perators
nd
atfrices

Volume 13, Number 1 (2019), 111-119 doi:10.7153/0am-2019-13-07

A SURJECTIVITY PROBLEM FOR 3 BY 3 MATRICES

CONSTANTIN BUSE, DONAL O’REGAN AND OLIVIA SAIERLI

(Communicated by H. Radjavi)

Abstract. Let P be a complex polynomial. We prove that the associated polynomial matrix-
valued function P is surjective if and only if for each A € C the polynomial P — 2 has at least
a simple zero.

1. Natural powers for matrices of order three

For any integer number n we denote by .# (n,C) the set of all complex matrices
of order n. Let A € .#(3,C) be given by

ap az as
A= b bybs|. (1.1)
Cl1 Cy C3

Denote by x,y,z € C its eigenvalues and by P4(A) its characteristic polynomial. Recall
that Py(A) = A% — 51 (A)A2 +52(A)A — s3(A), where s5;(A) are given by

s1(A) =a1+by+c3 (1.2)
52(A) = det [ 92} fder (493 4 ger (D2 P3 (1.3)
by by C1 C3 ) C3 ’
and
53(A) = det(A). (1.4)

We begin this section by presenting the powers of the matrix A in a suitable form
so the technicalities in the main section are minimal. In addition it enables us to obtain
immediately a spectral mapping theorem. There are three cases to consider, namely
(x—y)(x—2)(y—2) #0, x=y =z, and finally Py(1) = (X —x)*(A —y) with x #y.

1. Suppose (x—y)(x—z)(y—z) #0. Then P4(A) = (A —x)(A —y)(A —z) and
from the Hamilton-Cayley Theorem we have Py(A) = (A —xI3)(A —yl3)(A —zl3) = 03;
the null matrix of order three.
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PROPOSITION 1.1. With the above notations, suppose that (x—y)(x—z)(y—z) #
0. Then for every nonnegative integer n, one has

A"=X"B+y'C+7'D (1.5)
where (A= yI3)(A —2I5) (A — xly) (A — 2I3)
— Y3 — U3 —XI3 — 23
poAyBbA—L) L (AxB)A-ah) 16
)2 0-00—2) (10
and

(A—x5)(A—ylh) '

D= 0e—y

(1.7)

Proof. The proof is an easy mathematical induction argument and is left to the
reader. [J

2. Suppose the eigenvalues of the matrix A € .#(3,C) satisfy the condition x =
y=z. Then P4(A) = (A —x)? and the Hamilton-Cayley Theorem asserts that (A —
xI)? = 05.

PROPOSITION 1.2. Suppose x =y =z # 0. Then there exists matrices B and C
in A (3,C) such that

A" =X"(n’B+nC+1L) foralln € Z, . (1.8)
In addition, the matrices B and C satisfy the matrix system

{ x(B+C+15L) =A

W (4B+2C+ 1) =A% (1.9)

Proof. Note the system (1.9) arises, for example, by taking the particular values
n=1 and n =2 in (1.8). The solution of the system (1.9) is

1 2 1
With these values of B and C the proof of (1.8) is immediate. [

COROLLARY 1.1. Let P(2) :=a,7" +a, 12" ' +---ayz+ag be a polynomial with
complex coefficients, and let x,a,b and c be given complex numbers. For

xac
A =Ai(x,a,b,c):=|0xb |, (1.11)
00x

P(A)) = apAll —I—a,,,lA’f_1 +--a1Ay + apls, is given by

P(x) aP'(x) %cP”(x)
0 Pk) bP() |. (1.12)
0 0 P(x)
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Proof. 1s enough to see that (1.8) and (1.10) yield

x anx"~! Ln(n—1)ex" 2
Al=10 x bnx"~1 . (1.13)
0 0 X!

The details are omitted. [

3. Suppose Py(A) = (A —x)*(A —y) with x # y. Then the Hamilton-Cayley
Theorem asserts that (A —xI3)?(A —yI3) = 0.

PROPOSITION 1.3. If the matrix A has the eigenvalues x,x,y, with x #y and
x # 0 then its natural powers are given by

A"=X"nB+C)+y'D, neZy, (1.14)
where (B,C,D) is the solution of the matrix system
C+D =1

xB+xC+yD =A (1.15)
2x’B+x>C+y?D = A2.

Proof. Note the system (1.15) and one has

1
B=x(x_y)(A—x13)(A—y13), (1.16)

1
C:_(x_y)Q[A_(zx_y)l3](A_yl3)7 (117)
D= ! A—xL)?. O 1.18
_(x—y)z( —xB3)”. (1.18)

COROLLARY 1.2. Let P(z) be a polynomial as in Corollary 1.1 and let x,y and
a be given complex numbers. For

xa0
Ay =As(x,y,a):=[0x0 |, (1.19)
00y
P(A) is given by
P(x) aP'(x) 0
P(x) 0 (1.20)
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Proof. 1s enough to see that (1.14), (1.16), (1.17) and (1.18) yield

X anx™1 0
A=10 X" 0]. (1.21)
0 0 Yy

The details are omitted. [

Let A € .4 (n,C). A monic polynomial of least degree (denoted by my ) having
the property that mu (A) = 0,, is called the minimal polynomial of A. The characteristic
polynomial and the minimal polynomial of a matrix A above must have the same zeros
but the multiplicity could be different. The next Theorem in its general form (i.e. for
matrices n by n) is called the Jordan canonical form Theorem in honor of the French
mathematician Camille Jordan (1833-1922) who first published a proof of it. Next we
present the case n = 3 which is more convenient to write. The proof of the general case
can be found for example in [4] on page 65.

THEOREM 1.1. Let A € .#(3,C) be a matrix with the characteristic polynomial
Py and the minimal polynomial my.

1L IfPA(A) =ma(A) = (A —x)(A —y)(A —2) with x,y,z mutually different then
there exists an invertible complex matrix Ty such that

x00
T, 'ATy = Ji(A) = diag(x,y,z) == [ 0y 0 |, (1.22)
00z

2. If Py(A) =ma(A) = (A —x)>(A —y) with x # y then there exists an invertible
complex matrix Ty such that

x10
T, 'AT, = h(A):= | 0x0 |. (1.23)
00y

3.IfPy(A) = (A —x)2(A —y) and mpa(L) = (A —x)(A —y) with x # y then there
exists an invertible complex matrix T3 such that

x00
T, 'ATs =J3(A):= | 0x 0 |. (1.24)
00y

4. If Py(A) = ma(A) = (A —x)? then there exists an invertible complex matrix T,
such that
x10
T, 'ATy=Js(A):= | 0x 1 |. (1.25)
00x
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5. If PA(A) = (A —x) and ma(A) = (A —x)? then there exists an invertible
complex matrix Ts such that

x10
T 'ATs = Js(A):= | 0x 0 |. (1.26)
00x

6. If PA(A) = (A —x)* and my(A) = (A —x) then A = J(A) := xI.

Recall that the spectrum of a matrix A, denoted by G(A), is the set of all its
eigenvalues and that the resolvent set of A is p(A) := C\ o(A), i.e. the set of all
complex numbers z for which the matrix z/3 — A, is invertible.

REMARK 1.1. (1). Note (see below)
o(P(A)) = P(c(A)). (1.27)

Q). Ifz— f(z):= Y apZ* is an integer function (i.e. it is holomorphic on C)
k=0

then for each matrix A € 2, the matrix
fa):=Y qa (1.28)
k=0

is well defined. The convergence in (1.28) is considered with respect to the operator
norm of matrices. Thus one has

o(f(A)) = f(o(A)). (1.29)
In particular,
&= i (A and 6(¢) =°W 1 eR (1.30)
kK ’ : '

k=0

Proof. Let A€ .#(3,C), k€ {1,2,3,4,5,6} and T} be an invertible matrix such

that T, 'AT; = Ji(A). Then
o(f(A) = o(T ' FAT) = o(f(T'AT)) = (FU(A))) = f(a(A)).  (1.31)
O

For matrices and operators we refer the reader to [2], [3], [4] and [5].

2. Global problems in the space of matrices

LEMMA 2.1. Ifthe polynomial P € C|z] has no simple zeros then the matrix equa-
tion
001
PX)=Y:=[000 2.1
000

has no solutions in 4 (3,C).
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Proof. We argue by contradiction. Suppose that there exists A € .#(3,C) such
that P(A) =Y. Thus in view of (1.27), P(c(A)) = o(P(A)) = {0}, i.e. the eigenvalues
of A are zeros of the polynomial P. Now if x,y,z € 0(A) then P(x) = P'(x) = P(y) =
P(z) = 0 and there exists a complex invertible matrix 7 such that T, 'AT; = Ji(A).
Thus P(X) = T,P(Ji(A))T; ' = 05 (the null matrix of order 3), for k = 1,2,3,4,5,
so we have a contradiction. We have a similar contraction for k = 6 (we omit the
details). [l

PROPOSITION 2.1. Let P € C[z] be a polynomial having the property that there

exists a m € C such that Q := P —m has no simple zeros. Then the map X — P(X) :
M (3,C) — #(3,C) is not surjective.

Proof. In view of Lemma 2.1, the equation

001
PX)=mI+ 000 (2.2)
000

has no solutions in .7 (3,C). O

DEFINITION 2.1. We say that a polynomial P € C|[z] has the simple zero property
(SZP) if for every m € C the polynomial Q := P —m has at least a simple zero.

For example, the polynomial P;(z) = (z—1)(z—2)(z— 3) has SZP while P;(z) =
2> does not. Clearly every polynomial of degree 1 has SZP but polynomials of degree
2 have not the property.

THEOREM 2.1. Let P € Clz] be a polynomial satisfying SZP. Then the map
X s B(X) : #(3,C) — 4 (3,C) 2.3)

is surjective.

Proof. Let Y € . (3,C) be given. The argument is broken into several cases.

1. The spectrum of Y consists of three mutually different complex numbers u,
v and w. Thus, there exists an invertible matrix T such that T-'YT = diag (u,v,w).
Set X := T diag (x,y,z))T !, where x,y and z are zeros of P—u, P—v and P—w,
respectively. Then P(X) = TP( diag (x,y,z))T ! =Y.

2. The spectrum of Y consists of # and v, with u being a zero of Py of multiplicity
2.

2.1. When my (1) = (A —u)?(A —v) then there exists an invertible matrix 7> such

that
ulO

T,'Yh=hL¥):=[0u0|. (2.4)
00v
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Let x be a simple zero of P—u and y as above. Thus P'(x) # 0. Set

1

X 50 0 B
X=NH|0 x 0T, . (2.5
0 0 vy
In view of Corollary 1.2, one has
1
) NS CR AR B
P(X)=TP 0 x O I, =hh(Y)T, =Y. (2.6)
0 0 vy

2.2. When my(A) = (A —u)(A —v) then there exists an invertible matrix 73 such

that
u00

T, 'YTi=hY):=[0u0 |. 2.7
00v

Let x be a simple zero of P —u and y as above. Set

x00
X=T3|0x0 | 75" (2.8)
00y
In view of Corollary 1.2, one has
x00
PX)=TP| | 0x0 | |y =501y ' =Y. (2.9)
00y

3. The spectrum of Y consists of u, being a zero of Py of multiplicity 3. We
divide the proof into three steps.
3.1. When my (1) = (2 —u)* then there exists an invertible matrix 7 such that

ulo0
T, YTy=0(Y):=[0ul |. (2.10)
00u
Let x be a simple zero of P—u. Note P'(x) # 0. Set

1

e O\
X=T,|0 x Ve T, . (2.11)
0 0 «x
In view of Corollary 1.1 one has
1
P(X)=T,P 8 g wg | | B =T =Y 2.12)
X
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3.2. When my (1) = (2 —u)? then there exists an invertible matrix 75 such that

ul0
T'YTs=Us(Y):= [ 0u0 (2.13)
00u
and in view of Corollary 1.1 one has
1
5 5 * 7 ~1 ~1
PX)=TP|( |0 x o] | =TT =Y. (2.14)
0 0 x

3.3. When my (1) = (A —u) then Y = uls. Let x a zero of P —u and set X = x/5.
Then P(X)=Y. O

THEOREM 2.2. Let P be a polynomial. The map
Xw— P(X):.#(3,C) — .#(3,C) (2.15)
is surjective if and only if P has the simple zero property.

The proof of Theorem 2.2 follows by combining Proposition 2.1 with Theorem
2.1.

Finally, as an immediate consequence, we present the following C° version of the
Ax-Grothendieck’s Theorem; see [1].

Let n be a positive integer and denote (ad-hoc) by &, the set of all polynomial
functions p : C* — C" (that is, all components of p are scalar valued polynomials of
n complex variables). As is well-known (Ax-Grothendieck’s Theorem) if p € &2, is
injective then it is surjective as well. In what follows we refer to the particular case
n=09.

Denote by <% the set of all polynomials p € %9 having the property that there
exist a scalar polynomial P (of one complex variable) and a linear transformation 7 :
M (3,C) — C° such that

p=TPT™". (2.16)

COROLLARY 2.1. If p € o is injective then it is surjective as well. Moreover, in
this case, the inverse of p is also a polynomial.

Proof. From (2.16) we have
P=T""'prT. (2.17)

Now, the assumption on p yields the injectivity of P and thus (as is very easy to see),
the polynomial P has degree equal to 1. In particular P has SZP, so P is surjective.
Now, from (2.16), p is surjective. Moreover, since P has degree equal to 1, (2.16)
yields that p has the degree equal to 1 and thus its inverse is a polynomial. [
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