A SURJECTIVITY PROBLEM FOR 3 BY 3 MATRICES

Constantin Buşe, Donal O'Regan and Olivia Saierli

(Communicated by H. Radjavi)

Abstract

Let P be a complex polynomial. We prove that the associated polynomial matrixvalued function \tilde{P} is surjective if and only if for each $\lambda \in \mathbb{C}$ the polynomial $P-\lambda$ has at least a simple zero.

1. Natural powers for matrices of order three

For any integer number n we denote by $\mathscr{M}(n, \mathbb{C})$ the set of all complex matrices of order n. Let $A \in \mathscr{M}(3, \mathbb{C})$ be given by

$$
A=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{1.1}\\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)
$$

Denote by $x, y, z \in \mathbb{C}$ its eigenvalues and by $P_{A}(\lambda)$ its characteristic polynomial. Recall that $P_{A}(\lambda)=\lambda^{3}-s_{1}(A) \lambda^{2}+s_{2}(A) \lambda-s_{3}(A)$, where $s_{i}(A)$ are given by

$$
\begin{gather*}
s_{1}(A)=a_{1}+b_{2}+c_{3} \tag{1.2}\\
s_{2}(A)=\operatorname{det}\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
a_{1} & a_{3} \\
c_{1} & c_{3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right) \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
s_{3}(A)=\operatorname{det}(A) \tag{1.4}
\end{equation*}
$$

We begin this section by presenting the powers of the matrix A in a suitable form so the technicalities in the main section are minimal. In addition it enables us to obtain immediately a spectral mapping theorem. There are three cases to consider, namely $(x-y)(x-z)(y-z) \neq 0, x=y=z$, and finally $P_{A}(\lambda)=(\lambda-x)^{2}(\lambda-y)$ with $x \neq y$.

1. Suppose $(x-y)(x-z)(y-z) \neq 0$. Then $P_{A}(\lambda)=(\lambda-x)(\lambda-y)(\lambda-z)$ and from the Hamilton-Cayley Theorem we have $P_{A}(A)=\left(A-x I_{3}\right)\left(A-y I_{3}\right)\left(A-z I_{3}\right)=0_{3}$; the null matrix of order three.
[^0]Proposition 1.1. With the above notations, suppose that $(x-y)(x-z)(y-z) \neq$ 0 . Then for every nonnegative integer n, one has

$$
\begin{equation*}
A^{n}=x^{n} B+y^{n} C+z^{n} D \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\frac{\left(A-y I_{3}\right)\left(A-z I_{3}\right)}{(x-y)(x-z)}, \quad C=\frac{\left(A-x I_{3}\right)\left(A-z I_{3}\right)}{(y-x)(y-z)} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
D=\frac{\left(A-x I_{3}\right)\left(A-y I_{3}\right)}{(z-x)(z-y)} \tag{1.7}
\end{equation*}
$$

Proof. The proof is an easy mathematical induction argument and is left to the reader.
2. Suppose the eigenvalues of the matrix $A \in \mathscr{M}(3, \mathbb{C})$ satisfy the condition $x=$ $y=z$. Then $P_{A}(\lambda)=(\lambda-x)^{3}$ and the Hamilton-Cayley Theorem asserts that $(A-$ $x I)^{3}=0_{3}$.

Proposition 1.2. Suppose $x=y=z \neq 0$. Then there exists matrices B and C in $\mathscr{M}(3, \mathbb{C})$ such that

$$
\begin{equation*}
A^{n}=x^{n}\left(n^{2} B+n C+I_{3}\right) \text { for all } n \in \mathbb{Z}_{+} \tag{1.8}
\end{equation*}
$$

In addition, the matrices B and C satisfy the matrix system

$$
\left\{\begin{align*}
x\left(B+C+I_{3}\right) & =A \tag{1.9}\\
x^{2}\left(4 B+2 C+I_{3}\right) & =A^{2}
\end{align*}\right.
$$

Proof. Note the system (1.9) arises, for example, by taking the particular values $n=1$ and $n=2$ in (1.8). The solution of the system (1.9) is

$$
\begin{equation*}
(B, C)=\left(\frac{1}{2 x^{2}}\left(A-x I_{3}\right)^{2}, \quad-\frac{1}{2 x^{2}}\left(A-x I_{3}\right)\left(A-3 x I_{3}\right)\right) \tag{1.10}
\end{equation*}
$$

With these values of B and C the proof of (1.8) is immediate.
COROLLARY 1.1. Let $P(z):=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots a_{1} z+a_{0}$ be a polynomial with complex coefficients, and let x, a, b and c be given complex numbers. For

$$
A_{1}=A_{1}(x, a, b, c):=\left(\begin{array}{ccc}
x & a & c \tag{1.11}\\
0 & x & b \\
0 & 0 & x
\end{array}\right)
$$

$\tilde{P}\left(A_{1}\right):=a_{n} A_{1}^{n}+a_{n-1} A_{1}^{n-1}+\cdots a_{1} A_{1}+a_{0} I_{3}$, is given by

$$
\left(\begin{array}{ccc}
P(x) & a P^{\prime}(x) & \frac{1}{2!} c P^{\prime \prime}(x) \tag{1.12}\\
0 & P(x) & b P^{\prime}(x) \\
0 & 0 & P(x)
\end{array}\right)
$$

Proof. Is enough to see that (1.8) and (1.10) yield

$$
A_{1}^{n}=\left(\begin{array}{ccc}
x^{n} & a n x^{n-1} & \frac{1}{2!} n(n-1) c x^{n-2} \tag{1.13}\\
0 & x^{n} & b n x^{n-1} \\
0 & 0 & x^{n}
\end{array}\right)
$$

The details are omitted.
3. Suppose $P_{A}(\lambda)=(\lambda-x)^{2}(\lambda-y)$ with $x \neq y$. Then the Hamilton-Cayley Theorem asserts that $\left(A-x I_{3}\right)^{2}\left(A-y I_{3}\right)=0_{3}$.

Proposition 1.3. If the matrix A has the eigenvalues x, x, y, with $x \neq y$ and $x \neq 0$ then its natural powers are given by

$$
\begin{equation*}
A^{n}=x^{n}(n B+C)+y^{n} D, \quad n \in \mathbb{Z}_{+}, \tag{1.14}
\end{equation*}
$$

where (B, C, D) is the solution of the matrix system

$$
\left\{\begin{array}{cl}
C+D & =I_{3} \tag{1.15}\\
x B+x C+y D & =A \\
2 x^{2} B+x^{2} C+y^{2} D & =A^{2} .
\end{array}\right.
$$

Proof. Note the system (1.15) and one has

$$
\begin{gather*}
B=\frac{1}{x(x-y)}\left(A-x I_{3}\right)\left(A-y I_{3}\right), \tag{1.16}\\
C=-\frac{1}{(x-y)^{2}}\left[A-(2 x-y) I_{3}\right]\left(A-y I_{3}\right), \tag{1.17}\\
D=\frac{1}{(x-y)^{2}}\left(A-x I_{3}\right)^{2} . \tag{1.18}
\end{gather*}
$$

COROLLARY 1.2. Let $P(z)$ be a polynomial as in Corollary 1.1 and let x, y and a be given complex numbers. For

$$
A_{2}=A_{2}(x, y, a):=\left(\begin{array}{ccc}
x & a & 0 \tag{1.19}\\
0 & x & 0 \\
0 & 0 & y
\end{array}\right)
$$

$\tilde{P}\left(A_{2}\right)$ is given by

$$
\left(\begin{array}{ccc}
P(x) & a P^{\prime}(x) & 0 \tag{1.20}\\
0 & P(x) & 0 \\
0 & 0 & P(y)
\end{array}\right)
$$

Proof. Is enough to see that (1.14), (1.16), (1.17) and (1.18) yield

$$
A_{2}^{n}=\left(\begin{array}{ccc}
x^{n} & a n x^{n-1} & 0 \tag{1.21}\\
0 & x^{n} & 0 \\
0 & 0 & y^{n}
\end{array}\right)
$$

The details are omitted.
Let $A \in \mathscr{M}(n, \mathbb{C})$. A monic polynomial of least degree (denoted by m_{A}) having the property that $m_{A}(A)=0_{n}$ is called the minimal polynomial of A. The characteristic polynomial and the minimal polynomial of a matrix A above must have the same zeros but the multiplicity could be different. The next Theorem in its general form (i.e. for matrices n by n) is called the Jordan canonical form Theorem in honor of the French mathematician Camille Jordan (1833-1922) who first published a proof of it. Next we present the case $n=3$ which is more convenient to write. The proof of the general case can be found for example in [4] on page 65.

THEOREM 1.1. Let $A \in \mathscr{M}(3, \mathbb{C})$ be a matrix with the characteristic polynomial P_{A} and the minimal polynomial m_{A}.

1. If $P_{A}(\lambda)=m_{A}(\lambda)=(\lambda-x)(\lambda-y)(\lambda-z)$ with x, y, z mutually different then there exists an invertible complex matrix T_{1} such that

$$
T_{1}^{-1} A T_{1}=J_{1}(A)=\operatorname{diag}(x, y, z):=\left(\begin{array}{ccc}
x & 0 & 0 \tag{1.22}\\
0 & y & 0 \\
0 & 0 & z
\end{array}\right)
$$

2. If $P_{A}(\lambda)=m_{A}(\lambda)=(\lambda-x)^{2}(\lambda-y)$ with $x \neq y$ then there exists an invertible complex matrix T_{2} such that

$$
T_{2}^{-1} A T_{2}=J_{2}(A):=\left(\begin{array}{ccc}
x & 1 & 0 \tag{1.23}\\
0 & x & 0 \\
0 & 0 & y
\end{array}\right)
$$

3. If $P_{A}(\lambda)=(\lambda-x)^{2}(\lambda-y)$ and $m_{A}(\lambda)=(\lambda-x)(\lambda-y)$ with $x \neq y$ then there exists an invertible complex matrix T_{3} such that

$$
T_{2}^{-1} A T_{3}=J_{3}(A):=\left(\begin{array}{ccc}
x & 0 & 0 \tag{1.24}\\
0 & x & 0 \\
0 & 0 & y
\end{array}\right)
$$

4. If $P_{A}(\lambda)=m_{A}(\lambda)=(\lambda-x)^{3}$ then there exists an invertible complex matrix T_{4} such that

$$
T_{4}^{-1} A T_{4}=J_{4}(A):=\left(\begin{array}{ccc}
x & 1 & 0 \tag{1.25}\\
0 & x & 1 \\
0 & 0 & x
\end{array}\right)
$$

5. If $P_{A}(\lambda)=(\lambda-x)^{3}$ and $m_{A}(\lambda)=(\lambda-x)^{2}$ then there exists an invertible complex matrix T_{5} such that

$$
T_{5}^{-1} A T_{5}=J_{5}(A):=\left(\begin{array}{ccc}
x & 1 & 0 \tag{1.26}\\
0 & x & 0 \\
0 & 0 & x
\end{array}\right)
$$

6. If $P_{A}(\lambda)=(\lambda-x)^{3}$ and $m_{A}(\lambda)=(\lambda-x)$ then $A=J_{6}(A):=x I_{3}$.

Recall that the spectrum of a matrix A, denoted by $\sigma(A)$, is the set of all its eigenvalues and that the resolvent set of A is $\rho(A):=\mathbb{C} \backslash \sigma(A)$, i.e. the set of all complex numbers z for which the matrix $z I_{3}-A$, is invertible.

REMARK 1.1. (1). Note (see below)

$$
\begin{equation*}
\sigma(\tilde{P}(A))=P(\sigma(A)) \tag{1.27}
\end{equation*}
$$

(2). If $z \mapsto f(z):=\sum_{k=0}^{\infty} a_{k} z^{k}$ is an integer function (i.e. it is holomorphic on \mathbb{C}) then for each matrix $A \in \mathscr{X}$, the matrix

$$
\begin{equation*}
\tilde{f}(A):=\sum_{k=0}^{\infty} a_{k} A^{k} \tag{1.28}
\end{equation*}
$$

is well defined. The convergence in (1.28) is considered with respect to the operator norm of matrices. Thus one has

$$
\begin{equation*}
\sigma(\tilde{f}(A))=f(\sigma(A)) \tag{1.29}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
e^{t A}:=\sum_{k=0}^{\infty} \frac{(t A)^{k}}{k!}, \text { and } \sigma\left(e^{t A}\right)=e^{t \sigma(A)}, t \in \mathbb{R} \tag{1.30}
\end{equation*}
$$

Proof. Let $A \in \mathscr{M}(3, \mathbb{C}), k \in\{1,2,3,4,5,6\}$ and T_{k} be an invertible matrix such that $T_{k}^{-1} A T_{k}=J_{k}(A)$. Then

$$
\begin{equation*}
\sigma(\tilde{f}(A))=\sigma\left(T_{k}^{-1} \tilde{f}(A) T_{k}\right)=\sigma\left(\tilde{f}\left(T_{k}^{-1} A T_{k}\right)\right)=\sigma\left(\tilde{f}\left(J_{k}(A)\right)\right)=f(\sigma(A)) \tag{1.31}
\end{equation*}
$$

For matrices and operators we refer the reader to [2], [3], [4] and [5].

2. Global problems in the space of matrices

LEMMA 2.1. If the polynomial $P \in \mathbb{C}[z]$ has no simple zeros then the matrix equation

$$
\tilde{P}(X)=Y:=\left(\begin{array}{lll}
0 & 0 & 1 \tag{2.1}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

has no solutions in $\mathscr{M}(3, \mathbb{C})$.

Proof. We argue by contradiction. Suppose that there exists $A \in \mathscr{M}(3, \mathbb{C})$ such that $\tilde{P}(A)=Y$. Thus in view of $(1.27), P(\sigma(A))=\sigma(\tilde{P}(A))=\{0\}$, i.e. the eigenvalues of A are zeros of the polynomial P. Now if $x, y, z \in \sigma(A)$ then $P(x)=P^{\prime}(x)=P(y)=$ $P(z)=0$ and there exists a complex invertible matrix T_{k} such that $T_{k}^{-1} A T_{k}=J_{k}(A)$. Thus $\tilde{P}(X)=T_{k} \tilde{P}\left(J_{k}(A)\right) T_{k}^{-1}=0_{3}$ (the null matrix of order 3), for $k=1,2,3,4,5$, so we have a contradiction. We have a similar contraction for $k=6$ (we omit the details).

Proposition 2.1. Let $P \in \mathbb{C}[z]$ be a polynomial having the property that there exists a $m \in \mathbb{C}$ such that $Q:=P-m$ has no simple zeros. Then the map $X \mapsto \tilde{P}(X)$: $\mathscr{M}(3, \mathbb{C}) \rightarrow \mathscr{M}(3, \mathbb{C})$ is not surjective.

Proof. In view of Lemma 2.1, the equation

$$
\tilde{P}(X)=m I_{3}+\left(\begin{array}{lll}
0 & 0 & 1 \tag{2.2}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

has no solutions in $\mathscr{M}(3, \mathbb{C})$.
Definition 2.1. We say that a polynomial $P \in \mathbb{C}[z]$ has the simple zero property (SZP) if for every $m \in \mathbb{C}$ the polynomial $Q:=P-m$ has at least a simple zero.

For example, the polynomial $P_{1}(z)=(z-1)(z-2)(z-3)$ has SZP while $P_{2}(z)=$ z^{3} does not. Clearly every polynomial of degree 1 has SZP but polynomials of degree 2 have not the property.

THEOREM 2.1. Let $P \in \mathbb{C}[z]$ be a polynomial satisfying SZP. Then the map

$$
\begin{equation*}
X \mapsto \tilde{P}(X): \mathscr{M}(3, \mathbb{C}) \rightarrow \mathscr{M}(3, \mathbb{C}) \tag{2.3}
\end{equation*}
$$

is surjective.

Proof. Let $Y \in \mathscr{M}(3, \mathbb{C})$ be given. The argument is broken into several cases.

1. The spectrum of Y consists of three mutually different complex numbers u, v and w. Thus, there exists an invertible matrix T such that $T^{-1} Y T=\operatorname{diag}(u, v, w)$. Set $X:=T$ diag $(x, y, z)) T^{-1}$, where x, y and z are zeros of $P-u, P-v$ and $P-w$, respectively. Then $\tilde{P}(X)=T \tilde{P}(\operatorname{diag}(x, y, z)) T^{-1}=Y$.
2. The spectrum of Y consists of u and v, with u being a zero of P_{Y} of multiplicity 2.
2.1. When $m_{Y}(\lambda)=(\lambda-u)^{2}(\lambda-v)$ then there exists an invertible matrix T_{2} such that

$$
T_{2}^{-1} Y T_{2}=J_{2}(Y):=\left(\begin{array}{ccc}
u & 1 & 0 \tag{2.4}\\
0 & u & 0 \\
0 & 0 & v
\end{array}\right)
$$

Let x be a simple zero of $P-u$ and y as above. Thus $P^{\prime}(x) \neq 0$. Set

$$
X=T_{2}\left(\begin{array}{ccc}
x & \frac{1}{P^{\prime}(x)} & 0 \tag{2.5}\\
0 & x & 0 \\
0 & 0 & y
\end{array}\right) T_{2}^{-1}
$$

In view of Corollary 1.2, one has

$$
\tilde{P}(X)=T_{2} \tilde{P}\left(\left(\begin{array}{ccc}
x & \frac{1}{P^{\prime}(x)} & 0 \tag{2.6}\\
0 & x & 0 \\
0 & 0 & y
\end{array}\right)\right) T_{2}^{-1}=T_{2} J_{2}(Y) T_{2}^{-1}=Y
$$

2.2. When $m_{Y}(\lambda)=(\lambda-u)(\lambda-v)$ then there exists an invertible matrix T_{3} such that

$$
T_{3}^{-1} Y T_{3}=J_{3}(Y):=\left(\begin{array}{ccc}
u & 0 & 0 \tag{2.7}\\
0 & u & 0 \\
0 & 0 & v
\end{array}\right)
$$

Let x be a simple zero of $P-u$ and y as above. Set

$$
X=T_{3}\left(\begin{array}{ccc}
x & 0 & 0 \tag{2.8}\\
0 & x & 0 \\
0 & 0 & y
\end{array}\right) T_{3}^{-1}
$$

In view of Corollary 1.2, one has

$$
\tilde{P}(X)=T_{3} \tilde{P}\left(\left(\begin{array}{lll}
x & 0 & 0 \tag{2.9}\\
0 & x & 0 \\
0 & 0 & y
\end{array}\right)\right) T_{3}^{-1}=T_{3} J_{3}(Y) T_{3}^{-1}=Y
$$

3. The spectrum of Y consists of u, being a zero of P_{Y} of multiplicity 3 . We divide the proof into three steps.
3.1. When $m_{Y}(\lambda)=(\lambda-u)^{3}$ then there exists an invertible matrix T_{4} such that

$$
T_{4}^{-1} Y T_{4}=J_{4}(Y):=\left(\begin{array}{ccc}
u & 1 & 0 \tag{2.10}\\
0 & u & 1 \\
0 & 0 & u
\end{array}\right)
$$

Let x be a simple zero of $P-u$. Note $P^{\prime}(x) \neq 0$. Set

$$
X=T_{4}\left(\begin{array}{ccc}
x \frac{1}{P^{\prime}(x)} & 0 \tag{2.11}\\
0 & x & \frac{1}{P^{\prime}(x)} \\
0 & 0 & x
\end{array}\right) T_{4}^{-1}
$$

In view of Corollary 1.1 one has

$$
\tilde{P}(X)=T_{4} \tilde{P}\left(\left(\begin{array}{ccc}
x & \frac{1}{P^{\prime}(x)} & 0 \tag{2.12}\\
0 & x & \frac{1}{P^{\prime}(x)} \\
0 & 0 & x
\end{array}\right)\right) T_{4}^{-1}=T_{4} J_{31}(Y) T_{4}^{-1}=Y
$$

3.2. When $m_{Y}(\lambda)=(\lambda-u)^{2}$ then there exists an invertible matrix T_{5} such that

$$
T_{5}^{-1} Y T_{5}=J_{5}(Y):=\left(\begin{array}{ccc}
u & 1 & 0 \tag{2.13}\\
0 & u & 0 \\
0 & 0 & u
\end{array}\right)
$$

and in view of Corollary 1.1 one has

$$
\tilde{P}(X)=T_{5} \tilde{P}\left(\left(\begin{array}{ccc}
x & \frac{1}{P^{\prime}(x)} & 0 \tag{2.14}\\
0 & x & 0 \\
0 & 0 & x
\end{array}\right)\right) T_{5}^{-1}=T_{5} J_{5}(Y) T_{5}^{-1}=Y
$$

3.3. When $m_{Y}(\lambda)=(\lambda-u)$ then $Y=u I_{3}$. Let x a zero of $P-u$ and set $X=x I_{3}$. Then $\tilde{P}(X)=Y$.

THEOREM 2.2. Let P be a polynomial. The map

$$
\begin{equation*}
X \mapsto \tilde{P}(X): \mathscr{M}(3, \mathbb{C}) \rightarrow \mathscr{M}(3, \mathbb{C}) \tag{2.15}
\end{equation*}
$$

is surjective if and only if P has the simple zero property.
The proof of Theorem 2.2 follows by combining Proposition 2.1 with Theorem 2.1.

Finally, as an immediate consequence, we present the following \mathbb{C}^{9} version of the Ax-Grothendieck's Theorem; see [1].

Let n be a positive integer and denote (ad-hoc) by \mathscr{P}_{n} the set of all polynomial functions $p: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ (that is, all components of p are scalar valued polynomials of n complex variables). As is well-known (Ax-Grothendieck's Theorem) if $p \in \mathscr{P}_{n}$ is injective then it is surjective as well. In what follows we refer to the particular case $n=9$.

Denote by \mathscr{A}_{9} the set of all polynomials $p \in \mathscr{P}_{9}$ having the property that there exist a scalar polynomial P (of one complex variable) and a linear transformation T : $\mathscr{M}(3, \mathbb{C}) \rightarrow \mathbb{C}^{9}$ such that

$$
\begin{equation*}
p=T \tilde{P} T^{-1} \tag{2.16}
\end{equation*}
$$

Corollary 2.1. If $p \in \mathscr{A}_{9}$ is injective then it is surjective as well. Moreover, in this case, the inverse of p is also a polynomial.

Proof. From (2.16) we have

$$
\begin{equation*}
\tilde{P}=T^{-1} p T \tag{2.17}
\end{equation*}
$$

Now, the assumption on p yields the injectivity of \tilde{P} and thus (as is very easy to see), the polynomial P has degree equal to 1 . In particular P has $\mathbf{S Z P}$, so \tilde{P} is surjective. Now, from (2.16), p is surjective. Moreover, since P has degree equal to 1 , (2.16) yields that p has the degree equal to 1 and thus its inverse is a polynomial.

Acknowledgement. The authors would like to thank the Editor and the referee for their help and suggestions in improving this paper.

REFERENCES

[1] J. Ax, The elementary theory of finite fields, Ann. Math. Second Ser. 1968, 88: 239-271.
[2] N. Dunford and S. Schwartz, Linear Operators, Part 1, General Theory, Interscience, New York (1958).
[3] I. Gohberg, S. Goldberg and M. A. Kaashoek, Classes of Linear Operators Vol. 1, Birkhauser, 1991.
[4] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, 2013.
[5] S. G. Krantz, Dictionary of Algebra Arithmetic and Trigonometry, CRC Press, 2000.

National University of Ireland
Galway, Ireland
e-mail: donal.oregan@nuigalway.ie
Olivia Saierli
Tibiscus University of Timisoara
Department of Computer Science and Applied Informatics Str. Lascăr Catargiu, No. 4-6,300559-Timisoara, România
e-mail: saierli_olivia@yahoo.com

[^0]: Mathematics subject classification (2010): 30C15, 33C50, 15A60, 65F15.
 Keywords and phrases: Natural powers of matrices, functional calculus with matrices, global problems concerning polynomials of matrices.

