., 3 f̂−1(7) = f̂−1(3). (6)

Since f̂−1(3) = r̂ f−1(2) , Equation (5) with N = 3 implies

r̂ f−1(2) = c−11̂(2)+ 1̂(2) f̂∗(2),

where f̂∗ is obtained from (4) with N = 3, and we have

f̂∗(2) = −4c3

∫ 1

0
r2 1− r6

1− r4 rdr = −4c3

(
2−3ln2

3

)
;

and similarly
f̂−1(7) = r̂ f−1(6) = c−11̂(6)+ 1̂(6) f̂∗(6),

with

f̂∗(6) = −4c3

∫ 1

0
r2 1− r6

1− r4 r5dr = −c3

(
31−30ln2

15

)
.

Therefore, (6) implies

1
2
c−1−

(
31−30ln2

30

)
c3 =

1
2
c−1−2

(
2−3ln2

3

)
c3,

which is possible if and only if c3 = 0, and hence f3(r) = 0.
Case N = 5 . If we set N = 5, then the terms in z of degree n+3 comes from the

following equation:

c5Tz5Tz2(zn)+Teiθ f1
Tz2(z

n) = c5Tz2Tz5(z
n)+Tz2Teiθ f1

(zn),∀n � 0.
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In particular, for n = 0 and using Lemma 1, we have

8 f̂1(7)z3 = c5
4
6
z3 +4 f̂1(3)z3,

or

8 f̂1(7) =
2
3
c5 +4 f̂1(3). (7)

Since f̂1(3) = r̂3 f1(0) , Equation (5) with N = 5 implies

r̂3 f1(0) = c1r̂4(0)+ r̂4(0) f̂∗(0),

where f̂∗ is obtained from (4) with N = 5, and we have

f̂∗(0) = −4c5

∫ 1

0
r2 1− r10

1− r4 r−1dr = −c5

(
3+4ln2

2

)
.

Similarly, we have

f̂1(7) = r̂3 f1(4) = c1r̂4(4)+ r̂4(4) f̂∗(4),

with

f̂∗(4) = −4c5

∫ 1

0
r2 1− r10

1− r4 r3dr = −c5

(−1+12ln2
6

)
.

Now, substituting f̂1(7) and f̂1(3) in Equation (7) , we obtain(
1−12ln2

6

)
c5 =

2
3
c5−

(
3+4ln2

2

)
c5,

which is true if and only if c5 = 0, and hence f5(r) = 0. This completes the proof. �

PROPOSITION 2. If f (reiθ ) = ∑N
k=−∞ eikθ fk(r) where N is a positive even integer,

is such that Tf commutes with Tz2+z2 , then N � 4 .

Proof. If Tf commutes with Tz2+z2 , then

Tz2+z2Tf (zn) = Tf Tz2+z2(zn), ∀n � 0

or ( N

∑
k=−∞

Teikθ fk

)
Tz2+z2(zn) = Tz2+z2

( N

∑
k=−∞

Teikθ fk

)
(zn), ∀n � 0.

In the above equation, the term with the highest degree is zn+N+2 . On the left-hand
side, this term comes from the product TeiNθ fN

Tz2(z
n) only, and on the right-hand side

it is obtained from the product Tz2TeiNθ fN
(zn) only. Thus, by equality, we must have

TeiNθ fN
Tz2(z

n) = Tz2TeiNθ fN
(zn), ∀n � 0.
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Since z2 is analytic, eiNθ fN is analytic too. This is possible if and only if fN = cNrN

i.e., eiNθ fN = cNzN .

Redoing the same argument for the term in z of degree N +n−2, we obtain

cNTzNTz2(zn)+Tei(N−4)θ fN−4
Tz2(z

n) = cNTz2TzN (zn)+Tz2Tei(N−4)θ fN−4
(zn), ∀n � 0,

which, using Lemma 1, becomes

cN
n−1
n+1

+2(n+N−1) f̂N−4(2n+N +2) = cN
n+N−1
n+N +1

+2(n+N−3) f̂N−4(2n+N−2)

for n � 2. Thus, Lemma 2 implies

2(z+N−1) f̂N−4(2z+N+2)−2(z+N−3) f̂N−4(2z+N−2) = cN

[ z+N−1
z+N +1

− z−1
z+1

]
for ℜz � 2. Now, if we let F and G to be

F(z) = 2(z+N−3) f̂N−4(2z+N−2) and G(z) = cN

N
2 −1

∑
i=0

z−1+2i
z+1+2i

,

the the previous equation can be written as

F(z+2)−F(z) = G(z+2)−G(z), for ℜz � 2.

Hence, by Lemma 3 we have the following,

2(z+N−3) f̂N−4(2z+N−2) = cN−4 +

N
2 −1

∑
i=0

z−1+2i
z+1+2i

,

or

f̂N−4(2z+N−2) =
cN−4

2(z+N−3)
+

cN

2(z+N−3)

N
2 −1

∑
i=0

z−1+2i
z+1+2i

.

At this point we shall assume N � 6 and we shall prove that in this case fN−4 will not
be in L1([0,1],rdr) unless cN = 0 and so fN(r) = 0. Therefore N shall be strictly less



1168 H. AL SABI AND I. LOUHICHI

than 6 and because N is even we shall conclude that N � 4. If N � 6, then

f̂N−4(2z+N−2) =
cN−4

2(z+N−3)
+ cN

[ 1
2(z+N−1)

+
z+N−5

2(z+N−3)2 +
1

2(z+N−3)

N
2 −3

∑
i=0

z−1+2i
z+1+2i

]
= cN−4r̂N−4(2z+N−2)+ cN

[
r̂N(2z+N−2)

+r̂N−4(2z+N−2)+ ̂rN−4 lnr(2z+N−2)

+
1
2

N
2 −3

∑
i=0

1
z+N−3

+
1
2

N
2 −3

∑
i=0

2
N−4−2i

( 1
z+N−3

− 1
z+2i+1

)]
= cN−4r̂N−4(2z+N−2)+ cN

[
r̂N(2z+N−2)

+r̂N−4(2z+N−2)+ ̂rN−4 lnr(2z+N−2)

+
(

N
2
−3

)
r̂N−4(2z+N−2)

+

N
2 −3

∑
i=0

2
N−4−2i

(
r̂N−4(2z+N−2)− ̂r4i−N+4(2z+N−2)

)]
.

Hence,

fN−4(r) = cN−4r
N−4 + cN

[
rN +

(
N
2
−2

)
rN−4 + rN−4 lnr

+

N
2 −3

∑
i=0

2
N−4−2i

(
rN−4 − r4i−N+4

)]
.

Now, the term r4i−N+4 is in L1([0,1],rdr) if and only if 4i−N+4 � −1 with 0 � i �
N
2 −3. Otherwise the constant cN must be zero. In particular, for i = 0, we must have
−N +4 � −1, i.e., N � 5. Therefore N cannot be greater than or equal to 6, otherwise
cN = 0. Since N is even and N < 6, we deduce that N � 4, i.e., N = 4 or N = 2 �

We are now ready to state our main result. This gives a partial answer to the open
problem, by S. Axler, Ž. Čučković and N. V. Rao [2, p. 1953], mentioned earlier in the
introduction.

THEOREM 3. If f (reiθ ) = ∑N
k=−∞ eikθ fk(r) is such that Tf Tz2+z2 = Tz2+z2Tf then

Tf is a polynomial of degree at most one in Tz2+z2 . In other words, f (z) = c2(z2 +
z2)+ c0 where c2,c0 are constants.

Proof. From the previous propositions we know that N is even and N � 4. We
shall prove that fk(r) = 0 for all k �= {−2,0,2} , f0(r) = c0 , and f2(r) = c2r2 = f−2(r)
for some constants c0 and c2 .
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Since Tf commutes with Tz2+z2 , we have

Tz2+z2Tf (zn) = Tf Tz2+z2(zn), ∀n � 0

or ( 4

∑
k=−∞

Teikθ fk

)
Tz2+z2(zn) = Tz2+z2

( 4

∑
k=−∞

Teikθ fk

)
(zn), ∀n � 0. (8)

In the equation above, the term in z with the highest degree is zn+6 , and it is coming
from the product of Tei4θ f4

Tz2(z
n) on the left hand side, and from Tz2Tei4θ f4

(zn) on the
right hand side. Thus, by equality, we must have

Tei4θ f4
Tz2(z

n) = Tz2Tei4θ f4
(zn), ∀n � 0

Since z2 is analytic, ei4θ f4 must be analytic as well by Theorem 2, which is possible
if and only if f4(r) = c4r4 , i.e., Te4iθ f4

= c4Tz4 . Next, we shall prove that f0 = c0 and

f4(r) = 0. In (8) , the terms in zn+2 come from the following equality

c4Tz4Tz2(zn)+Tf0Tz2(z
n) = c4Tz2Tz4(z

n)+Tz2Tf0(z
n), ∀n � 0 (9)

which, using Lemma 1 and Lemma 2, is equivalent to

2(z+3) f̂0(2z+6)−2(z+1) f̂0(2z+2) = c4

[ z+3
z+5

− z−1
z+1

]
, for ℜz � 2.

If we let F(z) = 2(z+ 1) f̂0(2z+ 2) and G(z) = c4

[ z−1
z+1

+
z+1
z+3

]
, then the previous

equation can be written as

F(z+2)−F(z) = G(z+2)−G(z).

Hence, Lemma 3 implies

F(z) = c0 +G(z), for some constant c0.

Therefore

f̂0(2z+2) =
c0

2(z+1)
+

c4

2(z+1)

[ z−1
z+1

+
z+1
z+3

]
=

c0

2(z+1)
+

c4

2

[ 1
z+1

− 2
(z+1)2 +

1
z+3

]
.

Since r̂m(z) = 1
z+m and r̂m lnr(z) = − 1

(z+m)2 for any integer m , the above equality

becomes

f̂0(2z+2) = (c0 + c4)1̂(2z+2)+ c4

[
r̂4(2z+2)+4l̂nr(2z+2)

]
. (10)

Now, if we take n = 0 in Equation (9) and apply Lemma 1, we obtain

6 f̂0(6) =
6c4

10
+2 f̂0(2). (11)
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Since

f̂0(2) =
c0 + c4

2
− 5c4

6
,

and
f̂0(6) =

c0 + c4

6
− c4

10
,

Equation (11) becomes

6c4

10
+ c0 + c4− 5c4

3
=

6c4

10
+ c0 + c4− 2c4

3
.

But, it is easy to see that the above equality is possible if and only if c4 = 0 and therefore
f4(r) = 0, while Lemma 2 and Equation (10) imply that f0(r) = c0 .

Next, we shall prove that f−4(r) = 0, and consequently f−4+4k(r) = 0, ∀k � −1.
In (8) , the terms zn−2 come from the product of Tf0 with Tz2 and the product of Tz2

with Te−4iθ f−4
. Thus, we must have

Tf0Tz2(zn)+Te−4iθ f−4
Tz2(z

n) = Tz2Tf0(z
n)+Tz2Te−4iθ f−4

(zn),∀n � 0.

Using Lemma 1, we obtain that for n � 4

2(n−1) f̂−4(2n+2) − 2(n−3) f̂−4(2n−2)

= 2(n−1) f̂0(2n+2)− 4(n−1)2

2n+2
f̂0(2n−2)

= 2(n−1)
c0

2n+2
− 4(n−1)2

2n+2
c0

2n−2
= 0.

By letting F(z) = 2(z−3) f̂−4(2z−2) , the previous equation and Lemma 2 imply

F(z+2)−F(z) = 0, for ℜz � 4,

and so Lemma 3 yields

F(z) = c−4, for some constant c−4.

Thus
2(z−3) f̂−4(2z−2) = c−4,

or
f̂−4(2z−2) =

c−4

2z−6
= c−4r̂−4(2z−2), for ℜz � 4.

Hence Lemma 2 implies f4(r) = c−4r−4 . But since r−4 /∈ L1([0,1],rdr) , we must
have c−4 = 0, and therefore f−4(r) = 0. Now in (8) , the terms in zn−6 come from
Te−8iθ f−8

Tz2(z
n) and Tz2Te−8iθ f−8

(zn) only because Te−4iθ f−4
= 0, and so

Te−8iθ f−8
Tz2(z

n) = Tz2Te−8iθ f−8
(zn),∀n � 0,
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i.e., Te−8iθ f−8
commutes with Tz2 , and hence by Theorem 2 we conclude that f−8(r) =

0. Similarly, using the same argument, we prove that f−4+4k(r) = 0 for all k � −1.
Next, we shall prove that f−1(r) = 0 = f−3(r) , and consequently f−1+4k(r) = 0

for all k � −1. In (8) , the terms in zn+5 come only from the product of Te3iθ f3
with

Tz2 . Thus, Theorem 2 implies f3(r) = c3r3 and so Te3iθ f3
= c3Tz3 . Similarly, the terms

in zn+1 come from the product of c3Tz3 with Tz2 and the product of Te−iθ f−1
with Tz2 .

Thus we must have

c3Tz3Tz2(zn)+Te−iθ f−1
Tz2(z

n) = c3Tz2Tz3(z
n)+Tz2Te−iθ f−1

(zn) ∀n � 0, (12)

which, using Lemma 1, is equal to

c3
2(n−2)
2n+2

+2(n+2) f̂−1(2n+5) = c3
2(n+2)
2n+8

+2n f̂−1(2n+1),∀n � 2,

or

2(n+2) f̂−1(2n+5)−2n f̂−1(2n+1) = c3

[n+2
n+4

− n−1
n+1

]
,∀n � 2.

Now, Lemma 2 implies

(z+4)r̂ f−1(z+4)− zr̂ f−1(z) = c3

[ z+4
z+8

− z−2
z+2

]
, for ℜz � 4. (13)

Here, we introduce a new function f∗(r) = −4c3r
2 1− r6

1− r4 , which clearly is in

L1([0,1],rdr) . By a direct calculation of the Mellin transform of (r4 − 1) f∗ , we ob-
tain

̂(r4 −1) f∗(z) = 4c3

∫ 1

0
(1− r4)

1− r6

1− r4 rz+1dr

= c3

[ 4
z+2

− 4
z+8

]
= c3

[ z+4
z+8

− z−2
z+2

]
.

Thus Equation (13) can be written as

(z+4)r̂ f−1(z+4)− z f̂−1(z) = ̂(r4 −1) f∗(z) = r̂4 f∗(z)− f̂∗(z) = f̂∗(z+4)− f̂∗(z).

If we let F(z) = zr̂ f−1(z) , then the equation above if simply

F(z+4)−F(z) = f∗(z+4)− f∗(z),

and so Lemma 3 implies

F(z) = c−1 + f∗(z), for some constant c−1.

Thus

r f̂−1(z) =
c−1

z
+

f̂∗(z)
z

= c−11̂(z)+ 1̂(z) f̂∗(z). (14)
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Now, using the Mellin convolution property (2) , we have

1̂(z) f̂∗(z) = 1̂ ∗M f∗(z)

=
∫ 1

r
1−
(r

t

)
f∗(t)

dt
t

= −4c3

∫ 1

r
t2

1− t6

1− t4
dt
t

= −4c3

[(1
2

+
ln2
2

)
−
(r4

4
+

ln(1+ r2)
2

)]
.

Hence, Equation (14) and Lemma 2 imply

r f−1(r) = c−1−4c3

[(1
2

+
ln2
2

)
−
(r4

4
+

ln(1+ r2)
2

)]
,

or

f−1(r) =
c−1

r
− c3

[(2+2ln2
r

)
−
(
r3 +

2ln(1+ r2)
r

)]
Now in Equation (12) , if we set n = 0 and apply Lemma 1, we obtain

4 f̂−1(5) = 4c3r̂2(6), (15)

and so Equation (14) implies

f̂−1(5) = r̂ f−1(4) = c−11̂(4)+ 1̂(4) f̂∗(4),

where

f̂∗(4) = −4c3

∫ 1

0
r2 1− r6

1− r4 r3dr = c3

(1
2
−2ln2

)
.

Thus Equation (15) becomes

c−1

4
+

c3

4

(
1
2
−2ln2

)
=

c3

8
,

which is equivalent to
c−1−2c3 ln2 = 0. (16)

Again, if we take n = 1 in Equation (12) and apply Lemma 1, we obtain

8 f̂−1(7) = 6c3r̂2(8)+2 f̂−1(3),

which, using Equation (14) , is equivalent to

6
[
c−11̂(6)+ 1̂(6) f̂∗(6)

]
= 2

[
c−11̂(2)+ 1̂(2) f̂∗(2)

]
+

6c3

10
(17)

with

f̂∗(6) = −4c3

∫ 1

0
r2 1− r6

1− r4 r5dr = −4c3

(31
60

− ln2
2

)
,
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and

f̂∗(2) = −4c3

∫ 1

0
r2 1− r6

1− r4 rdr = c3

(
2ln2− 8

3

)
.

After substituting f̂∗(6) and f̂∗(2) in Equation (17) and simplifying, we obtain

2c−1 +
(

2ln2− 8
3

)
c3 = 0. (18)

But it is easy to see that equations (16) and (18) are both satisfied if and only if c−1 =
c3 = 0, because the determinant ∣∣∣∣1 −2ln2

1 2ln2− 8
3

∣∣∣∣ �= 0.

Therefore f−1(r) = 0 = f3(r) . Now in (8) , the terms in zn−3 come only from the
product of Te−5iθ f−5

with Tz2 because Te−iθ f−1
= 0, ans so Te−5iθ f−5

commutes with
Tz2 , which by Theorem 2 is possible only if f−5(r) = 0. Repeating the same argument,
we show that f−1+4k(r) = 0, ∀k � −1.

Next, we shall prove that f−3(r) = 0 = f1(r) , and consequently f−3+4k(r) = 0
for all k � −1. In (8) , the terms in zn+3 come from the product of Teiθ f1

with Tz2

only, hence f1(r) = c1r for some constant c1 . Now, the terms in zn−1 come from the
product of Te−3iθ f−3

with Tz2 and the product of Teiθ f1
= c1Tz with Tz2 . Therefore we

must have

c1TzTz2(zn)+Te−3iθ f−3
Tz2(z

n) = c1Tz2Tz(zn)+Tz2Te−3iθ f−3
(zn) ∀n � 0,

which, using Lemma 1, implies

c1
n−1
n+1

zn−1 +2n f̂−3(2n+3)zn−1 = c1
n

n+2
zn−1 +2(n−2) f̂−3(2n−1)zn−1, ∀n � 3.

It follows that,

2n f̂−3(2n+3)−2(n−2) f̂−3(2n−1) = c1

[ n
n+2

− n−1
n+1

]
,∀n � 3.

Applying Lemma 2, the previous equation becomes

(z+4) f̂−3(z+7)− z f̂−3(z+3) = c1

[ z+4
z+8

− z+2
z+6

]
, for ℜz � 2,

or

(z+4)r̂3 f−3(z+4)− zr̂3 f−3(z) = −4c1

[ 1
z+8

− 1
z+6

]
, for ℜz � 2. (19)
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Here we let f∗(r) = −4c1r
6 1− r2

1− r4 . Then

f̂∗(z+4)− f̂∗(z) = r̂4 f∗(z)− f̂∗(z)

= ̂(r4−1) f∗(z)

= 4c1

∫ 1

0

(1− r4)r6(1− r2)
(1− r4)

rz−1dr

= −4c1

[ 1
z+8

− 1
z+6

]
.

Thus, Equation (19) can be written as

F(z+4)−F(z) = f̂∗(z+4)− f̂∗(z)

where F(z) = zr̂3 f−3(z) . So using Lemma 3, we obtain

zr̂3 f−3(z) = c−3 + f̂∗(z), for some constant c−3.

Now, the Mellin convolution property (2) implies

r̂3 f−3(z) = c−31̂(z)+ 1̂(z) f̂∗(z) = c−31̂(z)+ ̂(1 ∗M f∗)(z),

with

̂(1 ∗M f∗)(z) =
∫ 1

r
1
(r

t

)
f∗(t)

dt
t

= −4c1

∫ 1

r

t6(1− t2)
1− t4

dt
t

= −2c1

[(
ln2− 1

2

)
+
(
3r2− r4

2
− ln(1+ r2)

)]
.

Hence,

r̂3 f−3(z) = c−31̂(z)−2c1

[(
ln2− 1

2

)
+
(
3r2− r4

2
− ln(1+ r2)

)]
,

or

f−3(r) =
c−3

r3 − c1

[(2ln2−1
r3

)
+
(6

r
− r− ln(1+ r2)

r3

)]
.

But clearly f−3 is not in L1([0,1],rdr) unless c−3 = 0 and c1 = 0, and therefore
f−3(r) = 0 and f1(r) = 0. Now, in (8) , the terms in zn−5 come from the product of
Te−7iθ f−7

with Tz2 only because Te−3iθ f−3
= 0. Thus Te−7iθ f−7

must commute with Tz2 ,
and hence by Theorem 2 we have that f−7(r) = 0. Similarly, we prove that f−3+4k(r) =
0 for all k � −2.

Now going back to Equation (8) , the terms in zn+4 come only from the product
of Tei2θ f2

with Tz2 , and so these operators must commute. Thus, Theorem 2 implies
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that f2(r) = c2r2 for some constant c2 , i.e., Te2iθ f2
= c2Tz2 . Similarly, the terms in

zn come from the products of Te−2iθ f−2
with Tz2 and from the product of Tz2 with

Tei2θ f2
= c2Tz2 , and hence by equality we have

c2Tz2Tz−2(zn)+Te−2iθ f−2
Tz2(z

n) = c2Tz2Tz2(z
n)+Tz2Te−2iθ f−2

(zn),∀n � 0.

Thus, Lemma 1 implies

c2
n−1
n+1

+2(n+1) f̂−2(2n+4) = c2
n+1
n+3

+2(n−1) f̂−2(2n),∀n � 2.

Applying Lemma 2 to the previous equation, we obtain

2(z+1) f̂−2(2z+4)−2(z−1) f̂−2(2z) = c2

[ z+1
z+3

− z−1
z+1

]
, for ℜz � 2,

which can be rewritten as

F(z+2)−F(z) = G(z+2)−G(z), for ℜz � 2

with F(z) = 2(z−1) f̂−2(2z) and G(z) = c2
z−1
z+1

. So by Lemma 3, we have

F(z) = c−2 +G(z), for some constant c−2.

Hence

2(z−1) f̂−2(2z) = c−2 + c2
z−1
z+1

,

or

f̂−2(2z) =
c−2

2(z−1)
+

c2

2(z+1)

= c−2r̂−2(2z)+ c2r̂2(2z),

and therefore
f−2(r) = c−2r

−2 + c2r
2.

But clearly in the expression of f−2 , the term c−2r−2 is not in L1([0,1],rdr) unless
c−2 = 0, and so in this case f−2(r) = c2r2 , i.e., Te−2iθ f−2

= c2Tz2 .

Finally, in (8) the terms in zn−4 come from the product of Te−6iθ f−6
with Tz2 and

the product of Tz2 with Te−2iθ f−2
= c2Tz2 . Thus by equality, we must have

c2Tz2Tz2(zn)+Te−6iθ f−6
Tz2(z

n) = c2Tz2Tz2(zn)+Tz2Te−6iθ f−6
(zn),∀n � 0,

which is equivalent to

Te−6iθ f−6
Tz2(z

n) = Tz2Te−6iθ f−6
(zn),∀n � 0.

The previous equation tells us that Te−6iθ f−6
commutes with Tz2 , and by Theorem 2, this

is possible only if f−6(r) = 0. Now in (8) , the terms in zn−8 come from the product of
Te−10iθ f−10

with Tz2 only because Te−6iθ f−6
= 0. So Te−10iθ f−10

must commute with Tz2 ,
and again Theorem 2 implies that f−10(r) = 0. Similarly, we prove that f−2+4k(r) =
0, ∀k � −2. This completes the proof. �
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REMARK 1.

i) It is easy to see through the proofs that our results remain true if the symbol
z2 + z2 is replaced by any linear combination of z2 and z2 , i.e., αz2 + β z2 .

ii) If the polar decomposition the symbol f is instead truncated below, i.e., f (reiθ )=
∑∞

k=N where N is a negative integer, then the result remains true since one can
pass to the adjoint.
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