EXTENSIONS OF HIAI-LIN TYPE EIGENVALUE INEQUALITY

Jian Shi

(Communicated by F. Kittaneh)

Abstract. In this paper, we prove several extensions of Hiai-Lin type eigenvalue inequality which extends the relative result before.

1. Introduction and main results

A capital letter, such as T, stands for an $n \times n$ matrix. $T>0$ means that T is a positive definite matrix. $\lambda_{i}(T)$ is the i th largest eigenvalue of T if T is Hermitian.

Let $A \sharp_{t} B$ stands for the weighted geometric mean. In other words,

$$
A \sharp_{t} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{t} A^{\frac{1}{2}}
$$

if $A, B>0$ and $t \in[0,1]$. Similarly, $A দ_{t} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{t} A^{\frac{1}{2}}$ if $A, B>0$ and $t \notin$ $[0,1]$.

In [1], F. Hiai and M. Lin proved the following eigenvalue inequality.
THEOREM 1.1. ([1]) If $A, B>0$, then

$$
\begin{equation*}
\prod_{i=1}^{k} \lambda_{i}(A B) \geqslant \prod_{i=1}^{k} \lambda_{i}\left(\left(A \sharp_{t} B\right)\left(A \sharp_{1-t} B\right)\right), \quad k=1,2, \cdots, n \tag{1.1}
\end{equation*}
$$

holds for $t \in[0,1]$.
In this paper, we shall show extension of Theorem 1.1 as follows.
THEOREM 1.2. If $A, B>0$, then

$$
\begin{equation*}
\prod_{i=1}^{k} \lambda_{i}(A B)^{l} \geqslant \prod_{i=1}^{k} \lambda_{i}\left(\left(A^{-r-1}\left(A^{2 r+1} \natural_{\frac{(1-2 t+r) \alpha}{1-t+r}}\left(A \sharp_{1-t} B\right)\right) A^{-r-1}\right)(A \sharp-(1-2 t+r) \alpha B)\right) \tag{1.2}
\end{equation*}
$$

holds for $t \in\left[0, \frac{1}{2}\right], \alpha \in[0,1]$ and $1 \geqslant-r>1-t \geqslant \frac{1}{2}, k=1,2, \cdots, n$, where $l=$ $-\frac{1-2 t+r}{1-t+r} \cdot r \alpha$.

[^0]THEOREM 1.3. If $A, B>0$, then

$$
\begin{equation*}
\prod_{i=1}^{k} \lambda_{i}(A B)^{l} \geqslant \prod_{i=1}^{k} \lambda_{i}\left(\left(A^{-r-1}\left(A^{2 r+1} \natural_{\frac{\alpha r}{1-t+r}}\left(A \not \sharp_{1-t} B\right)\right) A^{-r-1}\right)(A \sharp-\alpha r B)\right) \tag{1.3}
\end{equation*}
$$

holds for $t \in\left[\frac{1}{2}, 1\right], \alpha \in[0,1]$ and $1 \geqslant-r>1-t \geqslant 0, k=1,2, \cdots, n$, where $l=$ $-\frac{\alpha r^{2}}{1-t+r}$.

In order to prove the main result we list a famous operator inequality - Tanahashi inequality here.

THEOREM 1.4. (Tanahashi inequality [2]) If $A \geqslant B \geqslant 0$ with $A>0$, then

$$
\begin{equation*}
A^{\frac{p^{\prime}+2 r^{\prime}}{q^{\prime}}} \geqslant\left(A^{r^{\prime}} B^{p^{\prime}} A^{r^{\prime}}\right)^{\frac{1}{q^{\prime}}} \tag{1.4}
\end{equation*}
$$

holds for $0 \leqslant p^{\prime} \leqslant 1,0<q^{\prime} \leqslant 1$ and $-1 \leqslant 2 r^{\prime}<0$ satisfying

$$
\begin{equation*}
-2 r^{\prime}\left(1-q^{\prime}\right) \leqslant p^{\prime} \leqslant q^{\prime}-2 r^{\prime}\left(1-q^{\prime}\right) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{-2 r^{\prime}\left(1-q^{\prime}\right)-q^{\prime}}{1-2 q^{\prime}} \leqslant p^{\prime} \leqslant \frac{-2 r^{\prime}\left(1-q^{\prime}\right)}{1-2 q^{\prime}} \quad\left(\text { when } q^{\prime}<1 / 2\right) \tag{1.6}
\end{equation*}
$$

REMARK 1.1. If we put $r^{\prime}=r / 2, p^{\prime}=p$, and $q^{\prime}=\frac{p^{\prime}+r^{\prime}}{r^{\prime}}$ in (1.4) and (1.5), then we can obtain that $A^{r} \geqslant\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{r}{p+r}}$; If we put $r^{\prime}=r / 2, p^{\prime}=p$, and $q^{\prime}=\frac{p^{\prime}+r^{\prime}}{2 p^{\prime}-1+r^{\prime}}$ in (1.4) and (1.6), then we can obtain that $A^{2 p-1+r} \geqslant\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{2 p-1+r}{p+r}}$. Thus, we can obtain the reformulations of Tanahashi inequality[2]: If $A \geqslant B \geqslant 0$ with $A>0, r<0$, then the following inequalities hold.

$$
\begin{cases}\text { Case 1. } A^{r} \geqslant\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{r}{p+r}}, & \text { if } 1 \geqslant-r>p \geqslant 0 \text { with } p \leqslant \frac{1}{2} \\ \text { Case 2. } A^{2 p-1+r} \geqslant\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{2 p-1+r}{p+r}}, & \text { if } 1 \geqslant-r>p \geqslant \frac{1}{2}\end{cases}
$$

2. Proofs of main results

In this section, we shall prove Theorem 1.2 and Theorem 1.3.
Proof of Theorem 1.2. By the well-known antisymmetric tensor power technique, we may need to prove that $B \leqslant A^{-1}$ ensures that

$$
\begin{equation*}
A^{-r-1}\left(A^{2 r+1} \natural_{\frac{(1-2 t+r) \alpha}{1-t+r}}\left(A \sharp_{1-t} B\right)\right) A^{-r-1} \leqslant\left(A \sharp_{-(1-2 t+r) \alpha} B\right)^{-1} . \tag{2.1}
\end{equation*}
$$

$B \leqslant A^{-1}$ is equivalent to $A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leqslant A^{-2}$.
Let $p=1-t$ and apply $A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leqslant A^{-2}$ to Tanahashi inequality(Case 2), we have

$$
\begin{equation*}
A^{-2(1-2 t+r)} \geqslant\left(A^{-r}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{1-t} A^{-r}\right)^{\frac{1-2 t+r}{1-t+r}} \tag{2.2}
\end{equation*}
$$

Because $-(1-2 t+r) \in[0,1]$ and $A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leqslant A^{-2}$,

$$
\begin{equation*}
\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{1-2 t+r} \geqslant A^{-2(1-2 t+r)} \tag{2.3}
\end{equation*}
$$

holds by Löwner-Heinz inequality.
Continuing applying Löwner-Heinz inequality for $\alpha \in[0,1]$ to (2.2) and (2.3), we have

$$
\begin{equation*}
\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{(1-2 t+r) \alpha} \geqslant\left(A^{-r}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{1-t} A^{-r}\right)^{\frac{(1-2 t+r) \alpha}{1-t+r}} . \tag{2.4}
\end{equation*}
$$

Notice that

$$
\begin{align*}
& A^{-r-1}\left(A^{2 r+1} \natural_{\frac{(1-2 t+r) \alpha}{1-t+r}}\left(A_{1-t} B\right)\right) A^{-r-1} \\
= & A^{-r-1} A^{r+\frac{1}{2}}\left(A^{-r-\frac{1}{2}} A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{1-t} A^{\frac{1}{2}} A^{-r-\frac{1}{2}}\right)^{\frac{(1-2 t+r) \alpha}{1-t+r}} A^{r+\frac{1}{2}} A^{-r-1} \tag{2.5}\\
= & A^{-\frac{1}{2}}\left(A^{-r}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{1-t} A^{-r}\right)^{\frac{(1-2 t+r) \alpha}{1-t+r}} A^{-\frac{1}{2}}
\end{align*}
$$

and

$$
\begin{align*}
& (A \sharp-(1-2 t+r) \alpha \\
= & \left(A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{-(1-2 t+r) \alpha} A^{\frac{1}{2}}\right)^{-1} \tag{2.6}\\
= & A^{-\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{(1-2 t+r) \alpha} A^{-\frac{1}{2}} .
\end{align*}
$$

Together with (2.4), (2.5) and (2.6), (2.1) holds obviously.

Proof of Theorem 1.3. We only need to prove that $B \leqslant A^{-1}$ ensures that

$$
\begin{equation*}
A^{-r-1}\left(A^{2 r+1} \natural_{\frac{\alpha r}{1-t+r}}\left(A \not \sharp_{1-t} B\right)\right) A^{-r-1} \leqslant(A \sharp-\alpha r B)^{-1} . \tag{2.7}
\end{equation*}
$$

Notice that $B \leqslant A^{-1} \Longleftrightarrow A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leqslant A^{-2}$. Let $p=1-t$ and apply $A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leqslant A^{-2}$ to Tanahashi inequality(Case 1), we have

$$
\begin{equation*}
A^{-2 r} \geqslant\left(A^{-r}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{1-t} A^{-r}\right)^{\frac{r}{1-t+r}} . \tag{2.8}
\end{equation*}
$$

Because $-r \in[0,1]$ and $A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leqslant A^{-2}$, then

$$
\begin{equation*}
\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{r} \geqslant A^{-2 r} \tag{2.9}
\end{equation*}
$$

holds by Löwner-Heinz inequality.
Continuing applying Löwner-Heinz inequality for $\alpha \in[0,1]$ to (2.8) and (2.9), we have

$$
\begin{equation*}
\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha r} \geqslant\left(A^{-r}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{1-t} A^{-r}\right)^{\frac{\alpha r}{1-t+r}} . \tag{2.10}
\end{equation*}
$$

Notice that

$$
\begin{align*}
& A^{-r-1}\left(A^{2 r+1} \downharpoonright \frac{\alpha r}{1-t+r}\left(A \not{ }_{1-t} B\right)\right) A^{-r-1} \\
= & A^{-r-1} A^{r+\frac{1}{2}}\left(A^{-r-\frac{1}{2}} A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{1-t} A^{\frac{1}{2}} A^{-r-\frac{1}{2}}\right)^{\frac{\alpha r}{1-t+r}} A^{r+\frac{1}{2}} A^{-r-1} \tag{2.11}\\
= & A^{-\frac{1}{2}}\left(A^{-r}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{1-t} A^{-r}\right)^{\frac{\alpha r}{1-t+r}} A^{-\frac{1}{2}}
\end{align*}
$$

and

$$
\begin{align*}
& (A \sharp-\alpha r B)^{-1} \\
= & \left(A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{-\alpha r} A^{\frac{1}{2}}\right)^{-1} \tag{2.12}\\
= & A^{-\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha r} A^{-\frac{1}{2}} .
\end{align*}
$$

Together with (2.10), (2.11) and (2.12), (2.7) holds obviously.

3. Some corollaries of main results

In this section, we show some corollaries of main results.
By computing,

$$
\begin{aligned}
& \prod_{i=1}^{n} \lambda_{i}\left(\left(A^{-r-1}\left(A^{2 r+1} \natural_{\frac{(1-2 t+r) \alpha}{1-t+r}}\left(A \not \sharp_{1-t} B\right)\right) A^{-r-1}\right)\left(A \not \sharp_{-(1-2 t+r) \alpha} B\right)\right) \\
= & \operatorname{det}\left(\left(A^{-r-1}\left(A^{2 r+1} \natural_{\frac{(1-2 t+r) \alpha}{1-t+r}}\left(A \not \sharp_{1-t} B\right)\right) A^{-r-1}\right)(A \sharp-(1-2 t+r) \alpha B)\right) \\
= & \operatorname{det}\left(A^{-r-1}\left(A^{2 r+1} \natural_{\frac{(1-2 t+r) \alpha}{1-t+r}}\left(A \not \sharp_{1-t} B\right)\right) A^{-r-1}\right) \cdot \operatorname{det}(A \sharp-(1-2 t+r) \alpha B) \\
= & \operatorname{det} A^{-r-1} \cdot \operatorname{det}\left(A^{2 r+1} \natural_{\frac{(1-2 t+r) \alpha}{1-t+r}}\left(A \not \sharp_{1-t} B\right)\right) \cdot \operatorname{det} A^{-r-1} \cdot \operatorname{det}(A \sharp-(1-2 t+r) \alpha B) \\
= & \operatorname{det} A^{-2 r-2} \cdot \operatorname{det} A^{(2 r+1)\left(1-\frac{(1-2 t+r) \alpha}{1-t+r}\right)} \cdot \operatorname{det}\left(A \not \sharp_{1-t} B\right)^{\frac{(1-2 t+r) \alpha}{1-t+r}} \cdot \operatorname{det}(A \sharp-(1-2 t+r) \alpha B) \\
= & \operatorname{det} A^{-2 r-2+(2 r+1)\left(1-\frac{(1-2 t+r) \alpha}{1-t+r}\right)} \cdot \operatorname{det} A^{\frac{(1-2 t+r) \alpha t}{1-t+r}} \cdot \operatorname{det} B^{\frac{(1-2 t+r) \alpha(1-t)}{1-t+r}} \\
& \cdot \operatorname{det} A^{1+(1-2 t+r) \alpha} \cdot \operatorname{det} B^{-(1-2 t+r) \alpha} \\
= & \operatorname{det} A^{-\frac{1-2 t+r}{1-t+r} \cdot r \alpha} \cdot \operatorname{det} B^{-\frac{1-2 t+r}{1-t+r} \cdot r \alpha} \\
= & \operatorname{det}(A B)^{-\frac{1-2 t+r}{1-t+r} \cdot r \alpha}=\prod_{i=1}^{n} \lambda_{i}(A B)^{-\frac{1-2 t+r}{1-t+r} \cdot r \alpha},
\end{aligned}
$$

we have the following corollary.
Corollary 3.1. If $A, B>0$, then

$$
\begin{aligned}
\left(A^{\frac{1}{2}} B A^{\frac{1}{2}}\right)^{l} \underset{(\log)}{\succ} & (A \sharp-(1-2 t+r) \alpha B)^{\frac{1}{2}}\left(A^{-r-1}\left(A^{2 r+1} \natural_{\frac{(1-2 t+r) \alpha}{1-t+r}}\left(A \not \sharp_{1-t} B\right)\right) A^{-r-1}\right) \\
& \times(A \sharp-(1-2 t+r) \alpha B)^{\frac{1}{2}}
\end{aligned}
$$

holds for $t \in\left[0, \frac{1}{2}\right], \alpha \in[0,1]$ and $1 \geqslant-r>1-t \geqslant \frac{1}{2}$, where $l=-\frac{1-2 t+r}{1-t+r} \cdot r \alpha$.
Similarly, we can obtain the following corollary.

Corollary 3.2. If $A, B>0$, then
$\left(A^{\frac{1}{2}} B A^{\frac{1}{2}}\right)^{l} \underset{(\log)}{\succ}(A \sharp-\alpha r B)^{\frac{1}{2}}\left(A^{-r-1}\left(A^{2 r+1} \natural_{\frac{\alpha r}{}}^{1-t+r}\left(A \not \sharp_{1-t} B\right)\right) A^{-r-1}\right)(A \sharp-\alpha r B)^{\frac{1}{2}}$
holds for $t \in\left[\frac{1}{2}, 1\right], \alpha \in[0,1]$ and $1 \geqslant-r>1-t \geqslant 0$, where $l=-\frac{\alpha r^{2}}{1-t+r}$.
Next, we show some simple corollaries directly from main results.
Corollary 3.3. If $A, B>0$, then

$$
\prod_{i=1}^{k} \lambda_{i}(A B)^{-r} \geqslant \prod_{i=1}^{k} \lambda_{i}\left(\left(A^{-r-1}\left(A \not \sharp_{1-t} B\right) A^{-r-1}\right)\left(A \not \sharp_{-(1-t+r)} B\right)\right)
$$

holds for $t \in\left[0, \frac{1}{2}\right]$ and $1 \geqslant-r>1-t \geqslant \frac{1}{2}$, where $k=1,2, \cdots, n$.
Proof. Notice that $\frac{1-t+r}{1-2 t+r} \in[0,1]$. Put $\alpha=\frac{1-t+r}{1-2 t+r}$ in Theorem 1.2.
Corollary 3.4. If $A, B>0$, then

$$
\prod_{i=1}^{k} \lambda_{i}(A B)^{-r} \geqslant \prod_{i=1}^{k} \lambda_{i}\left(\left(A^{-r-1}\left(A \not \sharp_{1-t} B\right) A^{-r-1}\right)\left(A \not \sharp_{-(1-t+r)} B\right)\right)
$$

holds for $t \in\left[\frac{1}{2}, 1\right]$ and $1 \geqslant-r>1-t \geqslant 0$, where $k=1,2, \cdots, n$.
Proof. Notice that $\frac{1-t+r}{r} \in[0,1]$. Put $\alpha=\frac{1-t+r}{r}$ in Theorem 1.3.
REMARK 3.1. If we put $r=-1$ in Corollary 3.3 and Corollary 3.4, they are just Theorem 1.1.

REMARK 3.2. Together with Corollary 3.3 and Corollary 3.4, it is obvious that

$$
\prod_{i=1}^{k} \lambda_{i}(A B)^{-r} \geqslant \prod_{i=1}^{k} \lambda_{i}\left(\left(A^{-r-1}\left(A \not \sharp_{1-t} B\right) A^{-r-1}\right)(A \sharp-(1-t+r) B)\right)
$$

holds for $1 \geqslant-r>1-t \geqslant 0$, where $A, B>0, k=1,2, \cdots, n$.
Corollary 3.5. If $A, B>0$, then

$$
\prod_{i=1}^{k} \lambda_{i}(A B)^{2 \alpha} \geqslant \prod_{i=1}^{k} \lambda_{i}\left(\left(A^{-1} \bigsqcup_{2 \alpha}\left(A \sharp_{1-t} B\right)\right)\left(A \sharp_{2 t \alpha} B\right)\right)
$$

holds for $t \in\left[0, \frac{1}{2}\right]$ and $\alpha \in[0,1]$, where $k=1,2, \cdots, n$.
Proof. Put $r=-1$ in Theorem 1.2.

Corollary 3.6. If $A, B>0$, then

$$
\prod_{i=1}^{k} \lambda_{i}(A B)^{\frac{\alpha}{t}} \geqslant \prod_{i=1}^{k} \lambda_{i}\left(\left(A^{-1} \natural_{\frac{\alpha}{t}}\left(A \not{ }_{1-t} B\right)\right)\left(A \not \sharp_{\alpha} B\right)\right)
$$

holds for $t \in\left[\frac{1}{2}, 1\right]$ and $\alpha \in[0,1]$, where $k=1,2, \cdots, n$.
Proof. Put $r=-1$ in Theorem 1.3.
REMARK 3.3. If we put $\alpha=1 / 2$ in Corollary 3.5 and $\alpha=t$ in Corollary 3.6, they are just Theorem 1.1.

Acknowledgements. The author thanks anonymous reviewers for their helpful comments on an earlier draft of this paper. The author is supported by Natural Science Foundation of China (No. 11702078, 61702019) and NSF of Hebei Science Foundation (No. A2018201033).

REFERENCES

[1] F. Hiai, M. Lin, On an eigenvalue inequality involving the Hadamard product, Linear Algebra Appl. 515 (2017), 313-320.
[2] K. Tanahashi, The Furuta inequality with negative powers, Proc. Amer. Math. Soc. 127 (1999), 1683-1692.

[^0]: Mathematics subject classification (2010): 47A63.
 Keywords and phrases: Eigenvalues, Tanahashi inequality, Hiai-Lin type inequality.

