
Operators
and

Matrices

Volume 13, Number 1 (2019), 93–110 doi:10.7153/oam-2019-13-06

COMPACTNESS OF OPERATOR INTEGRATORS

TITARII WOOTIJIRATTIKAL, SING-CHEONG ONG AND YONGWIMON LENBURY

(Communicated by H. Radjavi)

Abstract. A function f from a closed interval [a,b] to a Banach space X is a regulated function
if one-sided limits of f exist at every point. A function α from [a,b] to the space B(X ,Y ) ,
of bounded linear transformations form X to a Banach space Y , is said to be an integrator if
for each X -valued regulated function f , the Riemann-Stieltjes sums (with sampling points in
the interior of subintervals) of f with respect to α converge in Y . We use elementary meth-
ods to establish criteria for an integrator α to induce a compact linear transformation from the
space, Reg(X) , of X -valued regulated functions to Y . We give direct and elementary proofs
for each result to be used, including, among other things, the fact that each integrator α induces
a bounded linear transformation, α̂ , from Reg(X) to Y , and other folklore or known results
which required reading large amount of literature.

1. Introduction

A function f from a closed interval [a,b] to a Banach space X , is said to be
regulated if one-sided limits of f exist at every point of [a,b] [3, §7.6, p. 139]. The
space, Reg(X) , of regulated functions has been extensively studied [10, 5, 9, 8, 7, 2, 6,
1, 4], mostly in the case of one-dimensional X . We focus here on the integrators of the
regulated functions. Given a function α from [a,b] to the space B(X ,Y ) , of bounded
linear transformations from X to a Banach space Y , and an f ∈ Reg(X) , a natural
question is whether or when there is a vector in Y to which the internal (sampling
points in the interior of subintervals) Riemann-Stieltjes sums of f with respect to α
converge. A function α with this property for each f ∈ Reg(X) will be called an
integrator. We use elementary methods to ultimately establish criteria for an integrator
α to induce a compact linear transformation from Reg(X) to Y . We also use very
elementary methods to prove all necessary steps leading from the definition all the way
to criteria for compactness of integrator induced operators. In particular we show that
each integrator induces a bounded linear transformation from the space of regulated
functions to Y . We are grateful to the referee for pointing out that this is a consequence
of [6, Ch I, Th 4.20]. But that theorem requires quite a lot of reading and digging
into the book. Furthermore it also uses another theorem in another book of Hönig in
the proof. Since our emphases are elementary methods and direct leads to the final
results, we give a very direct and elementary proof of this result, making it accessible

Mathematics subject classification (2010): Primary 46G10, Secondary 28B05.
Keywords and phrases: Banach space, operator, regulated function, integrator, semivariation.
The firs author supported by Thailand Research Grant #TRG5880051.

c© � � , Zagreb
Paper OaM-13-06

93

http://dx.doi.org/10.7153/oam-2019-13-06


94 T. WOOTIJIRATTIKAL, S.-C. ONG AND Y. LENBURY

to anyone with basic knowledge of functional analysis. Furthermore the proof includes
a nice application of the uniform boundedness principle. In the meantime this also
makes the exposition self-contained.

The paper is organized as follows. We introduce the definition and an equivalent
formulation for regulated functions in section 2. In section 3, we introduce the notion of
integrator. We give an elementary proof, using the uniform boundedness principle, of
the fact that each integrator induces a bounded linear operator. We also use elementary
methods to complete the circle by establishing an equivalent formulation of integrators.
These facts are buried in many pages in the text [6]. In section 4, we establish criteria
for the integrator induced operators to be compact.

2. Regulated functions

Fix real numbers a < b and a Banach space X . A function f : [a,b] → X is said
to be regulated (see [3, §7.6, p. 139] and [6, p. 16]) if one-sided limits f (c

+
) :=

lim
t→c+

f (t) exist for all c ∈ [a,b) , and f (c
−
) := lim

t→c−
f (t) exist for all c ∈ (a,b] . Denote

by Reg([a,b],X) = Reg(X) the space of X -valued regulated functions on [a,b] .
A partition P of the interval [a,b] is given by a finite number of division points in

[a,b] :
P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

, n(P) ∈ N.

The set of all partitions of [a,b] is denoted by P[a,b] or simply P , whenever no
confusion can arise.

A function g : [a,b]→ X is a step function if there are

a partition P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

and vectors xj ∈ X , 1 � j � n(P)

such that g(t) = xj for all t ∈ (t j−1 , t j ) , 1 � j � n(P) ; i.e., g takes on constant
values on each open subinterval in the partition. Since P and n(P) are determined
by g , we also denote n(P) by n(g) . Regulated functions have the following useful
characterization. It is not hard to see that step functions and uniform limits of step
functions are regulated. The converse is also true.

THEOREM 1. [3, Th 7.6.1, p. 139] A function f : [a,b] → X is regulated iff there
exists a sequence {hn} of step functions, from [a,b] to X , such that

lim
n→∞

[
sup

t∈[a,b]
‖hn(t)− f (t)‖

]
= 0 (i. e., hn → f uniformly on [a,b] .)

Furthermore, if f ∈ Reg(X) , then

‖ f‖ := sup
t∈[a,b]

‖ f (t)‖ < ∞,

and (Reg(X),‖·‖) is a Banach space.
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3. Integrators as bounded linear transformations

We begin the section with a precise definition of an integrator. Then we use ele-
mentary methods, including uniform boundedness principle, to prove that each integra-
tor induces a bounded linear transformation. We are grateful to the referee for pointing
out that this is a consequence of [6, Ch I, Th 4.20]. Since that theorem requires quite
a lot of reading and digging into the book, and furthermore, in the proof, it also uses
another theorem in another book of Hönig. Here we give a more elementary and direct
proof, not involving the complication of the generality in [6].

The close unit ball of radius r > 0, centered at 0, of a normed vector space Z will
be denoted by [Z]r . Given Banach spaces X and Y , let B(X ,Y ) denote the space of
bounded linear transformations from X to Y . A function α : [a,b]→B(X ,Y ) is called
an integrator for the regulated functions if for each f ∈ Reg(X) , there is a y ∈ Y that
satisfies the following condition:

(†) for every ε > 0 there is a partition Pε

(
a = s0 < s1 < s2 < · · · < s

n(Pε ) = b
)

such

that for every partition P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

that refines

Pε :
{
sk : 1 � k � n(Pε )

}⊆ {
t j : 1 � j � n(P)

}
and for all choices of t

∗
j
∈ (t j−1 ,t j ) , 1 � j � n(P) ,∥∥∥∥∥y−

n(P)

∑
j=1

[α(t j )−α(t j−1)]( f (t
∗
j
))

∥∥∥∥∥ < ε.

Given an integrator α and an f ∈ Reg(X) , a routine verification reveals that the
vector y ∈ Y associated with f by α is unique. The vector y is called the interior
integral (or Dushnik integral [6, p. 7]) of f with respect to α and is denoted by

∫ b

a
[dα(t)]( f (t)) = y.

We now show, directly (without using any other results, beyond the uniform bound-
edness principle), that each integrator induces a bounded linear transformation from
Reg(X) to Y .

THEOREM 2. Let α : [a,b] → B(X ,Y ) be an integrator for Reg(X) . Then the
map α̂ defined by

α̂( f ) =
∫ b

a
[dα(t)]( f (t)), f ∈ Reg(X)

is a bounded linear transformation from Reg(X) to Y .
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Proof. We omit the routine verification of linearity of α̂ . First we show that α is a
bounded function. Since α0 = α −α(a) and α give the same integral for each function
in Reg(X) . We assume, with no loss, that α(a) = 0. Suppose α is not bounded. Then,
inductively, there is a sequence

{
tk
}

k∈N
in [a,b] such that

‖α(t1)‖ > 4,
∥∥α(tk )

∥∥ > 2
2
k ∥∥α(tk−1)

∥∥ for all k � 2.

By compactness, we may assume without loss of generality, that the sequence
{
tk
}

is
monotonically increasing to a limit t∞ ∈ [a,b] . (The decreasing case is handled simi-
larly.) For each k � 1 there is an xk ∈ [X ]1 such that

‖[α(t1)]x1‖ > 4,
∥∥[α(tk )]xk

∥∥ > max

{
2

2
k ∥∥α(tk−1)

∥∥ ,
3
4

∥∥α(tk )
∥∥} ∀ k � 2.

Let t0 = a . For each k ∈ N , define fk by putting fk (t) = 2
− j

x j for t j−1 < t < t j , 1 �
j � k , and fk (t) = 0 for all other t ∈ [a,b] . Then for k < l in N , we have∥∥ fl − fk

∥∥ = max
{

2
− j ∥∥xj

∥∥ : k+1 � j � l
}

� 2
−k−1 → 0 as k, l → ∞ .

Thus there is a function f ∈ Reg(X) such that
∥∥ fk − f

∥∥ → 0. Note that f (t) = fk (t)
for all t ∈ [a, tk ] , since fk |[a,tk ] = fl |[a,tk ] for all l � k . Furthermore, since tk ↗ t∞ , and

each fk |[t∞ ,b] = 0, f |[t∞ ,b] = 0. We may assume without loss of generality that t∞ = b .
Let y∈Y . (We show that for every partition P0 there are a refinement P of P0 and

interior sampling points such that the associated Riemann-Stieltjes sum of f differs in
norm more than 1 from y . Therefore y cannot be the interior integral of f , for any
y ∈ Y , and hence the interior integral of f does not exist.) Let

P0

(
a = s0 < s1 < s2 < · · · < s

n(P0 ) = b
)

be an arbitrarily given partition. Since tl ↗ t∞ , which is assumed to be b , there is a

k ∈ N such that 2
k
> ‖y‖+‖α(b)‖+1 and tk > s

n(P0 )−1
� tk−1 . Let

P
(
a = u0 < u1 < u2 < · · · < u

n(P) = b
)

be the partition that satisfies{
sj : 1 � j � n(P0)

}∪{
tl : 1 � l � k

}
= {ui : 1 � i � n(P)} .

Then u
n(P)−1

= tk . Arbitrarily choose u
∗
i
∈ (ui−1 ,ui) for 1 � i < n(P)− 1; and

u
∗
n(P)

∈ (tk , tk+1) . Let t0 = a . Break up the sum

n(P)

∑
i=1

[α(ui)−α(ui−1)]( f (u
∗
i
))
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according to which (t j−1 ,t j ) the interval (ui−1 ,ui) is contained in. Since each fl is 0
on the interval [a, t1 ] = [t0 ,t1 ] , and so is f , we have∥∥∥∥∥y−

n(P)

∑
i=1

[α(ui)−α(ui−1)]( f (u
∗
i
))

∥∥∥∥∥
�

∥∥∥∥∥∥
k

∑
j=2

⎡⎣ ∑
(ui−1 ,ui )⊆(t j−1 ,t j )

[α(ui)−α(ui−1)]( f (u
∗
i
))

⎤⎦
+[α(b)−α(tk)]( f (u

∗
n(P)

))

∥∥∥∥∥−‖y‖

=

∥∥∥∥∥∥
k

∑
j=2

⎡⎣ ∑
(ui−1 ,ui )⊆(t j−1 ,t j )

[α(ui)−α(ui−1)](2
− j

x j )

⎤⎦
+[α(b)−α(tk)](2

−k−1
xk+1)

∥∥∥∥∥−‖y‖

=

∥∥∥∥∥∥
k

∑
j=2

⎡⎣ ∑
(ui−1 ,ui )⊆(t j−1 ,t j )

[α(ui)−α(ui−1)]

⎤⎦(2
− j

x j)

+[α(b)−α(tk)](2
−k−1

xk+1)

∥∥∥∥∥−‖y‖

=

∥∥∥∥∥ k

∑
j=2

[α(t j )−α(t j−1)](2
− j

x j )+ [α(b)−α(tk)](2
−k−1

xk+1)

∥∥∥∥∥−‖y‖

�
∥∥∥[α(tk )](2

−k
xk)

∥∥∥−∥∥∥[α(tk−1)](2
−k

xk)
∥∥∥

−
k−1

∑
j=2

[∥∥∥[α(t j )](2
− j

x j)
∥∥∥+

∥∥∥[α(t j−1)](2
− j

x j )
∥∥∥]

−
∥∥∥[α(b)](2

−k−1
xk+1)

∥∥∥−∥∥∥[α(tk )](2
−k−1

xk+1)
∥∥∥−‖y‖

>2
−k

[
3
4

∥∥α(tk )
∥∥]−2

−k ∥∥α(tk−1)
∥∥−2

−k−1 ‖α(b)‖−2
−k−1 ∥∥α(tk )

∥∥
−

k−1

∑
j=2

2
− j

(∥∥α(t j )
∥∥+

∥∥∥α(t j−1)
∥∥∥)−‖y‖

>2
−k−2 ∥∥α(tk )

∥∥−2
−k−1 ‖α(b)‖−2

−k ∥∥α(tk−1)
∥∥− k−1

∑
j=2

2
− j (

2
∥∥α(tk−1)

∥∥)−‖y‖

>2
2
k−k−2 ∥∥α(tk−1)

∥∥−2
−k−1 ‖α(b)‖−2

−k ∥∥α(tk−1)
∥∥−2

∥∥α(tk−1)
∥∥−‖y‖

�2
2
k−k−3 ∥∥α(tk−1)

∥∥−2
−k−1 ‖α(b)‖−‖y‖ > 1.
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This shows that every y ∈ Y cannot be the interior integral of f with respect to α ,
contradicting our assumption that α is an integrator. Therefore α is bounded with
‖α‖∞ := supt∈[a,b] ‖α(t)‖ < ∞ .

Next we show that each fixed partition induces a bounded linear transformation

form Reg(X) to Y . Let P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

and let

t
∗
P

=
{
t
∗
j
∈ (t j−1 ,t j ), 1 � j � n(P)

}
.

A straightforward application of triangle inequality shows that the map T
P,t∗

P

defined by

T
P,t∗P

( f ) =
n(P)

∑
j=1

[α(t j )−α(t j−1)]( f (t
∗
j
)) ∀ f ∈ Reg(X)

is a bounded linear transformation from Reg(X) to Y (norm � 2(n(P))‖α‖
∞
).

Let f ∈ Reg(X) . We show that there is an Mf > 0 such that∥∥∥∥T
P,t∗

P

( f )
∥∥∥∥ � Mf ∀ P

(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)
∈ P[a,b],

∀ t
∗
j
∈ (t j−1 ,t j ) : 1 � j � n(P).

Since α is an integrator, y =
∫ b

a
[dα(t)]( f (t)) ∈ Y exists. With ε = 1 in the definition

of interior integral (†), there is a partition

P0

(
a = s0 < s1 < s2 < · · · < s

n(P0 ) = b
)

such that if P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

satisfies{
sj : 1 � j � n(P0)

}⊆ {ti : 1 � i � n(P)}
and

t
∗
j
∈ (t j−1 ,t j ), 1 � j � n(P)

then ∥∥∥∥∥y−
n(P)

∑
j=1

[α(t j )−α(t j−1)]( f (t
∗
j
))

∥∥∥∥∥ < 1

Let P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

be an arbitrary partition, and let

t
∗
P

=
{
t
∗
j
∈ (t j−1 ,t j ) : 1 � j � n(P)

}
.

Let Q be the minimum common refinement of P and P0 , i. e.,

Q(a = u0 < u1 < · · · < u
n(Q) = b),{

si : 1 � i � n(P0)
}∪{

t j : 1 � j � n(P)
}

=
{
ul : 1 � l � n(Q)

}
.
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Choose u
∗
l
∈ (ul−1 ,ul ) in such a way that u

∗
l
= t

∗
j

if t
∗
j
∈ (ul−1 ,ul ) for some j , and

arbitrary u
∗
l
∈ (ul−1 ,ul ) if t j 
∈ (ul−1 ,ul ) for all 1 � j � n(P0) .

Since each ul is either an si or a t j , and since each

[α(t j )−α(t j−1)]( f (t
∗
j
)) =

⎛⎝ ∑
(ul−1 ,ul )⊆(t j−1 ,t j )

[α(ul )−α(ul−1)]

⎞⎠( f (t
∗
j
))

after cancellation of like terms (terms involving intervals of the form (t j−1 , t j )= (si−1 ,si)
= (ul−1 ,ul ) for some i, j, l ), all remaining terms in the difference

n(P)

∑
j=1

[α(t j )−α(t j−1)]( f (t
∗
j
))−

n(Q)

∑
l=1

[α(ul )−α(ul−1)]( f (u
∗
l
))

involve at least one si of the form [α(si)−α(t j )]( f (t
∗
j
)− f (u

∗
l
)) or other two of its

variants. Since each si can appear in at most two such terms, there can be at most
2(n(P0)) terms of this form. Hence∥∥∥∥∥n(P)

∑
j=1

[α(t j )−α(t j−1)]( f (t
∗
j
))−

n(Q)

∑
l=1

[α(ul )−α(ul−1)]( f (u
∗
l
))

∥∥∥∥∥
� 2(n(P0))(2‖α‖∞)(2‖ f‖).

Since Q is a refinement of P0 , we have

∥∥∥∥T
P,t∗

P

( f )
∥∥∥∥ =

∥∥∥∥∥n(P)

∑
j=1

[α(t j )−α(t j−1)]( f (t
∗
j
))

∥∥∥∥∥
�

∥∥∥∥∥n(P)

∑
j=1

[α(t j )−α(t j−1)]( f (t
∗
j
))−

n(Q)

∑
l=1

[α(ul )−α(ul−1)]( f (u
∗
l
))

∥∥∥∥∥
+

∥∥∥∥∥n(Q)

∑
l=1

[α(ul )−α(ul−1)]( f (u
∗
l
))− y

∥∥∥∥∥+‖y‖

<8(n(P0))‖α‖∞ ‖ f‖+1+‖y‖ =: Mf ,

which is the desired Mf , independent of the partition P and the choice of sampling

points t
∗
P

=
{
t j

}
. Since the foregoing argument holds for each fixed f , by the uniform

boundedness principle, there exists an M > 0 such that∥∥∥∥T
P,t∗

P

∥∥∥∥ � M for all partitions P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

and for all choices of t
∗
P

=
{
t
∗
j
∈ (t j−1 , t j ) : 1 � j � n(P)

}
.
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It follows that, for each f ∈ Reg(X) and each ε > 0, there are a partition P and a
choice of sampling points t

∗
P

such that

‖α̂( f )‖ =
∥∥∥∥∫ b

a
[dα(t)]( f (t))

∥∥∥∥ �
∥∥∥∥∫ b

a
[dα(t)]( f (t))−T

P,t∗
P

( f )
∥∥∥∥+

∥∥∥T
P,t

∗ ( f )
∥∥∥

< ε +
∥∥∥T

P,t
∗

∥∥∥‖ f‖ � ε +M‖ f‖

Since this is true for each ε > 0, the map

α̂ : f �→
∫ b

a
[dα(t)]( f (t)) ∀ f ∈ Reg(X)

is a bounded linear transformation from Reg(X) to Y with norm ‖α̂‖ � M . �

Next we derive from the definitions an explicit formula for the integral of a step
function with respect to an integrator. This may be obvious to experts, but we feel that
there is a need for a proof.

LEMMA 3. Let g : [a,b]→X be a step function and let α : [a,b]→B(X ,Y ) be an
integrator for Reg(X) . Then there exist a partition P0(a = u0 < u1 < · · · < u

n(P0 ) = b)
and xk ∈ X , 1 � k � n(P) , such that

∫ b

a
[dα(t)](g(t)) =

n(P0 )

∑
k=1

[α(uk)−α(uk−1)]xk =
n(P)

∑
j=1

[α(t j )−α(t j−1)](g(t
∗
j
))

for all partitions P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

satisfying{
uk : 1 � k � n(P0)

}⊆ {
t j : 1 � j � n(P)

}
,

and for all choices of t
∗
j
∈ (t j−1 ,t j ) , 1 � j � n(P) .

This may be obvious to the experts. Since we are aiming at non-experts, a proof
according to the definition is desirable.

Proof. Let P0

(
a = u0 < u1 < u2 < · · · < u

n(P0 ) = b
)

be the partition associated

with the step function g . We show that

y :=
n(P0)

∑
j=1

[α(uj )−α(uj−1)]xj =
∫ b

a
[dα(t)](g(t)).

To that end, let P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

satisfy{
uj : 1 � j � n(P0)

}⊆ {
tk : 1 � k � n(P)

}
.
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For each k = 1,2, · · · ,n(P) , arbitrarily choose t
∗
k
∈ (tk−1 ,tk ) . Observe that, for

each 1 � j � n(P0) , since ⋃
(tk−1 ,tk )⊆(u j−1 ,u j )

(tk−1 ,tk ] = (uj−1 ,uj ],

by cancellations of intermediate terms,

∑
(tk−1 ,tk )⊆(u j−1 ,u j )

[α(tk )−α(tk−1)] = α(uj−1)−α(uj).

Therefore, since t
∗
k
∈ (uj−1 , uj ) and g(t

∗
k
) = xj whenever (tk−1 , tk) ⊆ (uj−1 , uj) ,

n(P)

∑
k=1

[α(tk )−α(tk−1)](g(t
∗
k
))

=
n(P0 )

∑
j=1

⎡⎣ ∑
(tk−1 ,tk )⊆(u j−1 ,u j )

[α(tk )−α(tk−1)](g(t
∗
k
))

⎤⎦
=

n(P0 )

∑
j=1

⎡⎣ ∑
(tk−1 ,tk )⊆(u j−1 ,u j )

[α(tk )−α(tk−1)]xj

⎤⎦
=

n(P0 )

∑
j=1

⎡⎣⎛⎝ ∑
(tk−1 ,tk )⊆(u j−1 ,u j )

[α(tk)−α(tk−1)]

⎞⎠xj

⎤⎦
=

n(P0 )

∑
j=1

[α(uj )−α(uj−1)]xj = y.

This shows that the vector y satisfies∥∥∥∥∥y−
n(P)

∑
k=1

[α(tk )−α(tk−1)](g(t
∗
k
))

∥∥∥∥∥ = 0

for all partition P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

and all choices of sampling points

t
∗
j
∈ (t j−1 , t j ) . Hence the vector y is also the interior integral of g with respect to α . �

This leads to the following useful necessary condition for an operator-valued func-
tion to be an integrator.

THEOREM 4. Let α : [a,b] → B(X ,Y ) be an integrator for Reg(X) . Then for

all partition P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

and for all choices of xj ∈ [X ]1 , 1 �
j � n(P) , ∥∥∥∥∥n(P)

∑
j=1

[α(t j )−α(t j−1)]xj

∥∥∥∥∥ � ‖α̂‖ .
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Proof. First note that by Theorem 2 the map, α̂ : f �→
∫ b

a
[dα(t)]( f (t)) , is a

bounded linear transformation from Reg(X) to Y . To see that ‖α̂‖ has the asserted

property, let a partition P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

and xj ∈ [X ]1 , 1 � j �
n(P) , be given. Define

g(t) = xj for t ∈ (t j−1 ,t j ), 1 � j � n(P), and g(t) = 0 for all other t ’s.

Then g is a step function and hence is in Reg(X) with ‖g‖ � 1. Thus, by Lemma 3,∥∥∥∥∥n(P)

∑
j=1

[α(t j )−α(t j−1)]xj

∥∥∥∥∥ =
∥∥∥∥∫ b

a
[dα(t)](g(t))

∥∥∥∥ = ‖α̂(g)‖ � ‖α̂‖‖g‖ � ‖α̂‖ . �

By virtue of this result, we introduce the following notation. For a given α :
[a,b]→ B(X ,Y ) define, the set [α]1 as follows.

[α]
1
:=

{
n(P)

∑
j=1

[α(t j )−α(t j−1)]xj : P(a = t0 < · · · < t
n(P) = b) ∈ P,

xj ∈ [X ]1 , 1 � j � n(P)

}

A function α : [a,b] → B(X ,Y ) having bounded [α]1 is said to have bounded
semivariation. The smallest bound for [α]1 will be denoted by Vs(α) = supy∈[α ]1

‖y‖ ,
which is also called the semivariation of α .

It follows from Theorem 4 that each integrator α is of bounded semivariation with
Vs(α) � ‖α̂‖ . The converse is also true. A proof can be found in [6]. We give a more
elementary proof of the converse, aiming at non-experts (and meanwhile reducing the
complication of the treatment of the generality in [6], buried in many pages of the text)
for completeness and self containedness. For our proof, we need the following lemmas.

LEMMA 5. Let α : [a,b] → B(X ,Y ) be of bounded semivariation and t ∈ [a,b] .
Then

‖α(t)−α(a)‖ � Vs(α).

Proof. Observe that

‖α(t)−α(a)‖ = sup
x∈[X ]1

‖[α(t)−α(a)]x‖

= sup
x∈[X ]1

‖[α(t)−α(a)]x+[α(b)−α(t)]0‖� Vs(α). �

LEMMA 6. Let g,h : [a,b] → X be step functions given by

a = u0 < u1 < · · · < u
n(g) = b, g(t) = xj ∈ X , t ∈ (uj−1 ,uj ), 1 � j � n(g),
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and

a = v0 < v1 < · · · < v
n(h) = b, h(t) = wk ∈ X , t ∈ (vk−1 ,vk), 1 � k � n(h).

Let α : [a,b] → B(X ,Y ) be of bounded semivariation; and let

yg =
n(g)

∑
j=1

[α(uj )−α(uj−1)]xj and yh =
n(h)

∑
k=1

[α(vk )−α(vk−1)]wk .

Then ∥∥yg − yh

∥∥ �‖g−h‖Vs(α).

Proof. Relabel the elements of the set
{
uj : 0 � j � n(g)

}∪{
vk : 0 � k � n(h)

}
as a = t0 < t1 < · · · < tN = b to eliminate duplicates.

Then, for each 1 � j � n(g) and 1 � k � n(h) ,⋃
(ti−1 , ti )⊆(u j−1 , u j )

(ti−1 , ti ] = (uj−1 , uj ],

and ⋃
(ti−1 , ti )⊆(vk−1 , vk )

(ti−1 , ti ] = (vk−1 , vk ].

Thus

∑
(ti−1 ,ti )⊆(u j−1 ,u j )

[α(ti)−α(ti−1)] = α(uj−1)−α(uj)

and

∑
(ti−1 ,ti )⊆(vk−1 ,vk )

[α(ti)−α(ti−1)] = α(vk−1)−α(vk).

Choose t
∗
i
∈ (ti−1 , ti) . Then g(t

∗
i
) = xj whenever (ti−1 ,ti) ⊆ (uj−1 ,uj ) , and h(t

∗
i
) = wk

whenever (ti−1 , ti) ⊆ (vk−1 ,vk) . Since∥∥∥‖g−h‖−1
(g(t

∗
i
)−h(t

∗
i
))
∥∥∥ � 1, 1 � i � N,

it follows that∥∥yg − yh

∥∥ =

∥∥∥∥∥n(g)

∑
j=1

[α(uj )−α(uj−1)]xj −
n(h)

∑
k=1

[α(vk )−α(vk−1)]wk

∥∥∥∥∥
=

∥∥∥∥∥∥
n(g)

∑
j=1

⎡⎣ ∑
(ti−1 ,ti )⊆(u j−1 ,u j )

[α(ti)−α(ti−1)]

⎤⎦xj

−
n(h)

∑
k=1

⎡⎣ ∑
(ti−1 ,ti )⊆(vk−1 ,vk )

[α(ti)−α(ti−1)]

⎤⎦wk

∥∥∥∥∥∥
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=

∥∥∥∥∥∥
n(g)

∑
j=1

⎡⎣ ∑
(ti−1 ,ti )⊆(u j−1 ,u j )

[α(ti)−α(ti−1)]

⎤⎦(g(t
∗
i
))

−
n(h)

∑
k=1

⎡⎣ ∑
(ti−1 ,ti )⊆(vk−1 ,vk )

[α(ti)−α(ti−1)]

⎤⎦(h(t
∗
i
))

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n(g)

∑
j=1

⎡⎣ ∑
(ti−1 ,ti )⊆(u j−1 ,u j )

[α(ti)−α(ti−1)](g(t
∗
i
))

⎤⎦
−

n(h)

∑
k=1

⎡⎣ ∑
(ti−1 ,ti )⊆(vk−1 ,vk )

[α(ti)−α(ti−1)](h(t
∗
i
))

⎤⎦∥∥∥∥∥∥
=

∥∥∥∥∥ N

∑
i=1

[α(ti)−α(ti−1)](g(t
∗
i
))−

N

∑
i=1

[α(ti)−α(ti−1)](h(t
∗
i
))

∥∥∥∥∥
=

∥∥∥∥∥ N

∑
i=1

[α(ti)−α(ti−1)](g(t
∗
i
)−h(t

∗
i
))

∥∥∥∥∥
=

∥∥∥∥∥ N

∑
i=1

[α(ti)−α(ti−1)]
[
‖g−h‖−1

(g(t
∗
i
)−h(t

∗
i
))
]∥∥∥∥∥‖g−h‖

�Vs(α)‖g−h‖. �

THEOREM 7. Let α : [a,b] → B(X ,Y ) be a function of bounded semivariation.
Then α is an integrator for Reg(X) .

Proof. Let ε > 0. By Theorem 1 there exists a sequence
{
gk

}
k∈N

of step func-
tions gk : [a,b] → X such that∥∥ f −gk

∥∥ = sup
a�t�b

∥∥ f (t)−gk(t)
∥∥

X
→ 0 as k → ∞.

For each k ∈ N , let yk ∈ Y be the vector associated with gk by Lemma 6. The lemma
also gives us∥∥yk − yl

∥∥
Y

� Vs(α)
∥∥gk −gl

∥∥ � Vs(α)
[∥∥gk − f

∥∥+
∥∥ f −gl

∥∥]→ 0 as k, l → ∞.

Thus
{
yk

}
is a Cauchy sequence in Y . By the completeness of Y , there is a y∈Y such

that
∥∥y− yk

∥∥
Y
→ 0 as k → ∞ . We show that y has the property (†), i.e., is the integral

of f . Let ε > 0 be given. Then there is an N ∈ N such that∥∥y− yk

∥∥
Y

<
ε
2

and
∥∥ f −gk

∥∥ < min

{
1,

ε
2[Vs(α)+1]

}
∀ k � N.

Let g = gN . Since g is a step function, there exist

a = u0 < u1 < u2 < · · · < u
n(g) = b, xj ∈ X , 1 � j � n(g)
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such that g(t) = xj , for t ∈ (uj−1 ,uj ), 1 � j � n(g). Let P0 be the partition defined by
the division points uj , i.e., P0(a = u0 < u1 < · · · < u

n(g) = b). Let

P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

be a partition that satisfies{
uj : 1 � j � n(g)

}⊆ {
tk : 1 � k � n(P)

}
.

Let t
∗
j
∈ (t j−1 , t j ), 1 � j � n(g) , be arbitrarily chosen. Then since g = gN is a step

function, by Lemma 3

n(P)

∑
i=1

[α(ti)−α(ti−1)](g(t
∗
i
)) =

n(P)

∑
i=1

[α(ti)−α(ti−1)](gN (t
∗
i
)) = yN .

Since
∥∥∥‖g− f‖−1

(g(t
∗
i
)− f (t

∗
i
))
∥∥∥ � 1, 1 � i � n(P) , we have

∥∥∥∥∥y−
n(P)

∑
i=1

[α(ti)−α(ti−1)]( f (t
∗
i
))

∥∥∥∥∥
�

∥∥∥∥∥y−
n(P)

∑
i=1

[α(ti)−α(ti−1)]g(t
∗
i
)

∥∥∥∥∥+

∥∥∥∥∥n(P)

∑
i=1

[α(ti)−α(ti−1)](g(t
∗
i
)− f (t

∗
i
))

∥∥∥∥∥
=‖y− yN‖+

∥∥∥∥∥n(P)

∑
i=1

[α(ti)−α(ti−1)]
[
‖g− f‖−1

(g(t
∗
i
)− f (t

∗
i
))
]∥∥∥∥∥‖g− f‖

<
ε
2

+Vs(α)‖g− f‖ <
ε
2

+
εVs(α)

2[Vs(α)+1]
< ε. �

Combining Theorems 7 and 4, we have the following.

COROLLARY 8.

1. A function α : [a,b] → B(X ,Y ) is an integrator for Reg(X) if, and only if, α is
of bounded semivariation.

2. For each integrator α for Reg(X) , Vs(α) = ‖α̂‖ .

Proof. Part (1) follows directly from Theorems 7 and 4.
For part (2), we have already noted above that Vs(α) � ‖α̂‖ . For the opposite

inequality, let f ∈ Reg(X) , and let ε > 0. Let P0 and all sj be as in (†). Choose any

s
∗
j
∈ (sj−1 ,sj ) , for 1 � j � n(P0) . Then, since

∥∥∥‖ f‖−1
f (s

∗
j
)
∥∥∥ � 1 for all 1 � j � n(P0) ,
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we have

‖α̂( f )‖ �

∥∥∥∥∥∥
∫ b

a
[dα(t)]( f (t))−

⎡⎣n(P0 )

∑
j=1

[α(sj )−α(sj−1)]( f (s
∗
j
))

⎤⎦∥∥∥∥∥∥
+

∥∥∥∥∥∥
n(P0 )

∑
j=1

[α(sj )−α(sj−1)]( f (s
∗
j
))

∥∥∥∥∥∥
<ε +

∥∥∥∥∥∥
n(P0 )

∑
j=1

[α(sj )−α(sj−1)](‖ f‖−1
f (s

∗
j
))

∥∥∥∥∥∥ · ‖ f‖ � ε +Vs(α)‖ f‖

Since ε is arbitrary, we have ‖α̂‖ � Vs(α) , and hence equality follows. �

4. Compactness of integrators

We first consider the following example. Let X = Y = �
2

(the square summable
Hilbert sequence space), and [a,b] = [0,1] . For each j ∈ N , denote by ej the jth

standard basis vector of �
2
, and Ej the orthogonal projection of �

2
onto the span of ej

(i.e, Ej = ej ⊗ ej , or Ej(x) = 〈x,ej 〉ej for all x ∈ �
2
). Define α : [0,1] → B(�

2
) by

α(t) = 1√
nEn for all t ∈ (2

−n
,2

−n+1
] , n ∈ N , and α(0) = 0. With N � 2, and with the

partition P(0 < 2
−N

< 2
−N+1

< · · ·< 1) and x1 = xN+1 = 0, xj+1 = eN− j , 1 � j � N−1,
we have∥∥∥∥∥[α(2

−N
)−α(0)]x1 +

N

∑
j=1

[α(2
−N+ j

)−α(2
−N+ j−1

)]xj+1

∥∥∥∥∥
=

∥∥∥∥∥N−1

∑
j=1

[α(2
−N+ j

)−α(2
−N+ j−1

)]eN− j

∥∥∥∥∥ =

∥∥∥∥∥N−1

∑
j=1

(AN− j+1 −AN− j)eN− j

∥∥∥∥∥
=

∥∥∥∥∥N−1

∑
j=1

AN− j eN− j

∥∥∥∥∥ =

∥∥∥∥∥N−1

∑
j=1

1√
N− j

eN− j

∥∥∥∥∥ =

[
N−1

∑
j=1

1
N− j

]1/2

→ ∞ as N → ∞.

Thus α is not an integrator by Theorem 4, though each α(t) is of rank one and hence
compact.

Recall that a subset of a metric space is said to be totally bounded if, for every
ε > 0, it can be covered by a finite number of ε -balls. A subset of a metric space is
totally bounded iff it has a compact closure. A bounded linear transformation K from
a Banach space X to a Banach space Y is compact if the image of the unit ball of X
under K has a compact closure. Thus K is compact iff K([X ]1) (or the image under K
of each bounded subset of X ) is totally bounded.

THEOREM 9. Let α : [a,b]→B(X ,Y ) be an integrator for Reg(X) that vanishes
at a (i.e., α(a) = 0 ). Then the following conditions on α are equivalent.
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1. α̂ is compact,

2. There is a compact operator K from a Banach space Z to Y such that [α]1 ⊆
K([Z]r ) for some r > 0 .

3. There is a one-to-one compact operator K from a Banach space Z to Y such
that K

−1
(α(t)) is a bounded operator from X to Z for all t ∈ [a,b] and K

−1◦α
is an integrator.

4. The set [α]1 is a totally bounded subset of Y .

A modification of the example preceding the statement of the theorem above can
also serve as examples for (2)–(4).

Define β (t) = n
−2

En for t ∈ (2
−n−1

,2
n
] , n ∈ N , and β (0) = 0. Let P(a = t0 <

· · · < t
N(P) ) be a partition of [0,1] , and let xj ∈ [X ]1 , 1 � j � N(P) .The nonzero terms

in the sum in [α]1 are those j that satisfy t j > 2
−k � 2

−m � t j−1 for some k � m . Thus

n(P)

∑
j=1

[β (t j )−β (t j−1)]xj = ∑
1� j�n(P)

t j >2
−k�2

−m�t j−1

[
k
−2〈xj ,ek〉ek −m

−2〈xj ,em〉em

]

Notice that ek can at most appear as (k +1)
−2〈xj+1 ,ek〉ek in the term preceding it. So

the combined ek terms has coefficient

k
−2〈xj ,ek〉− (k+1)

−2〈xj+1 ,ek 〉 =k
−1

(
k
−1〈xj ,ek〉− k(k+1)

−2〈xj+1 ,ek〉
)

= k
−1

(
k
−1

ak

)
for some

∣∣ak

∣∣ � 2, since xj ,xj+1 ∈ [X ]1 . Similar expression holds for em . Since

∑∞
k=1 k

−1
ek ∈ �

2
(i.e., the sequence

{
n
−1

}
n∈N

is in �
2
), the whole sum is in the range

of the compact operator K := ∑∞
ν=1 ν−1

Eν . So β satisfies condition (2) of the this

theorem with [β ]1 ⊆ K([�
2
]2) .

Let L = ∑∞
ν=1 ν−1/2

Eν , and let γ = L
−1 ◦β , we see that

γ(t) = L
−1

(β (t)) =
1

n3/2
En if t ∈ (2

−n
,2

−n+1
] for some n , and γ(0) = L

−1
(β (0)) = 0.

Arguments similar to that used for β show that

[γ]1 = [L
−1

◦β ]1 ⊆ L([X ]2) a bounded set.

Thus β satisfies condition (3). Since L is compact, L([X ]2) is totally bounded, so that
γ also satisfies condition (4)

Proof. [(1) ⇒ (2)] Suppose α̂ is compact. We show that α satisfies (2) with
K = α̂ and Z = Reg(X) . Each element of [α]1 corresponds to a partition

P(a = t0 < · · · < t
n(P) = b) ∈ P[a,b]
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and a finite collection of vectors xj ∈ [X ]1 , 1 � j � n(P) .
Then the function g defined by g(t) = xj for t ∈ [t j−1 , t j ) , and g(b) = 0, is a step

function and hence belongs to [Reg(X)]1 . Thus, by Lemma 3,

n(P)

∑
j=1

[α(t j )−α(t j−1)]xj = α̂(g) ∈ α̂([Reg(X)]1).

Thus [α]1 is contained in α̂([Reg(X)]1) = K([Z]1) .
[(2) ⇒ (3)] Suppose [α]1 ⊆K([Z]r) for some compact operator K from a Banach

space Z to Y , and for some r > 0. Considering the compact operator K̃ induced on
the quotient space Z/kerK , we may assume that K is one-to-one. For t ∈ [a,b] and
x ∈ [X ]1 , since the function

gt,x(s) =

⎧⎨⎩x for s ∈ [a, t]

0 for s ∈ (t,b]

is in [Reg(X)]1 , we have

[α(t)]x =[α(t)−α(a)]x =
∫ b

a
[dα(s)](gt,x(s))

=α̂(gt,x) ∈ α̂([Reg(X)]1) ⊆ K([Z]1).

Thus [α(t)](X) ⊆ K(Z) for all t ∈ [a,b] . Hence K
−1

[α(t)] is a closed operator from
the Banach space X to Z . Thus each K

−1
[α(t)] (t ∈ [a,b]) is a bounded operator from

X to Z . Furthermore β := K
−1◦α : [a,b] → B(X ,Z) satisfies

[β ]1 =

{
n(P)

∑
j=1

[β (t j)−β (t j−1)]xj : P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

,

xj ∈ [X ]1 , 1 � j � n(P)

}

=

{
n(P)

∑
j=1

[K
−1

(α(t j ))−K
−1

(α(t j−1))]xj : P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

,

xj ∈ [X ]1 , 1 � j � n(P)

}

=K
−1

({
n(P)

∑
j=1

[α(t j )−α(t j−1)]xj : P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

,

xj ∈ [X ]1 , 1 � j � n(P)

})
= = K

−1
([α]1) ⊆ [Z]r .
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Therefore β is an integrator.

[(3) ⇒ (4)] Suppose β := K
−1◦α defines an integrator for some compact op-

erator K from Z to Y . Then [β ]1 = K
−1

([α]1) is a bounded subset of Z . Thus

[α]1 = K(K
−1

([α]1)) = K([β ]1) is a totally bounded set (see the discussion preceding
the statement of this theorem).

[(4) ⇒ (1)] Suppose [α]1 is totally bounded. We show that α̂([Reg(X)]1) is
contained in the closure of [α]1 . Let f ∈ [Reg(X)]1 , and ε > 0. Then, by definitions of

α̂ and the integral, there is a partition P
(
a = t0 < t1 < t2 < · · · < t

n(P) = b
)

such that

for all choices of t
∗
j
∈ (t j−1 ,t j ), 1 � j � n(P) , we have

∥∥∥∥∥α̂( f )−
n(P)

∑
j=1

[α(t j )−α(t j−1)] f (t
∗
j
)

∥∥∥∥∥ < ε.

Since f ∈ [Reg(X)]1 , each f (t
∗
j
) ∈ [X ]1 , and hence the sum in the preceding inequality

is in [α]1 . As ε is arbitrary, α̂( f ) ∈ [α]
1
, that is α̂([Reg(X)]1) ⊆ [α]

1
, the closure of

the totally bounded set [α]1 . Thus α̂ is a compact linear transformation. �
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