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TOWARDS LOCALIZATION IN LONG–RANGE CONTINUOUS

INTERACTIVE ANDERSON MODELS

VICTOR CHULAEVSKY

(Communicated by M. Zinchenko)

Abstract. This paper is a follow-up of [8]. The main novelty is the proof of spectral and dynam-
ical localization for a class of interactive Anderson models in Euclidean spaces with realistic,
infinite-range inter-particle and media-particle potentials featuring a power-law decay at infinity.
Specifically, we prove that in an energy interval near the bottom of the spectrum, the spectral
measure is pure point with probability one, and the decay rate of the averaged eigenfunction
correlators in this energy interval admits a summable power-law bound, the exponent of which
grows along with the growth of the decay exponents of the potentials. The localized eigen-
functions admit a fractional-exponential bound on their decay rate. Earlier rigorous works on
interactive Anderson models assumed the media-particle potential to be compactly supported.

1. Introduction

1.1. The model

We study an N -particle Anderson model in Rd with an external random potential
of the so-called alloy type. Its Hamiltonian is a random Schrödinger operator

H(ω) = H(N)(ω) =−ΔΔΔ+U(x)+V(x,ω), (1)

acting on the functions on the N -particle configuration space (Rd)N . The points x =
(x1, . . . ,xN) ∈ (Rd)N are the positions of N distinguishable quantum particles in Rd .
ΔΔΔ stands for the Laplacian in (Rd)N ∼= RNd . The interaction energy U(x) is generated
by a 2-body interaction potential U (2) (cf. Assumption (U)). V(x,ω) is the operator
of multiplication by a random function

x = (x1, . . . ,xN) �→V (x1,ω)+ · · ·+V(xN ,ω) ; (2)

here V (x,ω) is a random field on Rd of the so-called alloy-type:

V (x,ω) = ∑
a∈Z

ωa ϕ(|x− a|), (3)
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where Z ⊂ Rd is a periodic lattice with d linearly independent generators (we usually
assume Z = Zd ), {ωa, a ∈ Z} are IID (independent and identically distributed) ran-
dom variables on some probability space (Ω,F,P) , and ϕ : [0,+∞) � r �→ R is usually
referred to as a scatterer (or site) potential. Algebraically, one has

V(x,ω) =
N

∑
j=1

(
j−1⊗
i=1

1
)
⊗V(x j,ω)⊗

(
N⊗

k= j+1
1
)

. (4)

1.2. The motivation and comparison with the existing results

An infinite range of the particle-media interaction ϕ results in stochastic correla-
tions of V (x,ω) at arbitrary distances. Recall that shortly after the reformulation in [14]
of the Multi-Scale Analysis (MSA) from [22, 21], a correlated model was considered in
[15]. However, the stochastic correlation of the scatterers and the infinite range of site
potentials are two different mechanisms which are in general non-equivalent, especially
in continuous spaces. A continuous model with an inverse polynomial decay of the site
potential was considered in [27] where the MSA has been adapted to the new con-
text. In particular, the main analytic and probabilistic MSA estimates originating from
[22, 21, 14] were replaced by their “stable” analogs. We follow this general path, but
deviate from the technology of [27] in several ways: the presence of the inter-particle
interaction brings its own lot of technical challenges, as the reader will see.

In the last three decades, a great wealth of mathematically rigorous results has
been accumulated in the spectral theory of disordered media; an historical survey along
with a rich bibliography can be found, e.g., in the monograph [32]. It has been under-
stood that the phenomenon of Anderson localization, originally discovered by a physi-
cist Philip W. Anderson [1], may have various manifestations. Quite often, one can
prove that in a certain interval (or intervals) of energies I ⊂ R the spectrum of a given
random operator H(ω) is pure point with probability one (spectral localization), and
all the eigenfunctions with eigenvalues in I decay exponentially at infinity (exponen-
tial spectral localization). One can often prove also that the averaged eigenfunction
correlators feature a fast, summable decay at infinity (strong dynamical localization).
The strongest results establish exponential decay of these correlators, in which case the
strong dynamical localization is qualified as exponential. However, in certain models
various technical difficulties result in a slower rate of decay of either eigenfunctions or
of their averaged correlators that one manages to prove. This is particularly true for
the N -particle Anderson models in a continuous, Euclidean configuration space. For
example, Fauser and Warzel [20] proved exponential strong dynamical localization and
exponential decay (with respect to the so-called Hausdorff pseudo-metric) of localized
eigenfunctions in the N -particle continuous Anderson model for compactly supported
scatterer potentials and exponentially decaying interaction potentials U (2) ; however,
the decay rate of the eigenfunction correlators (and consequently, that of the eigenfunc-
tions) was proved in [20] to be at least sub-exponential (not necessarily exponential)
under the assumption of a slower decay of the interaction potential.

In a prior work [8] we proved spectral localization (namely, the exponential one)
and strong dynamical localization (with a fractional-exponential decay of eigenfunction
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correlators) in a continuous N -particle model with a rather artificial site potential ϕ .
Such a choice was made to circumvent a hard technical problem with an analog of
Wegner’s estimate [34] for pairs of cubes (in the N -particle space) not separated in
the Hausdorff pseudo-metric, used implicitly in [11] and explicitly in [2]. Fauser and
Warzel [20] faced a similar problem, but, unfortunately, it is yet to be solved in the
context of the Fractional Moments Method (FMM). A recent work by Klein et al. [30],
building on [24], gave a characterization of the metal-insulator transition in a 2-particle
Anderson model. The choice N = 2 was motivated, at least partially, by the fact that
the Hausdorff pseudo-metric is equivalent to the symmetrized norm-distance only for
N = 2.

Note in particular that for N > 2, decay in the Hausdorff metric does not imply
decay in the symmetrized norm-distance. The latter is physically more natural as it
becomes the norm-distance in a properly constructed configuration space of physically
indistinguishable (bosonic or fermionic) quantum particles.

On the other hand, it was shown in the work [30] that its results can be extended
to any N � 3, under the conditions proposed in our papers [8, 12].

Notice that an important progress has been achieved recently in the area of the 1D
lattice fermionic systems with short-range interactions; cf. [18, 16, 17, 4].

One could have expected that the infinite range of the site (or scatterer, particle-
media) potential ϕ in (3) would result in a greater complexity of the localization anal-
ysis, but, surprisingly, the effect of a physically more realistic potential ϕ is quite the
opposite.

The main novelty of the present work is two-fold:

� We prove a uniform decay of eigenfunction correlators at low energies, with
respect to the symmetrized norm-distance in a domain B⊆ (Rd)N , assuming that:

(i) the site potential ϕ features a sufficiently fast power-law decay (cf. (8)), and

(ii) the inter-particle potential U (2) also admits a power-law upper bound (7).

� The eigenvalue concentration (EVC) estimate used in this work does not rely
on the well-known Wegner’s argument going back to [34] and based on local random
fluctuations of the random potential V (x;ω) (see (3)) in a finite volume where the
EVC is to be assessed. Instead, we make use of ‘almost flat’ background fluctuations
produced by remote amplitudes ωa . In view of a recent preprint [9], this opens a way
for the localization analysis of random media with arbitrarily singular disorder.

We also make a step towards a proof of N -particle localization in an energy in-
terval I∗ = [0,E∗] near the bottom of spectrum independent of the number of particles
N � 1. In the first work [10] on continuous N -particle models, as well as in more
recent papers [20, 8], the N -dependence of the localization interval I∗(N) has been
a thorny problem. Now we prove the initial length scale estimate for all N > 1 in the
same energy interval as for N = 1. Alas, some intrinsic limitations of the existing MSA
techniques do not allow us at this moment to prove similar bounds on all larger scales
for N � 4.

In the present paper we focus from the beginning on the analysis of the decay of
the eigenfunction correlators, and so the bulk of technical work serves this purpose.
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We prove that the averaged correlators decay (at worst) at an inverse polynomial rate
r �→ r−b where b > 0 can be made arbitrarily large, provided the scatterer potential (cf.
(3)) is ϕ(r) = r−A with A > 0 large enough.

As to the decay of the localized eigenfunctions, we enhance the power-law decay
bounds on the resolvents, established in the course of the main scale induction (cf.
Section 3), making use of a convenient particularity of the Multi-Scale Analysis (MSA):
a first scale induction can often be complemented by one or more additional stages
resulting in stronger final decay estimates. Specifically, in subsection 5.3 we start with
the power-law decay bounds for the finite-cube resolvents from Section 3, and prove
that the localized eigenfunctions decay at a fractional-exponential rate (see assertion
(B) of the main Theorem 1).

The 1-particle model treated long ago by Kirsch et al. [27] suggests that even
under a polynomial decay of the scatterer potential one may achieve exponential decay
of the localized eigenfunctions. However, this would require a different variant of the
N -particle multiscale analysis, and so we do not discuss this issue in the present work.

The pivot of the present paper is Theorem 4 providing an eigenvalue comparison
bound for the pairs of Hamiltonians in distant cubes; a significant part of the paper is
devoted to its proof (see Section 4). Without such a result, the analysis from Section 3
combined with an old argument due to Martinelli and Scoppola [31] would imply only
absence of absolutely continuous spectrum at low energies.

While our techniques can be adapted so as to prove N -particle localization under
faster-decaying interactions (e.g., r �→ r− lna r with a > 1), it seems important to focus
first on the most difficult case (viz. r �→ r−A ), single out the problematic points of
theN -particle MSA, and give at least a partial solution to these problems in a situation
(N = 3) which cannot be treated with the existing techniques of a powerful and valuable
alternative method, the multi-particle variant of the FMM developed in [2, 20].

One last remark concerns the domains where uniform upper bounds on the eigen-
function correlators are established. In physics of disordered systems, a sample of dis-
ordered media is always of a finite size, but the first mathematically rigorous results on
N -particle Anderson localization [11, 2] operated with an infinitely extended configura-
tion space (Rd or Zd ). A statement on pure point spectrum in a bounded domain would
be trivial: if a self-adjoint operator has a compact resolvent, then its spectrum is actually
discrete and not just pure point. In the 1-particle systems essentially the same amount
of efforts is required for the analysis of (arbitrarily) large but finite, and of infinite do-
mains, but surprisingly enough, this changes radically when we turn to the N -particle
systems, starting with N = 3. In fact, the first rigorous papers on the N -particle local-
ization [11, 2] proved localization bounds in the entire lattice Zd , but the techniques
used were insufficient for proving similar bounds in arbitrarily large bounded domains.
This is an artefact of the Hausdorff pseudo-metric used in [11, 2], and, unfortunately,
it still remains an unresolved issue in the N -particle FMM, although it has been solved
in the framework of the N -particle MSA (cf. [8, 12]). For this reason we emphasize in
Theorem 1 that the general bound (9) holds both in the entire configuration space and
in arbitrarily large bounded sub-domains thereof.
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1.3. Notation, assumptions and the main result

The method of induction on the number of particles, initially developed in [11],
when applicable, enables one to prove localization bounds for the n -particle systems
with 1 � n � N , where N � 2 is an integer to be fixed before the induction starts;
many important parameters depend upon N . In the present paper, the main results are
proved for N � 3, but some important ingredients of the multi-particle MSA (including
Theorems 2 and 4) are established for arbitrary N � 2.

We work in Euclidean spaces (Rd)N , d � 1, 1 � N � 3. A configuration of N � 1
distinguishable particles in Rd is identified with a vector x = (x1, . . . ,xN) ∈ (Rd)N .
In general, boldface symbols are reserved for “multi-particle” objects (Hamiltonians,
resolvents, etc.). All Euclidean spaces will be endowed with the max-norm denoted
by | · | : |x| = maxi |xi|, x = (x1, . . . ,xN) ∈ (Rd)N . The symmetrized max-norm dis-
tance dS(·, ·) in (Rd)N is defined in terms of permutations π : {1, . . . ,N} ←↩ : for
x = (x1, . . . ,xN) , y = (y1, . . . ,yN) ∈ (Rd)N one has

dS(x,y) = minπ |x−πy| , where πy = (yπ(1), . . . ,yπ(N)). (5)

The bulk of technical work concerns the operators related to the cubes BL(u) = B(N)
L (u)

=
{
x ∈ (Rd)N : |x−u| < L+ 1

2

}
usually centered at lattice points u ∈ (Zd)N (some

arguments allow for any u ∈ (Rd)N ); here Zd is unrelated to the scatterers’ lattice Z :
in some arguments it is convenient to have a covering of the configuration space with a
countable collection of cubes.

For notational brevity, we introduce the unit cells Cx := B1/2(x) .
The spectral projection of a given self-adjoint operator H onto an interval I ⊂ R

is denoted PI(H) . The distances and diameters are relative to the max-norm. Integer
intervals [a,b]∩Z will be denoted by �a,b� . Finally, we define the full projection

Π : (x1, . . . ,xN) �→ {x1, . . . ,xN} ∈ Rd , (6)

so that for u = (u1, . . . ,uN) one has ΠBL(u) = ∪N
j=1BL(u j) .

For notational simplicity, we often use the standard notation f (s) � g(s) , meaning
that for some C ∈ (0,+∞) one has f (s) � Cg(s) .
• Interaction potential. We assume the following:

(U) U is generated by a 2-body potential U (2) : R+ → R+ obeying

0 � U (2)(r) � Const r−A#
, A# > d (7)

(later we may require A# and A in (8) to be even larger). At the moment, our technique
requires the exponents A# > A , as their roles in the multi-particle MSA are quite differ-
ent. Recall, however, that in prior rigorous works in this direction one never assumed ϕ
and U (2) to be identical. Moreover, in some works (e.g., [20, 8, 12]) U (2) was assumed
to have an infinite range while ϕ had a compact support. Admittedly, further progress
is to be expected here.
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• Random external potential. The following condition will be assumed.

(V) The random potential V (x;ω) is as in (3), where ωa , a ∈ Z , are IID random
variables. We assume a summable inverse-polynomial decay of the scatterer function:

ϕ(r) =
{

r−A, if r � r0; A > d,
1, if 0 � r < r0.

(8)

REMARK 1. The above assumption on ϕ can certainly be relaxed. As was said,
we intentionally explore the class of relatively slowly decaying interactions which
present a certain number of technical challenges. The explicit power-law form is quite
convenient, but what we need is the following:
(1) Reasonable lower (and not just upper) bounds on ϕ(r) . The latter is not a mere
nuisance at large distances, but also an important mechanism providing eigenvalue
concentration estimates difficult to establish for compactly supported potentials in the
continuous multi-particle Anderson models.
(2) ϕ has to be a “slowly varying” function in the following sense: for large r > 0,
ϕ ′(r) must be much smaller than ϕ(r) itself, so that at large distances a restriction of
the random potential x �→ V (x,ω) to a large cube could be approximated (with a con-
trollable accuracy) by a random constant (“almost flat” potential). There certainly is a
room for generalizations here, but also some constraints. To avoid unproven statements,
we do not describe here more specific extensions which may appear artificial and yet
leave an impression that a larger class of scatterer potentials can be treated. In fact, the
staple of the present paper, Section 4, is already overly technical and lengthy.

We also assume ωa to have a Lipschitz continuous, compactly supported proba-
bility measure μ with 0 ∈ supp μ ⊂ R+ . (These conditions can be relaxed.)

We call a connected domain D ⊆ (Rd)N regular if D is a union of ‘cells’– closed
cubes Cu of diameter 1 centered at the points u ∈ (Zd)N . If D is regular and bounded,

then H(N)
D with Dirichlet’s boundary conditions is self-adjoint in L2(D) , and the resol-

vent (H(N)
D −λ1)−1 is a compact operator for λ outside the spectrum of H(N)

D . The
location of the almost sure spectrum Σa.s.(H(N) (ω)) can be determined with the help
of Weyl’s criterion (cf. [29, Proposition A.1]).

PROPOSITION 1. Under assumptions (V)–(U), Σa.s.(H(N) (ω)) = [0,+∞) .

The main result of the paper is the following

THEOREM 1. Under the assumptions (U)–(V) there exists an interval I∗ = [0,E∗] ,
E∗ > 0 , such that for any b > 0 and some Âb , Â#

b , Q̂b > 0 , if A > Âb , A# � Â#
b and

L0 � Q̂b , then the following holds for any N ∈ �1,3�:

(A) For all x,y ∈ (Rd)N with Rx,y := dS(x,y) � 1 , and for any regular domain D ⊆
(Rd)N (bounded or not) such that D ⊃ B 1

2 Rx,y
(x)∪B 1

2 Rx,y
(y)

E
[

sup
t∈R

∥∥1Cy PI∗
(
H(N)

D

)
e−itH

(N)
D 1Cx

∥∥]� R−b
x,y . (9)
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(B) With probability one, the spectrum of H(N) (ω) ≡ H(N)
(Rd)N (ω) in I∗ is pure point.

Moreover, there exists some non-random ζ > 0 such that for each normalized eigen-
function ψψψ = ψψψ(ω) with eigenvalue in I∗ and some Cψψψ (ω) > 0

∀x ∈ (Rd)N ‖1Cxψψψ‖2 � Cψψψ(ω)e−|x|
ζ
. (10)

The norm figuring in the LHS of (10) is the vector norm in the Hilbert space
L2
(
(Rd)N

)
, and the norm in the LHS of (9) is the operator norm relative to L2(D) .

For the readers unfamiliar with standard results of the rigorous Anderson local-
ization theory, we note that actually ζ ∈ (0,1) . The techniques of the MSA do not
allow one to achieve ζ = 1, and the available, accurate analysis of the particular case
of 1-particle random Hamiltonians in R1 suggests that one should not expect ζ > 1.

2. Eigenvalue concentration bound

The main result of this section is Theorem 2. It suffices for the fixed-energy MSA
(cf. Section 3), while for the proof of localization we need Theorem 4 relying on a
rather tedious construction, which is the pivot of the present work, so we postpone it
until Section 4.

A reader familiar with the proofs of Wegner-type estimates, starting with the sem-
inal paper [34], can notice that the proof of Theorem 2 does not exploit the usual mech-
anisms ensuring regularity of the eigenvalue distribution (this is why the claim is insuf-
ficient for proving the existence of the so-called density of states), and relies instead on
the infinite range and tempered decay of the scatterer potential.

In this section we work with a fixed interval I∗ = [0,E∗] where E∗ > 0, and
with 1 � N � 3. Let Σ(HBL(u)) be the spectrum of HBL(u) (with Dirichlet boundary

conditions) and denote ΣI∗
u,L(ω) = Σ(HBL(u)(ω))∩ I∗.

Given a subset Λ � Z , we denote by ωΛ the sub-samples of random amplitudes
(ωa, a ∈ Λ) , by ω⊥

Λ the complementary sub-samples (ωa, a ∈ Z \Λ) . We identify a
sub-sample ωΛ , considered as a function Λ � a �→ ωa ∈ R , with its zero-extension
Z � a �→ ωa1Λ(a) to the entire lattice (the same goes for its complement ω ⊥

Λ ), and
often use the decomposition ω = ωΛ + ω ⊥

Λ . It is convenient to introduce an empty
sub-sample ∅⊥

Λ , so that it makes sense to write the zero-extension of ωΛ as the sum
ωΛ + ∅⊥

Λ . The symbol F⊥
Λ denotes the sigma-algebra generated by random variables

ωa with a �∈ Λ . Recall that the support of the common probability measure of ωa is
compact, so the functions a �→ ωa are uniformly bounded.

THEOREM 2. Let be given an interval I∗ = [0,E∗] , an integer N ∈ �1,3� and
τ > 0 . There exists a positive integer L∗ and q∗ > 0 large enough such that for L � L∗
and q � q∗ the following holds true for all u∈ (Rd)N . Let B = BL(u) , B = BqL1+2τ (u) ,
Λ := ΠB∩Z (cf. (6)). Then for any fixed ω ⊥

Λ and ε > 0

(A) ∀E ∈ I∗ P
{

ωΛ : dist
[
ΣI∗

u,L(ωΛ + ω⊥
Λ),E

]
� ε
}

� LNd+Aε . (11)
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(B) Moreover, for all ε � L−(1+2τ)(A−d) and all E ∈ I∗ one has

P
{

ωΛ : inf
ω ⊥

Λ

dist
[
ΣI∗

u,L(ωΛ,ω ⊥
Λ ),E

]
� ε
}

� LNd+Aε . (12)

Proof. (A) Fix an N -particle cube B ≡ BL(u) = BL(u1)×·· ·×BL(uN) and con-
sider its full projection ΠBL(u) = ∪1� j�NBL(u j) (cf. (6)). By positivity of V(x,ω) , it
follows from (4) that for any û ∈ ΠB we have an inequality VB(ω) � V (û,ω) ·1B for
the restriction VB(ω) = 1BV(ω)1B , in the sense of quadratic forms. For example,

1BVB(ω)1B � ϕ(L)ωû1B � L−Aωû1B , û = u1 . (13)

For every a ∈ ΠB the random amplitude ωa appears in the decomposition of V(·,ω)
at least once with a factor given by the potential ϕ(·− a) , so one has

VB = ṼB(ω⊥
û )+ ωûΦΦΦû , ΦΦΦû � L−Aωû1B , (14)

where ṼB(ω ⊥
û ) is independent of ωû . To establish (11) it suffices to prove a similar

bound conditional on the σ -algebra F⊥
û generated by {ωa, a ∈ ΠΛ\ û} . Until the end

of the argument, we split the sample ω into the sum ωû +ω ⊥
û and keep the component

ω ⊥
û = (ωa,a �= û) fixed. Decompose HB(ω) as follows:

HB(ω) = AB(ω⊥
û )+ ωûΦΦΦû , (15)

with A = AB(ω ⊥
û ) :=

(
−ΔΔΔB +UB + Ṽ(ω ⊥

û )
)

. Conditional on F⊥
û , the operator A is

non-random. Next, consider an analytic family of self-adjoint operators (with compact
resolvent) K(s) = A+ sΦΦΦû , s ∈R , Let {λ j(s), j � 1} be the corresponding eigenval-
ues numbered in ascending order, counting multiplicity; their analytic s-dependence
follows from standard results of functional analysis (cf., e.g., [33, Chapter XII]). Let
ψψψ j(s) the corresponding eigenfunctions; then on account of (14), we have by the
Hellmann–Feynman formula

dλ j(s)
ds

=
〈

ψψψ j(s),
dK(s)

ds
ψψψ j(s)

〉
= 〈ψψψ j(s),ΦΦΦû ψψψ j(s)〉 � L−A > 0,

hence identifying the random eigenvalues Ej(ωû) with λ j(s)
∣∣
s=ωû

we see that the

probability measure of any Ej(ωû) is the image of the probability measure of ωû

by a strictly monotone mapping λ j : R → R with the derivative lower-bounded by
cL−A > 0, c > 0.

By Weyl’s estimate (cf., e.g., [5, Section VI.2.1]) for the kinetic energy operator
(−ΔΔΔ) and positivity of U and V , the number of eigenvalues in I = [0,E∗] is bounded
by CLNd with C = C(E∗) ∈ (0,∞) . This proves the asserted estimate (11).

(B) Decompose the N -particle random potential as follows: V(ω) = V′(ω)+V′′(ω) ,
where V′(ω) is generated by the finite sample of random potentials

V ′(x,ω) = ∑
a∈Z∩Λ

ωau(a− x)
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and V′′(x,ω) is generated by ωau(a−x) with a∈Z\Λ , hence independent of V′(·,ω) .
Since dist

[
ΠBL(u), Z \Λ

]
� qL1+2τ , we get by a straightforward calculation a norm-

bound on the potential V′′ induced by remote scatterers,

sup
ω

‖V′′(·,ω)1BL(u)(·)‖ � q−AL−(A−d)(1+2τ) � 1
2
L−(A−d)(1+2τ) ,

valid for q > 1 large enough. Thus by the min-max principle, we have for any fixed
sub-sample ω̃Λ and any complementary sub-sample ω ⊥

Λ

dist
[
ΣI∗

u,L(ω̃Λ, ω ⊥
Λ ),E

]
� dist

[
ΣI∗

u,L(ω̃Λ, ∅),E
]− 1

2
L−(A−d)(1+2τ). (16)

Taking into account assertion (A), this proves assertion (B). �
In Section 3 we will introduce positive numbers τN playing the role of τ from

Theorem 2, and the length scales LN,k , N ∈ �1,3� , k � 0 (cf. (24)).

DEFINITION 2.1. A cube B(N)
LN,k

(u) is called strongly interactive (SI) if

diamΠu≡ max
i�= j

|ui−u j|� 3qNL1+2τN
k , (17)

and weakly interactive (WI), otherwise.

Any WI cube B(N)
L (u) admits a factorization B(N)

L (u) = B(n′)
L (u′)×B(n′′)

L (u′′)
where

dist
(

ΠB(n′)
L (u′), ΠB(n′′)

L (u′′)
)

>
3Nq
N−1

L1+2τN −2L > qL1+2τN (18)

(we omit the proof which is quite simple; cf. a similar statement in [2]). Such a factor-
ization may not be unique, but we will assume that one factorization satisfying (18) is
fixed for each WI cube; it will be referenced to as the canonical one. Note that for any
cube BL(u) one has

max
x∈BL(u)

dist(Πx,Πu) � L , (19)

and for an SI cube BL(u) one has in addition, for L large enough,

diam ΠBL(u) � diam Πu+2L � 3NqL1+2τN +2L < 4NqL1+2τN . (20)

COROLLARY 1. Fix k ∈ N and an arbitrary collection of strongly interactive
cubes BLk(ui) ⊂ B = BLk+1(y) , 1 � i � M, M � 2 , with dS(u(i),u( j)) > 8NqL1+2τN

k

for i �= j . Let Λi = ΠB
L

1+2τN
k

(u(i))∩Z . Then the events{
ωΛi : inf

ω ⊥
Λi

dist
[
ΣI∗

u(i),Lk

(
ωΛi ,ω ⊥

Λi

)
,E
]

� ε
}

, 1 � i � M, (21)

are independent. Consequently, for any E ∈ I∗ and ε � L−(1+2τN )(A−d)
k one has

P
{

ωΛ(i) : min
1�i�M

inf
ω⊥

Λi

dist
[
ΣI∗

u(i) ,Lk

(
ωΛi ,ω⊥

Λi

)
,E
]

� ε
}

�
(
LA+Nd

k ε
)M

. (22)
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Proof. Check the independence of the events (21), so the claim would follow from
assertion (B) of Theorem 2. Since all cubes BL(u(i)) are strongly interactive, we have

maxl |u(i)
1 −u(i)

l |� 3qL1+2τN
k , so by (19) we get ΠBLk(u

(i))⊂ Λi
, and (20) implies

dist
(

Λi
, Λ j
)

> dist
(
u(i)

1 , u( j)
1

)−2 ·4NqL1+2τN
k > 0. (23)

Thus Λi∩Λ j = ∅ for i �= j , whence the independence of the events (21). �

3. Decay of the Green functions at a fixed energy

We shall prove localization bounds for the N -particle Green functions of the
Hamiltonians, for every energy E in an interval I∗ = [0,E∗] with E∗ > 0 determined
by the parameters of the model. With N = 2,3, we carry out a scale induction for the
finite-volume Green functions, with recursively defined length scales LN,k :

LN,k+1 =
⌊
LαN

N,k

⌋
, L0 = L0,N > 1, αN = (1+ σ)(1+2τN), σ ∈ (0, 1

4 ). (24)

For brevity, we often write Lk instead of LN,k . The goal of the scale induction is to
derive analytic and probabilistic bounds on the decay of the Green functions of the N -
particle systems from their counterparts for n -particle systems, 1 � n � N − 1. The
base of induction is of course the analysis of single-particle Hamiltonians. As in prior
works (cf., e.g., [8, 12]), the case N = 1, which could be treated separately, is merely
a simpler variant of the general situation: there are no non-trivial subsystems, hence no
“weakly interactive” cubes (cf. Definition 2.1).

The principal assumptions on αN and other key parameters of the scaling scheme
are summarized in (40)–(42). The two most important quantities are bN giving the
guaranteed decay rate L0 �→ L−bN

0 of the N -particle Green functions at the initial scale
L0 , and the exponent sN figuring in the probabilities of various unwanted events relative
to that scale, e.g., L−sN

0 . Both bN and sN are determined by the key parameters of the
model; L0 is to be sufficiently large. The N -dependence of various quantities is often
suppressed in notation. Given a cube BLk (x) ≡ B(N)

Lk
(x) , we introduce a convenient

shortcut ∥∥GBLk
(x)(E)

∥∥� :=
∥∥1∂BLk

(x) GBLk
(x)(E) 1BLk/3(x)

∥∥ (25)

(‖·‖ is the operator norm), where

∂BL(x) := BL(x)\BL−2(x) , L � 4.

Here � symbolizes the decay from the center to the boundary of the cube.

DEFINITION 3.1. Let be given real numbers δ ,ε > 0, E , and integers k > 0,
N � 1. A sample ω : Z → R of site amplitudes ωa , a ∈ Z (cf. (2)), is called :

(i) (E,δ )-non-singular in a cube B(N)
Lk

(u) ((E,δ )-NS, in short) iff

(3Lk)Nd
∥∥GBLk

(x)(E)
∥∥� � δ ; (26)
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(ii) (E,ε)-non-resonant in B(N)
Lk+1

(u) (denoted (E,ε)-NR) iff

dist
(
Σu,Lk+1 , E

)
� 2ε ; (27)

(iii) (E,ε)-completely non-resonant in the cube B(N)
Lk+1

(u) (denoted (E,ε)-CNR) iff for
all � ∈ �Lk,Lk+1−Lk −2�

dist
(
Σu,�, E

)
� 2ε. (28)

It is customary to associate the “singularity” or “resonance” properties with a given
cube, once ω is fixed. So, we often say, e.g., that a cube BLk+1(u) is (E,δ )-NS
(for a sample ω ). We shall need stronger variants of the above three properties P ,
viz. (E,δ )-NS, (E,ε)-NR and (E,ε)-CNR. Given a cube B = BLk (u) , we denote
B = BL1+τ

k
(u) and say that a sub-sample ωΠB has a strong (or stable) property P in B

iff for any complementary sub-sample ω ⊥
ΠB

, the full sample ω = (ωΠB,ω ⊥
ΠB

) has the
property P in B . The respective abbreviations become SNS, SNR and SCNR.

Specifically, the (E,δ )-SNS property of a cube B= BL(u) with ΠB=∪N
j=1BL(ui)

=: Λ reads as follows:

sup
ωΛ

(3Lk)Nd
∥∥GBLk

(x)(E,ωB + ω ⊥
B )
∥∥� � δ , (29)

and for the (E,ε)-SNR property we have

inf
ωΛ

dist
(
Σu,Lk+1(ωB + ω ⊥

B ), E
)

� 2ε. (30)

The SCNR property enhances CNR in the same way as the item (iii) enhances (ii) in
Definition 3.1.

The norm
∥∥GBLk

x(E)
∥∥�

is usually assessed with the help of the Simon–Lieb in-
equality (a.k.a. Geometric Resolvent Inequality); cf., e.g., [21, 14, 23, 29]. This tech-
nique is well-known by now, so we skip below some technical details in the proofs.

Induction hypothesis S(N,k)
Given the integer sequence

{
Lj,n
}

(cf. (24)) and positive numbers bn , sn , 1 � n � 3 ,
the following property is fulfilled for all 1 � n � N and 0 � k′ � k :

∀ E ∈ I∗ = [0,E∗] P
{

B(n)
Lk,n

(x) is
(
E,L−bn

k,n

)
-SNS

}
� 1−L−sn

k,n . (31)

Naturally, in the course of induction on k � 0 with N fixed, we are entitled to use
S(n,k) with n � N−1 and any k � 0.

3.1. Initial length scale (ILS) estimate

As observed in [10], the N -particle version of the ILS estimate (cf., e.g., [32,
Theorems 2.2.3, 3.3.3]) is proved essentially in the same way as for N = 1, provided the
interaction potential is non-negative. The reason is that the Lifshitz tails phenomenon,
the main mechanism used in [32, Theorems 2.2.3, 3.3.3], is actually enhanced by a
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nontrivial non-negative interaction. The next statement is an adaptation of a result
proved in [32]; in the form given below it was used in [8]. Specifically, the estimate
(32) appears in the proof of [32, Theorem 2.2.3], but a fractional-exponential (in L )
bound was ultimately replaced there by a weaker, power-law upper bound in order to
suit the polynomial scaling employed in [32].

Let BL = B(u) =
N×

j=1
BL(u j) , Λ = ΠBL ∩Z = ∪N

j=1BL(u j)∩Z . We identify the

finite sample ωΛ = (ωa)a∈Λ with its zero-extension Z � a �→ ωa1Λ(a) . This identifica-
tion makes it possible to represent the entire sample ω =

(
ωa
)
a∈Z as a sum ωΛ +ω⊥

Λ ,

where ω⊥
Λ = (ωa)a∈Z\Λ is also identified with Z � a �→ ωa1Z\Λ(a) .

Next, let H [i](ω) , i = 1, . . . ,N , be the 1-particle operators, each acting on its
respective variable xi (but with the same ω for all i ∈ �1,N�), and denote

H[i](ω) = 1⊗·· ·⊗1︸ ︷︷ ︸
i−1 factors

⊗H [i]
BL(ui)

(ω)⊗1⊗·· ·⊗1︸ ︷︷ ︸
N−i factors

,

so Hni(ω) := ∑N
i=1 H[i](ω) = H(N) (ω)−U(x) (here the superscript “ni” stands for

“non-interactive”). By positivity of U one has HBL(ω) � Hni
BL

(ωΛ) pointwise in ω .
At the same time, HBL(ωΛ) is measurable with respect to the σ -algebra FΛ generated
by the finite sample (ωa)a∈Λ .

These notations will be used in the formulation and the proof of the next statement.

PROPOSITION 2. (Cf. [8, Sect. 3.1]) Consider the N -particle Anderson Hamilto-
nian (1) with the single-particle random potential of the form (2), where {ωa, a ∈ Z}
are IID random variables with the probability measure μ . Assume that 0 ∈ suppμ ⊂
[0,+∞) and suppμ �= {0} . Then there exists E∗ > 0 with the following properties.

For spatial dimension d � 1 , any β ∈ (0,1) and all sufficiently small ε > 0 there
exist L∗(β ,ε) ∈ N and c,ν > 0 such that for all L � L∗ , all E ∈ [0,E∗] , any N � 1
and any cube BL(u) = B(N)

L (u) , denoting Λ := ΠBL(u)∩Z , one has

P

⎧⎨⎩sup
ω⊥

Λ

‖1∂BL(u)GBL(u)(E,ωΛ + ω⊥
Λ )1Cu‖ > e−cLβ

⎫⎬⎭� e−νL
1−β

2 −ε
, (32)

where GBL(u)(E,ω) = (HBL(u)(ω)−E)−1 .

Observe that the event in the LHS of (32) is FΛ -measurable.

Proof. First, let us show that the required bound can be essentially reduced to its
counterpart for 1-particle systems, and taking N > 1 actually enhances the Lifshitz
tails phenomenon responsible for it. Ultimately it also enhances the decay bound on
the Green functions resulting from the Combes–Thomas estimate [13, 3].

By separation of variables in Hni(ω) (where the interaction is switched off) and
on account of HBL(ω) � Hni(ωΛ) , one has, for any λ ∈R and pointwise in ω ,

E0
(
HN(ω)

)
� E0

(
Hni(ωΛ)

)
=

N

∑
i=1

E0

(
H [i]

BL(ui)
(ωΛ)

)
� E0

(
H [1]

BL(u1)
(ωΛ)

)
,
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thus for any λ ∈ R

P

{
inf
ω⊥

Λ

E0

(
H(N) (ωΛ + ω⊥

Λ )
)

� λ

}
� P
{

E0

(
H [1]

BL(u1)
(ωΛ)

)
� λ
}

.

Now the problem of estimation of the lower edge of the N -particle spectrum is reduced

to that of the 1-particle operator H [1]
BL(u1)

(ω) . Next, let � = Lθ with θ ∈ (0,1) to be

fixed later, decompose B := BL(u1) into a union of M := Ld/�d = �(θ−1−1)d adjacent
� -cubes B�(vi) , and consider a new 1-particle operator H̃B with Neumann boundary
conditions on all the boundaries of these � -cubes. By the Neumann decoupling,

H̃(ω) =
M⊕

i=1

H(1,N)
B�(vi)

(ω) ,

where the upright “N” in H(1,N)
B�(vi)

stands for “Neumann boundary conditions”, and “1”
refers to the single-particle nature of the operator. As is well-known (cf., e.g., [33,
Section XIII.15]), Neumann boundaries lower the spectrum, so

E0
(
H [1](ω)

)
� E0

(
H̃(ω)

)
= min

1�i�M
E0

(
H(1,N)

B�(vi)
(ω)
)

.

A probabilistic argument based on the large deviations estimates, used in the proof of
[32, Theorem 2.2.3], shows that there exist s,ν > 0 and �∗ ∈N such that for any � � �∗

∀ i ∈ �1,M� P
{

E0

(
H(1,N)

B�(ui)
(ω)
)

� s�−2
}

� e−ν�d
(33)

whence, for � = Lθ large enough and with M = �(θ−1−1)d , s�−2 = sL−2θ ,

P

{
min

1�i�M
E0

(
H(1,N)

B�(ui)
(ω)
)

� sL−2θ
}

� Me−ν�d � e−νLdθ−ε
, (34)

where one can take ε ↓ 0 as L ↑ +∞ . The proof of (34) in [32] relies upon a so-called
complete covering condition for the alloy type random potential. In our notations, it
reads as follows:

∑
a∈Z

ϕ(|x− a|) � C > 0. (35)

This is indeed a restrictive condition in the case where ϕ (assumed to be non-negative)
is compactly supported: the supports of ϕ(· − a) have to cover the entier space. For
our strictly positive site potentials x �→ ϕ(|x|) > 0 the complete covering condition is
trivially fulfilled. Indeed, the lattice Z ↪→Rd is assumed to have d linearly independent
periods, so there is one site “a” per a unit cell of Z . Let R be the common diameter of
these cells, then by definition of ϕ and (8), ∑a∈Z ϕ(|x− a|) � R−A > 0.

Now we can draw functional analytic conclusions from the lower bound on the
ground state energy E0 which holds with sub-exponential probability in a sufficiently
large cube BL(u) . This is usually done with the help of the well-known estimate due to
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Combes and Thomas [13], later streamlined by Barbaroux et al. [3]. It holds for a large
class of Schrödinger operators; one mainly needs a uniform ellipticity condition (see the
details in [32, Section 2.4]). For the reader’s convenience, we quote its encapsulation
given in [32], better adapted to our notations. Below ρ(HΛ) stands for the resolvent set
of the corresponding self-adjoint operator HΛ . One can choose the Dirichlet, Neumann
or periodic boundary conditions (see [32]).

LEMMA 1. (Cf. [32, Theorem 2.4.1]) Let λ > 0 . There exist c1(λ ),c2(λ ) > 0
with the following properties. Let Λ ⊂RD , D � 1 , be an open cube, X ,Y ⊂ Λ measur-
able subsets satisfying dist(X ,Y ) > R > 0 and Y ⊃ {x ∈ Λ : dist(x,∂Λ) � 1} . Further,
consider the Schrödinger operator HΛ = −Δ +W(x) in Λ and a non-empty open in-
terval (λ−,λ+) ⊂ ρ(HΛ)∩ (−λ ,λ ) , and let η := dist

(
E,R\ (λ−,λ+)

)
> 0 . Then

‖1XGΛ(E,ω)1Y‖ � c1η−1e−c2R
√

(λ+−λ−)η ≡ e−c2R
√

(λ+−λ−)η+ln(c1/η). (36)

In our case, D = Nd and RD is replaced by (Rd)N . As evidences the statement,
the structure of the potential is irrelevant, once we have the above spectral gap condition
E ∈ (λ−,λ+) with η = dist

(
E,R\ (λ−,λ+)

)
> 0. Now the condition

‖1∂BL(x)GBL(x)(E,ω)1Cx‖ � e−cLβ
(37)

follows from Lemma 1. Indeed, we have R = L(1− o(1)) , λ− = 0, λ+ = qL−2θ ,
η = 1

2 λ+ , so R
√

(λ+−λ−)η > 1
2 sLβ , β = 1−2θ > 0. Clearly, any value β ∈ (0,1)

can be achieved by taking θ = (1− β )/2. Since we have R
√

(λ+−λ−)η � 1 for
L� 1, the logarithmic term in the last equation in (36) can be absorbed in the exponent
by replacing c2 with c = c2/2.

Collecting (37) and with the probability estimate (34) for this property to hold,
we recover the claim, replacing θ in (34) with the value (1−β )/2 suitable for any
dimension d (here d = 1 is the worst case scenario). �

PROPOSITION 3. Under the assumptions (U)–(V), there exists a nontrivial in-
terval I∗ = [0,E∗] such that for any bN ,sN > 0 , N � 1 , and some integers L̃(N) the
hypothesis S̃(N,0) holds for all N � 1 and LN,0 � L̃(N) .

A notable improvement provided by Proposition 3, as compared to [10, Lemma
3.1], is that the estimates for the systems of n = 1, . . . ,N particles are now established
in the same energy interval, while [10], as well as [28, 29, 20, 12, 8], in the course
of the induction in the number of particles (n = 1, . . . ,N ) one had to operate in the
energy intervals I(n) of size |I(n)| � e−Cn , C > 0. This was necessary for the proof
of exponential decay of the localized eigenfunctions; now we consciously settle for a
power-law decay, which is of course a notable concession. On the bright side, this
is precisely what enables us to render n -independent the low-energy band where the
localization can be proved, albeit in a weaker form. From the energy band perspective,
the key point is to establish the initial length scale estimates, for then the MSA induction
kicks in and carries the localization estimates to arbitrarily large scales.
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We emphasize that while the core of the multi-particle MSA used in the present
work remains an induction in the number of particles (n = 1, . . . ,N ), the ILS estimate
from Proposition 3 is proved for all N at once, or better to say, individually for any
given N � 1 without referring to n < N .

Proof. Let B = BL0,n(u) , B = BqL1+2τ
0,n

(u) , τ > 0, Λ := ΠB∩Z . According to the

definition (29) of the SNS property and on account of (25), we have to show that

P

⎧⎨⎩(3Lk)Nd sup
ω ⊥

Λ

‖1∂BL(x)GBL0,N
(x)(E,ωΛ + ω ⊥

Λ )1Cx‖ > L−bN
0,N

⎫⎬⎭� L−sN
0,N . (38)

By Proposition 2, we have for L0,N (replacing L in Proposition 2) large enough

P

⎧⎨⎩sup
ω⊥

Λ

‖1∂BL(x)GBL0,N
(x)(E,ωΛ + ω⊥

Λ)1Cx‖ > e−cLβ

⎫⎬⎭� e−νL
1−β

2 −ε
. (39)

where ε > 0 can be made arbitrarily small for L0,N large enough. It is to be stressed
that the estimate (39), which is much stronger than (38) for large L0,N , holds in a fixed
energy interval (being derived from the properties of just one, single-particle compo-
nent of the N -particle Hamiltonian), and it actually gets stronger with the number of
particles N ↑+∞ , although we do not exploit this enhancement mechanism. Therefore,
without changing the energy interval we can infer from it weaker, power-law estimates
with different (depending upon N in whatever way) and arbitrarily large exponents bN

and sN figuring in the claim (38) to be proved. Specifically, for any positive numbers
c,β ,θ ′,ν,bN ,sN > 0 and L∗,N large enough, for all L0,N � L∗,N

L−bN
0,n � e−cLβ

0,N , L−sN
0,N � e−νLθ ′

0,N , θ ′ = θ − ε =
1−β

2
− ε > 0 ,

which shows that the initial length scale non-singularity condition for N -particle Hamil-
tonians holds with a satisfactory probability L−sN

0,N , provided L0,N is large enough. �

Perhaps it is worth noticing also that this argument, as is well-known, can be used
solely in the initial scale, because in the subsequent scaling steps the relevant energies
can be inside the spectrum and not strictly below it with a satisfactory spectral gap. The
above mentioned enhancement with N ↑ +∞ , alas, is a rather exceptional particularity
of the initial length scale analysis, but in many other aspects growing N is a source of
various hard technical problems.

Notice also that we use in the claim an augmented cube B = BqL1+2τ
0,N

(u) , as per the

scale induction requirements, but as was made clear in the proof, we actually make use
only of the scatterers a ∈ ΠBL(u) , and all exterior scatterer amplitudes ωa can only
enhance the resolvent decay and probability estimates, even if a ∈ BL(u)\BL(u) .
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3.2. Assumptions on the key parameters

In the course of the scale induction for N -particle systems we work with lengths
Lk = LN,k defined by LN,k+1 = �LαN

N,k� , where α1 = α3 and αN = α =�2 for 2 � N � 3,
and �> 0 will be made large enough to have b > 0 in Theorem 1 arbitrarily large.
Further, τN > 0 are given by αN = (1+ σ)(1+2τN) , 0 < σ < 1

4 (cf. (24)).
We assume A > 8 · 3 · d = 24d (or larger, if necessary); here “3” is the maximal

value of N in our main results. The exponents sN , bN in main analytic and probabilistic
estimates for N -particle systems, are defined by

sN = 1
2 �8−3N A , bN = 4αNsN , (40)

with �� 4 (or as large as needed), so sN−1 =� αsN , bN−1 � 4bN . The main require-
ment for the exponent A# (cf. (7)) is as follows:

A# >
2bN

1+2τN

. (41)

Since σ < 1
4 , it suffices to have A# � 10sN . The latter implies in particular

A#(1+2τN)−d > 2αNsN +d. (42)

Other conditions on the key parameters used in the proofs are summarized and checked
in Appendix A.

In the course of the scale induction we shall use the small parameters

δk = L−bN
k , εk+1 = L−2sN

k+1 ≡ L−2sNαN
k . (43)

3.3. Bad and singular cubes. Deterministic analysis

DEFINITION 3.2. Given K ∈ N , a cube B(N)
Lk+1

(x) is called (E,δ ,K)-bad iff
(i) either it contains a weakly interactive (E,δ )-S cube of radius Lk ,
(ii) or it contains K , (E,δ )-S, SI cubes BLk (ui) with dS(ui,u j)> 8qNL1+2τN

k for i �= j .
Otherwise, it is called (E,δ ,K)-good.

The next statement is a standard result of the Multi-Scale Analysis, essentially
going back to the work [14], so its proof will be omitted; it is deterministic, does not
rely on a specific structure of the potential and thus applies to single- and multi-particle
Hamiltonians.

LEMMA 2. (Conditions for non-singularity) Fix some k ∈N and consider a cube
B = BLk+1(u) . Suppose that

(i) B is (E,ε)-NR with ε � δ 1−c , for some ε,δ ,c ∈ (0,1);
(ii) B is (E,δ ,K)-good, with K � 0 such that

M := �Lk+1/Lk�−200qNK�L1+2τN
k �� 1. (44)

If L0 is large enough, then B is (δM+c, E)-NS.
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Due to unboundedness of supp ϕ , we need a “stable” variant of Lemma 2:

LEMMA 3. (Conditions for strong non-singularity) Consider a cube B= BLk+1(u) ,
k � 0 , and suppose that

(i) B is (E,εk+1)-SNR;

(ii) B is (E,δk,τN ,K)-S-good, with K � 0 such that (44) holds with M > 2αN .

If L0 is large enough, then B is (E,δk+1)-SNS.

Proof. Let B = B1+2τN
Lk+1

(u) , Λ := ΠB∩Z . One has to show that, with a fixed sam-
ple ω ⊥

B
satisfying the hypotheses (i)–(ii), the cube B is (E,δk+1)-NS for the sample

(ωΛ,ω ⊥
Λ ) regardless of the complementary sample ω ⊥

Λ .

First, notice that the condition (i) is already stable with respect to ω ⊥
Λ .

Next, by (ii) there exist at most K− 1 cubes B
17qNL

1+2τN
k

(xi) such that any cube

BLk (x) with x �∈ S := ∪K−1
i=1 B

17L
1+2τN
k

(xi) is (E,δk)-SNS. The support of ω ⊥
Λ lies

outside all the cubes B
17qNL

1+2τN
k

(xi) , hence the distant sample ω ⊥
Λ does not affect the

strong non-singularity property of the cubes BLk(x) with x �∈ S . Thus by Lemma 2,
the cube B is (E, δ̃k+1)-NS with

δ̃k+1 � L−bN(M+c)
k � (3Lk+1)−Nd ·L−bN

(
M

αN
− Nd

bN

)
k+1 � (3Lk+1)−Nd ·L−bN

k+1
(45)

(recall c > 0) provided L0 is large enough and M
αN

− Nd
bN

> 1; the latter holds true, since
Nd
bN

< 1 by (41) and M > 2αN by hypothesis. Therefore, B is (E,δk+1)-SNS. �

3.4. Non-singularity of weakly interactive cubes

The next lemma adapts earlier results [10, Lemma 4.1], [12, Lemma 4.5], [8,
Lemma 6] and similar results from [28, 29]. Recall that if N = 1, there are no WI
cubes (decomposable systems), and then subsections 3.4-3.5 become unnecessary.

LEMMA 4. Consider a WI cube B = B(N)
Lk

(u) with a canonical factorization B =

B′ ×B′′ (cf. (18)), and the respective sub-system Hamiltonians H′ = H(n′)
B′ and H′′ =

H(n′′)
B′′ . Assume that B is (E,2L−2αNsN

k )-SNR. Suppose further that

• ∀λ ′ ∈ Σ(H′) the cube B′′ is (E−λ ′,δk)-SNS, and

• ∀λ ′′ ∈ Σ(H′′) the cube B′ is (E−λ ′′,δk)-SNS.

Then B is (E,δk)-SNS.

Proof. In order to fully exploit the WI property of the cube B(N)
Lk

(u) , we perform

a cut-off of the interaction potentials at distances r > L1+2τN
k , thus introducing the

operator Hni and its resolvent Gni
B (E) (here “ni” stands for “non-interactive”), assess
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the localization properties of the latter, and finally make use of the second resolvent
equation which implies the bound

‖G(N)
B (E)−Gni

B (E)‖ � ‖Gni
B (E)‖‖UB′,B′′ ‖‖G(N)

B (E)‖ . (46)

By definition of a WI cube, dist [ΠB′, ΠB′′ ] � qL1+2τN
k , so by the hypothesis (U),

with q � 1, ‖UB′,B′′ ‖ � L−A#(1+2τN )+d
k The hypothesis dist

[
Σ(H(N) ,E

]
� 2L−2αNsN

k ,
implies, by the min-max principle, that for L0 large enough

dist
[
Σ(Hni,E

]
� 2L−2αNsN

k −‖UB′,B′′ ‖ � 2L−2αNsN
k −L−A#(1+2τN)+d

k � L−2αNsN
k ,

(47)
because 2αNsN < A#(1+2τN)−d (cf. (42)). Therefore, we have in (46)

‖G(N)
B (E)‖ � 1

2
L2αNsN

k , ‖Gni
B (E)‖ � L2αNsN

k . (48)

It remains to assess the decay of the resolvent Gni
B (E) . The operators H′ and H′′

have orthonormal bases {ΨΨΨ′
a} , {ΨΨΨ′′

b} . Let P′
a = |ΨΨΨ′

a〉〈ΨΨΨ′
a| , P′′

b = |ΨΨΨ′′
b〉〈ΨΨΨ′′

b | be the
respective projections (we use Dirac’s bra-ket notation). It follows from the identity
Hni = H′ ⊗1′′+1′ ⊗H′′ that Gni

B (E) = ∑a P′
a⊗GB′′(E−E ′

a) , where ‖P′
a‖= 1, and so

with χχχu = χχχu′ ⊗ χχχu′′ , χχχv = χχχv′ ⊗ χχχv′′ we get

∥∥χχχuG
ni
B (E)χχχv

∥∥�
(

∑
1�a�K1

+ ∑
a>K1

)∥∥χχχu′′GB′′(E−E ′
a)χχχv′′

∥∥ ,

where K1 := max [a � 1 : E∗ −E ′
a �−1] �

∣∣B(n′)
Lk+1

∣∣ � Ln′d
k by Weyl’s estimate for the

Laplacian (cf. [5, Section VI.2.1]) and positivity of interactions. Recall E ∈ [0,E∗] , so
by the Combes–Thomas estimate [13] the sum over a > K1 is bounded by C′e−c′Lk ,
c′ > 0. Next, estimate the finite sum over 1 � a � K1 � LNd

k , making use of the
induction hypothesis for the n -particle systems with n < N (if any):

K1

∑
a=1

∥∥χχχu′′GB′′(E−E ′
a)χχχv′′

∥∥�K1 L
−bn′
k � LNd

k L−4bN
k , (49)

since bn′ � bN−1 � 4bN by (40). From bN = 4αNsN > Nd (cf. (81)) we thus get

‖χχχuGni
B (E)χχχv‖ � LNd

k

(
L−4bN

k + e−c′Lk

)
� 1

2
L−bN

k . (50)

From (46), (48), A#(1+2τN ) > 2bN (cf. (41)), and bN = 4αNsN , we infer

‖G(N)
B (E)−Gni

B (E)‖ � L4αNsN
k L−A#(1+2τN)

k <
1
2
L−2bN+4αNsN

k � 1
2
L−bN

k . (51)

Collecting (50) and (51), the claim follows. �
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3.5. Probabilistic analysis of weakly interactive cubes

LEMMA 5. (Cf. [8, Lemma 6]) Assume the property S(N−1,k) . If L0 is large

enough, then for any weakly interactive cube B(N)
Lk

(u) one has

P
{

B(N)
Lk

(u) is (E,δk)-SNS
}

� 1−L
− 3

2 sN
k . (52)

Consequently, for any cube B(N)
Lk+1

(x)

P
{

B(N)
Lk+1

(x) contains a WI Lk -cube which is not (E,δk)-SNS
}

� 1
4
L−sN

k+1 . (53)

Proof. By Lemma 4, if B(N)
Lk

(u) is not (E,δk,mN)-SNS, then

(i) either for some λ ′ ∈ Σ(H′) the cube B′′ is not (E−λ ′,δk)-SNS,

(ii) or for some λ ′′ ∈ Σ(H′′) the cube B′ is not (E−λ ′′,δk)-SNS,

(iii) or B(N)
Lk

(u) is not (E,2εk+1)-SNR, with εk+1 = L−2sN
k+1 .

By S(N−1,k) , the events (i)–(ii) have probability bounded by

|B(N−1)
Lk

(·)|L−sN−1
k � L−sN−1+(N−1)d

k � 1
4
L
− 3

4
sN−1

αN
k+1 � 1

4
L−3sN

k+1
(54)

(recall sN−1 > 4Nd , sN−1 =� αNsN , �� 4, cf. (81), (82)). By (80) we have L−2sN
k+1 �

L−(A−d)(1+2τN )
k+1 , thus Theorem 2 applies and gives, with sN > 2A+2Nd

αN
(cf. (80)),

P
{

dist
[
Σ(H(N)

BLk
(u)),E

]
< 2L−2sN

k+1

}
� L

A+Nd
αN

k+1 L−2sN
k+1 <

1
4
L
− 3

2 sN
k+1 . (55)

Therefore, BLk (u) is (E,L−bN
k )-SNS with probability 1−L

− 3
2 sN

k+1 ; this proves (52).
Since sN > 4Nd (cf. (81)), the second assertion (53) follows by counting the

number of Lk -cubes (or their centers) inside B(N)
Lk+1

(x) . �

3.6. Conclusion of the fixed-energy MSA

LEMMA 6. Assume the relations (24). If L0 is large enough, then

∀ k � 0 P
{

BLk+1(u) is not (E,L−2sN
k+1 )-SCNR

}
� 1

4
L−sN

k+1 . (56)

Proof. By definition of an SCNR cube (28), if BLk (u) is not (E,2L−2sN
k+1 )-SCNR,

then for some � ∈ �Lk,Lk+1 − Lk − 2� the cube B�(u) is not (E,2L−2sN
k+1 )-SNR. By

Wegner estimate (11), the probability of this event is bounded by CL−2sN+Nd+1
k+1 . Since

sN > Nd +1 (cf. (81)), this implies (56) for L0 large enough. �
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THEOREM 3. Assume (24) and let pN,k := P
{

BLk (u) is not (E,L−bN
k )-SNS

}
. If

pN,0 � L−sN
N,0 and L0,N is large enough, then for all k � 1 one has pN,k � L−sN

k .

Proof. It suffices to infer from pN,k � L−sN
k its counterpart for k+1. By Lemma 3,

if BLk+1(u) is not (E,δk)-SNS, then it is either (E,δk,K)-bad or not (E,L−sN
k+1 )-SCNR.

Recalling Definition 3.2 of bad cubes, we see that there are three options:

(i) BLk+1(u) is not (E,L−sN
k+1 )-SCNR, with probability � 1

4L−sN
k+1 , by Lemma 6;

(ii) BLk+1(u) contains a WI Lk -cube which is not (E,L−bN
k+1 )-SNS; the probability of

this event is bounded by 1
4L−sN

k+1 (cf. (53));

(iii) BLk+1(u) contains K SI cubes BLk (ui) , with |ui − u j| > 8NqL1+2τN
k for i �= j ,

which are not (E,δk)-SNS.

Recalling that sN > αNd (cf. (81)) and K > 2αNsN
sN−αNd , we conclude that the probability

of the latter event does not exceed(
L−sN

k Ld
k+1

)K
� L

− K
αN

(sN−αNd)
k+1 � L−2sN

k+1 � 1
4
L−sN

k+1 , (57)

since the events
{
BLk (ui) is not (E,δk)-SNS

}
, 1 � i � K , in the cubes BLk(ui) with

pairwise 8NqL(1+2τN)
k -distant centers are independent. Putting together the probability

bounds for the options (i)–(iii), the claim follows. �

4. Eigenvalue comparison estimate

The fixed-energy MSA estimates established in some energy interval I ⊂ R do
not imply directly spectral localization (a.s. pure point spectrum) in I , although an
old argument by Martinelli and Scoppola [31] rules out any a.c. spectrum in I . One
needs additional arguments; in the present paper we employ a variant of the method
proposed in the single-particle context by Elgart et al. [19]. In the form used below, it
was formulated in [7] and applied to multi-particle Hamiltonians in [12, 8].

For the derivation of dynamical localization from the energy-interval MSA we
will follow the same path as in [7, 12, 8] and use the general approach by Germinet and
Klein [23] which becomes particularly simple when applied to finite volume operators
([23] can treat operators in an infinite space). The pivot of this derivation is the eigen-
value comparison estimate for spectra of pairs of random Hamiltonians (cf. Theorem
4). Its implementation is rather technical and requires some preparation statements of
geometrical nature, Lemmas 7–8, building on earlier used techniques from [6].

� Cluster partitions. Introduce the following distances to be used below, in a context
where there will always be a reference length scale L > 1 (usually L = Lk, k � 0):

rl = q2NlL , l = 1, . . . ,N +1; (58)



LOCALIZATION IN LONG-RANGE INTERACTIVE ANDERSON MODELS 141

q > 1 will be chosen large enough, on the as-needed basis.
We will also need a finer scale of intermediate distances,

ρl,s = qsρl = q2Nl+sL, s = 0, . . . ,N, (59)

so that rl ≡ ρl,0 � ρl,1 � ··· � ρl,N � rl+1 , where f (q) � g(q) means, here and
below, that f (q) = o(g(q)) as q → +∞ .

Further, we need a refinement of a geometrical statement used earlier in [6, 12, 8]
and based on the notion of the so-called “weakly separated” cubes.

LEMMA 7. (Sparse clustering) For any cube B(N)
L (x) there exists an integer M ∈

�1,N− 1� and a partition �1,N� = �S
j=1I j , S � 1 , such that the respective subsets of

{x1, . . . ,xN} (called below clusters) Γ j = ∪i∈Ij{xi} , 1 � j � S , obey for all j′ �= j′′

dist
(
Γ j′ , Γ j′′

)
> rM+1,

diamΓ j′ � (N−1)rM.
(60)

Proof. Fix a finite sequence r1 < r2 < · · · < rM satisfying (58). Decompose the
points {x1, . . . ,xN} into clusters with the help of the following recursive algorithm:

	 Start with the singletons {x j} , merge identical singletons, and call them clusters of
rank 0. A rank-0 cluster separated from its complement by a distance larger than 2r1

is called complete (but it may eventually undergo a fusion at a later stage).
For each n = 0,1, . . . until the algorithm terminates, repeat the following steps:
• If there is no incomplete rank-0 cluster, the algorithm terminates.
• Otherwise, taking incomplete clusters of rank n one by one, until their list is

exhausted, merge the incomplete rank-n clusters into maximal clusters of rank n + 1
defined as maximal 2rn+1 -connected subsets. Specifically,

• the union of cubes Brn+1(x j) for x j within a given cluster of rank (n+ 1) must be
connected in Rd ;

• the maximality of a rank-(n+1) cluster means that it is separated from its comple-
ment by a distance larger than rn+1 (unless the complement is empty).

• A rank-(n+1) cluster separated from its complement by a distance larger than 2rn+2

is called complete (but it may undergo a fusion at a later stage).

	 The algorithms stops after some number M � N−1 of iterations, when one obtain
the final complete clusters Γ j = ∪i∈Ij{xi} , 1 � j � S , satisfying (60). �

REMARK 2. We need to decompose the points x j into clusters in such a way that
each cluster be surrounded by an annular area of width much larger than the cluster’s
size. For this reason, a mere R-clusterization with some large but fixed R , as in [6, 8],
may not suffice: the inter-cluster distance may be comparable to the cluster diameter.

EXAMPLE. Let d = 1, N = 4, x = (0,R,4R,5R) . R-clusterization gives two
clusters, (0,R) and (4R,5R) , each of diameter R , but the distance between the two
clusters (3R > 2R) is comparable to R .



142 V. CHULAEVSKY

In general, one may have a single final cluster, e.g., for x = (x,x, . . . ,x) . However,
if diam(Πx)> rN+1 , there must be more than one final cluster, for otherwise one would
come to a contradiction:

rN+1 < diam(Πx) = diam{x1, . . . ,xN} � (N−1)rM < rM+1 � rN .

� The integer M figuring in Lemma 7 will be called the rank of the partition.

We will also need concentric cubes of various radii covering each cluster; to this
end, we pick for each cluster Γi its “center” x̂(Γi) , so that

∀r � diam(Γi) x̂(Γi) ∈ Γi ⊂ Br
(
x̂(Γi)

)
. (61)

S+
2

S+
1

Q2 S2

ûx̂x

Figure 1: Example of clustering (in the 1 -particle space!). Here N = 3 , d = 2 . Call a function
f : A→R+ “flat” if maxx∈A f (x) = (1+o(1))maxx∈A f (x) . Here f : x �→ dist−A(û,x) is “flat”
on the left gray square (denoted Q2 ) covering the cluster Γ2 . For any y from the right gray
square (covering a mono-cluster Γ1 ), the function g : x �→ dist−A(y,x) is also “flat” on Q2 ,
and in addition g = o( f ) . With a satisfactory accuracy, one can replace f and g by constants
on Q2 ( f dominant, g negligible), which greatly simplifies the eigenvalue comparison analysis.
(Notations Qi , Si and S+

i are introduced after Corollary 2).

EXAMPLE. (Note that it suffices for Theorem 1!) Let N = 3, and suppose diam Πx
> rN+1 . Start with the singletons {x1} , {x2} , {x3} and merge them into r1 -clusters.

	 If for all i �= j one has |ri − r j| > 2r2 , then we obtain S = 3 mono-clusters
Γ j = {x j} , 1 � j � 3, pairwise separated by distances larger than 2r2 . The construc-
tion procedure is terminated after M = 1 iteration, and we have indeed the clusters of
diameter 0 < (N−1)r1 with inter-cluster distances dist (Γi, Γ j) > 2rM+1 .

	 Since there must be at least two clusters, the only alternative to the three-cluster
situation is a partition into one mono-cluster and one two-point cluster. Changing if
necessary the numeration, we get the clusters Γ1 = {x1} and Γ2 = {x2,x3} with

dist (Γ1, Γ2) > 2r2, 0 = diamΓ1 < (N−1)r1 , diamΓ2 � (N−1)r1 .

� Dominant clusters. Weak separation of cubes.

DEFINITION 4.1. (Weak separation of cubes) Fix some q > 1 and consider the
sequences ri and ρl,s defined by (58)–(59), and the cluster partition of Πx relative to
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the sequences (r•) and (ρ•,•) , with the cluster index sets Ii , i = 1, . . . ,K . An N -

particle cube B(N)
L (x) is called weakly separated from B(N)

L (y) iff the cluster partition
of x relative to the sequences (r•) and (ρ•,•) fulfills the following property.

Define the integers

nΓi
(x) := |Ii|, nΓi

(y) := card
{

j : y j ∈ BρM,N

(
x̂(Γi)

)}
, (62)

where M � 1 is the maximal rank of clusters attained in the clustering procedure.
Then there exists at least one cluster Γi◦ and a permutation π ∈ SN of the index set
�1,N� such that ni◦(y) < ni◦(x) .

A pair of cubes B(N)
L (x) , B(N)

L (y) is called weakly separated iff at least one of
these cubes is weakly separated from the other.

Pictorially, ni◦(x) and ni◦(y) are the “occupation numbers” of the zones of the x -
clusters by the particles from x and, respectively, from y . Any x -cluster Γi◦ figuring
in Definition 4.1 will be called dominant; actually, it is locally dominant. The following
simple argument, in essence going back to [6], provides a sufficient condition for the
existence of a dominant cluster relative to a pair (x,y) .

LEMMA 8. Let be given a pair of cubes B(N)
L (x) , B(N)

L (y) . Fix some q > 1 and
consider the cluster partition of Πx relative to the sequences (ri),(ρl,s) defined by
(58)–(59). Assume that dS(x,y) > rN+1 . If q is large enough, then there exists at least
one cluster Γi◦ such that 0 � ni◦(y) < ni◦(x) .

Proof. Let {Γ1, . . . ,ΓK} be the cluster partition of Πx and {I1, . . . ,IK} the re-
spective particle index partition of �1,N� . Let M be the maximal rank of the clusters
(the number of iterations of the clustering algorithm). Consider the following two cases.
(I) diamΠx > rN ≡ q2N2

L , thus there are K � 2 clusters. First, let us show that one
cannot have nΓi

(x) = nΓi
(y) for all i ∈ �1,K� . Indeed, assume otherwise; then there

exists a permutation π ∈ SN such that (cf. (62))

∀ i ∈ �1,K� ∀ j ∈ Ii

{
x j ∈ Γi ,
yπ( j) ∈ BρM,N

(
x̂(Γi)

)} ,

hence |x j − yπ( j)| � ρM,N , which leads to a contradiction:

rN+1 < dS(x,π(y)) = max
1� j�N

|x j − yπ( j)| � ρM,N � ρN−1,N < rN .

Therefore, not all integers nΓi
(x)−nΓi

(y) are zero, yet we have

∑
i

(
nΓi

(x)−nΓi
(y)
)

= ∑
i

nΓi
(x)−∑

i
nΓi

(y) � N−N = 0 , (63)

hence at least one integer summand in the above LHS must be strictly positive, which
proves the claim in the case (I) (see Fig. 2).
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x2 y3

x1

y2y1

Γ1 Γ2

x3

Figure 2: Example for the proof of Lemma 8, case (I). Here N = 3 , d = 2 . The points yi may
dominate around the x -cluster Γ2 , but the x -particles dominate around Γ1 .

(II) diamΠx � rN . Since dS(x,y) > rN+1 , there exists a permutation π such that
max1� j�N |x j−yπ( j)|> rN+1, hence for some j′ and j′′ := π( j′) one has |x j′ −y j′′ |>
rN+1 . Since now diamΠx � rN , it follows that for any j ∈ �1,N�

|x j − y j′′ | � |x j′ − y j′′ |− |x j− x j′ |> rN+1 −diamΠx � rN+1− rN > rN ,

thus dist
(
Πx, y j′

)
� rN > ρM,N , so y j′ lies outside all spheres ∂BρM,N (x̂(Γi)) around

the x -clusters Γi(x) (recall M � N−1,). We thus have a stronger version of (63):

∑
i

(
nΓi

(x)−nΓi
(y)
)

= ∑
i

nΓi
(x)−∑

i
nΓi

(y) � N− card
(
�1,N�\ { j′})= 1 ,

so again, there exists i◦ such that ni◦(x)−ni◦(y) � 1.
Alternatively, one can resort in the case (II) to a cluster partition of Πy and find

an y -cluster far from all x -particles, thus locally dominant (the mono-cluster {y3} on
Fig. 3). �

x2
x3x1

y1

y2

Γ1

y3

Figure 3: Example for the proof of Lemma 8, case (II). Here N = 3 , d = 2 .

REMARK 3. The case (II) corresponds in terminology of the works [11, 10] to a
pair of “separated cubes”: they are separated in the so-called Hausdorff pseudo-metric
in the space of N -particle configurations, explicitly used in [2, 28, 20, 29]. Some pairs
in the case (I) are much more difficult for the eigenvalue comparison analysis, both in
the models with short- and long-range potentials, for there is no way to stochastically
“decouple” the eigenvalues of HBL(x)(ω) and HBL(y)(ω) : to “freeze” one of the two
spectra by an appropriate conditioning and wriggle the other. This is a major difficulty
encountered in the multi-particle FMM [2, 20], even for short-range interactions.

COROLLARY 2. Under the assumptions of Lemma 8, there exists a cluster par-
tition of some rank M � N − 1 with at least one dominant cluster Γi◦ , and integers
s ∈ �1,N� , 0 � l � ni◦(y) , such that ni◦(x) > ni◦(y) and

∀ j ∈ �1, l� yπ( j) ∈ BρK,s

(
x̂(Γi)

)},
∀ j ∈ �l +1,N� yπ( j) ∈ Rd \BρK,s+2

(
x̂(Γi)

)}. (64)
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In other words, one can find a zone in the 1-particle space such that (cf. Fig. 4)
• deep inside it, viz. inside some cube BρK,s

(
x̂(Γi)

)
=: Qi with K �M (“dominant

core”), there are more particles from the configuration x than from y ;
• the “dominant core” is separated from the rest of the configurations x and y by

a sphere Si := ∂BρK,s+1

(
x̂(Γi)

)
(“separating shell”) of much larger radius, so

ρK,s � dist (Qi, Si) ; (65)

• the “separating shell” is itself isolated from the rest of the configuration y by a
sphere S+

i := ∂BρK,s+2

(
x̂(Γi)

)
of an even larger radius (“isolating shell”):

ρK,s+1 � dist
(
BρK,s+1

(
x̂(Γi)

)
, S+

K,s+2

(
x̂(Γi)

))
. (66)

Proof. Consider any dominant cluster Γi◦ with ni◦(x) particles from x . By con-
struction of the cluster partition, inside the separating sphere SρK,N , there are ni◦(y) �
ni◦(x)−1 � N−1 particles y . These ni◦(y) � N−1 particles cannot be present in all
the N , pairwise non-overlapping annuli delimited by (SρK,s ,SρK,s+2) , s = 1, . . . ,N (see
Fig. 4). �

∂Q+
2

Q2 = BρK,1(x̂2)

∂BρK,2(x̂2)

∂BρK,3(x̂2)

∂BρK,4(x̂2) = S2

S+
2 = ∂BρK,5

(x̂2)

û ∈ S2

y1

x1,x2

Figure 4: Example for Corollary 2. N = 3 , d = 2 . We consider the zone around the dominant
cluster Γ2 with n2(x) = 2 > 1 = n2(y) . The cube delimited by SρK,3 contains the particles at
x1 and x2 (tiny black squares) and exactly one y-particle (y1 ). Since the (dark gray) annulus
BρK,3 \BρK,1 contains y1 , we cannot take ∂BρK,2 as the separating shell, and examine the (light
gray) annulus BρK,5 \BρK,3 . These two large gray annuli cannot both contain y-particles, since
n2(y) = 1 , hence the second annulus has no y-particle. We pick any point û ∈ S2 = ∂BρK,4 ; it
is far from all x -points and y-points. The particles outside SρK,5 make a negligible contribution
to the potential energy generated by u(û− ·) , while on the entire cube delimited by SρK,3 this
potential is “almost flat”, since ρK,3 � ρK,4 . The latter cube contains x1,x2 and y1 , so the
energetic contribution from x-particles is approx. twice stronger than the one from y-particles.

The main point of Corollary 2 is that one can pick a site potential ωû u(û− ·)
(which can actually be chosen in a number of ways) such that, with a high accuracy, its
contributions to the potential energies in the cubes BL(x) and BL(y) are proportional,
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to ni◦(x) and, respectively, to ni◦(y)∈ [0,ni◦(x)−1] , thus these energies have different
and explicitly controllable sensitivities to the random variable ωû .

In contrast to Theorem 2, the eigenvalue comparison estimate in Theorem 4 below
does not have to be stable, for it is not meant to be used in the framework of a scale
induction. It is required only for the energy-interval analysis of pairs of N -particle
cubes BLk(x) , BLk (y) for which the inductive, fixed-energy decay bounds should al-
ready have been obtained. For this reason, there is no constraint (viz., a scale-dependent
lower bound) imposed on the value of ε � 0 in (67).

THEOREM 4. (Eigenvalue comparison bound) Under the assumptions (V) and (U),
for any fixed N,d , E∗ and the PDF FV of the random amplitudes ω• , the following
bound holds for any pair of CwsNL-distant cubes B(N)

L (x) , B(N)
L (y) with sufficiently

large Cws � 1 :

∀ε ∈ [0,1] P
{

dist
[
ΣI∗

x,L,Σ
I∗
y,L

]
� ε
}

� LA+2Nd ε. (67)

Here Cws is related to q used in the cluster partitions: Cws ↑ +∞ as q ↑ +∞ ; the
subscript “WS” stands for “weak separation”, reminding of the important role of the
notion used in the proof of the eigenvalue comparison bound.

Proof. The general strategy is the same as for Theorem 2, but now we have to
rely on an elaborate clustering algorithm described above. Consider again the distances
rl = q2NlL , ρl,s = rlqs = q2Nl+sL , construct the cluster partition {Γi} of Πx , and the
respective partition of the particle index set {Ii} . Fix any dominant cluster Γ = Γi◦ ; let
Q = BρK,s(x̂) be its core and S = ∂BρK,s+1(x̂) its separating shell, with K � M � N−1
(the cluster rank) and 1 � s � N (cf. (65)–(66)).

Pick an arbitrary shell point û ∈ S (see Fig. 5 where Γi◦ = Γ1 ). We shall use
the fact that the potential x �→ ϕ(û,x) is “almost flat” on the core Q (Q1 on Fig. 5).
Specifically, for all j ∈ Ii◦ and all x ∈ BL(u j) ⊂ Q = BρK,s(x̂) we have∣∣ |û− x|− |û− x̂|∣∣

|û− x̂| � |x− x̂|
|û− x̂| � diamQ

|û− x̂| � q2NK+sL
q2NK+s+1L

= O
(
q−1) , (68)

S+
1

S+
2

Q2

diamΓ2 ≤ (N−1)r1

dist(Γ1,Γ2)> r2

Γ1 = {x1,x2}Q1
S1

ûx̂ = x1

diamΓ1 ≤ (N−1)r1

x

Γ2 = {x3}

Figure 5: Example for the proof of Theorem 4. Here N = 3 , d = 2 , Γi◦ ≡ Γ1 .
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thus

|û− x|= |û− x̂|
(

1+
|û− x|− |x− x̂|

|û− x̂|
)

= |û− x̂|(1+O
(
q−1)) , (69)

so with â := |û− x̂|−A , one has for all x ∈ BL(u j)

ϕ(û,x)χ j(x) = âχ j(x)(1+ θ j(x)) , ‖θ j χ j‖∞ = O
(
q−1) . (70)

For any non-dominant cluster Γi , with the core Qi , we have

min
x∈Qi

|û− x|� ρK,s+2 = q2NK+s+2 ,

hence a substantially smaller upper bound on the potential (for q large enough):

ϕ(û,x)χ j(x) = o
(
q−1) âχ j(x) , χ j = 1BL(u j) .

The potential energy Uû(x) induced on BL(x) by ωûϕ(û− ·) has therefore the form

BL(x) � v �→Uû(v) = ∑
j∈Ii

ϕ(|û− v j|)+ ∑
j �∈Ii

oq (â)ϕ(|û− v j|)

= |Γi| â
(
1+oq (1)

)
χBL(x)(v)+ ∑

j∈Ic
i

oq (â)
(
1+oq (1)

)
χBL(x)(v)

=
(
nΓi

(x)+oq (1)
)

âχBL(x)(v) , ni◦(x) � 1 . (71)

Here and below, notation oq (·) refers to q →+∞ .
Further, introduce the decomposition ω = (ωû,ω ⊥

û ) and fix the sub-sample ω ⊥
û =

ω̃ ⊥
û ; here ω̃ ⊥

û is an arbitrary nonrandom collection that will be kept “frozen” until the
end of the argument. Our analysis is similar to that in the proof of Theorem 2, but rather
than to assess the eigenvalues of a Hamiltonian in a single cube BL(x) , we now aim to
compare the random eigenvalues of the operators:
• H′ = HBL(x) decomposed as H′ = A′(ω̃ ⊥

û ) + ωû ϕϕϕ ′
û , where A′(ω ⊥

û ) is now non-
random, and ϕϕϕ ′

û = ϕϕϕ
∣∣
Hx,L

is the restriction of the operator of multiplication by the

function ϕϕϕ(·) : x �→ ∑ j ϕ(û− xi) to Hx,L = L2(BL(x)) ,
• similarly, H′′ = HBL(y) = A′′(ω̃ ⊥

û )+ ωû ϕϕϕ ′′
û , with non-random A′′(ω̃ ⊥

û ) and ϕϕϕ ′′
û =

ϕϕϕ
∣∣
Hy,L

, Hy,L = L2(BL(y)) . From the previous analysis, we have the representations

ϕϕϕ ′ = ânΓi
(x)1Hx,L + ΦΦΦ′

û , ‖ΦΦΦ′
û‖ = oq (â) ,

ϕϕϕ ′′ = ânΓi
(y)1Hy,L + ΦΦΦ′′

û , ‖ΦΦΦ′′
û‖ = oq (â) , nΓi

(y) � nΓi
(x)−1.

(72)

Let λ ′(ωû) be an eigenvalue of H′(ωû) and, λ ′′(ωû) an eigenvalue of H′′(ωû) , then

λ ′(ωû)−λ ′′(ωû) =
[
λ̂ ′+ ânΓi

(x)ωû
(
1+oq (1)

)]− [λ̂ ′′+ ânΓi
(y)ωû

(
1+oq (1)

)]
�
(

λ̂ ′ − λ̂ ′′
)

+nx,y âωû
(
1+oq (1)

)
,
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where nx,y := nΓi
(x)−nΓi

(y) � 1, and λ̂ ′, λ̂ ′′ are F⊥
û -measurable, whence

P
{|λ ′

α ′ −λ ′′
α ′′ | � ε

∣∣F⊥
û

}
� P
{∣∣∣nx,yâωû

(
1+oq (1)

)− (λ̂ ′ − λ̂ ′′)
∣∣∣� ε

∣∣F⊥
û

}
� sup

λ∈R

P

{
|ωû−λ |� c′n−1

x,y â−1 ε
1+oq (1)

∣∣F⊥
û

}
� â−1ε.

Taking the conditional expectation with respect to F⊥
û , we conclude

P
{|λ ′

α ′ −λ ′′
α ′′ | � ε

}
� â−1ε � LAε . (73)

By Weyl’s estimate for the eigenvalue distribution for the Laplacian and positivity of the
potential energy, the number of eigenvalues in a bounded interval I is deterministically
bounded by CLNd , so the claim (67) follows by a straightforward calculation. �

5. Spectral and dynamical localization

5.1. Energy interval estimates

Introduce the following notation: Fx(E)= Fx,L(E) := maxz∈∂−BL(x)
∥∥χzGBL(x)χx

∥∥ .

THEOREM 5. (Cf. [8, Theorem 6]) Fix L � 1 , a pair of N -particle cubes BL(x) ,
BL(y) , and a bounded interval I ⊂ R . Assume for some aL,rL > 0 and for all E ∈ I
one has maxz∈{x,y}P

{
Fz(E) � aL

}
� rL . Assume also that the EVC bound of the form

(67) holds for the pair BL(x) , BL(y) . Then for any c > 0 one has

P
{∃E ∈ I : min

(
Fx(E),Fy(E)

)
� aL

}
� 2|I|c−1rL +CL4Ndb. (74)

Hence under the assumptions (U)-(V), the bound (74) holds in the interval I = I∗ for
any pair of CqNLk -distant cubes of radius Lk with Cq large enough, by Theorem 4.

COROLLARY 3. Under the assumptions of Theorem 1, there exists an interval
I∗ = [0,E∗] with the following properties. For any b,s > 0 there exist Â , Â# , Q̂ ∈ R+
such that, if A > Â , A# > Â# and L0 � Q̂ , then for x , y obeying |x−y| � CL with C
large enough

∀ N ∈ �1,3� P

{
sup
E∈I∗

min
[
F(N)

x (E),F(N)
y (E)

]
� L−b

k

}
� L−s

k . (75)

Proof. The claim follows from (74) by taking rL = L−
1
2 sN and b = r

1/2
L , provided

sN is large enough, so that 1
2 sN −4Nd > s . As was shown in Section 3, the value of sN

can be made as large as one pleases, if the the decay exponents A , A# of the interaction
potentials and L0 are large enough. �
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5.2. Decay of the EF correlators

The derivation of the strong dynamical localization from the energy-interval bounds
given in Corollary 3 is obtained in essentially the same way as in the works by Klein
and Nguyen [28, 29] (for N -particle models), with the help of the techniques developed
earlier by Germinet and Klein [23, 25, 26]. The only difference is the rate of decay of
the key probabilities, reflected in the decay rate of the eigenfunction correlators (power-
law, in our case). See also [8], where a slightly different technical implementation of
essentially the same (or very similar) general ideas was proposed, to achieve a faster
decay in a model with short-range potentials.

5.3. Decay of the localized eigenfunctions

We adapt a well-known argument developed originally by von Dreifus and Klein
[14] for the 1-particle disordered systems and later modified so as to suit the multi-
particle models [11, 10, 28, 29]; in the cited works the decay of the resolvents and of
the eigenfunctions was exponential. The specificity of the present case is that we start
here with relatively weak, power-law bounds on the decay of resolvents, but ultimately
derive a significantly faster, fractional-exponential decay of the localized eigenfunc-
tions. Such a “boost” would be difficult, if at all possible, to perform in Section 3 due
to multiple concurrent constraints of the scale induction (cf. Appendix A): any bound
achieved on scale Lk had to be reproduced on the next scale Lk+1 , but now we are free
from this obligation.

As usual, we shall need a functional analytic statement providing a link between
the decay of the resolvents and that of the (generalized) eigenfunctions. It is determinis-
tic and applies to a large class of elliptic operators of second order (cf., e.g., [32]). In the
case of operators −Δ +V(x) it suffices to assume that V is measurable and bounded.
For notational consistency, we keep the boldface notations H and ψψψ .

LEMMA 9. (Cf., e.g., [32, Lemma 3.3.2]) For any bounded interval I ⊂ R there
exists a constant C ∈ (0,+∞) such that every generalized eigenfunction ψψψ of H with
associated generalized eigenvalue E ∈ I satisfies

‖ψψψ 1Cu‖ � C‖1∂B GB(E)1Cu‖‖ψψψ 1∂B‖. (76)

Another result, closely related to (76) and usually called the Simon–Lieb inequal-
ity (or Geometric Resolvent Inequality) for the resolvents, is actually required for the
proof of Lemma 2 (which was omitted for brevity and replaced with bibliographic ref-
erences). Like (76), it can be found in a number of papers and books; we refer to [32]
treating the 1-particle models, but its formulation below is adapted to our notations. It
is purely deterministic, and the structure of the potential (distinguishing the 1-particle
and multi-particle Hamiltonians) is irrelevant for the proof. Specifically, consider two
embedded cubes B�(x)⊂ BL−3(u) ; then for some C′ > 0

‖1∂BL(u)GBL(u)(E)1Cx‖ � C′ ‖1∂BL(u) GBL(u)(E)1∂B�(x)‖ · ‖1∂B�(x) GB�(x) 1Cx‖ . (77)
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An important feature of the Simon–Lieb inequality is that it can be iterated, by sur-
rounding a given point x ∈ BL(u) with a sequence of imbricated cubes (not necessarily
concentric), and reduce the decay analysis of the resolvent between x and ∂BL(u) to
that of the resolvents of smaller-size cubes, such as B�(x) in (76).

Proof of assertion (B) of Theorem 1. According to Corollary 3, the exponent s > 0
in the RHS of (75) can be made arbitrarily large, provided A,A# > 0 are large enough.
Let ψψψ = ψψψ(ω) be a nontrivial generalized eigenfunction of H(ω) with E ∈ I∗ , then
there exists x̂ = x̂(ω) ∈ (Rd)N ∩ (Zd)N such that ‖ψψψ1Cx̂

‖2 �= 0; fix such a point x̂ for
the rest of the proof. Here and below, (Zd)N is unrelated to ZN and, more generally,
to the structure of the potential (recall that in our model Z appears in the definition of
the external random potential V (x,ω)).

For notational brevity, it is convenient to set γ := 1+ 2τN , with N fixed through
the proof. The exact structure of the exponent 1+2τN , extensively used in Section 3, is
of little importance for the arguments given below. All we need to know is that γ > 1.

Recall that we introduced in Section 5.1 the functions E �→ Fx,L(E) . For any
v ∈ (Zd)N and k � 1 denote, with the same Cws > 0 as in Theorem 4,

Ak(y) := BCwsL
γ
k+1

(y)\BCwsL
γ
k
(y) (78)

and introduce the events

Ek(y) :=
{

ω
∣∣ ∃v ∈ Ak(y)∩ (Zd)N : sup

E∈I∗
min

z∈{y,v}
Fz,L(E) > L−b

k

}
(i.e., both cubes BLk(y) and BLk (v) are singular for at least one common energy
E ∈ I∗ ). Recalling that s > 0 in the RHS of (75) can be assumed arbitrarily large
provided A,A# are large enough, under the latter condition it follows easily from (75)
that ∑k�1 P{Ek} < +∞ for any d and N fixed before the choice of A and A# . Thus
by the Borel–Cantelli lemma, with probability one, only a finite number of the events
Ek(y) occur. Since y is chosen from a countable set, it also holds that for P-a.e. ω
there exists k1(ω) such that for k � k1(ω) and any y ∈ (Zd)N neither of the events
Ek(y) occurs; this includes x̂ = x̂(ω) the position of which is random.

The next standard observation (cf. [14]) is that for P-a.e. ω there exists k2(ω) �
k1(ω) such that for all k � k2(ω) all the cubes BLk(x̂) must be (E,L−b

k )-singular.
Indeed, assuming the opposite and applying Lemma 9 to an infinite sequence

of cubes BLki
(x̂) with Lki → +∞ , we would get in the RHS of (76) (with u = x̂)

a sequence of upper bounds for ‖ψψψ 1Cx̂
‖ converging to 0, and thus conclude that

‖ψψψ(ω)1Cx̂
‖2 = 0, which contradicts the construction of x̂ .

At the same time, by the choice of k1(ω) and knowing that BLk (x̂) is singular
for k � k2(ω) at the energy E = E(ψψψ(ω)) , no cube BLk (v) with v ∈ Ak(x̂) can be
singular at the same energy E .

From this point on, as in [14], the arguments become deterministic: probabilistic
considerations served us to ensure the a.s. existence of k1(ω) and k2(ω) with the
prescribed properties.
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The complement (Rd)N \BCwsL
γ
k2

is the union of the disjoint annuli A j(x̂) over

j � k2 . Pick any x from this complement, then there is a unique k such that x∈Ak(x̂) .
Let R = |x− x̂| , then R � Lγ

k+1 , so Lk+1 � Rγ−1
.

Since Cws � 1 (cf. Theorem 4), γ > 1, and therefore 2CwsL
γ
k −2Lk > CwsL

γ
k for

LN,0 large enough, we can apply Lemma 2 to the cube BLγ
k
(x) and conclude that this

cube is (E,δ )-NS with δ = (L−b
k )M , M = (2Lk+1/Lk) > L

1−α−1
N

k+1 . Thus by (76)

‖ψψψ 1x‖ � (L−b
k )M � eCL

1−α−1
N

k+1 � e−C′Rζ ′
, ζ ′ :=

1−α−1

γ
> 0.

To recover exactly the RHS of the inequality (10), it suffices to take any ζ ∈ (0,ζ ′)
and thus absorb the pre-factor C′ in the smaller exponent ζ , assuming that LN,0 (thus
R � Lγ

k2
, too) is sufficiently large. This proves (10) for all x except in a finite cube

around x̂ . To take care of the remaining values of x and make the bound uniform, it

suffices to put a sufficiently small positive factor Cψψψ(ω) in front of e−Rζ
. �

Appendix A Verification of the assumptions on the parameters made in proofs

For the proof of Lemma 5, the parameter s1 has to fulfill the conditions

2(A+d)α−1
1 < s1︸︷︷︸

=c1α1A

<
(A−d)α1

1+ σ
, (79)

while for N = 2,3 we need(
2+2NdA−1)α−1 A < sN︸︷︷︸

=Ac1α1/�N−1

<
1−dA−1

1+ σ
α A . (80)

Further, sN must also obey (cf. (53)–(54), (57))

sN > max
[
4Nd, αNd

]
. (81)

Set α1 = α4, α =�2, c1 = 1
2� . Then sN = 1

2 �10−3N A , 1 � N � 3. Explicitly,

s1 =
1
2

�7 A, s2 =
1
2

�4 A, s3 =
1
2

� A. (82)

For N = 1 we have

4α−1
1 A ≡ 4α−2A < s1︸︷︷︸

=2αA

<
1
2

α2A≡ 1
2

α1A , (83)

and for N = 2,3, with α � 8 � ,(
4 �−2 A≡ ) 4α−1A � sN︸︷︷︸

=2�4−NA

� 1
2

αA

(
≡ 1

2
�2 A

)
. (84)
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With A > 24d � 8Nd and σ ∈ (0, 1
4 ) , (83)–(84) imply (79)–(80). (81) is also guaran-

teed for A > 2 � d .

One can see that a straightforward extension even to N = 4 seems problematic,
but perhaps there is a better way to organize the scale induction.
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disorder, Ann. Henri Poincaré 18 (10), 3143–3166 (2017).

[5] R. CARMONA, J. LACROIX, Spectral theory of random Schrödinger operators, Birkhäuser Boston
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