FREDHOLM WEIGHTED COMPOSITION OPERATORS

CHING-ON LO AND ANTHONY WAI-KEUNG LOH

(Communicated by S. McCullough)

Abstract. We show that Fredholm weighted composition operators on L^p -spaces with nonatomic measures are precisely the invertible ones. We also characterize the classes of Fredholm and invertible weighted composition operators on l^p . Furthermore, the closedness of ranges and Fredholmness of these operators on H^p -spaces of the unit disk are investigated.

Let B_1 and B_2 be Banach spaces over \mathbb{C} . A linear operator $T: B_1 \to B_2$ is said to be *Fredholm* if ran(T) is closed in B_2 and the dimensions of ker(T) and $B_2/\operatorname{ran}(T)$ are both finite, where ker(T) and ran(T) are the kernel and the range of T respectively. In this case, the *Fredholm index* of T, written as ind T, is defined by ind $T := \dim \operatorname{ker}(T) - \dim B_2/\operatorname{ran}(T)$.

In this paper, we study Fredholm weighted composition operators on Lebesgue spaces with non-atomic measures, on sequence spaces and on Hardy spaces of the unit disk. We also characterize those weighted composition operators on H^p with closed ranges.

1. Fredholm weighted composition operators on L^p

1.1. Preliminaries

Let (X, Σ, μ) and (Y, Γ, ν) be two σ -finite and complete measure spaces. The Lebesgue space consisting of all (equivalence classes of) *p*-integrable, where $1 \le p < \infty$, complex-valued Σ -measurable (resp. Γ -measurable) functions on *X* (resp. on *Y*) is denoted by $L^p(\mu)$ (resp. by $L^p(\nu)$). The functions in $L^{\infty}(\mu)$ and $L^{\infty}(\nu)$ are essentially bounded. The norm of a function in $L^p(\mu)$ (resp. $L^p(\nu)$) is written as $\|\cdot\|_{L^p(\mu)}$ (resp. $\|\cdot\|_{L^p(\nu)}$).

If we take $X = \mathbb{N}$, $\Sigma = \mathscr{P}(\mathbb{N})$ (the power set of \mathbb{N}) and μ be the counting measure on $\mathscr{P}(\mathbb{N})$, then $L^p(\mu)$ is just the usual sequence space l^p . A Schauder basis for l^p $(1 \le p < \infty)$ is given by $\{e_n\}_{n=1}^{\infty}$, where $e_n = \{e_{nk}\}_{k=1}^{\infty}$ and $e_{nk} = \delta_{nk}$ is the Kronecker delta.

Let *u* be a complex-valued Γ -measurable function and $\varphi: Y \to X$ be a point mapping such that $\varphi^{-1}(E) \in \Gamma$ for all $E \in \Sigma$. Assume that φ is also non-singular, which

Keywords and phrases: Weighted composition operators, Lebesgue spaces, Hardy spaces, Fredholm operators.

Mathematics subject classification (2010): 47B33.

means the measure defined by $v\varphi^{-1}(E) := v(\varphi^{-1}(E))$ for $E \in \Sigma$, is absolutely continuous with respect to μ . We assume the corresponding Radon-Nikodym derivative *h* is finite-valued μ -a.e. on *X*.

The functions *u* and φ induce the *weighted composition operator* uC_{φ} from $L^{p}(\mu)$ $(1 \leq p \leq \infty)$ into the linear space of all Γ -measurable functions on *Y* by

$$uC_{\varphi}(f)(y) := u(y)f(\varphi(y))$$
 for every $f \in L^{p}(\mu)$ and $y \in Y$.

The non-singularity of φ guarantees that uC_{φ} is a well-defined mapping of equivalence classes of functions. When $u \equiv 1$ (resp. $(X, \Sigma, \mu) = (Y, \Gamma, \nu)$ and $\varphi(x) = x$ for all $x \in X$), the corresponding operator, denoted by C_{φ} (resp. by M_u), is called a *composition operator* (resp. a *multiplication operator*). Observe that $uC_{\varphi} = M_u \circ C_{\varphi}$.

If uC_{φ} maps $L^{p}(\mu)$ into $L^{p}(\nu)$, it follows from the closed graph theorem that uC_{φ} is bounded. Moreover, we say uC_{φ} is an operator on $L^{p}(\mu)$ if it maps $L^{p}(\mu)$ into itself. A main result of the next sub-section is that when (X, Σ, μ) is non-atomic, Fredholm weighted composition operators from $L^{p}(\mu)$ into $L^{p}(\nu)$ are precisely the invertible ones.

We introduce another notation. Let $\varphi^{-1}\Sigma$ be the relative completion of the σ -algebra generated by $\{\varphi^{-1}(E) : E \in \Sigma\}$, i.e.

$$\varphi^{-1}\Sigma := \left\{ \varphi^{-1}(E)\Delta F : E \in \Sigma \text{ and } \nu(F) = 0 \right\}.$$

In fact, the finiteness of *h* ensures that the measure space $(Y, \varphi^{-1}\Sigma, v)$ is σ -finite. To see this, write $X = \bigcup_{i=1}^{\infty} E_i$, where $E_i \in \Sigma$ and $\mu(E_i) < \infty$ for each $i \in \mathbb{N}$. For every $i, j \in \mathbb{N}$, define

$$G_i^j := \{ x \in E_i : h(x) \leq j \}.$$

Then

$$v\varphi^{-1}\left(G_{i}^{j}\right) = \int_{G_{i}^{j}} h d\mu \leqslant j\mu\left(G_{i}^{j}\right) \leqslant j\mu(E_{i}) < \infty.$$

Since

$$Y = \left(\bigcup_{i=1}^{\infty}\bigcup_{j=1}^{\infty}\varphi^{-1}\left(G_{i}^{j}\right)\right) \cup \varphi^{-1}(\{x \in X : h(x) = \infty\})$$

and $v\varphi^{-1}({x \in X : h(x) = \infty}) = 0$, the assertion follows.

Let g be a non-negative Γ -measurable function on Y. The measure given by $S \mapsto \int_S g dv$ for $S \in \varphi^{-1}\Sigma$, is absolutely continuous with respect to v. Thus, there exists a unique (v-a.e.) non-negative $\varphi^{-1}\Sigma$ -measurable function on Y, denoted by E(g), with

$$\int_{S} g \, d\mathbf{v} = \int_{S} E(g) \, d\mathbf{v} \quad \text{for each } S \in \varphi^{-1} \Sigma.$$

The function E(g), which is called the *conditional expectation* of g with respect to $\varphi^{-1}\Sigma$, plays a crucial role in proving Lemma 1.1.

1.2. Main results

Assume that $1 \le p < \infty$ in this sub-section. We first establish a lemma on the dimensions of ker uC_{φ} and $L^{p}(v)/\operatorname{ran}(uC_{\varphi})$, where $\operatorname{ran}(uC_{\varphi})$ is the norm-closure of ran (uC_{φ}) in $L^{p}(v)$. Similar results for composition operators were obtained in [6].

LEMMA 1.1. Suppose (X, Σ, μ) is non-atomic and let uC_{φ} be a weighted composition operator from $L^{p}(\mu)$ into $L^{p}(\nu)$.

- (a) The nullity of uC_{ϕ} (i.e. dimker uC_{ϕ}) is either zero or infinite.
- (b) The codimension of $\overline{\operatorname{ran}(uC_{\varphi})}$ in $L^{p}(v)$ (i.e. $\dim L^{p}(v)/\overline{\operatorname{ran}(uC_{\varphi})}$) is either zero or infinite.

Proof. We first prove (a). If uC_{φ} is injective, then dimker $uC_{\varphi} = 0$. Otherwise, there is a non-zero function $f \in L^{p}(\mu)$ such that $uC_{\varphi}f = 0$. As (X, Σ, μ) is non-atomic and the set $E := \{x \in X : |f(x)| > 0\}$ is of positive μ -measure, we may choose a sequence $\{E_n\}_{n=1}^{\infty}$ of pairwise disjoint Σ -measurable sets in E with $0 < \mu(E_n) < \infty$. Let $f_n := f\chi_{E_n}$ for $n \in \mathbb{N}$. They are non-zero and linearly independent. Moreover,

$$\begin{split} \| uC_{\varphi}f_{n} \|_{L^{p}(v)}^{p} &= \int_{Y} |u|^{p} |f\chi_{E_{n}} \circ \varphi|^{p} dv = \int_{Y} |u|^{p} |f|^{p} \circ \varphi\chi_{\varphi^{-1}(E_{n})} dv \\ &= \int_{\varphi^{-1}(E_{n})} |u|^{p} |f|^{p} \circ \varphi dv \leqslant \int_{Y} |u|^{p} |f|^{p} \circ \varphi dv = \left\| uC_{\varphi}f \right\|_{L^{p}(v)}^{p} = 0, \end{split}$$

so that $f_n \in \ker uC_{\varphi}$ for all *n*. Thus, we have dim $\ker uC_{\varphi} = \infty$.

For (b), suppose that $\dim L^p(v)/\operatorname{ran}(uC_{\varphi}) \neq 0$. As

$$\dim L^p(\nu)/\overline{\operatorname{ran}\left(uC_{\varphi}\right)} = \dim \ker uC_{\varphi}^*,$$

there is a non-zero function $g \in L^q(v)$, where q is the conjugate exponent of p, such that

$$\int_{Y} \left(uC_{\varphi}f \right) \overline{g} \, d\nu = 0 \quad \text{ for all } f \in L^{p}(\mu).$$

When $1 < q < \infty$, we have

$$\int_Y E(|g|^q) \, d\nu = \int_Y |g|^q \, d\nu > 0$$

so that the $\varphi^{-1}\Sigma$ -measurable set $F := \{y \in Y : E(|g|^q) \ge \delta\}$ has positive *v*-measure for some $\delta > 0$. We may also assume $v(F) < \infty$. The definition of $\varphi^{-1}\Sigma$ ensures that $F = \varphi^{-1}(E)$ for a Σ -measurable set *E*. Since (X, Σ, μ) is non-atomic, it follows from the lemma in [6] that there exists a sequence $\{E_n\}_{n=1}^{\infty}$ of pairwise disjoint Σ measurable sets in *E* such that $0 < v\varphi^{-1}(E_n) < \infty$. The functionals $\phi_n \in L^p(v)^*$ represented by $g\chi_{\varphi^{-1}(E_n)}$, $n \in \mathbb{N}$, are all non-zero because

$$\begin{split} \int_{Y} |g\chi_{\varphi^{-1}(E_n)}|^q d\mathbf{v} &= \int_{\varphi^{-1}(E_n)} |g|^q d\mathbf{v} = \int_{\varphi^{-1}(E_n)} E(|g|^q) d\mathbf{v} \\ &\geqslant \delta \mathbf{v} \varphi^{-1}(E_n) > 0. \end{split}$$

As the sets $\{\varphi^{-1}(E_n)\}_{n=1}^{\infty}$ are pairwise disjoint, these functionals are also linearly independent. Moreover, we have

$$\phi_n\left(uC_{\varphi}f\right) = \int_Y \left(uC_{\varphi}f\right)\overline{g}\chi_{\varphi^{-1}(E_n)}d\nu = \int_Y \left(uC_{\varphi}f\chi_{E_n}\right)\overline{g}d\nu = 0$$

for every $f \in L^p(\mu)$, i.e. $\phi_n \in \ker uC_{\varphi^*}$ (for the case $q = \infty$, the preceding argument also applies with minor modifications). Hence dim ker $uC_{\varphi^*} = \infty$. \Box

It has been shown in [14, Theorem 2.6] that Fredholm and invertible composition operators on $L^2(\mu)$ are equivalent. Takagi [15, Theorem 3] generalized this result to weighted composition operators on $L^p(\mu)$, by assuming boundedness of the corresponding multiplication operators. We prove that the same result is valid *without* this assumption and obtain measure-theoretic characterizations for invertible weighted composition operators from $L^p(\mu)$ onto $L^p(\nu)$.

THEOREM 1.2. Suppose (X, Σ, μ) is non-atomic and let uC_{φ} be a weighted composition operator from $L^{p}(\mu)$ into $L^{p}(\nu)$. The following statements are equivalent:

- (i) uC_{φ} is invertible.
- (ii) uC_{φ} is Fredholm.
- (iii) (1) There exists a constant $\delta > 0$ such that $\int_{\varphi^{-1}(E)} |u|^p d\nu \ge \delta \mu(E)$ for every set $E \in \Sigma$ with $\mu(E) < \infty$, and
 - (2) For each set $F \in \Gamma$, there is a set $G \in \Sigma$ such that $\varphi^{-1}(G) = F$.

Proof. The implication (i) \Rightarrow (ii) is obvious. We first show that (ii) implies (iii).

To prove (iii)(1), assume uC_{φ} is Fredholm. It is injective by Lemma 1.1. Since the range of uC_{φ} is closed, there exists a number c > 0 such that

$$\|uC_{\varphi}f\|_{L^{p}(\mathcal{V})} \ge c\|f\|_{L^{p}(\mu)}$$
 for all $f \in L^{p}(\mu)$.

In particular, by choosing $f = \chi_E$, where $E \in \Sigma$ and $\mu(E) < \infty$, we obtain

$$\int_{\varphi^{-1}(E)} |u|^p dv = \left\| u C_{\varphi} \chi_E \right\|_{L^p(v)}^p \ge c^p \| \chi_E \|_{L^p(\mu)}^p = c^p \mu(E).$$

Thus, (iii)(1) follows. By Lemma 1.1 again, we have dim $L^p(v)/\operatorname{ran}(uC_{\varphi}) = 0$ and so uC_{φ} is indeed surjective. We claim that $u \neq 0$ v-a.e. on Y. Otherwise, there is a Γ -measurable set S such that $0 < v(S) < \infty$ and u = 0 on S. The surjectivity of uC_{φ} yields a function $f \in L^p(\mu)$ with $uC_{\varphi}f = \chi_S$. With the choice of S, however, this equality is invalid. The claim is justified.

To prove (iii)(2), take any set $F \in \Gamma$ with $v(F) < \infty$. Let $g \in L^p(\mu)$ be the function such that $uC_{\varphi}g = \chi_F$, or $C_{\varphi}g = \frac{1}{u}\chi_F$. Let $\mathscr{E} := \{\varphi^{-1}(E) : E \in \Sigma\}$. As $C_{\varphi}g$ is \mathscr{E} -measurable, so is $\frac{1}{u}\chi_F$. By writing $Y = \bigcup_{i=1}^{\infty}F_i$, where $\{F_i\}_{i=1}^{\infty}$ is an increasing sequence of Γ -measurable sets with finite v-measures, we have $\frac{1}{u} = \lim_{i \to \infty} \frac{1}{u}\chi_{F_i}$ on

Y. It follows that $\frac{1}{u}$ is \mathscr{E} -measurable. Hence χ_F is also \mathscr{E} -measurable for each $F \in \Gamma$ satisfying $v(F) < \infty$.

It remains to show that (iii) implies (i). We may express (iii)(1) as

$$\left\| u C_{\varphi} \chi_{E} \right\|_{L^{p}(\nu)}^{p} \geq \delta \left\| \chi_{E} \right\|_{L^{p}(\mu)}^{p} \quad \text{for every } E \in \Sigma \text{ with } \mu(E) < \infty.$$

The operator uC_{φ} maps functions with disjoint cozero sets into functions with disjoint cozero sets (the cozero set of a function $f \in L^{p}(\mu)$ is the set of all $x \in X$ on which f does not vanish). This, together with the fact that simple functions (with finite μ -measure cozero sets) are dense in $L^{p}(\mu)$, implies the above inequality holds for all $f \in L^{p}(\mu)$. Thus, uC_{φ} is injective and has closed range.

It remains to show that uC_{ϕ}^* is injective, which is equivalent to the surjectivity of uC_{ϕ} . Let $\phi \in L^p(v)^*$ be a functional represented by the function $h \in L^q(v)$, where q is the conjugate exponent of p, such that

$$\int_Y h(uC_{\varphi}f) d\nu = 0 \quad \text{ for all } f \in L^p(\mu).$$

If $G \in \Sigma$ and $\mu(G) < \infty$, then $\int_{\emptyset^{-1}(G)} hu \, d\nu = 0$. By (iii)(2), we see that

$$\int_F hu\,d\nu = 0 \quad \text{for every } F \in \Gamma.$$

The injectivity of uC_{φ}^* follows immediately provided that $u \neq 0$ *v*-a.e. on *Y*. To justify the latter, assume the contrary that the set $N := \{y \in Y : u(y) = 0\}$ has positive *v*-measure. From (iii)(2) and σ -finiteness of (X, Σ, μ) , there exists a set $M \in \Sigma$ such that $\varphi^{-1}(M) \subset N$ and $0 < \mu(M) < \infty$. Then,

$$0 = \int_{N} |u|^{p} dv \geq \int_{\varphi^{-1}(M)} |u|^{p} dv \geq \delta \mu(M) > 0,$$

which is impossible. The proof of the theorem is now complete. \Box

In [7, Theorem 3.2], Jabbarzadeh claimed that when (X, Σ, μ) is non-atomic, the operator uC_{φ} is Fredholm on $L^{p}(\mu)$ if and only if $J \ge \delta \mu$ -a.e. on X for some constant $\delta > 0$, where J can be shown to be the Radon-Nikodym derivative of the measure $E \mapsto \int_{\varphi^{-1}(E)} |u|^{p} d\mu$ ($E \in \Sigma$) with respect to μ [9, p.5]. The latter condition, however, is not sufficient for the Fredholmness of uC_{φ} . The fallacy in the proof is that M_{u} is not necessarily injective even if J is bounded away from zero. To illustrate this, let X = [0, 1] be equipped with the Lebesgue measure μ on the σ -algebra Σ of Borel sets in X. With

$$u(x) = x\chi_{[\frac{1}{2},1]}(x)$$
 and $\varphi(x) = 2x\chi_{[0,\frac{1}{2})}(x) + (2-2x)\chi_{[\frac{1}{2},1]}(x)$,

we have

$$\frac{1}{2}\left(x - \frac{x^2}{4}\right) = \int_{\varphi^{-1}([0,x))} |u| \, d\mu = \int_{[0,x)} J \, d\mu$$

Hence $J = \frac{1}{2} \left(1 - \frac{x}{2}\right) \ge \frac{1}{4}$ for every $0 < x \le 1$. The operator M_u is not injective, for ker M_u is non-trivial (for example, $\chi_{[0,\frac{1}{2})} \in \ker M_u$). In fact, since ker uC_{φ}^* is also non-trivial (so that dim ker $uC_{\varphi}^* = \infty$ by Lemma 1.1), uC_{φ} is not Fredholm at all.

EXAMPLE 1.1. The composition operator C_{φ} on l^2 induced by

$$\varphi(n) := \begin{cases} 1 & \text{if } n = 1, 2, \\ n - 1 & \text{if } n = 3, 4, \dots, \end{cases}$$

is Fredholm, since dim ker $C_{\varphi} = 0$ and dim $l^2/\operatorname{ran}(C_{\varphi}) = \operatorname{dim} \ker C_{\varphi}^* = 1$. However, it is not invertible. This example shows that when (X, Σ, μ) contains atoms, a Fredholm (weighted) composition operator on $L^p(\mu)$ is *not* necessarily invertible.

EXAMPLE 1.2. Let $X = [1, \infty)$ and Σ be the σ -algebra of Borel sets in X with the Lebesgue measure μ . Define $\varphi(x) = \sqrt{x}$ for all $x \in X$. By taking $u_1(x) = \frac{1}{1+x}$ and $u_2(x) = \frac{1}{1+\sqrt{x}}$, we have

$$\frac{\int_{\varphi^{-1}([1,x))} u_1 d\mu}{\mu\left([1,x)\right)} = \frac{\log\left(\frac{1+x^2}{2}\right)}{x-1} \to 0 \quad \text{as } x \to \infty,$$

and

$$\frac{\int_{\varphi^{-1}([1,x))} u_2 \, d\mu}{\mu\left([1,x)\right)} = \frac{\int_1^{x^2} \frac{1}{1+\sqrt{t}} \, dt}{x-1} \ge 1 \quad \text{ for each } x > 1.$$

From Theorem 1.2, u_2C_{φ} is a Fredholm (and invertible) operator on $L^1(\mu)$, whereas u_1C_{φ} is not. Since $\varphi^{-1}\Sigma = \Sigma$ and $u_1 \neq 0$ on *X*, the range of u_1C_{φ} is dense in $L^1(\mu)$.

In light of Example 1.1, we now characterize the classes of Fredholm and invertible weighted composition operators on l^p by generalizing the methods in [5] and [13]. For every $n \in \mathbb{N}$, define

$$S_n := \varphi^{-1}(\{n\}) \cap \operatorname{coz} u,$$

where $\operatorname{coz} u$ is the cozero set of u on \mathbb{N} , i.e. $\operatorname{coz} u := \{k \in \mathbb{N} : u(k) \neq 0\}$. Observe that $S_n \neq \emptyset$ if $n \in \varphi(\operatorname{coz} u)$.

The cardinality of a subset *C* of \mathbb{N} is denoted by |C|. It is useful to compute the dimensions of both dim ker uC_{φ} and dim ker uC_{φ}^* first.

LEMMA 1.3. Let uC_{ϕ} be a weighted composition operator on l^{p} . Then

- (a) dimker $uC_{\varphi} = |\mathbb{N} \setminus \varphi(\operatorname{coz} u)|$.
- (b) dimker $uC_{\varphi}^* = |\mathbb{N} \setminus \operatorname{coz} u| + \sum_{n \in \varphi(\operatorname{coz} u)} (|S_n| 1).$

Proof. We first prove (a). Let $x = \{x_k\}_{k=1}^{\infty}$ be a sequence in l^p such that $uC_{\varphi}x = 0$, the zero sequence. Then $u(k)x_{\varphi(k)} = 0$ for all $k \in \mathbb{N}$. If $k \in \operatorname{coz} u$, we have $x_{\varphi(k)} = 0$. Thus,

$$\ker uC_{\varphi} = \{\{x_k\}_{k=1}^{\infty} \in l^p : x_k = 0 \text{ if } k \in \varphi(\operatorname{coz} u)\}.$$

A basis for ker uC_{φ} is $\{e_n : n \notin \varphi(\operatorname{coz} u)\}$ and so dim ker $uC_{\varphi} = |\mathbb{N} \setminus \varphi(\operatorname{coz} u)|$.

To prove (b), suppose that $\{w_k\}_{k=1}^{\infty}$ is a sequence in l^q , where q is the conjugate exponent of p, for which

$$\sum_{k=1}^{\infty} u(k) x_{\varphi(k)} \overline{w_k} = 0 \quad \text{ for all } x = \{x_k\}_{k=1}^{\infty} \in l^p.$$

Then

$$0 = \sum_{k \in \operatorname{coz} u} u(k) x_{\varphi(k)} \overline{w_k}$$

= $\sum_{n \in \varphi(\operatorname{coz} u)} \sum_{k \in S_n} u(k) x_{\varphi(k)} \overline{w_k}$
= $\sum_{n \in \varphi(\operatorname{coz} u)} \left(\sum_{k \in S_n} u(k) \overline{w_k} \right) x_n.$

By taking $x = e_n$ for each $n \in \varphi(\operatorname{coz} u)$, we have

$$\sum_{k\in S_n} u(k)\overline{w_k} = 0.$$

Hence

$$\ker uC_{\varphi}^* = \left\{ \{w_k\}_{k=1}^{\infty} \in l^q : \sum_{k \in S_n} \overline{u(k)} w_k = 0 \text{ for every } n \in \varphi(\operatorname{coz} u) \right\}$$

(here we identify a linear functional in ker uC_{φ}^* with the representing sequence in l^q) and dimker $uC_{\varphi}^* = |\mathbb{N} \setminus \operatorname{coz} u| + \sum_{n \in \varphi(\operatorname{coz} u)} (|S_n| - 1)$. \Box

LEMMA 1.4. A weighted composition operator uC_{φ} on l^p has closed range if and only if there exists a constant $\delta > 0$ such that

$$\sum_{k \in S_n} |u(k)|^p \ge \delta \quad \text{ for each } n \in \varphi(\operatorname{coz} u).$$
(1)

Proof. Let

$$l_1^p := \{\{x_k\}_{k=1}^{\infty} \in l^p : x_k = 0 \text{ if } k \in \varphi(\operatorname{coz} u)\}$$

and

$$l_2^p := \{\{x_k\}_{k=1}^\infty \in l^p : x_k = 0 \text{ if } k \in \mathbb{N} \setminus \varphi(\operatorname{coz} u)\}$$

be two closed subspaces of l^p . Assume that (1) holds. If $x = \{x_k\}_{k=1}^{\infty} \in l_2^p$, then

$$\begin{aligned} \left\| uC_{\varphi}x \right\|_{l^{p}}^{p} &= \sum_{k \in \operatorname{coz} u} |u(k)|^{p} \left| x_{\varphi(k)} \right|^{p} = \sum_{n \in \varphi(\operatorname{coz} u)} \left(\sum_{k \in S_{n}} |u(k)|^{p} \right) |x_{n}|^{p} \\ &\geqslant \delta \sum_{n \in \varphi(\operatorname{coz} u)} |x_{n}|^{p} = \delta \|x\|_{l^{p}}^{p}. \end{aligned}$$

The above inequality, together with the facts that $l_p = l_1^p \oplus l_2^p$ and ker $uC_{\varphi} = l_1^p$, implies $uC_{\varphi}(l^p)$ is closed in l^p .

Conversely, suppose $uC_{\varphi}(l^p)$ is closed in l^p . Since uC_{φ} is injective on l_2^p and $uC_{\varphi}(l_2^p)$ is also closed in l^p , it follows that there is a constant c > 0 for which

$$||uC_{\varphi}x||_{l^p} \ge c||x||_{l^p}$$
 for all $x \in l_2^p$.

In particular, with $x = e_n$ for every $n \in \varphi(\operatorname{coz} u)$, we have

$$c^{p} = c^{p} ||e_{n}||_{l^{p}}^{p} \leq ||uC_{\varphi}e_{n}||_{l^{p}}^{p} = \sum_{k \in S_{n}} |u(k)|^{p}.$$

The proof of the lemma is now complete. \Box

THEOREM 1.5. A weighted composition operator uC_{φ} on l^p is Fredholm if and only if the following conditions are all satisfied:

- (*i*) Both sets $\mathbb{N} \setminus \text{cozu}$ and $\mathbb{N} \setminus \varphi(\text{cozu})$ are finite.
- (ii) φ is one-to-one on the complement of a finite subset of cozu.

(iii) There exists a constant $\delta > 0$ such that $\sum_{k \in S_n} |u(k)|^p \ge \delta$ for every $n \in \varphi(\operatorname{coz} u)$.

Proof. By Lemma 1.4, the closedness of range of uC_{φ} is equivalent to (iii). It is evident from Lemma 1.3 that the condition dimker $uC_{\varphi} < \infty$ is just equivalent to the finiteness of $\mathbb{N} \setminus \varphi(\operatorname{coz} u)$. An appeal to Lemma 1.3 also shows that the other condition dimker $uC_{\varphi}^* < \infty$ can be expressed as the finiteness of $\mathbb{N} \setminus \operatorname{coz} u$ and the existence of the finite set $E := \bigcup_{\substack{n \in \varphi(\operatorname{coz} u) \\ |S_n| > 1}} S_n$ for which φ is one-to-one on $\operatorname{coz} u \setminus E$. \Box

Both conditions in (iii) of Theorem 1.2 actually characterize invertible weighted composition operators from $L^p(\mu)$ onto $L^p(\nu)$ for an arbitrary (σ -finite and complete) measure space (X, Σ, μ) , which is *not* necessarily non-atomic. When the L^p -spaces are sequence spaces in particular, not only the characterizations for invertible weighted maps are simpler, but also the invertibility of uC_{φ} and φ are related. Furthermore, the inverse of uC_{φ} (provided that it exists) is a weighted composition operator. While the first statement of the following result can be deduced from Theorem 1.2, it is also a straightforward consequence of Lemmas 1.3 and 1.4.

THEOREM 1.6. A weighted composition operator uC_{φ} on l^{p} is invertible if and only if $\inf_{k \in \mathbb{N}} |u(k)| > 0$ and φ is invertible. In this case, $(uC_{\varphi})^{-1} = \frac{1}{u \circ \varphi^{-1}} C_{\varphi^{-1}}$, where $(uC_{\varphi})^{-1}$ and φ^{-1} are the inverses of uC_{φ} and φ respectively.

Proof. We only prove the formula for $(uC_{\varphi})^{-1}$. Let $T := \frac{1}{u \circ \varphi^{-1}} C_{\varphi^{-1}}$. For every $x = \{x_k\}_{k=1}^{\infty} \in l^p$ and $n \in \mathbb{N}$,

$$(uC_{\varphi} \circ T)(x)(n) = uC_{\varphi} \left(\left\{ \frac{x_{\varphi^{-1}(k)}}{u(\varphi^{-1}(k))} \right\}_{k=1}^{\infty} \right)(n) = u(n) \frac{x_{\varphi}(\varphi^{-1}(n))}{u(\varphi(\varphi^{-1}(n)))} = x_n = \frac{u(\varphi^{-1}(n))}{u(\varphi^{-1}(n))} x_{\varphi}(\varphi^{-1}(n)) = T \left(\left\{ u(k)x_{\varphi(k)} \right\}_{k=1}^{\infty} \right)(n) = (T \circ uC_{\varphi})(x)(n).$$

Hence $T = (uC_{\varphi})^{-1}$. \Box

The invertibility of φ in general does not guarantee uC_{φ} is invertible on general L^p -spaces, and vice versa. For example, the weighted operator u_1C_{φ} in Example 1.2 is not invertible on $L^1(\mu)$, whereas φ is invertible on $[1,\infty)$. Another illustration is given by [12, Example 2.1]. Let $\varphi(n) := \begin{cases} n & \text{if } n \text{ is odd,} \\ n-1 & \text{if } n \text{ is even.} \end{cases}$ Then the operator C_{φ} is invertible on $L^2(\mathbb{N}, \Sigma, \mu)$, where μ is the counting measure on $\Sigma := \{\varphi^{-1}(E) : E \in \mathscr{P}(\mathbb{N})\}$. However, φ is not onto.

2. Fredholm weighted composition operators on H^p

2.1. Preliminaries

Let *D* be the unit disk $\{z \in \mathbb{C} : |z| < 1\}$ in the complex plane \mathbb{C} and *T* be the unit circle $\{z \in \mathbb{C} : |z| = 1\}$. The Hardy space H^p , where $1 \le p < \infty$, of *D* consists of all analytic functions *f* on *D* such that

$$\sup_{0\leqslant r<1}\frac{1}{2\pi}\int_0^{2\pi}|f(re^{i\theta})|^pd\theta<\infty.$$

We define H^{∞} to be the set of all functions f which are analytic and bounded on D.

Let *m* be the normalized Lebesgue measure on *T*, i.e. $dm := \frac{d\theta}{2\pi}$, and write $L^p = L^p(m)$ in the sequel. Norms of H^p and L^p are both denoted by $\|\cdot\|_p$. Given that $f \in H^p$ for $1 \leq p \leq \infty$, its radial limit

$$\hat{f}(e^{i\theta}) := \lim_{r \to 1^{-}} f(re^{i\theta})$$

exists *m*-a.e. on *T*, and $\hat{f} \in L^p$ with $\|\hat{f}\|_p = \|f\|_p$. If, in addition, $f \neq 0$, then $\hat{f} \neq 0$ *m*-a.e. on *T*. Suppose that $z = re^{it}$ for $0 \leq r < 1$ and $0 \leq t < 2\pi$. The functions *f* and \hat{f} are related by the equality

$$f(z) = \int_0^{2\pi} P_r(t-\theta) \hat{f}(e^{i\theta}) dm,$$

where P_r is the Poisson kernel defined by $P_r(\theta) := \frac{1-r^2}{1-2r\cos\theta+r^2}$.

We may consider the extension of f to $\overline{D} := \{z \in \mathbb{C} : |z| \leq 1\}$, also denoted by f, such that $f|_T = \hat{f}$.

Fix an arbitrary point ω in D. The evaluation functional at $z = \omega$, denoted by δ_{ω} , is given by

 $\delta_{\omega}(f) := f(\omega)$ for each $f \in H^p$.

It is bounded, and $\|\delta_{\omega}\| = \left(\frac{1}{1-|\omega|^2}\right)^{1/p}$ if $1 \leq p < \infty$. Thus, if $f \in H^p$, then

$$|f(\omega)| \leq \frac{\|f\|_p}{(1-|\omega|^2)^{1/p}}.$$

It can also be shown that if $f \in H^p$ and $\{z_n\}_{n=1}^{\infty}$ is a sequence in D such that $|z_n| \to 1$, then $(1 - |z_n|^2)^{1/p} f(z_n) \to 0$.

Let u and φ be two analytic functions on D such that $\varphi(D) \subset D$. They induce a *weighted composition operator* uC_{φ} from H^p into the linear space of all analytic functions on D by

$$uC_{\varphi}(f)(z) := u(z)f(\varphi(z))$$
 for every $f \in H^p$ and $z \in D$.

When $u \equiv 1$ (resp. $\varphi(z) = z$ for all $z \in D$), the corresponding operator, denoted by C_{φ} (resp. by M_u), is known as a *composition operator* (resp. a *multiplication operator*). To avoid triviality, we assume both u and φ are non-constant functions. All the three operators C_{φ} , M_u and uC_{φ} are then injective.

It is well-known that C_{φ} is always bounded on H^p for $1 \leq p \leq \infty$. This is not necessarily true for weighted composition operators. If uC_{φ} maps H^p into itself, an appeal to the closed graph theorem yields its boundedness. We say uC_{φ} is a weighted composition operator on H^p . Moreover,

$$\left(uC_{\varphi}^{*}\delta_{\omega}\right)(f) = \delta_{\omega}(uC_{\varphi}f) = u(\omega)f(\varphi(\omega)) = u(\omega)\delta_{\varphi(\omega)}(f)$$

for all $f \in H^p$, i.e.

$$uC_{\varphi}^*\delta_{\omega} = u(\omega)\delta_{\varphi(\omega)}.$$

Suppose $1 \leq p < \infty$. Then

$$|u(\omega)|^p \|\delta_{\varphi(\omega)}\|^p = \|uC_{\varphi}^* \delta_{\omega}\|^p \leq \|uC_{\varphi}^*\|^p \|\delta_{\omega}\|^p,$$

which gives

$$|u(\omega)|^{p} \leq \left(\frac{1-|\varphi(\omega)|^{2}}{1-|\omega|^{2}}\right) \left\|uC_{\varphi}^{*}\right\|^{p}.$$
(2)

2.2. Main results

Assume that $1 \le p < \infty$ in this sub-section. We first characterize invertible weighted composition operators on H^p .

THEOREM 2.1. Let uC_{φ} be a weighted composition operator on H^p . Then it is invertible if and only if both the following conditions hold:

- (i) φ is an automorphism of D.
- (ii) There exists a constant $\delta > 0$ such that $|u| \ge \delta$ on D.

Proof. Assume uC_{φ} is invertible on H^p . As $1 \in \operatorname{ran}(uC_{\varphi})$, we have $u \neq 0$ on D. To prove (i), it suffices to show that φ is univalent and surjective. If φ were *not* univalent, then there exist distinct points a, b in D with $\varphi(a) = \varphi(b)$. Let

$$\phi := \frac{1}{u(a)} \delta_a - \frac{1}{u(b)} \delta_b,$$

where δ_a and δ_b are the evaluation functionals (on H^p) at z = a and z = b respectively. Note that $\phi \neq 0$ for

$$\phi(z-b) = \frac{1}{u(a)}\delta_a(z-b) - \frac{1}{u(b)}\delta_b(z-b) = \frac{a-b}{u(a)} \neq 0$$

However,

$$uC_{\varphi}^*\phi = \frac{1}{u(a)}uC_{\varphi}^*\delta_a - \frac{1}{u(b)}uC_{\varphi}^*\delta_b = \frac{1}{u(a)}\cdot u(a)\delta_{\varphi(a)} - \frac{1}{u(b)}\cdot u(b)\delta_{\varphi(b)} \equiv 0.$$

This contradicts the injectivity of uC_{φ}^* . Thus, φ is univalent.

Next we prove φ is also surjective. Assuming the contrary, i.e. $\varphi(D) \neq D$, one may exhibit a point α in $D \setminus \varphi(D)$ and a sequence $\{z_n\}_{n=1}^{\infty}$ in D such that this sequence converges and $\varphi(z_n) \rightarrow \alpha$. In fact, $|z_n| \rightarrow 1$. Define

$$\phi_n := \left(1 - |z_n|^2\right)^{1/p} \delta_{z_n}$$

for $n \in \mathbb{N}$. Then, $\|\phi_n\| = 1$ and

$$\left\| u C_{\varphi}^{*} \phi_{n} \right\| = \left(1 - |z_{n}|^{2} \right)^{1/p} \left\| u C_{\varphi}^{*} \delta_{z_{n}} \right\| = \frac{|u(z_{n})| \left(1 - |z_{n}|^{2} \right)^{1/p}}{\left(1 - |\varphi(z_{n})|^{2} \right)^{1/p}} \to 0.$$

On the other hand, the surjectivity of uC_{φ} implies there is a constant c > 0 with

$$\left\| uC_{\phi}^{*}\phi_{n} \right\| \ge c \left\| \phi_{n} \right\| = c \quad \text{for all } n.$$
(3)

This contradiction shows that φ maps D onto D.

It remains to prove (ii). Fix any $\omega \in D$. With the constant *c* in (3), we have

$$\left\| u C_{\varphi}^* \delta_{\omega} \right\| \ge c \left\| \delta_{\omega} \right\|.$$

Thus,

$$|u(w)|^p \ge \frac{1-|\varphi(\omega)|^2}{1-|\omega|^2}c^p.$$

In view of (i), we may write $\varphi(\omega) = \zeta \frac{\beta - \omega}{1 - \beta \omega}$ for some $\beta \in D$ and $\zeta \in T$. Then

$$1 - |\varphi(\omega)|^{2} = \frac{(1 - |\beta|^{2})(1 - |\omega|^{2})}{|1 - \overline{\beta}\omega|^{2}}.$$

It follows that

$$\frac{1-|\varphi(\omega)|^2}{1-|\omega|^2} = \frac{1-|\beta|^2}{|1-\overline{\beta}\omega|^2} \ge \frac{1-|\beta|^2}{(1+|\beta|)^2} = \frac{1-|\beta|}{1+|\beta|}.$$

Therefore,

$$|u(\omega)| \ge c \left(\frac{1-|\beta|}{1+|\beta|}\right)^{1/p}$$

Conversely, suppose both (i) and (ii) are satisfied. It suffices to show uC_{φ} is surjective. The first condition ensures the operator C_{φ} is surjective. Choose any function $g \in H^p$. Thanks to (ii), we also have $\frac{g}{u} \in H^p$. Then, there exists a function $f \in H^p$ with $C_{\varphi}f = \frac{g}{u}$, or $uC_{\varphi}f = g$. The proof of the theorem is now complete. \Box

Gunatillake [4, Theorem 2.0.1] also obtained a similar characterization for invertible weighted composition operators on H^2 with a slightly different method. In [2, Theorem 1], Cima et al. showed that a composition operator on H^2 is Fredholm if and only if it is invertible, i.e. it is induced by an automorphism. Bourdon [1] proved the same result by characterizing finite co-dimensional invariant subspaces of H^p as follows.

LEMMA 2.2. Let $h \in H^{\infty}$. The following two statements are equivalent:

- (i) h is univalent on D.
- (ii) Every closed finite co-dimensional subspace of H^p that is invariant under M_h has the form BH^p , where B is a finite Blaschke product.

Applying this lemma and Theorem 2.1, we generalize the characterizations for Fredholm weighted composition operators in [16, Theorems 1.1 and 1.2] to any H^p -space. The Fredholm indices of these operators are also determined.

THEOREM 2.3. Let uC_{φ} be a weighted composition operator on H^p . Then it is Fredholm if and only if both the following conditions hold:

- (i) φ is an automorphism of D.
- (*ii*) $\liminf_{|z| \to 1^-} |u(z)| > 0$

In this case, the Fredholm index of uC_{φ} is -n, where n is the number of zeros of u on D counting multiplicities.

Proof. We first observe that since polynomials are dense in H^p and $C_{\varphi}(zf) = \varphi C_{\varphi} f$ for all polynomials f, the norm-closure of $\operatorname{ran}(uC_{\varphi})$ is an invariant subspace of H^p under multiplication by φ . Suppose uC_{φ} is Fredholm. Then φ must be univalent on D. Otherwise, there exist two distinct points a and b in D with $\varphi(a) = \varphi(b)$. Following the argument of the lemma in [1], we choose some $\varepsilon > 0$ for which both sets $\{z \in \mathbb{C} : |z-a| \leq \varepsilon\}$ and $\{z \in \mathbb{C} : |z-b| \leq \varepsilon\}$ are contained in D. Moreover, we may extract two sequences $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ in D such that $a_i \neq b_j$ whenever $i \neq j$ and $\varphi(a_n) = \varphi(b_n)$ for all n.

The analyticity of u implies that $u(a_n) = u(b_n) = 0$ for finitely many a_n 's and b_n 's only. Without loss of generality, we assume $u(a_n), u(b_n) \neq 0$ for all n. Define

$$\phi_n := rac{1}{u(a_n)} \delta_{a_n} - rac{1}{u(b_n)} \delta_{b_n} \quad ext{ for } n \in \mathbb{N}.$$

These ϕ_n 's are linearly independent. As in the proof of Theorem 2.1, we have $\phi_n \in \ker uC_{\varphi^*}$. This contradicts the assumption that $\dim H^p/\operatorname{ran}(uC_{\varphi}) < \infty$.

By Lemma 2.2, there is a finite Blaschke product *B* such that $\operatorname{ran}(uC_{\varphi}) = BH^p$. In particular, u = Bg for a function $g \in H^p$. Thus, $\operatorname{ran}(gC_{\varphi}) = H^p$. If *g* is constant on *D*, then both (i) and (ii) follow immediately. When *g* is non-constant, it follows from Theorem 2.1 that φ is also surjective and there is a constant $\delta > 0$ such that $|g| \ge \delta$ on *D*. With $\lim_{|z|\to 1^-} |B(z)| = 1$, we thus obtain $\liminf_{|z|\to 1^-} |u(z)| \ge \delta > 0$.

Conversely, assume both (i) and (ii) hold. By (ii), there exist constants c, r > 0 such that $|u(z)| \ge c$ if r < |z| < 1. Moreover, the number of zeros of u on $\{z \in \mathbb{C} : |z| \le r\}$ is finite. We claim that

$$\operatorname{ran}(uC_{\varphi}) = BH^p$$
,

where *B* is the finite Blaschke product associated with the zeros of *u* on *D*. To verify this, we write u = Bh for some $h \in H^p$ with $h \neq 0$ on *D*. Then $\operatorname{ran}(hC_{\varphi}) \subset H^p$. As *h* is continuous for $|z| \leq r$ and $|h| \geq c$ for r < |z| < 1, we see that *h* is bounded away from zero on *D*. By Theorem 2.1, we conclude that $\operatorname{ran}(hC_{\varphi}) = H^p$. The claim now follows.

It remains to consider the codimension of BH^p in H^p . Assume the zeros of u on D, namely z_1, z_2, \ldots, z_n , are all simple (in case u has multiple zeros, we may modify the argument slightly by using a Hermite interpolating polynomial). The kernel and the range of the linear map on H^p given by $f \mapsto \sum_{i=1}^n f(z_i)z^i$ are BH^p and the linear span of z, z^2, \ldots, z^n respectively. Therefore, $\dim H^p/BH^p = \dim \text{span}\{z, z^2, \ldots, z^n\} = n$. This, together with the injectivity of uC_{φ} , yields $\operatorname{ind} uC_{\varphi} = -n$. \Box

NOTE 2.1. Two simple necessary conditions for Fredholmness of uC_{φ} on H^p are

(a) $u \in H^{\infty}$ and

(b) the number of zeros of u on D is finite.

That (b) holds has been shown in the proof of Theorem 2.3. For (a), since φ is a disk automorphism, an argument similar to the proof of Theorem 2.1 gives

$$\frac{1-|\varphi(\omega)|^2}{1-|\omega|^2} \leqslant \frac{1+|\varphi(0)|}{1-|\varphi(0)|}.$$

From the above inequality and that in (2), we have

$$\|u\|_{\infty} \leqslant \left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{1/p} \left\|uC_{\varphi^*}\right\|.$$

In view of Theorems 2.1, 2.3 and the above note, the operator uC_{φ} is Fredholm (resp. invertible) on H^p if and only if both M_u and C_{φ} are Fredholm (resp. invertible) on H^p . We also remark that a Fredholm weighted composition operator uC_{φ} on H^p is not necessarily invertible (compare this with Theorem 1.2). The weight function u of a Fredholm weighted composition operator is bounded away from zero *near* T, and it may vanish on D; while that of an invertible weighted map is to be bounded away from zero *on* D.

Similar characterizations for Fredholm (resp. invertible) weighted composition operators on H^{∞} have been obtained by Ohno et al. in [11, Theorems 2.3 and 2.4]. In this paper, they also characterized weighted composition operators on H^{∞} with closed ranges by applying the Banach algebra structure of H^{∞} . We now study the closedness of ranges of weighted composition operators on H^p à la the method of Cima et al. [2, Theorem 2], who characterized those composition operators on H^2 with closed ranges. To this end, define a measure m_p on \overline{D} by

$$m_p(E) := \int_{\varphi^{-1}(E) \cap T} |u|^p dm$$

for every measurable subset *E* of \overline{D} . By [3, Lemma 2.1],

$$\int_T |u|^p (f \circ \varphi) \, dm = \int_{\overline{D}} f \, dm_p,$$

where f is an arbitrary measurable positive function on \overline{D} . If we restrict m_p to all the measurable subsets of T, then $m_p(E) = \int_{\varphi^{-1}(E)} |u|^p dm$ for all such sets E. This measure, denoted by m_p as well, is absolutely continuous with respect to m:

PROPOSITION 2.4. Let uC_{φ} be a weighted composition operator on H^p . Then, m_p is absolutely continuous with respect to m and $\left[\frac{dm_p}{dm}\right] \in L^{\infty}$, where $\left[\frac{dm_p}{dm}\right]$ is the corresponding Radon-Nikodym derivative.

Proof. In view of [10, Lemma 1.3], it suffices to prove that there exists a constant c > 0 such that

$$m_p(Q(\zeta,r)) \leqslant cr$$

for all $\zeta \in T$ and 0 < r < 1, where $Q(\zeta, r) := \{z \in T : |z - \zeta| \leq r\}$. By the boundedness of uC_{φ} , we have $||uC_{\varphi}f||_{p}^{p} \leq ||uC_{\varphi}||^{p} ||f||_{p}^{p}$, i.e.

$$\int_{\overline{D}} |f|^p dm_p = \int_T |u|^p |f|^p \circ \varphi dm \leqslant \left\| u C_{\varphi} \right\|^p \|f\|_p^p \quad \text{for every } f \in H^p.$$
(4)

With the above ζ and r, we let $\omega = (1 - r)\zeta$. Consider the function $g(z) := \frac{1}{(1 - \overline{w}z)^{4/p}}$. A direct computation gives

$$||g||_p^p = \frac{1+(1-r)^2}{r^3(2-r)^3}.$$

Since

$$|1 - \overline{w}z| = |1 - (1 - r)\overline{\zeta}z| \leq |\overline{\zeta}||z - \zeta| + |r\overline{\zeta}z| \leq 2r \quad \text{for } z \in Q(\zeta, r),$$

we see that

$$|g| \ge \frac{1}{(2r)^{4/p}}$$
 on $Q(\zeta, r)$.

Now, it follows from (4) that

$$\frac{m_p(Q(\zeta,r))}{(2r)^4} \leqslant \int_{Q(\zeta,r)} |g|^p dm_p \leqslant \int_{\overline{D}} |g|^p dm_p$$
$$\leqslant \left\| uC_{\varphi} \right\|^p \left\| g \right\|_p^p = \left\| uC_{\varphi} \right\|^p \cdot \frac{1 + (1-r)^2}{r^3(2-r)^3}$$

Thus,

$$m_p(Q(\zeta, r)) \leq 16 \|uC_{\varphi}\|^p \cdot \frac{1 + (1 - r)^2}{(2 - r)^3} r \leq 32 \|uC_{\varphi}\|^p r.$$

THEOREM 2.5. Let uC_{φ} be a weighted composition operator on H^p . The following statements are equivalent:

- (i) uC_{φ} has closed range.
- (ii) There exists a constant $\delta > 0$ such that $\left[\frac{dm_p}{dm}\right] \ge \delta$ m-a.e. on T, where $\left[\frac{dm_p}{dm}\right]$ is defined in Proposition 2.4.
- (iii) There exists a constant c > 0 such that $\int_{\varphi^{-1}(E)} |u|^p dm \ge cm(E)$ for all measurable sets E of T.

Proof. The equivalence of (ii) and (iii) is clear. Moreover, (i) follows from (ii) because

$$\left\| uC_{\varphi}f \right\|_{p}^{p} = \int_{T} |u|^{p} |f|^{p} \circ \varphi \, dm \ge \int_{T} |f|^{p} dm_{p} = \int_{T} \left[\frac{dm_{p}}{dm} \right] |f|^{p} dm \ge \delta \left\| f \right\|_{p}^{p}$$

for each $f \in H^p$.

It remains to show that (i) implies (ii). Assume (ii) does not hold. Then the sets

$$E_k := \left\{ z \in T : \left[\frac{dm_p}{dm} \right] (z) < \frac{1}{k} \right\} \quad \text{where } k \in \mathbb{N},$$

are of positive *m*-measures. We may also assume $m(T \setminus E_k) > 0$ for each k. Let $f_k: D \to \mathbb{C}$ be an outer function in H^p such that

$$|f_k| = \begin{cases} 1 & \text{on } E_k, \\ \frac{1}{2} & \text{on } T \setminus E_k. \end{cases}$$

Let n and k be positive integers with k fixed. Then

$$\|f_k^n\|_p^p = m(E_k) + \left(\frac{1}{2}\right)^{np} m(T \setminus E_k) \to m(E_k) \quad \text{as } n \to \infty.$$
⁽⁵⁾

Moreover,

$$\begin{aligned} \left\| uC_{\varphi}f_{k}^{n}\right\|_{p}^{p} &= \int_{E_{k}} \left|f_{k}\right|^{np} dm_{p} + \int_{T\setminus E_{k}} \left|f_{k}\right|^{np} dm_{p} + \int_{D} \left|f_{k}\right|^{np} dm_{p} \\ &\leqslant m_{p}(E_{k}) + \left(\frac{1}{2}\right)^{np} m_{p}(T\setminus E_{k}) + \int_{D} \left|f_{k}\right|^{np} dm_{p}. \end{aligned}$$

Note that

$$|f_k(z)| = \exp\left\{\log\frac{1}{2}\left[\int_{T\setminus E_k} P_r(t-\theta)\,dm\right]\right\},\,$$

where $z = re^{it}$ and P_r is the Poisson kernel. Since $0 < \int_{T \setminus E_k} P_r(t - \theta) dm < 1$, we have $|f_k(z)| < 1$ on *D*. From the dominated convergence theorem,

$$\int_D |f_k|^{np} dm_p \to 0 \quad \text{as } n \to \infty.$$

Thus,

$$\limsup_{n \to \infty} \left\| u C_{\varphi} f_k^n \right\|_p^p \leqslant m_p(E_k).$$
(6)

In view of (5) and (6), we choose a sequence of positive integers $n_1 < n_2 < \cdots < n_k < \cdots$ such that

$$||f_k^{n_k}||_p^p > \frac{1}{2}m(E_k)$$
 and $||uC_{\varphi}f_k^{n_k}||_p^p < 2m_p(E_k)$ for all k

Hence

$$\frac{\left\|uC_{\varphi}f_{k}^{n_{k}}\right\|_{p}^{p}}{\left\|f_{k}^{n_{k}}\right\|_{p}^{p}} < \frac{4m_{p}(E_{k})}{m(E_{k})} = \frac{4}{m(E_{k})}\int_{E_{k}}\left[\frac{dm_{p}}{dm}\right]dm \leqslant \frac{4}{k} \to 0 \quad \text{ as } k \to \infty.$$

This shows that the range of uC_{φ} is not closed. \Box

The above characterization of a weighted composition operator on H^p with closed range involves the Radon-Nikodym derivative of the measure m_p . It is desirable to characterize its closedness of range more explicitly in terms of function-theoretic properties (for example, ranges) of the symbol functions u and φ . While this awaits further investigation, the corresponding problem for composition operators has been considered in [8, Theorem 5.1]. It was shown that a composition operator C_{φ} on H^p has closed range if and only if there exists a constant c > 0 such that if 0 < r < 1 and $\zeta \in T$, then

$$\frac{1}{A(S(\zeta,r))}\int_{S(\zeta,r)}N_{\varphi}(z)\,dA(z) \ge c\,r,$$

where

(a) $S(\zeta, r) := \{z \in D : |z - \zeta| \leq r\};$

(b) A is the normalized Lebesgue area measure on D, i.e. $dA = \frac{1}{\pi} r dr d\theta$; and

(c) N_{ϕ} is the Nevanlinna counting function given by

$$N_{oldsymbol{arphi}}(oldsymbol{\omega}) := egin{cases} \sum_{z \in arphi^{-1}\{oldsymbol{\omega}\}} \log rac{1}{|z|} & ext{if } oldsymbol{\omega} \in oldsymbol{arphi}(D) ar{arphi} \{oldsymbol{arphi}(0)\}, \ 0 & ext{if } oldsymbol{\omega} \notin oldsymbol{arphi}(D), \end{cases}$$

and $\varphi^{-1}{\{\omega\}}$ denotes the sequence of φ -preimages of ω with each point occurring as many times as its multiplicity.

For the case of composition operators, it is interesting to see the measure-theoretic conditions (ii) and (iii) in Theorem 2.5 are equivalent to the above function-theoretic conditions.

REFERENCES

- P. S. BOURDON, Fredholm multiplication and composition operators on the Hardy space, Integral Equations Operator Theory 13 (1990), 607–610.
- [2] J. A. CIMA, J. THOMSON AND W. WOGEN, On some properties of composition operators, Indiana Univ. Math. J. 24 (1974), 215–220.
- [3] M. D. CONTRERAS AND A. G. HERNÁNDEZ-DÍAZ, Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263 (2001), 224–233.
- [4] G. GUNATILLAKE, Invertible weighted composition operators, J. Funct. Anal. 261 (2011), 831-860.
- [5] D. K. GUPTA AND B. S. KOMAL, Fredholm composition operators on weighted sequence spaces, Indian J. Pure Appl. Math. 14 (1983), 293–296.
- [6] D. J. HARRINGTON, Co-rank of a composition operator, Canad. Math. Bull. 29 (1986), 33-36.
- [7] M. R. JABBARZADEH, Weighted composition operators between L^p-spaces, Bull. Korean Math. Soc. 42 (2005), 369–378.
- [8] P. LEFÈVRE, D. LI, H. QUEFFÉLEC AND L. RODRÍGUEZ-PIAZZA, Some revisited results about composition operators on Hardy spaces, Rev. Mat. Iberoam. 28 (2012), 57–76.
- [9] C. O. LO, Weighted composition operators between L^p-spaces, Thesis, The University of Hong Kong, 2002.
- [10] B. D. MACCLUER, Compact composition operators on $H^p(B_N)$, Michigan Math. J. **32** (1985), 237–248.
- [11] S. OHNO AND H. TAKAGI, Some properties of weighted composition operators on algebras of analytic functions, J. Nonlinear Convex Anal. 2 (2001), 369–380.
- [12] R. K. SINGH AND A. KUMAR, Characterizations of invertible, unitary, and normal composition operators, Bull. Austral. Math. Soc. 19 (1978), 81–95.
- [13] R. K. SINGH AND T. VELUCHAMY, Atomic measure spaces and essentially normal composition operators, Bull. Austral. Math. Soc. 27 (1983), 259–267.

- [14] R. K. SINGH AND T. VELUCHAMY, Nonatomic measure spaces and Fredholm composition operators, Acta Sci. Math. (Szeged) 51 (1987), 461–465.
- [15] H. TAKAGI, Fredholm weighted composition operators, Integral Equations Operator Theory 16 (1993), 267–276.
- [16] L. K. ZHAO, Fredholm weighted composition operators on Hardy space, J. Math. Res. Appl. 33 (2013), 361–364.

(Received March 17, 2018)

Ching-on Lo Division of Science and Technology Hong Kong Community College The Hong Kong Polytechnic University e-mail: cccclo@hkcc-polyu.edu.hk

Anthony Wai-keung Loh Division of Science and Technology Hong Kong Community College The Hong Kong Polytechnic University e-mail: ccccaloh@hkcc-polyu.edu.hk

Operators and Matrices www.ele-math.com oam@ele-math.com