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Abstract. Let A be a complex matrix such that its square equals the identity matrix. We solve
the matrix equation AXA = XAX to construct all the solutions. This finishes our task for finding
all the non-commuting solutions, continued from the authors’ previous work.

1. Introduction

Let A be an n× n complex matrix. The purpose of this paper is to solve the
quadratic matrix equation

AXA = XAX (1)

completely when A satisfies the equality A2 = I . The equation for the same class of the
matrix A has been studied in our recent paper [9] under some additional assumption for
the solutions. The contribution of the current paper is that we shall find all the solutions
without any condition for them. The quadratic matrix equation (1) is called the Yang-
Baxter matrix equation since it has been extensively studied several years ago from the
viewpoint of linear algebra. The reason for the name of the equation is that it has a
similarity in format to the famous Yang-Baxter equation in statistical mechanics [1, 10]
initiated by Yang in 1967 and by Baxter in 1972. For applications of the Yang-Baxter
equation to various areas of mathematics and physics, see, e.g., the monographs [7, 11]
and the references therein.

Since finding general solutions of the nonlinear matrix equation (1) is difficult,
almost all the works so far have been toward constructing commuting solutions of the
equation; see, e.g., [2, 3] and the references therein. In [5], all the commuting solutions
were obtained when A is diagonalizable. In the more general case of A being non-
diagonalizable, the structure of all commuting solutions has been obtained [6] for the
class of nilpotent matrices. But still the explicit expression of all solutions of (1) is
not available except for some special classes of matrices, such as that of idempotent
matrices [8].
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For the matrices considered in this paper, whose inverses are themselves, since A
is diagonalizable, all the commuting solutions can be obtained by the result of [5] (see
also Section 2 of [9]). Thus, our purpose is to get all the non-commuting solutions.
In an earlier paper [9], we found all the non-commuting solutions with the assumption
that the off-diagonal blocks of the solution as a 2× 2 block matrix are full ranked. In
this paper, we use a different approach based a classic spectral perturbation result, so
that we can drop the above assumption and find all the solutions unconditionally.

We first give a preliminary result in the next section concerning a rank relation
between the off-diagonal blocks of the 2×2 block matrix solution. Then we prove our
main result in Section 3. We conclude with Section 4.

2. A rank relation

Let A be an n×n complex matrix such that its square equals the identity matrix.
From our previous paper [9] we know that the corresponding matrix equation (1) is
equivalent to the matrix equation

JYJ = YJY, (2)

where the Jordan form of A is

J =
[

Im 0
0 −In−m

]
.

Their equivalence is in the sense that X is a solution of (1) if and only if Y is a solution
of (2) with the relation X = SYS−1 , where S is the nonsingular matrix satisfying A =
SJS−1 . Here Is denotes the s× s identity matrix. With Y partitioned into

Y =
[

K C
D Z

]
,

where K is m×m and Z is (n−m)×(n−m) , (2) is equivalent to the following system
of four equations for the sub-matrices of Y :⎧⎪⎪⎨

⎪⎪⎩
K2 −K = CD,
Z2 +Z = DC,

(K + I)C = CZ,
D(K + I) = ZD.

(3)

By Theorem 2.1 of [9], all the commuting solutions of (2), i.e., the solutions Y
satisfying JY = YJ , are diag(K,Z) such that K2 = K and Z2 = −Z . It was also
proved therein that any non-commuting solution of (2) must have C �= 0 and D �= 0.
Furthermore, when m = 1 or m = n− 1, all the non-commuting solutions have been
constructed. And the case that both C and D are full ranked has also been solved com-
pletely. Hence, our only remaining case before completely solving (1) when A2 = I is
that the off-diagonal sub-matrix C or D of the 2×2 block matrix Y is rank deficient.
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From the analysis of [9], the above system (3) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K2−K = CD,

Z2 +Z = DC,

KC = − 1
2C,

DK = − 1
2D,

CZ = 1
2C,

ZD = 1
2D.

(4)

The new system indicates that all nonzero columns of C and D are eigenvectors of K
and Z associated with eigenvalues −1/2 and 1/2, respectively, and all nonzero rows
of C and D are left eigenvectors of Z and K associated with eigenvalues 1/2 and
−1/2, respectively. Consequently for any non-commuting solution (K,Z,C,D) of the
system (3), −1/2 and 1/2 must be an eigenvalue of K and Z , respectively.

To find all non-commuting solutions, we need the following lemma. Let r(M)
denote the rank of matrix M .

LEMMA 1. If (K,Z,C,D) forms a solution of (4), then

r(C) = r(D).

Proof. Suppose (K,Z,C,D) satisfies (4). Multiplying C to the first equality from
the right and using the third equality, we obtain CDC = (K2−K)C = (3/4)C , so

r(C) = r(CDC) � r(CD) � r(C),

from which r(C) = r(CD) . Similarly, multiplying D to the first equality from the left
and using the fourth equality, we have DCD = D(K2 −K) = (3/4)D , so

r(D) = r(DCD) � r(CD) � r(D),

from which r(D) = r(CD) . Hence, r(C) = r(D) . �

REMARK 1. From the proof of Lemma 2.1, for all solutions (K,Z,C,D) ,

r(C) = r(D) = r(CD) = r(DC) = r(CDC) = r(DCD).

3. Solutions of the matrix equation

The proof of our main theorem below will need a spectral perturbation result from
[4], which is stated below as a lemma. We use pW to denote the characteristic poly-
nomial of matrix W and σ(W ) the set of all eigenvalues of W which are zeros of
pW .
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LEMMA 2. Let k � n be two positive integers, and let W and Λ be n× n and
k× k matrices, respectively. If there is an n× k matrix U that satisfies WU = UΛ,
then the identity

pW+UVT (λ ) · pΛ(λ ) ≡ pW (λ ) · pΛ+VTU(λ )

is true for any n× k matrix V .

We are ready to prove the main result of the paper:

THEOREM 1. Let A be an n× n a complex matrix satisfying A2 = I , and let m
be the algebraic multiplicity of its eigenvalue 1 . Then all the non-commuting solutions
of the Yang-Baxter matrix equation (1) are exactly

X = S

[
K C
D Z

]
S−1,

where K is any m×m diagonalizable matrix and Z is any (n−m)× (n−m) diago-
nalizable matrix such that

(i) the nonzero matrices C and D have the same rank r such that

CDC =
3
4
C and DCD =

3
4
D;

(ii) K and Z have eigenvalue −1/2 and 1/2 of multiplicity r , respectively;
(iii) the nonzero columns of C and nonzero rows of D are eigenvectors and left

eigenvectors of K respectively associated with eigenvalue −1/2 , and the nonzero
columns of D and nonzero rows of C are eigenvectors and left eigenvectors of Z re-
spectively associated with eigenvalue 1/2 ;

(iv) the other eigenvalues of K and Z belong to {0,1} and {0,−1} , respectively.

Proof. We first show that any non-commuting solution (K,Z,C,D) of (4) must
satisfy (i)–(iv). By Lemma 2.1, r(C) = r(D) = r . The first and second equalities of (4)
give

CDC =
3
4
C and DCD =

3
4
D,

so (i) is true. Since C �= 0 and D �= 0, the matrix K has eigenvalue −1/2 with nonzero
columns of C as corresponding eigenvectors and the matrix Z has eigenvalue 1/2 with
nonzero columns of D as corresponding eigenvectors. We claim that −1/2 and 1/2
are semi-simple eigenvalues of K and Z , respectively.

If eigenvalue −1/2 of K is not semi-simple, then there exists a nonzero vector
v satisfying u ≡ (K + (1/2)I)v �= 0 and (K + (1/2)I)u = (K + (1/2)I)2v = 0. The
eigenvector u and the generalized eigenvector v must be linearly independent. In fact,
if αu+ βv = 0 for some α,β ∈ C , then via multiplying this equality by K +(1/2)I
from the left we get β (K+(1/2)I)v = βu = 0, which implies that β = 0 and so α = 0.

Since

CDv = (K2−K)v =
(

K +
1
2
I

)2

v−2

(
K +

1
2
I

)
v+

3
4
v = −2u+

3
4
v,
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u = (3/8)v− (1/2)CDv , and thus

0 =
(

K +
1
2
I

)2

v =
(

K +
1
2
I

)
u =

(
K +

1
2
I

)(
3
8
v− 1

2
CDv

)
=

3
8
u �= 0.

This is a contradiction. Therefore −1/2 is a semi-simple eigenvalue of K . Similarity,
eigenvalues 1/2 of Z is semi-simple. This means that (iii) is true.

To show that (iv) is also valid, we apply Lemma 3.1 to the first equality of (4). It
follows that

pK+CD(λ ) · p− 1
2 In−m

(λ ) ≡ pK(λ ) · pDC− 1
2 In−m

(λ ).

Since K+CD = K2 , using the fact that the eigenvalues of the square of a matrix are the
squares of the eigenvalues of the matrix, counting algebraic multiplicity, we can write
the above identity as

m

∏
i=1

(λ −λ 2
i ) ·

(
λ +

1
2

)n−m

≡
m

∏
j=1

(λ −λ j) ·
n−m

∏
k=1

[
λ −

(
μ2

k + μk − 1
2

)]
,

where λ1,λ2, . . . ,λm are the eigenvalues of K and μ1,μ2, . . . ,μn−m are the eigen-
values of Z , all counting algebraic multiplicity, where λi = −1/2 and μi = 1/2 for
i = 1, . . . ,r . Dividing both sides by (λ +1/2)r , we have

m

∏
i=1

(λ −λ 2
i ) ·

(
λ +

1
2

)n−m−r

≡
m

∏
j=r+1

(λ −λ j) ·
n−m

∏
k=1

[
λ −

(
μ2

k + μk − 1
2

)]
,

which, since λ 2
i = μ2

k + μk −1/2 = 1/4 for i,k = 1, . . . ,r , can be further simplified to

m

∏
i=r+1

(λ −λ 2
i ) ·

(
λ +

1
2

)n−m−r

≡
m

∏
j=r+1

(λ −λ j) ·
n−m

∏
k=r+1

[
λ −

(
μ2

k + μk − 1
2

)]
.

Consequently, the above identity implies that

λ 2
i = λi, i = r+1, . . . ,m; μ2

k = −μk, k = r+1, . . . ,n−m.

Hence, λi = 0 or 1 for i = r+1, . . . ,m and μk = 0 or −1 for k = r+1, . . . ,n−m . The
remaining thing is to show that such eigenvalues are semi-simple.

If 0 is an eigenvalue of K that is not semi-simple, then there is a vector v �= 0
such that u ≡ Kv �= 0 and K2v = 0. From −u = (K2−K)v = CDv we obtain that

0 = −Ku = KCDv = (−1/2)CDv = (1/2)u �= 0,

a contradiction. If 1 is an eigenvalue of K that is not semi-simple, then there is a vector
q �= 0 satisfying p ≡ (K − I)q �= 0 and (K − I)p = 0. Since CDb = (K2 −K)q =
(K− I)2q+(K− I)q = p ,

0 = (K− I)2q = (K− I)p = (K− I)CDq = −3
2
CDp = −3

2
p �= 0,
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another contradiction. Therefore the eigenvalues 0 and 1 are semi-simple. Similarity,
the eigenvalues 0 and −1 of Z are semi-simple. Hence, K and Z are diagonalizable.
This proves the necessity part of the theorem.

Conversely, suppose K is an m×m diagonalizable matrix, Z an (n−m)×(n−m)
diagonalizablematrix, C an m×(n−m) matrix, and D an (n−m)×m matrix such that
(K,Z,C,D) satisfies (i)–(iv). We show that it is a solution of (4). It is enough to show
that the first two equations of (4) are satisfied. Let Ĉ be the m× r matrix consisting of
r linearly independent columns of C . Then from (K2 −K)C = (3/4)C = (CD)C , we
obtain

(K2−K)Ĉ = (CD)Ĉ.

On the other hand, let E be an m×(m−r) matrix whose columns are linearly indepen-
dent eigenvectors of K associated with other eigenvalues which belong to {0,1} . Then
DE = 0 from matrix theory since all rows of D are left eigenvectors of K associated
with eigenvalue −1/2. Thus,

0 = (K2 −K)E = C(DE) = (CD)E.

Since the columns of Ĉ and E form a basis of Cm , we see that K2 −K = CD .
By the same token and with the help of the other assumption that DCD = (3/4)D ,

we deduce that Z2 + Z = DC . Therefore, (K,Z,C,D) solves (4). This proves the
theorem. �

The non-commuting solutions obtained from Theorem 3.1 can be constructed in
an easy way from a similarity consideration. By Lemma 3.1 of [9], if (K,Z,C,D) is a
solution of (3), then (K′,Z′,C′,D,) is also a solution of the same system, where

K′ = PKP−1, Z′ = QZQ−1, C′ = PCQ−1, D′ = QDP−1

with P and Q any m×m and (n−m)× (n−m) nonsingular matrices, respectively.
Note that

C′D′C′ = PCQ−1QDP−1PCQ−1 = PCDCQ−1 =
3
4
PCQ−1 =

3
4
C′

if CDC = (3/4)C and

D′C′D′ = QDP−1PCQ−1QDP−1 = QDCDP−1 =
3
4
QDP−1 =

3
4
D′

if DCD = (3/4)D . Thus, all the non-commuting solutions of (4) can be constructed in
the following way:

Construction of All Non-Commuting Solutions:

Step I. Pick any integer r between 1 and min{m,n−m} .

Step II. Let
K0 = diag(−1/2, . . . ,−1/2,αr+1, . . . ,αm)
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and
Z0 = diag(1/2, . . . ,1/2,βr+1, . . . ,βn−m),

where αi = 0 or 1 for i = r+1, . . . ,m and β j = 0 or −1 for j = r+1, . . . ,n−m .

Step III. Let

C0 =
[ √

3
2 Ir 0
0 0

]
and D0 =

[ √
3

2 Ir 0
0 0

]
.

Step IV. Pick any m×m and (n−m)× (n−m) nonsingular matrices P and Q , respec-
tively.

Step V. Let

K = PK0P
−1, Z = QZ0Q

−1, C = PC0Q
−1, D = QD0P

−1.

Then (K,Z,C,D) is a solution of (4).

With all possible choices of r , P , and Q , we get all the non-commuting solutions
of (4), from which all the non-commuting solutions of the Yang-Baxter matrix equation
(1) are thus obtained.

Next, we present a 5×5 example to illustrate our main results. Let

A =

⎡
⎢⎢⎢⎢⎣

5 0 −2 −4 0
18 1 −10 −20 2
4 0 −1 −4 0
4 0 −2 −3 0
6 0 −2 −4 −1

⎤
⎥⎥⎥⎥⎦ ,

then A2 = I and its Jordan form is

J = diag(1,1,1,−1,−1)

with

S =

⎡
⎢⎢⎢⎢⎣

1 2 3 1 1
0 1 1 2 1
0 2 4 1 1
1 1 1 1 1
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦ and S−1 =

⎡
⎢⎢⎢⎢⎣
−7 −1 4 9 −1
17 2 −10 −19 2
−8 −1 5 9 −1
−7 0 4 8 −1

5 0 −3 −6 1

⎤
⎥⎥⎥⎥⎦ .

By the above discussion, we can pick up r = 1,

K0 = diag(−1/2,0,1), Z0 = diag(1/2,−1),

C0 =

⎡
⎣

√
3

2 0
0 0
0 0

⎤
⎦ , D0 =

[ √
3

2 0 0
0 0 0

]
,
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and

P =

⎡
⎣ 1 2 3

0 1 1
0 2 4

⎤
⎦ , Q =

[
1 1
2 3

]
.

Then

K = PK0P
−1 =

⎡
⎣− 1

2 − 5
2

7
4

0 −1 1
2

0 −4 2

⎤
⎦ , C = PC0Q

−1 =

⎡
⎣ 3

√
3

2 −
√

3
2

0 0
0 0

⎤
⎦ ,

D = QD0P
−1 =

[ √
3

2 −
√

3
2 −

√
3

4√
3 −√

3 −
√

3
2

]
, Z = QZ0Q

−1 =
[

7
2 − 3

2
9 −4

]

and (K,Z,C,D) is a solution of (4). Therefore we obtain one particular non-commuting
solution of (1),

X =

⎡
⎢⎢⎢⎢⎣

1 2 3 1 1
0 1 1 2 1
0 2 4 1 1
1 1 1 1 1
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

− 1
2 − 5

2
7
4

3
√

3
2 −

√
3

2
0 −1 1

2 0 0
0 −4 2 0 0√
3

2 −
√

3
2 −

√
3

4
7
2 − 3

2√
3 −√

3 −
√

3
2 9 −4

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
−7 −1 4 9 −1
17 2 −10 −19 2
−8 −1 5 9 −1
−7 0 4 8 −1

5 0 −3 −6 1

⎤
⎥⎥⎥⎥⎦

=
1
4

⎡
⎢⎢⎢⎢⎣
−1848−172

√
3 −165−15

√
3 1093+99

√
3 2083+201

√
3 −237−23

√
3

−1008−160
√

3 −50−20
√

3 590+92
√

3 1150+188
√

3 −142−20
√

3
−1972−120

√
3 −180−15

√
3 1166+69

√
3 2224+141

√
3 −252−15

√
3

−1092−172
√

3 −75−15
√

3 643+99
√

3 1237+201
√

3 −147−23
√

3
−3560−612

√
3 −165−70

√
3 2083+352

√
3 4063+718

√
3 −505−78

√
3

⎤
⎥⎥⎥⎥⎦ .

4. Conclusions

As a continuation of our previous work [9], we have found all the solutions of
the Yang-Baxter matrix equation (1) for the class of matrices A such that A2 = I . In
doing so, we found all the non-commuting solutions of the equation for the general
case that the nonzero sub-matrices C and D in the solution matrix Y have no artificial
restriction. Our main result Theorem 3.1 followed from a general spectral perturbation
result and the fact that C and D have the same rank for all the solutions.
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