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A SURJECTIVITY PROBLEM FOR 3 BY 3 MATRICES
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(Communicated by H. Radjavi)

Abstract. Let P be a complex polynomial. We prove that the associated polynomial matrix-
valued function P̃ is surjective if and only if for each λ ∈ C the polynomial P−λ has at least
a simple zero.

1. Natural powers for matrices of order three

For any integer number n we denote by M (n,C) the set of all complex matrices
of order n. Let A ∈ M (3,C) be given by

A =

⎛
⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞
⎠ . (1.1)

Denote by x,y,z ∈ C its eigenvalues and by PA(λ ) its characteristic polynomial. Recall
that PA(λ ) = λ 3− s1(A)λ 2 + s2(A)λ − s3(A), where si(A) are given by

s1(A) = a1 +b2 + c3 (1.2)

s2(A) = det

(
a1 a2

b1 b2

)
+det

(
a1 a3

c1 c3

)
+det

(
b2 b3

c2 c3

)
(1.3)

and
s3(A) = det(A). (1.4)

We begin this section by presenting the powers of the matrix A in a suitable form
so the technicalities in the main section are minimal. In addition it enables us to obtain
immediately a spectral mapping theorem. There are three cases to consider, namely
(x− y)(x− z)(y− z) �= 0, x = y = z , and finally PA(λ ) = (λ − x)2(λ − y) with x �= y .

1. Suppose (x− y)(x− z)(y− z) �= 0. Then PA(λ ) = (λ − x)(λ − y)(λ − z) and
from the Hamilton-Cayley Theorem we have PA(A) = (A−xI3)(A−yI3)(A−zI3) = 03;
the null matrix of order three.

Mathematics subject classification (2010): 30C15, 33C50, 15A60, 65F15.
Keywords and phrases: Natural powers of matrices, functional calculus with matrices, global problems

concerning polynomials of matrices.

c© � � , Zagreb
Paper OaM-13-07

111

http://dx.doi.org/10.7153/oam-2019-13-07
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PROPOSITION 1.1. With the above notations, suppose that (x−y)(x−z)(y−z) �=
0 . Then for every nonnegative integer n, one has

An = xnB+ ynC+ znD (1.5)

where

B =
(A− yI3)(A− zI3)

(x− y)(x− z)
, C =

(A− xI3)(A− zI3)
(y− x)(y− z)

(1.6)

and

D =
(A− xI3)(A− yI3)

(z− x)(z− y)
. (1.7)

Proof. The proof is an easy mathematical induction argument and is left to the
reader. �

2. Suppose the eigenvalues of the matrix A ∈ M (3,C) satisfy the condition x =
y = z . Then PA(λ ) = (λ − x)3 and the Hamilton-Cayley Theorem asserts that (A−
xI)3 = 03.

PROPOSITION 1.2. Suppose x = y = z �= 0. Then there exists matrices B and C
in M (3,C) such that

An = xn(n2B+nC+ I3) for all n ∈ Z+. (1.8)

In addition, the matrices B and C satisfy the matrix system{
x(B+C+ I3) = A

x2(4B+2C+ I3) = A2.
(1.9)

Proof. Note the system (1.9) arises, for example, by taking the particular values
n = 1 and n = 2 in (1.8). The solution of the system (1.9) is

(B,C) =
(

1
2x2 (A− xI3)2, − 1

2x2 (A− xI3)(A−3xI3)
)

. (1.10)

With these values of B and C the proof of (1.8) is immediate. �

COROLLARY 1.1. Let P(z) := anzn +an−1zn−1+ · · ·a1z+a0 be a polynomialwith
complex coefficients, and let x,a,b and c be given complex numbers. For

A1 = A1(x,a,b,c) :=

⎛
⎝ x a c

0 x b
0 0 x

⎞
⎠ , (1.11)

P̃(A1) := anAn
1 +an−1A

n−1
1 + · · ·a1A1 +a0I3, is given by

⎛
⎝P(x) aP′(x) 1

2!cP
′′(x)

0 P(x) bP′(x)
0 0 P(x)

⎞
⎠ . (1.12)
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Proof. Is enough to see that (1.8) and (1.10) yield

An
1 =

⎛
⎝ xn anxn−1 1

2!n(n−1)cxn−2

0 xn bnxn−1

0 0 xn

⎞
⎠ . (1.13)

The details are omitted. �

3. Suppose PA(λ ) = (λ − x)2(λ − y) with x �= y . Then the Hamilton-Cayley
Theorem asserts that (A− xI3)2(A− yI3) = 03.

PROPOSITION 1.3. If the matrix A has the eigenvalues x,x,y, with x �= y and
x �= 0 then its natural powers are given by

An = xn(nB+C)+ ynD, n ∈ Z+, (1.14)

where (B,C,D) is the solution of the matrix system

⎧⎨
⎩

C+D = I3
xB+ xC+ yD = A

2x2B+ x2C+ y2D = A2.
(1.15)

Proof. Note the system (1.15) and one has

B =
1

x(x− y)
(A− xI3)(A− yI3), (1.16)

C = − 1
(x− y)2 [A− (2x− y)I3](A− yI3), (1.17)

D =
1

(x− y)2 (A− xI3)2. � (1.18)

COROLLARY 1.2. Let P(z) be a polynomial as in Corollary 1.1 and let x,y and
a be given complex numbers. For

A2 = A2(x,y,a) :=

⎛
⎝ x a 0

0 x 0
0 0 y

⎞
⎠ , (1.19)

P̃(A2) is given by ⎛
⎝P(x) aP′(x) 0

0 P(x) 0
0 0 P(y)

⎞
⎠ . (1.20)
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Proof. Is enough to see that (1.14), (1.16), (1.17) and (1.18) yield

An
2 =

⎛
⎝ xn anxn−1 0

0 xn 0
0 0 yn

⎞
⎠ . (1.21)

The details are omitted. �

Let A ∈ M (n,C). A monic polynomial of least degree (denoted by mA ) having
the property that mA(A) = 0n is called the minimal polynomial of A. The characteristic
polynomial and the minimal polynomial of a matrix A above must have the same zeros
but the multiplicity could be different. The next Theorem in its general form (i.e. for
matrices n by n ) is called the Jordan canonical form Theorem in honor of the French
mathematician Camille Jordan (1833–1922) who first published a proof of it. Next we
present the case n = 3 which is more convenient to write. The proof of the general case
can be found for example in [4] on page 65.

THEOREM 1.1. Let A ∈ M (3,C) be a matrix with the characteristic polynomial
PA and the minimal polynomial mA.

1. If PA(λ ) = mA(λ ) = (λ − x)(λ − y)(λ − z) with x,y,z mutually different then
there exists an invertible complex matrix T1 such that

T−1
1 AT1 = J1(A) = diag(x,y,z) :=

⎛
⎝ x 0 0

0 y 0
0 0 z

⎞
⎠ , (1.22)

2. If PA(λ ) = mA(λ ) = (λ − x)2(λ − y) with x �= y then there exists an invertible
complex matrix T2 such that

T−1
2 AT2 = J2(A) :=

⎛
⎝ x 1 0

0 x 0
0 0 y

⎞
⎠ . (1.23)

3. If PA(λ ) = (λ − x)2(λ − y) and mA(λ ) = (λ − x)(λ − y) with x �= y then there
exists an invertible complex matrix T3 such that

T−1
2 AT3 = J3(A) :=

⎛
⎝ x 0 0

0 x 0
0 0 y

⎞
⎠ . (1.24)

4. If PA(λ ) = mA(λ ) = (λ − x)3 then there exists an invertible complex matrix T4

such that

T−1
4 AT4 = J4(A) :=

⎛
⎝ x 1 0

0 x 1
0 0 x

⎞
⎠ . (1.25)
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5. If PA(λ ) = (λ − x)3 and mA(λ ) = (λ − x)2 then there exists an invertible
complex matrix T5 such that

T−1
5 AT5 = J5(A) :=

⎛
⎝ x 1 0

0 x 0
0 0 x

⎞
⎠ . (1.26)

6. If PA(λ ) = (λ − x)3 and mA(λ ) = (λ − x) then A = J6(A) := xI3.

Recall that the spectrum of a matrix A, denoted by σ(A), is the set of all its
eigenvalues and that the resolvent set of A is ρ(A) := C \ σ(A) , i.e. the set of all
complex numbers z for which the matrix zI3−A, is invertible.

REMARK 1.1. (1). Note (see below)

σ(P̃(A)) = P(σ(A)). (1.27)

(2). If z �→ f (z) :=
∞
∑

k=0
akzk is an integer function (i.e. it is holomorphic on C)

then for each matrix A ∈ X , the matrix

f̃ (A) :=
∞

∑
k=0

akA
k (1.28)

is well defined. The convergence in (1.28) is considered with respect to the operator
norm of matrices. Thus one has

σ( f̃ (A)) = f (σ(A)). (1.29)

In particular,

etA :=
∞

∑
k=0

(tA)k

k!
, and σ(etA) = etσ(A),t ∈ R. (1.30)

Proof. Let A ∈ M (3,C) , k ∈ {1,2,3,4,5,6} and Tk be an invertible matrix such
that T−1

k ATk = Jk(A). Then

σ( f̃ (A)) = σ(T−1
k f̃ (A)Tk) = σ( f̃ (T−1

k ATk)) = σ( f̃ (Jk(A))) = f (σ(A)). (1.31)

�
For matrices and operators we refer the reader to [2], [3], [4] and [5].

2. Global problems in the space of matrices

LEMMA 2.1. If the polynomial P∈C[z] has no simple zeros then the matrix equa-
tion

P̃(X) = Y :=

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ (2.1)

has no solutions in M (3,C).
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Proof. We argue by contradiction. Suppose that there exists A ∈ M (3,C) such
that P̃(A) =Y. Thus in view of (1.27), P(σ(A)) = σ(P̃(A)) = {0}, i.e. the eigenvalues
of A are zeros of the polynomial P. Now if x,y,z ∈ σ(A) then P(x) = P′(x) = P(y) =
P(z) = 0 and there exists a complex invertible matrix Tk such that T−1

k ATk = Jk(A).
Thus P̃(X) = TkP̃(Jk(A))T−1

k = 03 (the null matrix of order 3), for k = 1,2,3,4,5,
so we have a contradiction. We have a similar contraction for k = 6 (we omit the
details). �

PROPOSITION 2.1. Let P ∈ C[z] be a polynomial having the property that there
exists a m ∈ C such that Q := P−m has no simple zeros. Then the map X �→ P̃(X) :
M (3,C) → M (3,C) is not surjective.

Proof. In view of Lemma 2.1, the equation

P̃(X) = mI3 +

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ (2.2)

has no solutions in M (3,C). �

DEFINITION 2.1. We say that a polynomial P∈C[z] has the simple zero property
(SZP) if for every m ∈ C the polynomial Q := P−m has at least a simple zero.

For example, the polynomial P1(z) = (z−1)(z−2)(z−3) has SZP while P2(z) =
z3 does not. Clearly every polynomial of degree 1 has SZP but polynomials of degree
2 have not the property.

THEOREM 2.1. Let P ∈ C[z] be a polynomial satisfying SZP . Then the map

X �→ P̃(X) : M (3,C) → M (3,C) (2.3)

is surjective.

Proof. Let Y ∈ M (3,C) be given. The argument is broken into several cases.
1. The spectrum of Y consists of three mutually different complex numbers u,

v and w. Thus, there exists an invertible matrix T such that T−1YT = diag (u,v,w).
Set X := T diag (x,y,z))T−1, where x,y and z are zeros of P− u , P− v and P−w ,
respectively. Then P̃(X) = T P̃( diag (x,y,z))T−1 = Y.

2. The spectrum of Y consists of u and v, with u being a zero of PY of multiplicity
2.

2.1. When mY (λ ) = (λ −u)2(λ −v) then there exists an invertible matrix T2 such
that

T−1
2 YT2 = J2(Y ) :=

⎛
⎝u 1 0

0 u 0
0 0 v

⎞
⎠ . (2.4)
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Let x be a simple zero of P−u and y as above. Thus P′(x) �= 0. Set

X = T2

⎛
⎝ x 1

P′(x) 0

0 x 0
0 0 y

⎞
⎠T−1

2 . (2.5)

In view of Corollary 1.2, one has

P̃(X) = T2P̃

⎛
⎝

⎛
⎝ x 1

P′(x) 0
0 x 0
0 0 y

⎞
⎠

⎞
⎠T−1

2 = T2J2(Y )T−1
2 = Y. (2.6)

2.2. When mY (λ ) = (λ −u)(λ − v) then there exists an invertible matrix T3 such
that

T−1
3 YT3 = J3(Y ) :=

⎛
⎝u 0 0

0 u 0
0 0 v

⎞
⎠ . (2.7)

Let x be a simple zero of P−u and y as above. Set

X = T3

⎛
⎝ x 0 0

0 x 0
0 0 y

⎞
⎠T−1

3 . (2.8)

In view of Corollary 1.2, one has

P̃(X) = T3P̃

⎛
⎝

⎛
⎝ x 0 0

0 x 0
0 0 y

⎞
⎠

⎞
⎠T−1

3 = T3J3(Y )T−1
3 = Y. (2.9)

3. The spectrum of Y consists of u, being a zero of PY of multiplicity 3. We
divide the proof into three steps.

3.1. When mY (λ ) = (λ −u)3 then there exists an invertible matrix T4 such that

T−1
4 YT4 = J4(Y ) :=

⎛
⎝u 1 0

0 u 1
0 0 u

⎞
⎠ . (2.10)

Let x be a simple zero of P−u . Note P′(x) �= 0. Set

X = T4

⎛
⎜⎝

x 1
P′(x) 0

0 x 1
P′(x)

0 0 x

⎞
⎟⎠T−1

4 . (2.11)

In view of Corollary 1.1 one has

P̃(X) = T4P̃

⎛
⎜⎝

⎛
⎜⎝

x 1
P′(x) 0

0 x 1
P′(x)

0 0 x

⎞
⎟⎠

⎞
⎟⎠T−1

4 = T4J31(Y )T−1
4 = Y. (2.12)
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3.2. When mY (λ ) = (λ −u)2 then there exists an invertible matrix T5 such that

T−1
5 YT5 = J5(Y ) :=

⎛
⎝u 1 0

0 u 0
0 0 u

⎞
⎠ (2.13)

and in view of Corollary 1.1 one has

P̃(X) = T5P̃

⎛
⎝

⎛
⎝ x 1

P′(x) 0

0 x 0
0 0 x

⎞
⎠

⎞
⎠T−1

5 = T5J5(Y )T−1
5 = Y. (2.14)

3.3. When mY (λ ) = (λ −u) then Y = uI3. Let x a zero of P−u and set X = xI3.
Then P̃(X) = Y. �

THEOREM 2.2. Let P be a polynomial. The map

X �→ P̃(X) : M (3,C) → M (3,C) (2.15)

is surjective if and only if P has the simple zero property.

The proof of Theorem 2.2 follows by combining Proposition 2.1 with Theorem
2.1.

Finally, as an immediate consequence, we present the following C9 version of the
Ax-Grothendieck’s Theorem; see [1].

Let n be a positive integer and denote (ad-hoc) by Pn the set of all polynomial
functions p : C

n → C
n (that is, all components of p are scalar valued polynomials of

n complex variables). As is well-known (Ax-Grothendieck’s Theorem) if p ∈ Pn is
injective then it is surjective as well. In what follows we refer to the particular case
n = 9.

Denote by A9 the set of all polynomials p ∈ P9 having the property that there
exist a scalar polynomial P (of one complex variable) and a linear transformation T :
M (3,C) → C9 such that

p = TP̃T−1. (2.16)

COROLLARY 2.1. If p∈ A9 is injective then it is surjective as well. Moreover, in
this case, the inverse of p is also a polynomial.

Proof. From (2.16) we have

P̃ = T−1pT. (2.17)

Now, the assumption on p yields the injectivity of P̃ and thus (as is very easy to see),
the polynomial P has degree equal to 1. In particular P has SZP, so P̃ is surjective.
Now, from (2.16), p is surjective. Moreover, since P has degree equal to 1, (2.16)
yields that p has the degree equal to 1 and thus its inverse is a polynomial. �
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