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Abstract. In this paper, we consider the notion of algebra-valued G-frame as a special case of
G-frame in a Hilbert C∗ -module. It is shown that every Hilbert module over a commutative
C∗ -algebra A admits an algebra-valued G-frame iff A is a C∗ -algebra of compact operators.

1. Introduction

M. Frank and D. R. Larson [3] generalized the classical frame theory in Hilbert
spaces to Hilbert C∗ -modules. They concluded from Kasparov’s stabilization theorem
that every countably (finitely) generated Hilbert C∗ -module over a unital C∗ -algebra
admits a frame. However, as it is asked in Problem 8.1 of [3], the interesting open
question is for which kind of C∗ -algebra A , every Hilbert A-module admits a frame.

In 2010, Li characterized a commutative unital C∗ -algebra that every Hilbert C∗ -
module over it has a frame as a finite dimensional C∗ -algebra [6]. Li’s result for non-
unital commutative C∗ -algebras is stated in [1] in the following way.

THEOREM 1.1. [1, Theorem. 1.4] Let A be a commutative C∗ -algebra. Then A
is a C∗ -algebra of compact operators (equivalently, it has discrete spectrum) if and
only if every Hilbert A-module has a frame.

As a generalization of frames, Sun in 2006 introduced G-frames in Hilbert spaces
[8]. Also, this concept has been generalized to Hilbert C∗ -modules in [5]. In this paper,
we define the notion of algebra-valued G-frame in a Hilbert C∗ -module, as a special
case of G-frame.

We investigate the existence problem for algebra-valued G-frames in Hilbert C∗ -
modules. In fact, we use a generalization of Serre-Swan theorem [4] and prove that for
A being a commutative C∗ -algebra, every Hilbert A-module admits an algebra-valued
G-frame iff A is a C∗ -algebra of compact operators. In particular, for A being a unital
commutative C∗ -algebra, every Hilbert A-module admits an algebra-valued G-frame
iff A is finite dimentional.

Assume that A is a C∗ -algebra and X ,Y are Hilbert A-modules. The family of
all bounded A-linear maps from X into Y is denoted by End(X ,Y ) . Also, I is an
arbitrary indexing set.

Mathematics subject classification (2010): Primary 46L08, Secondary 42C15, 46L05.
Keywords and phrases: Hilbert C∗ -modules, continuous field of Hilbert spaces, frames, G-frames.

c© � � , Zagreb
Paper OaM-13-12

197

http://dx.doi.org/10.7153/oam-2019-13-12


198 M. B. ASADI AND Z. HASSANPOUR-YAKHDANI

DEFINITION 1.2. Let {Yi : i ∈ I} be a family of Hilbert A-modules. A family
{Λi ∈ End(X ,Yi) : i ∈ I} is called a G-frame for X with respect to {Yi : i ∈ I} , if there
exist constants 0 < C � D < ∞ such that for every x ∈ X ,

C〈x,x〉 � ∑
i∈I

〈Λi(x),Λi(x)〉 � D〈x,x〉, (1.1)

where, by using the standard isometric embedding of A into its universal enveloping
von Neumann algebra A∗∗ , the value ∑i∈I〈Λi(x),Λi(x)〉 is the limit of the increasingly
ordered net of its finite partial sums with respect to the ultraweak topology on A∗∗ .

We remark that some authors use a slightly different definition so that each opera-
tor Λi is adjointable.

Obviously, every Hilbert A-module X has a G-frame. Indeed, one can consider
the identity map on X , where I is a singleton set and Yi = X , for i ∈ I . However, when
we envisage a frame {hi}i∈I in a Hilbert space H as a G-frame, we consider each hi as
a member of H∗ , the dual of H . Due to this, algebra-valued G-frame can be a proper
generalization of frame in Hilbert C∗ -modules.

DEFINITION 1.3. A family {Λi ∈ End(X ,A) : i ∈ I} that satisfies the properties
of a G-frame is called algebra-valued G-frame.

One can state an analogue of Proposition 3.1 in [6] for G-frames as follows.

PROPOSITION 1.4. A family {(Λi,Yi) : i ∈ I} is a G-frame for X , with G-frame
bounds C and D if and only if

Cϕ(〈x,x〉) � Σi∈Iϕ(〈Λi(x),Λi(x)〉 � Dϕ(〈x,x〉), (1.2)

for any x ∈ X and any state ϕ of A.

2. Hilbert modules over commutative C∗ -algebras

A generalization of Serre-Swan theorem states that the category of continuous
fields of Hilbert spaces over a locally compact Hausdorff space Z is equivalent to the
category of Hilbert C∗ -modules over the commutative C∗ -algebra A = C0(Z) [4, The-
orem. 4.8.]. We have applied this fact to show that every Hilbert module over a commu-
tative C∗ -algebra A admits an algebra-valued G-frame iff A is a C∗ -algebra of compact
operators.

DEFINITION 2.1. Let Z be a locally compact Hausdorff space. Consider
((Hz)z∈Z ,Γ) , where (Hz)z∈Z is a family of Hilbert spaces and Γ is a subset of ∏z∈Z Hz .
Also, we set

C0 −∏
z∈Z

Hz = {x ∈ ∏
z∈Z

Hz : [z �→ ‖x(z)‖] ∈C0(Z)}.

The pair ((Hz)z∈Z,Γ) satisfying the following properties is said to be a continuous field
of Hilbert spaces.
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1) Γ is a linear subspace of C0 −∏z∈Z Hz .

2) The set {x(z) : x ∈ Γ} equals to Hz , for every z ∈ Z .

3) If x ∈C0 −∏z∈Z Hz and for every z ∈ Z and every ε > 0 there is a x′ ∈ Γ such
that ‖x(s)− x′(s)‖ < ε in some neighborhood of z , then x ∈ Γ .

The space H = ∏z∈Z Hz is called the total space.

REMARK 2.2. a) Note that the function z �→ 〈x(z),y(z)〉 is an element of C0(Z) ,
for every x,y ∈ Γ . Also, if the topological space Z is discrete, then Γ = C0 −∏z∈Z Hz

[2].
b) A morphism ψ : ((Hz)z∈Z,Γ) −→ ((Kz)z∈Z ,Γ′) of continuous fields of Hilbert

spaces is a family of linear maps {ψz : Hz −→ Kz : z ∈ Z} such that the induced map
ψ : H −→ K on the total spaces satisfies {ψ ◦ x : x ∈ Γ} ⊆ Γ′ and also the map
z �→ ‖ψz‖ is locally bounded. By [4, Proposition 4.7.], Γ has a structure of Hilbert
C0(Z)-module with pointwise multiplication and inner product

〈x,y〉(z) = 〈x(z),y(z)〉 (x,y ∈ Γ,z ∈ Z).

Indeed, the category of Hilbert C0(Z)-modules is equivalent to the category of
continuous fields of Hilbert spaces. In particular, if ((Hz)z∈Z,Γ) and ((Kz)z∈Z,Γ′) are
the corresponding continuous fields of Hilbert spaces to Hilbert C0(Z)-modules X and
Y , then for each Λ in End(X ,Y ) , the map Λz : Hz −→ Kz defined by Λz(x(z)) =
(Λ(x))(z) is a well-defined bounded linear operator, for every z ∈ Z [4].

c) If we consider A = C0(Z) as a Hilbert A-module, in the natural way, then the
corresponding continuousfield of Hilbert spaces to Hilbert A-module A is ((Cz)z∈Z,ΓA) ,
where Cz = C , for every z ∈ Z and ΓA = {( f (z))z∈Z : f ∈C0(Z)} . In particular, when
Z is discrete then ΓA = C0 −∏z∈Z Cz .

THEOREM 2.3. If Z is a discrete topological space, then every Hilbert C0(Z)-
module admits a algebra-valued G-frame.

Proof. Let X be a Hilbert C∗ -module over a commutative C∗ -algebra A =C0(Z) ,
where Z is a discrete topological space. There is a continuous field of Hilbert spaces
((Hz)z∈Z ,Γ) that X is of the form Γ . Since Z is discrete, then Γ = C0 −∏z∈Z Hz , by
part (a) of Remark 2.2.

Let { f z
i : i ∈ Iz} be an orthonormal basis for Hz and Cz = C , for every z ∈ Z .

For each i ∈ I =∪z∈ZIz , we define Λi : Γ −→C0−∏z∈Z Cz by Λi((xz)z∈Z) = (λi,z)z∈Z,
where xz ∈ Hz and λi,z = 〈xz, f z

i 〉 if i ∈ Iz and λi,z = 0 otherwise. Clearly, for every
x = (xz)z∈Z ∈ Γ , we have

〈x,x〉(z) = 〈xz,xz〉 = Σi∈I〈Λi(x),Λi(x)〉(z).
Hence, {Λi}i∈I is a G-frame for Γ . On the other hand, by part (c) of Remark 2.2, there
is an A-module isomorphism Ψ from C0−∏z∈Z Cz onto A . Obviously, {Ψ◦Λi}i∈I is
an algebra-valued G-frame for Γ = X . �

The following proposition is a generalization of [6, Proposition 2.4].
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PROPOSITION 2.4. [1, Proposition 1.3] Let Z be an infinite non-discrete lo-
cally compact Hausdorff space. Then there exist a continuous field of Hilbert spaces
((Hz)z∈Z ,Γ) over Z , a countable subset W ⊆ Z and a point z∞ ∈ W \W that Hz is
separable for every z ∈W and Hz∞ is non-separable.

THEOREM 2.5. Let Z be an infinite non-discrete locally compact Hausdorff space.
Then there is a Hilbert C0(Z)-module that admits no algebra-valued G-frame.

Proof. With the notations in Proposition 2.4, we show that the Hilbert C0(Z)-
module Γ admits no algebra-valued G-frames. To get a contradiction, assume that
A = C0(Z) and {Λi : Γ −→ A : i ∈ I} is an algebra-valued G-frame for Γ , with bounds
C and D . Hence, for every x ∈ Γ and every z ∈ Z ,

C‖x(z)‖2 � Σi∈I〈Λi(x),Λi(x)〉(z) � D‖x(z)‖2.

On the other hand, the Hilbert A-module A is isomorphic to ΓA . Hence, by part
(b) of Remark 2.2, for every i ∈ I , Λi corresponds to {Λi,z : Hz −→ Cz : z ∈ Z}. By
Riesz representation theorem, for every z ∈ Z we can find a subset { f z

i : i ∈ I} of Hz

such that for every x ∈ Γ ,
Λi,z(x(z)) = 〈x(z), f z

i 〉. (2.1)

Therefore, for every x ∈ Γ ,

C‖x(z)‖2 � Σi∈I〈Λi,z(x(z)),Λi,z(x(z))〉 � D‖x(z)‖2.

By Equation 2.1 and Axiom 2 of Definition 2.1, for every z ∈ Z and every w ∈ Hz ,

C〈w,w〉 � Σi∈I〈w, f z
i 〉〈 f z

i ,w〉 � D〈w,w〉. (2.2)

The remaining part of the proof is the same as the proof of Lemma 3.2 in [6]. In fact,
for each z ∈ Z , we first choose an orthonormal basis Sz for Hz . By (2.2), for every
w ∈ Sz , Fw = {i ∈ I : 〈w, f z

i 〉 = 0} is countable. For every z ∈W , Sz is countable, so
Fz = {i ∈ I : f z

i = 0} , which is equal to
⋃

w∈Sz
Fw , is countable. Hence, F =

⋃
z∈W Fz is

countable and also for every i ∈ I \F and every z ∈W , f z
i = 0.

On the other hand, by Remark 2.2, the map z �→ 〈 f z
i , f z

i 〉 = Λiz( f z
i ) is continuous.

Hence, for every i ∈ I \F, f z∞
i = 0, because z∞ ∈W .

Since Hz∞ is nonseparable, there is a non-zero w ∈ Hz∞ that is orthogonal to f z∞
i ,

for every i ∈ F . Therefore, for every i ∈ I , we have 〈 f z∞
i ,w〉 = 0. By (2.2), w is equal

to zero, that is a contradiction. �

COROLLARY 2.6. Every Hilbert C∗ -module over a commutative C∗ -algebra A
admits an algebra-valued G-frame iff A is C∗ -algebra of compact operators.

Proof. By Theorems 2.3 and 2.5, every Hilbert C∗ -module over a commutative
C∗ -algebra A =C0(Z) admits an algebra-valued G-frame iff Z is discrete. On the other
hand, C0(Z) is a C∗ -algebra of compact operators iff Z is discrete [2, 4.7.20]. �
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