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NORMWISE, MIXED AND COMPONENTWISE CONDITION

NUMBERS OF MATRIX EQUATION X −∑p
i=1 AT

i XAi + ∑q
j=1 BT

j XBj = Q

JIE MENG AND HYUN-MIN KIM ∗

(Communicated by R.-C. Li)

Abstract. We consider a symmetric matrix equation X−∑p
i=1 AT

i XAi+∑q
j=1 BT

j XBj = Q , where

A1 ,A2 , . . . , Ap , B1 , B2 , . . . , Bq ∈ R
n×n , and Q is an n×n symmetric positive definite matrix.

The explicit expressions of normwise, mixed and componentwise condition numbers of the ma-
trix equation are investigated. Some numerical examples are given to show the sharpness of the
three condition numbers.

1. Introduction

We consider the matrix equation

X −
p

∑
i=1

AT
i XAi +

q

∑
j=1

BT
j XBj = Q, (1)

where p and q are nonnegative integers and at least one of p and q is a positive
integer, A1,A2, . . . ,Ap,B1,B2, . . . ,Bq ∈ R

n×n , and Q is an n× n symmetric positive
definite matrix.

Matrix equations of the form (1) have many applications in control theory [5, 16],
dynamic programming [12, 21], ladder networks [2, 1], etc. For solving some nonlinear
matrix equations like the one appearing in [25] by Newton method, an equation of the
form (1) arises in each step of Newton’s method. Moreover, finding the positive definite
solution of equation (1) is also of practical importance since equation (1) with Q = I is
a general case of the generalized Lyapunov equation MYS∗ + SYM∗ + ∑t

k=1 NkYN∗
k +

CC∗ = 0, whose positive definite solution is the controllability of the bilinear control
system

Mẋ(t) = Sẋ(t)+
t

∑
k=1

Nkx(t)uk(t)+Cu(t),
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and we refer the reader to [7, 10, 30] for more details. It can be seen from [10] that if
we set

E =
1√
2
(M−S− I), F =

1√
2
(M +S+ I), G = M− I, R = CC∗,

X = R−1/2YR−1/2, Ai = R1/2N∗
i R−1/2, i = 1,2, . . . ,t,

At+1 = R1/2F∗R−1/2, At+2 = R1/2G∗R−1/2,

B1 = R1/2E∗R−1/2, B2 = R1/2M∗R−1/2,

then the above generalized Lyapunov equation can be written as X −∑t+2
i=1 AiXA∗

i +
∑2

j=1 BjYB∗
j = I , which is equation (1) with complex coefficient matrices.

Recently, some special cases of equation (1) has been investigated [10, 11, 13,
20, 22, 23, 24]. Ran and Reurings [23] and Duan el at. [9] considered the classes of
nonlinear matrix equations

X = Q±
m

∑
i=1

A∗
i X

δiAi, (2)

where δi = 1 or 0 < δi < 1. Under some hypotheses, they established the existence
and uniqueness of positive definite solutions of (2). In [24], Ran and Reurings applied
the fixed-point theory to the nonlinear matrix equation X = Q±∑m

j=1 A∗
jF(X)Aj and

derived the existence of the positive definite solution.
Berzig [3] investigated the existence and uniqueness of the positive definite solu-

tion of equation (1). Based on the coupled fixed point results of Bhaskar and Laksh-
mikantham [4], he gave one sufficient condition under which equation (1) has a unique
positive definite solution. He also proposed an algorithm for computing the solution.
Duan and Wang [10] then studied the perturbation analysis for equation (1) with Q = I .
They derived a perturbation bound with respect to 2-norm for the positive definite so-
lution based on matrix differentiation.

The aim of this paper is to discuss the condition numbers of equation (1), which are
of great importance in perturbation analysis. We investigate the normwise, mixed and
componentwise condition numbers. The mixed and componentwise condition numbers
are developed by Gohberg and Koltracht [14], and see also [8, 18, 19, 27, 28, 29, 31].
We also derive two upper linear perturbation bounds for the mixed and componentwise
condition numbers.

This paper is organized as follows. In Section 2, we investigate three kinds of
normwise condition numbers and derived their explicit expressions. In Section 3, we
obtain explicit expressions and the upper bounds of mixed and componentwise condi-
tion numbers. In Section 4, we give some numerical examples to illustrate and compare
theses three condition numbers.

We begin with the notation used throughout this paper. R
n×n stands for the set of

n×n matrices with elements on field R . ‖ ·‖2 and ‖ ·‖F are the spectral norm and the
Frobenius norm, respectively. For X = (xi j) ∈ R

n×n , ‖X‖max = maxi, j|xi j| and |X | is
the matrix whose elements are |xi j| . For a matrix A = (ai j) ∈ R

n×n and a matrix B ,
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vec(A) is a vector defined by vec(A) = (aT
1 , · · · ,aT

n )T with ai being the i-th column
of A and A⊗B = (ai jB) is the Kronecker product. For Hermitian matrices X and Y ,
X � Y (X > Y ) means that X −Y is positive semidefinite (definite). For a matrix H ,
σmin(H) and σmax(H) denote the minimal and maximal singular values, respectively.

2. Preliminaries

We shall start this section by recalling some results concerning equation (1). In
[3], Berzig gave the following result for the existence and uniqueness of the positive
definite solution.

LEMMA 1. (Theorem 3.1, [3]) Suppose that

p

∑
i=1

AT
i QAi <

Q
2

and
q

∑
j=1

BT
j QBj <

Q
2

.

Then,
(i) Equation (1) has one and only one positive definite solution X .
(ii) The sequences {Xk} and {Yk} defined by X0 = 0 , Y0 = 2Q, and{

Xk+1 = Q+ ∑p
i=1 AT

i XkAi −∑q
j=1 BT

j YkB j,

Yk+1 = Q+ ∑p
i=1 AT

i YkAi−∑q
j=1 BT

j XkB j,

converge to the unique positive definite solution X .

LEMMA 2. (Theorem 2.2, [23]) Assume that there exists a positive definite n×n
matrix Q̃ such that Q̃−∑m

j=1 A∗
j Q̃A j > 0 . Then the matrix

K = In2 −
m

∑
j=1

AT
j ⊗AT

j

is invertible.

REMARK 1. According the proof of Theorem 2.2 in [23], the matrix K = In2 −
∑m

j=1 AT
j ⊗AT

j in Lemma 2 is actually stable with respect to the unite circle, that is,
ρ(K) < 1.

THEOREM 1. Suppose that

p

∑
i=1

AT
i QAi <

Q
2

and
q

∑
j=1

BT
j QBj <

Q
2

. (3)

Then, the matrix

P = In2 −
p

∑
i=1

AT
i ⊗AT

i +
q

∑
j=1

BT
j ⊗BT

j

is invertible.
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Proof. Under the assumption (3), it is clearly that

Q−
p

∑
i=1

AT
i QAi −

q

∑
j=1

BT
j QBj > 0. (4)

We first prove that if I−∑p
i=1 AT

i Ai−∑q
j=1 BT

j B j > 0 holds, then matrix P is invertible.

Let λ be an eigenvalue of matrix ∑p
i=1 AT

i ⊗Ai−∑q
j=1 BT

j ⊗Bj and x a corresponding
eigenvector, i.e.,

( p

∑
i=1

AT
i ⊗Ai−

q

∑
j=1

BT
j ⊗Bj

)
x = λx.

Set X = vec−1(x) , then X solves the following equation

p

∑
i=1

AT
i XAi−

q

∑
j=1

BT
j XBj = λX . (5)

Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1
...

Ap

B1
...

Bq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and X̂ = diag(X1,X2) ∈ R
(p+q)n×(p+q)n,

where

X1 =

⎛
⎜⎜⎜⎜⎝

X 0 . . . 0

0 X
. . .

...
...

. . .
. . . 0

0 . . . 0 X

⎞
⎟⎟⎟⎟⎠ ∈ R

pn×pn and X2 =

⎛
⎜⎜⎜⎜⎝

−X 0 . . . 0

0 −X
. . .

...
...

. . .
. . . 0

0 . . . 0 −X

⎞
⎟⎟⎟⎟⎠ ∈ R

qn×qn.

Equation (5) can be rewritten as

λX = AT X̂A.

Note that ‖X‖2 = ‖X̂‖2 and ‖A‖2
2 = λmax(AT A) = ‖ATA‖2 , it yields

|λ |‖X‖2 = ‖AT X̂A‖2 � ‖A‖2
2‖X̂‖2 = ‖AT A‖2‖X‖2.

Since AT A = ∑p
i=1 AT

i Ai + ∑q
j=1 BT

j B j < In , we have |λ | � ‖ATA‖2 < 1, which shows

that ρ(∑p
i=1 AT

i ⊗Ai−∑q
j=1 BT

j ⊗Bj) < 1. Thus matrix P is invertible.
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Since Q is positive definite, it follows from (4) that

In−
p

∑
i=1

(Q− 1
2 AT

i Q
1
2 )(Q

1
2 AiQ

− 1
2 )−

q

∑
j=1

(Q− 1
2 BT

j Q
1
2 )(Q

1
2 BjQ

− 1
2 ) > 0.

According to the first part of the proof it can be shown that

ρ
( p

∑
i=1

(Q− 1
2 AT

i Q
1
2 )⊗ (Q− 1

2 AT
i Q

1
2 )−

q

∑
j=1

(Q− 1
2 BT

j Q
1
2 )⊗ (Q− 1

2 BT
j Q

1
2 )
)

< 1.

Note that

p

∑
i=1

(Q− 1
2 AT

i Q
1
2 )⊗ (Q− 1

2 AT
i Q

1
2 )−

q

∑
j=1

(Q− 1
2 BT

j Q
1
2 )⊗ (Q− 1

2 BT
j Q

1
2 ) (6)

=
p

∑
i=1

(Q
1
2 ⊗Q

1
2 )−1(AT

i ⊗AT
i )(Q

1
2 ⊗Q

1
2 )−

q

∑
j=1

(Q
1
2 ⊗Q

1
2 )−1(BT

j ⊗BT
j )(Q

1
2 ⊗Q

1
2 )

= (Q
1
2 ⊗Q

1
2 )−1

( p

∑
i=1

(AT
i ⊗AT

i )−
q

∑
j=1

(BT
j ⊗BT

j )
)
(Q

1
2 ⊗Q

1
2 ),

which shows that matrix ∑p
i=1(A

T
i ⊗AT

i )−∑q
j=1(B

T
j ⊗BT

j ) has the same eigenvalues as
the matrix in (6). Hence

ρ
( p

∑
i=1

(AT
i ⊗AT

i )−
q

∑
j=1

(BT
j ⊗BT

j )
)

< 1.

Therefore, matrix P = In2 −∑p
i=1 AT

i ⊗AT
i + ∑q

j=1 BT
j ⊗BT

j is invertible. �

3. Three kinds of condition numbers

3.1. Normwise condition number

In this section, we investigate the normwise condition number of equation (1). In
the sequel, we always suppose ∑p

i=1 AT
i QAi <

Q
2 and ∑q

j=1 BT
j QBj < Q

2 . Under this
assumption, matrix equation (1) always has a unique positive definite solution.

Define the mapping

φ : (A1, . . . ,Ap,B1, . . . ,Bq,Q) �→ vec(X), (7)

where X is the unique positive definite solution of equation (1). We define three kinds
of normwise condition numbers by

ki(φ) = lim
ε→0

sup
Δi�ε

‖ΔX‖F

ε‖X‖F
, i = 1,2,3, (8)
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where

Δ1 =
∥∥∥[‖ΔA1‖F

δ1
, . . . ,

‖ΔAp‖F

δp
,
‖ΔB1‖F

θ1
, . . . ,

‖ΔBq‖F

θq
,
‖ΔQ‖F

σ

]∥∥∥
2
,

Δ2 = max
{‖ΔA1‖F

δ1
, . . . ,

‖ΔAp‖F

δp
,
‖ΔB1‖F

θ1
, . . . ,

‖ΔBq‖F

θq
,
‖ΔQ‖F

σ

}
,

Δ3 =

∥∥[‖ΔA1‖F , . . . ,‖ΔAp‖F ,‖ΔB1‖F , . . . ,‖ΔBq‖F ,‖ΔQ‖F ]
∥∥

2

‖[‖A1‖F , . . . ,‖Ap‖F ,‖B1‖F , . . . ,‖Bq‖F ,‖Q‖F ]‖2
.

The nonzero parameters δi , θ j and σ in Δ1 and Δ2 provide some freedom in how
to measure the perturbations. Generally, δi , θ j and σ are chosen, respectively, as
functions of ‖Ai‖F , ‖Bj‖F and ‖Q‖F , and the most natural choice is δi = ‖Ai‖F ,
θ j = ‖Bj‖F and σ = ‖Q‖F for i = 1, . . . , p and j = 1, . . . ,q .

The perturbed equation of (1) is

(X + ΔX)−
p

∑
i=1

(Ai + ΔAi)T (X + ΔX)(Ai + ΔAi)

+
q

∑
j=1

(Bj + ΔBj)T (X + ΔX)(Bj + ΔBj) = Q+ ΔQ. (9)

Dropping the second and higher-order terms in (9) yields

0 = X −
p

∑
i=1

AT
i XAi +

q

∑
j=1

BT
j XBj −Q

≈−ΔX +
p

∑
i=1

(AT
i XΔAi + ΔAT

i XAi +AT
i ΔXAi)

−
q

∑
j=1

(BT
j XΔBj + ΔBT

j XBj +BT
j ΔXBj)+ ΔQ. (10)

Applying the vec operator, we get(
In2 −

p

∑
i=1

AT
i ⊗AT

i +
q

∑
j=1

BT
j ⊗BT

j

)
vec(ΔX)

≈ vec(ΔQ)+
p

∑
i=1

(
I⊗ (AT

i X)+
(
(AT

i X)⊗ I
)
Π
)
vec(ΔAi) (11)

−
q

∑
j=1

(
I⊗ (BT

j X)+
(
(BT

j X)⊗ I
)
Π
)
vec(ΔBj),

where Π is the vec-permutation matrix satisfying Πvec(A) = vec(AT ) ,

Π =
n

∑
i=1

n

∑
j=1

Ei j(n×n)⊗Eji(n×n),
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where Ei j = e(n)
i (e(n)

j )T ∈ R
n×n and e(n)

i is an n -dimensional column vector which has
1 in the i-th position and 0’s elsewhere. For more details about the permutation matrix
Π , see [15, 17, 26].

Theorem 16.3.2 in [17] shows that for any n×n matrices A and B ,

(A⊗B)Π = Π(B⊗A).

Then, (11) can be written as(
In2 −

p

∑
i=1

AT
i ⊗AT

i +
q

∑
j=1

BT
j ⊗BT

j

)
vec(ΔX)

≈ vec(ΔQ)+
p

∑
i=1

[
(In2 + Π)

(
I⊗ (AT

i X)
)]

vec(ΔAi) (12)

−
q

∑
j=1

[
(In2 + Π)

(
I⊗ (BT

j X)
)]

vec(ΔBj),

Let

P = In2 −
p

∑
i=1

AT
i ⊗AT

i +
q

∑
j=1

BT
j ⊗BT

j ,

L = (In2 + Π)
[
I⊗ (AT

1 X), . . . , I⊗ (AT
pX),−I⊗ (BT

1 X), . . . ,−I⊗ (BT
q X),(In2 + Π)−1

]
,

r = [vec(ΔA1)T , . . . ,vec(ΔAp)T ,vec(ΔB1)T , . . . ,vec(ΔBq)T ,vec(ΔQ)T ]T .

It follows from (12) that

Pvec(ΔX) ≈ Lr. (13)

Under the assumption ∑p
i=1 AT

i QAi <
Q
2 and ∑q

j=1 BT
j QBj <

Q
2 , it follows from

Theorem 1 that matrix P is invertible. Hence, vec(ΔX) ≈ P−1Lr .

THEOREM 2. Using the notations given above, the explicit expressions or an up-
per bound of the three condition numbers defined in (8) are

k1(φ) ≈ ‖P−1L1‖2

‖X‖F
, (14)

k2(φ) � min{
√

p+q+1k1(φ),μ/‖X‖F}, (15)

k3(φ) ≈
‖P−1L‖2

√
∑m

i=1 ‖Ai‖2
F + ∑n

j=1 ‖Bj‖2
F +‖Q‖2

F

‖X‖F
, (16)
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where

L1 = L diag([δ1, . . . ,δp,θ1, . . . ,θq,σ ]T ),

μ =
p

∑
i=1

δi
∥∥P−1(In2 + Π)(I⊗ (AT

i X))
∥∥

2

+
q

∑
j=1

θ j
∥∥P−1(In2 + Π)(I⊗ (BT

j X))
∥∥

2
+ σ

∥∥P−1
∥∥

2 .

Proof. Equation (13) can be written as

Pvec(ΔX) ≈ L1r1, (17)

where

L1 = (In2 + Π)
[
δ1I⊗ (AT

1 X), . . . ,δpI⊗ (AT
pX),−θ1I⊗ (BT

1 X), . . . ,

−θqI⊗ (BT
q X),σ(In2 + Π)−1

]
,

r1 =
[
vec(ΔA1)T

δ1
, . . . ,

vec(ΔAp)T

δp
,
vec(ΔB1)T

θ1
, . . . ,

vec(ΔBq)T

θq
,
vec(ΔQ)T

σ

]T

.

It follows form (17) that

‖ΔX‖F � ‖P−1L1‖2‖r1‖2. (18)

Since ‖r1‖2 = Δ1 � ε , according to (8) we arrive at (14).
We now show (16) is true. It follows from (13) that

‖ΔX‖F � ‖P−1L‖2‖r‖2

� ‖P−1L‖2Δ3 ·
√

m

∑
i=1

‖Ai‖2
F +

n

∑
j=1

‖Bj‖2
F +‖Q‖2

F

� ε‖P−1L‖2

√
m

∑
i=1

‖Ai‖2
F +

n

∑
j=1

‖Bj‖2
F +‖Q‖2

F .

By (8), a direct computation yields (16).
Let ε = Δ2 . According to inequality (18) we obtain

‖ΔX‖F � ‖P−1L1‖2

√√√√ p

∑
i=1

‖ΔAi‖2
F

δ 2
i

+
q

∑
j=1

‖ΔBj‖2
F

θ 2
j

+
‖ΔQ‖2

F

σ2

� ε
√

p+q+1‖P−1L1‖2

� εk1(φ)
√

p+q+1‖X‖F . (19)
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On the other hand, it follows form (17) that

vec(ΔX) ≈
p

∑
i=1

δiP
−1(In2 + Π)(I⊗ (AT

i X))
vec(ΔAi)

δi

−
q

∑
j=1

θ jP
−1(In2 + Π)(I⊗ (BT

j X))
vec(ΔBj)

θ j
+ σP−1 vec(ΔQ)

σ
,

which yields

‖ΔX‖F �
p

∑
i=1

δi
∥∥P−1(In2 + Π)(I⊗ (AT

i X))
∥∥

2

‖ΔAi‖F

δi

+
q

∑
j=1

θ j
∥∥P−1(In2 + Π)(I⊗ (BT

j X))
∥∥

2

‖ΔBj‖F

θ j
+ σ

∥∥P−1
∥∥

2

‖ΔQ‖F

σ

� εμ . (20)

Finally, from inequalities (19) and (20), we obtain (15). �

REMARK 2. Theorem 2.2 shows that the normwise condition numbers will be
large if matrix P is ill-conditioned. Hence the condition number of matrix P is a good
indication of the magnitudes of the normwise condition numbers ki(φ) for i = 1,2,3.

3.2. Mixed and componentwise condition numbers

In this section, we investigate the mixed and componentwise condition numbers of
equation (1). The explicit expressions of these two kinds of condition numbers are de-
rived. To define mixed and componentwise condition numbers, the following distance
function is useful. For any a,b ∈ R

n , we define a
b = [c1,c2, . . . ,cn]T as

ci =

⎧⎪⎨
⎪⎩

ai/bi, if bi 
= 0,

0, if ai = bi = 0,

∞, otherwise.

Then we define

d(a,b) =
∥∥∥∥a−b

b

∥∥∥∥
∞

= max
i=1,2,...,n

{∣∣∣∣ai−bi

bi

∣∣∣∣
}

.

For matrices A,B ∈ R
n×n , we define

d(A,B) = d(vec(A),vec(B)).

Note that if d(a,b) < ∞ , d(a,b) = min{ν � 0||ai−bi| � ν|bi| for i = 1,2, . . . ,n} .
Throughout this paper, we will only consider pairs (a,b) for which d(a,b) < ∞ . For
ε > 0, we set B0(a,ε) = {x|d(x,a) � ε} . For a vector-valued function F : R

p → R
q ,

we denote Dom(F ) as the domain of F .
The mixed and componentwise condition numbers introduced by Gohberg and

Koltracht [14] are listed as follows:
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DEFINITION 1. ([14]) Let F : R
p → R

q be a continuous mapping defined on an
open set Dom(F) ⊂ R

p such that 0 /∈ Dom(F) and F(a) 
= 0 for a given a ∈ R
p .

(1) The mixed condition number of F at a is defined by

m(F,a) = lim
ε→0

sup
x∈B0(a,ε)

x
=a

‖F(x)−F(a)‖∞

‖F(a)‖∞

1
d(x,a)

.

(2) Suppose F(a) =
[
f1(a), f2(a), . . . , fq(a)

]T
such that f j(a) 
= 0 for j = 1,2, . . . ,q .

The componentwise condition number of F at a is defined by

c(F,a) = lim
ε→0

sup
x∈B0(a,ε)

x
=a

d(F(x),F(a))
d(x,a)

.

The explicit expressions of the mixed and componentwise condition numbers of
F at a are given by the following lemma [6, 14].

LEMMA 3. Suppose F is Fr échet differentiable at a. We have
(1) if F(a) 
= 0 , then

m(F,a) =
‖F ′(a)diag(a)‖∞

‖F(a)‖∞
=

‖|F ′(a)||a|‖∞

‖F(a)‖∞
;

(2) if F(a) =
[
f1(a), f2(a), . . . , fq(a)

]T
such that f j(a) 
= 0 for j = 1,2, . . . ,q, then

c(F,a) = ‖diag−1(F(a))F ′(a)diag(a)‖∞ =
∥∥∥∥ |F ′(a)||a|

|F(a)|
∥∥∥∥

∞
.

THEOREM 3. Let m(φ) and c(φ) be the mixed and componentwise condition
numbers of equation (1), we have

m(φ) ≈ ‖T‖∞

‖X‖max
and c(φ) ≈

∥∥∥∥ T
|vec(X)|

∥∥∥∥ ,

where φ is defined in (7),

T =
p

∑
i=1

∣∣P−1(In2 + Π)(I⊗ (AT
i X))

∣∣vec(|Ai|)

+
q

∑
j=1

∣∣P−1(In2 + Π)(I⊗ (BT
j X))

∣∣vec(|Bj|)+ |P−1|vec(|Q|).

Furthermore, we have two upper bounds for m(φ) and c(φ) as follows:

mU(φ) :=
‖P−1‖∞‖M‖max

‖X‖max
� m(φ),
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and

cU(φ) := ‖diag−1(vec(X))P−1‖∞‖M‖max � c(φ).

where

M =
p

∑
i=1

(|AT
i X ||Ai|+ |Ai|T |XAi|

)
+

q

∑
j=1

(|BT
j X ||Bj|+ |Bj|T |XBj|

)
+ |Q|.

Proof. According to (13), we get the Fr échet derivative of φ defined in (7)

φ ′(A1, . . . ,Ap,B1, . . . ,Bq,Q) ≈ P−1L.

Let a = [vec(A1)T , . . . ,vec(Ap)T ,vec(B1)T , . . . ,vec(Bq)T ,vec(Q)T ]T . It follows from
(1) of Lemma 3.2 that

m(φ) ≈
‖|P−1L||a|‖∞

‖vec(X)‖∞
=

‖|P−1L||a|‖∞

‖X‖max
=

‖T‖∞

‖X‖max
,

where

T = |P−1L||a|

=
p

∑
i=1

∣∣P−1(In2 + Π)(I⊗ (AT
i X))

∣∣vec(|Ai|)

+
q

∑
j=1

∣∣P−1(In2 + Π)(I⊗ (BT
j X))

∣∣vec(|Bj|)+ |P−1|vec(|Q|).

It holds that

‖T‖∞ � ‖|P−1||L||a|‖∞

� ‖P−1‖∞‖|L||a|‖∞

� ‖P−1‖∞

∥∥∥ p

∑
i=1

(
I⊗|AT

i X |+(|AT
i X |⊗ I)Π

)
vec(|Ai|)

+
q

∑
j=1

(
I⊗|BT

j X |+(|BT
j X |⊗ I)Π

)
vec(|Bj|)+vec(|Q|)

∥∥∥
∞

� ‖P−1‖∞

∥∥∥ p

∑
i=1

(|AT
i X ||Ai|+ |Ai|T |XAi|

)

+
q

∑
j=1

(|BT
j X ||Bj|+ |Bj|T |XBj|

)
+ |Q|

∥∥∥
max

.

Therefore,

m(φ) � ‖P−1‖∞‖M‖max

‖X‖max
.
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According to (2) of Lemma 3.2, we obtain

c(φ) ≈

∥∥∥∥ |P−1L||a|
|vec(X)|

∥∥∥∥
∞

=
∥∥∥∥ T
|vec(X)|

∥∥∥∥
∞

.

It holds that

c(φ) �
∥∥∥∥ |P−1||L||a|

|vec(X)|
∥∥∥∥

∞

=
∥∥diag−1(vec(X))|P−1||L||a|∥∥∞

�
∥∥diag−1(vec(X))|P−1|∥∥∞ ‖|L||a|‖∞

= ‖diag−1(vec(X))P−1‖∞‖M‖max. �

4. Numerical examples

In this section, we give two numerical examples to illustrate the effectiveness of
our results about normwise, mixed and componentwise condition numbers. All com-
putations are made in MATLAB 7.10.0 with the unit roundoff being u ≈ 2.2×10−16 .

EXAMPLE 1. (Example 3.1, [10]) We consider the matrix equation

X = I +AT
1 XA1 +A∗

2XA2−B∗
1XB1−B∗

2XB2,

where

A1 =

⎛
⎝ 0.02 −0.01 −0.02

0.08 −0.01 0.02
−0.06 −0.12 0.14

⎞
⎠ , A2 =

⎛
⎝ 0.08 −0.10 −0.02

0.08 −0.10 0.02
−0.06 −0.12 0.14

⎞
⎠ ,

B1 =

⎛
⎝ 0.47 0.02 0.04

−0.10 0.36 −0.02
−0.04 0.01 0.47

⎞
⎠ , B2 =

⎛
⎝0.10 0.10 0.05

0.15 0.275 0.075
0.05 0.05 0.175

⎞
⎠ .

Suppose that coefficient matrices A1 , A2 , B1 and B2 are perturbed by

ΔA1 =

⎛
⎝ 0.5 0.1 −0.2

−0.4 0.2 0.6
−0.2 0.1 −0.1

⎞
⎠×10− j, ΔA2 =

⎛
⎝−0.4 0.10 −0.2

0.5 0.7 −1.3
1.1 0.9 0.6

⎞
⎠×10− j,

ΔB1 =

⎛
⎝ 0.8 0.2 0.05

−0.2 0.12 0.14
−0.25 −0.2 0.26

⎞
⎠×10− j, ΔB2 =

⎛
⎝ 0.2 0.2 0.1

−0.3 0.15 −0.15
0.1 −0.1 0.25

⎞
⎠×10− j,

where j � 2 is a parameter.
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j ‖ΔX‖/‖X‖F k1(φ)Δ1 kU
2 (φ)Δ2 kM

2 (φ)Δ2 k3(φ)Δ3 cond(P)Δ1

2 1.6332e-003 9.7027 e-003 1.6115e-002 1.0851e-002 3.6007e-003 9.9618e-003
3 1.6319e-004 9.7028e-004 1.600e-003 1.100e-003 3.6007e-004 9.8618e-004
4 1.6317e-005 9.7028e-005 1.6115e-004 1.0851e-004 2.5459e-005 9.8618e-005
5 1.6317e-006 9.7028e-006 1.6115e-005 1.0851e-005 3.6007e-006 9.8618e-006
6 1.6317e-007 9.7028e-007 1.6115e-006 1.0851e-006 3.6007e-007 9.8618e-007

Table 1: Comparison of the relative error ‖ΔX‖F/‖X‖F with our estimates and the values of
cond(P)Δ1

Using the iterative method in Lemma 2.1⎧⎪⎨
⎪⎩

X0 = 0,Y0 = 2I,

Xk+1 = I + ∑2
i=1 AT

i XkAi−∑2
j=1 BT

j YkB j,

Yk+1 = I + ∑2
i=1 AT

i YkAi −∑2
j=1 BT

j XkB j,

and letting the iterations terminate if

ρ(Xk) = ‖X −A∗
1XA1−A∗

2XA2 +B∗
1XB1 +B∗

2XB2− I‖F � nu,

we can get the positive definite solution X and the corresponding positive definite so-
lution X̃ of the perturbed equation.

Set δi = ‖Ai‖F , θ j = ‖Bj‖F , σ = ‖Q‖F and denote kU
2 =

√
nk1(φ) and kM

2 (φ) =
μ/‖X‖F . From Theorem 2.2, we can obtain three first order normwise perturbation
bounds (first order bounds) ‖ΔX‖F/‖X‖F � ki(φ)Δi . For different j , we compare the
relative error ‖ΔX‖F/‖X‖F with the three approximation bounds. The last column of
Table 1 corresponds to k1(φ)Δ1 and the result is similar for k2(φ)Δ2 and k3(φ)Δ3 . We
can see that the condition number of P is a good indiction of ki(φ) as pointed out in
Remark 2.3.

EXAMPLE 2. ([3]) Consider the matrix equation

X = Q+A∗
1XA1 +A∗

2XA2−B∗
1XB1−B∗

2XB2,

where

A1 =

⎛
⎝ 0.1 0.05 0.05

0.05 0.1 0.05
0.05 0.05 0.1

⎞
⎠ , A2 =

⎛
⎝ 0.5 −0.02 −0.02

−0.02 0.5 −0.02
−0.02 −0.02 0.5

⎞
⎠ ,

B1 =

⎛
⎝ 0.01 0.001 0.01

0.001 0.01 0.001
0.01 0.001 0.01

⎞
⎠ , B2 =

⎛
⎝ 0.1413 0.008294 0.1413

0.008294 0.1997 0.008294
0.1413 0.008294 0.1413

⎞
⎠ ,

Q =

⎛
⎝ 1 0.2 0.2

0.2 1 0.2
0.2 0.2 1

⎞
⎠ .
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j 6 8 10
γk 8.3398e-007 9.3512e-009 7.0116e-011
k1(φ)Δ1 2.0335e-006 2.6917e-008 2.4987e-010
kU
2 (φ)Δ2 4.5470e-006 6.0187e-008 5.5872e-010

kM
2 (ϕ)Δ2 1.3895e-006 1.9198e-008 1.8097e-010

k3(ϕ)Δ3 2.3089e-006 2.4992e-008 1.5083e-010
γm 1.1743e-006 1.0039e-008 1.0246e-010
m(φ)ε0 2.1418e-006 2.0670e-008 2.1614e-010
γc 1.1743e-006 1.0039e-008 1.0306e-010
c(φ)ε0 1.5549e-005 1.5007e-007 1.5692e-009

Table 2: Linear asymptotic bounds

Let Ãk = Ak + rand(3)◦Ak ×10− j , B̃k = Bk + rand(3)◦Bk ×10− j , Q̃ = Q+ rand(3)◦
Q×10− j , where k = 1,2, ◦ is the Hadamard product.

Using the iterative method in Lemma 2.1

⎧⎪⎨
⎪⎩

X0 = 0, Y0 = 2Q,

Xk+1 = Q+ ∑2
i=1 AT

i XkAi−∑2
j=1 BT

j YkB j,

Yk+1 = Q+ ∑2
i=1 AT

i YkAi −∑2
j=1 BT

j XkB j,

and letting the iterations terminate if the relative residual satisfies

ρ(Xk) = ‖X −A∗
1XA1−A∗

2XA2 +B∗
1XB1 +B∗

2XB2−Q‖F � nu,

we can get the positive definite solution X and the corresponding positive definite so-
lution X̃ of the perturbed equation.

Similarly to Example 4.1, we obtain three first order normwise perturbation bounds:
‖ΔX‖F/‖X‖F � ki(φ)Δi . Let |ΔAi| � ε|Ai| , |ΔBj| � ε|Bj| and |ΔQ| � ε|Q| for i =
1, . . . p and j = 1, . . . ,q , we obtain the first order mixed and componentwise perturba-
tion bounds ‖ΔX‖max/‖X‖max � εm(φ) and ‖vec(ΔX)./vec(X)‖∞ � εc(φ) .
Denote

γk =
‖ΔX‖F

‖X‖F
, γm =

‖ΔX‖max

‖X‖max
, γc =

∥∥∥∥ΔX
X

∥∥∥∥
max

,

and

ε0 = min{ε : |ΔAi| � ε|Ai|, |ΔBj| � ε|Bj|, |ΔQ| � ε|Q|}

for i = 1,2 and j = 1,2.

Table 2 shows that the first order bounds given by the three condition numbers are
almost tight.
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5. Conclusion

In this paper, we investigate normwise, mixed and componentwise condition num-
bers of matrix equation X −∑p

i=1 AT
i XAi + ∑q

j=1 BT
j XBj = Q . The explicit expressions

for the three condition numbers are derived. The upper bounds for the mixed and com-
ponentwise condition numbers are presented. The first order asymptotic bounds given
by the three condition numbers are almost tight.
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