A SURJECTIVITY PROBLEM FOR 3 BY 3 MATRICES

CONSTANTIN BUŞE, DONAL O'REGAN AND OLIVIA SAIERLI

(Communicated by H. Radjavi)

Abstract. Let *P* be a complex polynomial. We prove that the associated polynomial matrixvalued function \tilde{P} is surjective if and only if for each $\lambda \in \mathbb{C}$ the polynomial $P - \lambda$ has at least a simple zero.

1. Natural powers for matrices of order three

For any integer number *n* we denote by $\mathcal{M}(n, \mathbb{C})$ the set of all complex matrices of order *n*. Let $A \in \mathcal{M}(3, \mathbb{C})$ be given by

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$
 (1.1)

Denote by $x, y, z \in \mathbb{C}$ its eigenvalues and by $P_A(\lambda)$ its characteristic polynomial. Recall that $P_A(\lambda) = \lambda^3 - s_1(A)\lambda^2 + s_2(A)\lambda - s_3(A)$, where $s_i(A)$ are given by

$$s_1(A) = a_1 + b_2 + c_3 \tag{1.2}$$

$$s_2(A) = det \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} + det \begin{pmatrix} a_1 & a_3 \\ c_1 & c_3 \end{pmatrix} + det \begin{pmatrix} b_2 & b_3 \\ c_2 & c_3 \end{pmatrix}$$
(1.3)

and

$$s_3(A) = \det(A). \tag{1.4}$$

We begin this section by presenting the powers of the matrix A in a suitable form so the technicalities in the main section are minimal. In addition it enables us to obtain immediately a spectral mapping theorem. There are three cases to consider, namely $(x-y)(x-z)(y-z) \neq 0$, x = y = z, and finally $P_A(\lambda) = (\lambda - x)^2(\lambda - y)$ with $x \neq y$.

1. Suppose $(x-y)(x-z)(y-z) \neq 0$. Then $P_A(\lambda) = (\lambda - x)(\lambda - y)(\lambda - z)$ and from the Hamilton-Cayley Theorem we have $P_A(A) = (A - xI_3)(A - yI_3)(A - zI_3) = 0_3$; the null matrix of order three.

Keywords and phrases: Natural powers of matrices, functional calculus with matrices, global problems concerning polynomials of matrices.

Mathematics subject classification (2010): 30C15, 33C50, 15A60, 65F15.

PROPOSITION 1.1. With the above notations, suppose that $(x-y)(x-z)(y-z) \neq 0$. Then for every nonnegative integer *n*, one has

$$A^n = x^n B + y^n C + z^n D \tag{1.5}$$

where

$$B = \frac{(A - yI_3)(A - zI_3)}{(x - y)(x - z)}, \quad C = \frac{(A - xI_3)(A - zI_3)}{(y - x)(y - z)}$$
(1.6)

and

$$D = \frac{(A - xI_3)(A - yI_3)}{(z - x)(z - y)}.$$
(1.7)

Proof. The proof is an easy mathematical induction argument and is left to the reader. \Box

2. Suppose the eigenvalues of the matrix $A \in \mathcal{M}(3,\mathbb{C})$ satisfy the condition x = y = z. Then $P_A(\lambda) = (\lambda - x)^3$ and the Hamilton-Cayley Theorem asserts that $(A - xI)^3 = 0_3$.

PROPOSITION 1.2. Suppose $x = y = z \neq 0$. Then there exists matrices B and C in $\mathcal{M}(3,\mathbb{C})$ such that

$$A^{n} = x^{n} (n^{2}B + nC + I_{3}) \text{ for all } n \in \mathbb{Z}_{+}.$$
(1.8)

In addition, the matrices B and C satisfy the matrix system

$$\begin{cases} x(B+C+I_3) = A\\ x^2(4B+2C+I_3) = A^2. \end{cases}$$
(1.9)

Proof. Note the system (1.9) arises, for example, by taking the particular values n = 1 and n = 2 in (1.8). The solution of the system (1.9) is

$$(B,C) = \left(\frac{1}{2x^2}(A - xI_3)^2, -\frac{1}{2x^2}(A - xI_3)(A - 3xI_3)\right).$$
(1.10)

With these values of *B* and *C* the proof of (1.8) is immediate. \Box

COROLLARY 1.1. Let $P(z) := a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ be a polynomial with complex coefficients, and let x, a, b and c be given complex numbers. For

$$A_1 = A_1(x, a, b, c) := \begin{pmatrix} x & a & c \\ 0 & x & b \\ 0 & 0 & x \end{pmatrix},$$
 (1.11)

 $\tilde{P}(A_1) := a_n A_1^n + a_{n-1} A_1^{n-1} + \cdots + a_1 A_1 + a_0 I_3$, is given by

$$\begin{pmatrix} P(x) \ aP'(x) \ \frac{1}{2!} cP''(x) \\ 0 \ P(x) \ bP'(x) \\ 0 \ 0 \ P(x) \end{pmatrix}.$$
 (1.12)

Proof. Is enough to see that (1.8) and (1.10) yield

$$A_1^n = \begin{pmatrix} x^n \ anx^{n-1} \ \frac{1}{2!}n(n-1)cx^{n-2} \\ 0 \ x^n \ bnx^{n-1} \\ 0 \ 0 \ x^n \end{pmatrix}.$$
 (1.13)

The details are omitted. \Box

3. Suppose $P_A(\lambda) = (\lambda - x)^2(\lambda - y)$ with $x \neq y$. Then the Hamilton-Cayley Theorem asserts that $(A - xI_3)^2(A - yI_3) = 0_3$.

PROPOSITION 1.3. If the matrix A has the eigenvalues x, x, y, with $x \neq y$ and $x \neq 0$ then its natural powers are given by

$$A^{n} = x^{n}(nB+C) + y^{n}D, \quad n \in \mathbb{Z}_{+},$$
(1.14)

where (B,C,D) is the solution of the matrix system

$$\begin{cases} C+D = I_3 \\ xB+xC+yD = A \\ 2x^2B+x^2C+y^2D = A^2. \end{cases}$$
(1.15)

Proof. Note the system (1.15) and one has

$$B = \frac{1}{x(x-y)}(A - xI_3)(A - yI_3), \qquad (1.16)$$

$$C = -\frac{1}{(x-y)^2} [A - (2x-y)I_3](A - yI_3), \qquad (1.17)$$

$$D = \frac{1}{(x-y)^2} (A - xI_3)^2. \quad \Box$$
 (1.18)

COROLLARY 1.2. Let P(z) be a polynomial as in Corollary 1.1 and let x, y and a be given complex numbers. For

$$A_2 = A_2(x, y, a) := \begin{pmatrix} x & a & 0 \\ 0 & x & 0 \\ 0 & 0 & y \end{pmatrix},$$
 (1.19)

 $\tilde{P}(A_2)$ is given by

$$\begin{pmatrix} P(x) \ aP'(x) \ 0 \\ 0 \ P(x) \ 0 \\ 0 \ 0 \ P(y) \end{pmatrix}.$$
 (1.20)

Proof. Is enough to see that (1.14), (1.16), (1.17) and (1.18) yield

$$A_2^n = \begin{pmatrix} x^n \ anx^{n-1} \ 0 \\ 0 \ x^n \ 0 \\ 0 \ 0 \ y^n \end{pmatrix}.$$
 (1.21)

The details are omitted. \Box

Let $A \in \mathcal{M}(n, \mathbb{C})$. A monic polynomial of least degree (denoted by m_A) having the property that $m_A(A) = 0_n$ is called the minimal polynomial of A. The characteristic polynomial and the minimal polynomial of a matrix A above must have the same zeros but the multiplicity could be different. The next Theorem in its general form (i.e. for matrices n by n) is called the *Jordan canonical form Theorem* in honor of the French mathematician Camille Jordan (1833–1922) who first published a proof of it. Next we present the case n = 3 which is more convenient to write. The proof of the general case can be found for example in [4] on page 65.

THEOREM 1.1. Let $A \in \mathcal{M}(3,\mathbb{C})$ be a matrix with the characteristic polynomial P_A and the minimal polynomial m_A .

1. If $P_A(\lambda) = m_A(\lambda) = (\lambda - x)(\lambda - y)(\lambda - z)$ with *x*, *y*, *z* mutually different then there exists an invertible complex matrix T_1 such that

$$T_1^{-1}AT_1 = J_1(A) = diag(x, y, z) := \begin{pmatrix} x \ 0 \ 0 \\ 0 \ y \ 0 \\ 0 \ 0 \ z \end{pmatrix},$$
(1.22)

2. If $P_A(\lambda) = m_A(\lambda) = (\lambda - x)^2(\lambda - y)$ with $x \neq y$ then there exists an invertible complex matrix T_2 such that

$$T_2^{-1}AT_2 = J_2(A) := \begin{pmatrix} x \ 1 \ 0 \\ 0 \ x \ 0 \\ 0 \ 0 \ y \end{pmatrix}.$$
 (1.23)

3. If $P_A(\lambda) = (\lambda - x)^2(\lambda - y)$ and $m_A(\lambda) = (\lambda - x)(\lambda - y)$ with $x \neq y$ then there exists an invertible complex matrix T_3 such that

$$T_2^{-1}AT_3 = J_3(A) := \begin{pmatrix} x \ 0 \ 0 \\ 0 \ x \ 0 \\ 0 \ 0 \ y \end{pmatrix}.$$
 (1.24)

4. If $P_A(\lambda) = m_A(\lambda) = (\lambda - x)^3$ then there exists an invertible complex matrix T_4 such that

$$T_4^{-1}AT_4 = J_4(A) := \begin{pmatrix} x \ 1 \ 0 \\ 0 \ x \ 1 \\ 0 \ 0 \ x \end{pmatrix}.$$
 (1.25)

5. If $P_A(\lambda) = (\lambda - x)^3$ and $m_A(\lambda) = (\lambda - x)^2$ then there exists an invertible complex matrix T_5 such that

$$T_5^{-1}AT_5 = J_5(A) := \begin{pmatrix} x \ 1 \ 0 \\ 0 \ x \ 0 \\ 0 \ 0 \ x \end{pmatrix}.$$
 (1.26)

6. If
$$P_A(\lambda) = (\lambda - x)^3$$
 and $m_A(\lambda) = (\lambda - x)$ then $A = J_6(A) := xI_3$.

Recall that the spectrum of a matrix A, denoted by $\sigma(A)$, is the set of all its eigenvalues and that the resolvent set of A is $\rho(A) := \mathbb{C} \setminus \sigma(A)$, i.e. the set of all complex numbers z for which the matrix $zI_3 - A$, is invertible.

REMARK 1.1. (1). Note (see below)

$$\sigma(\tilde{P}(A)) = P(\sigma(A)). \tag{1.27}$$

(2). If $z \mapsto f(z) := \sum_{k=0}^{\infty} a_k z^k$ is an integer function (i.e. it is holomorphic on \mathbb{C}) then for each matrix $A \in \mathscr{X}$, the matrix

$$\tilde{f}(A) := \sum_{k=0}^{\infty} a_k A^k \tag{1.28}$$

is well defined. The convergence in (1.28) is considered with respect to the operator norm of matrices. Thus one has

$$\sigma(\tilde{f}(A)) = f(\sigma(A)). \tag{1.29}$$

In particular,

$$e^{tA} := \sum_{k=0}^{\infty} \frac{(tA)^k}{k!}, \text{ and } \sigma(e^{tA}) = e^{t\sigma(A)}, t \in \mathbb{R}.$$
(1.30)

Proof. Let $A \in \mathcal{M}(3,\mathbb{C})$, $k \in \{1,2,3,4,5,6\}$ and T_k be an invertible matrix such that $T_k^{-1}AT_k = J_k(A)$. Then

$$\sigma(\tilde{f}(A)) = \sigma(T_k^{-1}\tilde{f}(A)T_k) = \sigma(\tilde{f}(T_k^{-1}AT_k)) = \sigma(\tilde{f}(J_k(A))) = f(\sigma(A)).$$
(1.31)

For matrices and operators we refer the reader to [2], [3], [4] and [5].

2. Global problems in the space of matrices

LEMMA 2.1. If the polynomial $P \in \mathbb{C}[z]$ has no simple zeros then the matrix equation

$$\tilde{P}(X) = Y := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(2.1)

has no solutions in $\mathcal{M}(3,\mathbb{C})$.

Proof. We argue by contradiction. Suppose that there exists $A \in \mathcal{M}(3,\mathbb{C})$ such that $\tilde{P}(A) = Y$. Thus in view of (1.27), $P(\sigma(A)) = \sigma(\tilde{P}(A)) = \{0\}$, i.e. the eigenvalues of A are zeros of the polynomial P. Now if $x, y, z \in \sigma(A)$ then P(x) = P'(x) = P(y) = P(z) = 0 and there exists a complex invertible matrix T_k such that $T_k^{-1}AT_k = J_k(A)$. Thus $\tilde{P}(X) = T_k \tilde{P}(J_k(A))T_k^{-1} = 0_3$ (the null matrix of order 3), for k = 1, 2, 3, 4, 5, so we have a contradiction. We have a similar contraction for k = 6 (we omit the details). \Box

PROPOSITION 2.1. Let $P \in \mathbb{C}[z]$ be a polynomial having the property that there exists a $m \in \mathbb{C}$ such that Q := P - m has no simple zeros. Then the map $X \mapsto \tilde{P}(X) : \mathcal{M}(3,\mathbb{C}) \to \mathcal{M}(3,\mathbb{C})$ is not surjective.

Proof. In view of Lemma 2.1, the equation

$$\tilde{P}(X) = mI_3 + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(2.2)

has no solutions in $\mathcal{M}(3,\mathbb{C})$. \Box

DEFINITION 2.1. We say that a polynomial $P \in \mathbb{C}[z]$ has the simple zero property **(SZP)** if for every $m \in \mathbb{C}$ the polynomial Q := P - m has at least a simple zero.

For example, the polynomial $P_1(z) = (z-1)(z-2)(z-3)$ has **SZP** while $P_2(z) = z^3$ does not. Clearly every polynomial of degree 1 has **SZP** but polynomials of degree 2 have not the property.

THEOREM 2.1. Let $P \in \mathbb{C}[z]$ be a polynomial satisfying SZP. Then the map

$$X \mapsto \tilde{P}(X) : \mathscr{M}(3, \mathbb{C}) \to \mathscr{M}(3, \mathbb{C})$$

$$(2.3)$$

is surjective.

Proof. Let $Y \in \mathcal{M}(3,\mathbb{C})$ be given. The argument is broken into several cases.

1. The spectrum of *Y* consists of three mutually different complex numbers *u*, *v* and *w*. Thus, there exists an invertible matrix *T* such that $T^{-1}YT = \text{diag}(u, v, w)$. Set $X := T \text{ diag}(x, y, z))T^{-1}$, where *x*, *y* and *z* are zeros of P - u, P - v and P - w, respectively. Then $\tilde{P}(X) = T\tilde{P}(\text{ diag}(x, y, z))T^{-1} = Y$.

2. The spectrum of *Y* consists of *u* and *v*, with *u* being a zero of P_Y of multiplicity 2.

2.1. When $m_Y(\lambda) = (\lambda - u)^2(\lambda - v)$ then there exists an invertible matrix T_2 such that

$$T_2^{-1}YT_2 = J_2(Y) := \begin{pmatrix} u \ 1 \ 0 \\ 0 \ u \ 0 \\ 0 \ 0 \ v \end{pmatrix}.$$
 (2.4)

Let x be a simple zero of P - u and y as above. Thus $P'(x) \neq 0$. Set

$$X = T_2 \begin{pmatrix} x \frac{1}{P'(x)} & 0\\ 0 & x & 0\\ 0 & 0 & y \end{pmatrix} T_2^{-1}.$$
 (2.5)

In view of Corollary 1.2, one has

$$\tilde{P}(X) = T_2 \tilde{P}\left(\begin{pmatrix} x & \frac{1}{P'(x)} & 0\\ 0 & x & 0\\ 0 & 0 & y \end{pmatrix} \right) T_2^{-1} = T_2 J_2(Y) T_2^{-1} = Y.$$
(2.6)

2.2. When $m_Y(\lambda) = (\lambda - u)(\lambda - v)$ then there exists an invertible matrix T_3 such that

$$T_3^{-1}YT_3 = J_3(Y) := \begin{pmatrix} u \ 0 \ 0 \\ 0 \ u \ 0 \\ 0 \ 0 \ v \end{pmatrix}.$$
 (2.7)

Let x be a simple zero of P - u and y as above. Set

$$X = T_3 \begin{pmatrix} x \ 0 \ 0 \\ 0 \ x \ 0 \\ 0 \ 0 \ y \end{pmatrix} T_3^{-1}.$$
 (2.8)

In view of Corollary 1.2, one has

$$\tilde{P}(X) = T_3 \tilde{P}\left(\begin{pmatrix} x \ 0 \ 0 \\ 0 \ x \ 0 \\ 0 \ 0 \ y \end{pmatrix}\right) T_3^{-1} = T_3 J_3(Y) T_3^{-1} = Y.$$
(2.9)

3. The spectrum of Y consists of u, being a zero of P_Y of multiplicity 3. We divide the proof into three steps.

3.1. When $m_Y(\lambda) = (\lambda - u)^3$ then there exists an invertible matrix T_4 such that

$$T_4^{-1}YT_4 = J_4(Y) := \begin{pmatrix} u \ 1 \ 0 \\ 0 \ u \ 1 \\ 0 \ 0 \ u \end{pmatrix}.$$
 (2.10)

Let x be a simple zero of P - u. Note $P'(x) \neq 0$. Set

$$X = T_4 \begin{pmatrix} x \ \frac{1}{P'(x)} & 0\\ 0 & x \ \frac{1}{P'(x)}\\ 0 & 0 & x \end{pmatrix} T_4^{-1}.$$
 (2.11)

In view of Corollary 1.1 one has

$$\tilde{P}(X) = T_4 \tilde{P}\left(\begin{pmatrix} x \ \frac{1}{P'(x)} & 0\\ 0 & x \ \frac{1}{P'(x)}\\ 0 & 0 & x \end{pmatrix}\right) T_4^{-1} = T_4 J_{31}(Y) T_4^{-1} = Y.$$
(2.12)

3.2. When $m_Y(\lambda) = (\lambda - u)^2$ then there exists an invertible matrix T_5 such that

$$T_5^{-1}YT_5 = J_5(Y) := \begin{pmatrix} u \ 1 \ 0 \\ 0 \ u \ 0 \\ 0 \ 0 \ u \end{pmatrix}$$
(2.13)

and in view of Corollary 1.1 one has

$$\tilde{P}(X) = T_5 \tilde{P}\left(\begin{pmatrix} x \ \frac{1}{P'(x)} \ 0\\ 0 \ x \ 0\\ 0 \ 0 \ x \end{pmatrix}\right) T_5^{-1} = T_5 J_5(Y) T_5^{-1} = Y.$$
(2.14)

3.3. When $m_Y(\lambda) = (\lambda - u)$ then $Y = uI_3$. Let x a zero of P - u and set $X = xI_3$. Then $\tilde{P}(X) = Y$. \Box

THEOREM 2.2. Let P be a polynomial. The map

$$X \mapsto \tilde{P}(X) : \mathscr{M}(3, \mathbb{C}) \to \mathscr{M}(3, \mathbb{C})$$
(2.15)

is surjective if and only if P has the simple zero property.

The proof of Theorem 2.2 follows by combining Proposition 2.1 with Theorem 2.1.

Finally, as an immediate consequence, we present the following \mathbb{C}^9 version of the Ax-Grothendieck's Theorem; see [1].

Let *n* be a positive integer and denote (ad-hoc) by \mathscr{P}_n the set of all polynomial functions $p : \mathbb{C}^n \to \mathbb{C}^n$ (that is, all components of *p* are scalar valued polynomials of *n* complex variables). As is well-known (Ax-Grothendieck's Theorem) if $p \in \mathscr{P}_n$ is injective then it is surjective as well. In what follows we refer to the particular case n = 9.

Denote by \mathscr{A}_9 the set of all polynomials $p \in \mathscr{P}_9$ having the property that there exist a scalar polynomial P (of one complex variable) and a linear transformation $T : \mathscr{M}(3,\mathbb{C}) \to \mathbb{C}^9$ such that

$$p = T\tilde{P}T^{-1}. (2.16)$$

COROLLARY 2.1. If $p \in \mathcal{A}_9$ is injective then it is surjective as well. Moreover, in this case, the inverse of p is also a polynomial.

Proof. From (2.16) we have

$$\tilde{P} = T^{-1}pT. \tag{2.17}$$

Now, the assumption on p yields the injectivity of \tilde{P} and thus (as is very easy to see), the polynomial P has degree equal to 1. In particular P has **SZP**, so \tilde{P} is surjective. Now, from (2.16), p is surjective. Moreover, since P has degree equal to 1, (2.16) yields that p has the degree equal to 1 and thus its inverse is a polynomial. \Box

Acknowledgement. The authors would like to thank the Editor and the referee for their help and suggestions in improving this paper.

REFERENCES

- [1] J. AX, The elementary theory of finite fields, Ann. Math. Second Ser. 1968, 88: 239-271.
- [2] N. DUNFORD AND S. SCHWARTZ, *Linear Operators, Part 1, General Theory*, Interscience, New York (1958).
- [3] I. GOHBERG, S. GOLDBERG AND M. A. KAASHOEK, *Classes of Linear Operators* Vol. 1, Birkhauser, 1991.
- [4] R. HORN, C. JOHNSON, Matrix Analysis, Cambridge University Press, 2013.
- [5] S. G. KRANTZ, Dictionary of Algebra Arithmetic and Trigonometry, CRC Press, 2000.

(Received January 16, 2018)

Constantin Buşe Politehnica University of Timisoara Department of Mathematics Piata Victoriei No. 2, 300006-Timisoara, Romania e-mail: constantin.buse@upt.ro

> Donal O'Regan National University of Ireland Galway, Ireland e-mail: donal.oregan@nuigalway.ie

Olivia Saierli Tibiscus University of Timisoara Department of Computer Science and Applied Informatics Str. Lascăr Catargiu, No. 4-6,300559-Timisoara, România e-mail: saierli_olivia@yahoo.com