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COMMUTATIVITY AND SPECTRAL PROPERTIES OF 4" —ORDER
SLANT LITTLE HANKEL OPERATORS ON THE BERGMAN SPACE

ANURADHA GUPTA AND BHAWNA GUPTA

(Communicated by V. V. Peller)

Abstract. In this paper, we introduce the notion of k' -order slant little Hankel operator on
the Bergman space with essentially bounded harmonic symbols on the unit disc and obtain its
algebraic and spectral properties. We have also discussed the conditions under which k' -order
slant little Hankel operators commute.

1. Introduction

Let D= {z € C: |z] < 1} be the open unit disc and dA = dxdy denotes the
Lebesgue area measure on D, normalised so that the measure of ) is 1. Let L?(ID,dA)
be the space of all Lebesgue measurable functions f on D for which

If1P = [ 1£()PdAG) <

It forms a Hilbert space with inner product
(r.8) = [ F@)e@dAC).

The Bergman space L2(ID,dA) consists of all analytic functions f on I such that
f € L*(D,dA) and is closed subspace of Hilbert space L?(ID,dA). It is well known that
{V/n+12"}_, is an orthonormal basis for L2(D,dA) and the orthogonal projection
P:L*(D,dA) — L2(D,dA) is an integral operator

Pr(z) = (f,K.) = /D K (z,w) £ (w)dA(w),

where K(z,w) = K, (z) = m is the unique reproducing kernel of L2(ID,dA). The

space L=(ID,dA) is the Banach space of Lebesgue measurable functions f on I such
that || f]|e. = esssup{|f(z)|:z € D} < e and H..(ID,dA) denotes the set of all analytic
functions of the space L™(ID,dA).
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The theory of Hankel operators on the Hardy spaces is an important area of mathe-
matical analysis and lots of applications in different domains of mathematics have been
found such as interpolation problems, rational approximation, stationary processes or
pertubation theory [10, 1 1]. In the year 1996, M. C. Ho [8] investigated the basic prop-
erties of slant Toeplitz operators on Hardy spaces. After that in the year 2006, Arora
[2] introduced the class of slant Hankel operators on Hardy spaces and discussed its
characterizations.

In the present paper, we study spectral and commutative properties of & -order
slant little Hankel operators on the Bergman space with essentially bounded harmonic
symbols. More precisely, we describe the conditions under which k' -order slant little
Hankel operators commute and we prove that spectrum and approximate point spectrum
of S’q“) are same where ¢(z) = Zf-vzo 7' and N € {0,1,---2k — 1}. Basic properties of
the Hardy space and Bergman spaces can be found in [5, 6]. We refer [2, 3, 8, 12] for
the applications and extensions of study to Hankel operators, slant Toeplitz operators,
slant Hankel operators and its generalization on Hardy spaces. Let T be a bounded
linear operator on a complex Banach space X then spectrum of 7 is defined as the set
of all complex number A such that A7 — T is not invertible in the algebra B(X), where
I denotes the identity operator on X and B(X) denotes the set of all bounded linear
operators on X . The spectrum of 7 is classified into three categories: point spectrum,
op(T); residual spectrum, og(7T') and continuous spectrum, o¢(T) where

op(T)={A €C:ker(AI-T) # (0)},
or(T)={A €C:ker(AI—T)=(0) and Range(AI —T)~ # X},
oc(T)={A € C:ker(Al—T) = (0) and Range(Al — T) # Range(AI—T)” =X }.

There are some overlapping divisions of spectrum also, namely approximate point spec-
trum and compression spectrum where approximate point spectrum of 7 is the set of all
complex number A such that A7 — T is not bounded below and compression spectrum
of T is the set of all complex number A such that Range(Al—T)~ #X.

2. The k' -order slant little Hankel operators on L2(ID,dA)

Let ¢ € L(D,dA) then forany f € L2(ID,dA), the Toeplitz operator Ty : L2(ID,dA)
— L2(D,dA) is defined as Ty (f) = P(¢ f) and the little Hankel operator Hy : L2(D,dA)
— L2(D,dA) is defined as Hy(f) = PJMy(f) where P is the orthogonal projection of
L*(D,dA) onto L2(D,dA), J : L*(D,dA) — L*(D,dA) is defined by J(f(z)) = f(z)
and M, is the multiplication operator on L2(D,dA) defined as My (f) = ¢ f. It is well
known that Hy is bounded with ||Hy|| < ||¢||~. For ¢ = Z?:Oaj2j+z;°:1bjzj €
L*(D,dA), the (m,n)" entry of matrix representation of little Hankel operator on
L%(D,dA) with respect to orthonormal basis {v/n+ 12"}, is
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<H¢ n+ 17", Vm+ lzm> =vn+1vm+1(PJ(¢7"),7")
=vn+1lvm+1 <(2 ajfj+ Ebi,'Zj)Z",Zm>
j=0 =1
=vn+1lvm+1 Eaj<2_.jzn,2_.m>
=0
_vnt+lym+1

a
(m+n+1) "
and its matrix representation is
[ a0 La1 dzar a3z Lay ]
V2T V3T V4 V5
L 2, V6, V8, V10
ﬁal 3a2 4a3 5Cl4 6a5.
[Hol= |1, V6, 3, VB, Vi
32 T4 544 Tgmds Ty de
whose adjoint is given by
Mo— L 1 —— 1= 1_— T
a /4 52 m43 Ed4
Lg 2g7 Yogr VB V10
Rl 342 a3 T5d4 —gmds
*
Hol" = 1 o Vo 3 vViZg V5,
342 743 544 T ds T7de

From the above matrices, we conclude that H; =H p where (ﬁ(z) =27 0a2 T4 P b_ij
e L (D,dA).

For k > 2, define W, : L2(D,dA) — L2(ID,dA) by Wi (") = 2", Wi (Z¥P) =0
forall n€ NU{0} and p=1,2,...k— 1. Clearly, W; is a bounded linear operator with
[Wi|| = vk and the adjoint of W; is given by W (") = %ka for m > 0 (see [9]).

In year 2008, Arora and Bhola [3] discussed about the k" -order slant Hankel
operators acting on H> space. We extend the definition of little Hankel operators on
the Bergman space to k" -order slant little Hankel operators in the following manner:
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DEFINITION 1. For k >2 and ¢(z) = ¥79a;7/ + X7, bz’ in L*(D,dA), a
linear operator Sy : L5 (D,dA) — L3 (DD,dA) is defined by
Se(f) = WiHy (f) for all f € LZ(DD,dA).
We call S’;) , the k" -order slant little Hankel operator on L2(ID,dA) with symbol ¢ and
1561 = IWeHo | < IWell |Ho | = VKI|Holl < VEI|9]|.

Thus, S’; is bounded. We denote the set of all k" -order slant little Hankel operators on
L2(D,dA) by SHO(L2).

The (m,n)"™ entry of matrix representation of Sj on L(ID,dA) with respect to
orthonormal basis {v/n+ 12"} is

<S’q§ nt 12 Vmt 1zm> — VnrIvm+1 (WkPJ(q)z”),zm>
I L (PI(62"), Wy ")

k |
— i IVmET{ Pi(e), z"’”>

km+1 _
=vn+1 m—|—1< Zajz —|—2b,z’ m—zkm>

_ Vn+lkm+1) &
= P Z() <ZZ z" >
_ Wnt1(km+1) p
 VmFI(n+km+1) o

and its matrix representation is given as

r 1 1 1 1 B
a \/Eal \/gaz \/Ea3 ﬁa4 .

1 (k+1)V2

) (k+1)v3 (k+1)vE (k+1)v5
5 Ak (k+2)\/§ak+1 (k+3)\/§ak+2 (k+4)\/§ak+3 (k+5)\/§ak+4

(2k+1)V2 (2k+1)V3 (2k+1)V4 (2k+1)V5 . (@D

1
(2kr2)v3 12K+ (2 3) 3A2KA2 (i a) 3A2KA3 (i s) 3 A2k

V3

Az

For k=2, S’q“, is simply called slant little Hankel operator on L2(ID,dA). It is denoted
by Sy where W, is denoted by W.

NOTE 1. Since b; does not appear in the matrix (2.1) for any natural number j

— , 2
therefore we have Sy.. S% 4T3 b = SZ}‘;Oujff on L;(D,dA).



SLANT LITTLE HANKEL OPERATORS ON THE BERGMAN SPACE 213

PROPOSITION 1. For ¢1,¢, in L”(D,dA) and A;,A; € C then
k k

i) S7Ll¢1+7tz¢2 7L1S¢1 + A2S¢2

ii) J is a self adjoint unitary operator on L*(ID,dA).

The following proposition follows directly from the above matrix with respect to
the orthonormal basis.

PROPOSITION 2. The mapping I': L™(ID,dA) — SHO(L) defined by T(¢) = S},
is linear but not one- one. For, if ¢; — ¢ € zH.(ID,dA) for some ¢1,¢, € L*(ID,dA)
then S’q‘)l = S’;)z . This gives that the operator S’;) does not have unique symbol ¢ .

In [4], Arora and Bhola obtained the point spectrum of k" -order slant Hankel
operators on the space H> with symbol function z' for i > 0 and related its spectrum
and approximate point spectrum. Similar to their work, we obtain the following results.

THEOREM 1. If ¢(z) = YN, z' € L™(D,dA) where N € {0,1,---2k— 1} then the
point spectrum of S](; is

G(Sk)— {O,l} ifOSKN<k
{072’173’2} lfngSZk_17
2k+3+\/ 22 +8k+9 2k+3—/2k2+8k+9
where A« k+2 = W .

Proof. Let A € GP(S’(;) then there exists f # 0 in L2(ID,dA) such that S¥ of =Af.
Consider f =Y (a,Z" in L2(D,dA) then Wi PJMy(f) = Af, giving

N e w
WPT| Y 7Y and" | =4 Y and"
i=0 n=0 n=0
then WP (3N (3o and2") = A 35 ganz". Thus,

N3 i PR NEPR
(22 ) )—knfz)anz. (2.2)

0n=0

Case 1. If 0 < N < k, then equation (2.2) gives ZN
yields, Lag = 21’:0 i+1al and Aa, =0 foralln>1.

If A 420 and A # 1 then a, =0 for all n > 1. This yields ay = Aag which gives
ap =0 leads to f =0, a contradiction. Hence, 0 is the eigen value of S’(; corresponding

0 l+l A’ 2:;:0 anZ" . ThlS

to the eigen vector f(z) = Yi_oa,2" with IV z%ai =0 and 1 is the eigen value of
S’(;, corresponding to the eigen vector f(z) = ay.

Case 2. If k <N <2k— 1, then equation (2.2) gives ZN 0 lHa, +ZN k 1111 ai_xz=
A ganZ". This yields

Nok+1 Mo
Z‘ Tk Aay, Y e Aag and La, =0 for all n > 2. (2.3)

i=0
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If A # 0 then equation (2.3) gives a, =0 forall n > 2

1

ap+ 2611 Aag 2.4)
and P
_|_

= Aay. 2.5

2 ap (2.5)

On solving equations (2.4) and (2.5), it follows that a; = 2(A — 1)ag then substituting
the value of a; in equation (2.5), it becomes agp(A — A1)(A —A;) = 0 where A; =

2k+3+1/2k>+8k+9 and A» — 2k+3—1/2k*+8k+9
2(k+2) 2= 2(k+2) ‘

If A#0, A # A and A # A, then ay = 0 and a; = 0 which gives f =0, a
contadiction. Hence, O is the eigen value of S’(; corresponding to the eigen vector
f(z) =X, ra,7" and A and A, are the eigen values of S’(;, corresponding to the eigen
vector f(z) =ap+ajz with aj =2(A; — 1)ap and a; =2(Ay — 1)ay respectively. O

REMARK 1. From the proof of theorem (1), for ¢(z) = ¥, 7' € L”(D,dA) we
have the following observations:

Case 1. If 0 < N < k then for any complex number A # 0,1 we have Range(S’(; -
A = {3~ ai—Aag) — A Xy an2 : Yo_gap" € Li(D,dA)} which is dense in
L2(D,dA). Therefore residual spectrum of S — A1, or(Sy — A1) is empty.

Case 2. If k < N < 2k—1 then for any complex number A except A € {0,41,4,}

we obtain that Range(S’;, — M) = {(ZXy 77ai — Aag) + (T4 ]fill i — Aal)z -

AZy s and": Ty gan?" € Ly(D,dA)} is dense in LG (ID,dA). Thus, or(Sy —Al) =

As a consequence of the above theorem, we obtain the following result:

THEOREM 2. Let GAP(S](;) and G(Sk) denote the approximate point spectrum
and spectrum of S]q‘, respectively, where ¢(z) =YY 7' € L*(D,dA) and N € {0,1,---
2k — 1} then Gxp(Sy) = o (S§).-

Proof. 1t is well known that [7, 1], o(T) = cap(T)Uocp(T) for any bounded
linear operator 7 on Hilbert space H, where ¢(T),04p(T) and ocp(T) denotes spec-
trum, approximate point spectrum and compression spectrum of 7', respectively. There-
fore

o (S4) = oar(Sy) | oce(Sp), (2.6)
where ¢(z) = YN,z € L*(D,dA) and N € {0,1,---2k — 1}. Also from [7], we have
or(S5) = ocp(S5)\0p(Sy). By remark (1), it is evident that ocp(Sf) C op(Sy), but
GP(S](;) - GAP(S](;). Thus, GCP(S’;) - GAP(S](;). Hence from equation (2.6), it follows
that cap(S}) = o(S5). O

Similarly we conclude the following result:
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THEOREM 3. For i > 0, the point spectrum of S’;,- is the following:

G(Sk)— {0} if i is not a multiple of (k+ 1)
¢/ {0, (ki)} if i is a multiple of (k+1).

and O'AP(S]ZE,-) = O'(S];l-).

3. Commutativity of k' -order slant little Hankel operators

In this section, we are dealing with the commutative properties of k' -order slant
little Hankel operators and we show that under some assumptions & -order slant little
Hankel operators on L2(ID,dA) commute if and only if the symbol functions are linearly
dependent.

THEOREM 4. Let ¢(z) =" qa;z',{(z) = ;!Zobjz‘j be suchthat ,§ € L~ (D,dA),
where n is any non negative integer and a, 7% 0, b, # 0 then S];) and S’E commute if
and only if ¢ and { are linearly dependent.

Proof. Let ¢ and { are linearly dependent then it is obvious that S’q‘) and S’&
commute. Conversely, suppose that S’(;, and S’Z: commute. If n =0 then result is trivially
true. For n >0 let n = kp+r where p > 0, 0 < r < k—1 be integers. Since S’(; and
S’& commute therefore,

* 1k * 1%
Sy S¢ () =St Sy (). (3.1)

Consider

L _kp+1
SS7SE (P) = PIMGW; PIMW;' (27) = PIMgW; PJ (2 i "P)

¢ =" p+1
_kp+1 n_
P pimgwip Y Bl
+1 “
kp+1 - J—kp+1)— i
= ——PIM;W; A T A (3.2)
p+1 k (,-:2@ G+1) 7

The following two cases arise:
Case 1. If r =0 then equation (3.2) becomes
SE"SE (&) = —— PIMyWTy = —— B, iwz" =——b, im"
9 ¢ _p+1 ¢kn_p+ln .Ol - "\ !
1=

Similar calculation gives

S¢S (&) = P (2 .,'ZJ>. (3.4)
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From equations (3.1), (3.3) and (3.4), it follows that

1 — (& . .
— b, | Y@ | = @ | 2. b7 |- 35
p+1 (Z&az> 1 (ZE) ”Z> G

Since {v/n+1z"};;_, forms an orthonormal basis for the Bergman space, so equation
(3.5) gives b,a; = ayb; for all 0 <i < n. This yields b; = Aa; for all 0 < i < n where
A= Z—Z Hence, {(z) =A¢(z).

Case 2. If r > 0 then it follows from equation (3.2) that

SETSE () = ]Z’HPJM (2 kj—kp)+1) kp)H)b,z U= kp))
Jj=kp

¢ 1 (j+1)

1 n .n 1)—
_kpt1,, Yaz Y wbﬂkw kp)
i=0 J=kp G+

kp+1 —iv  (kg+1) kg
p+1 (2 2 (@thp+ 1) o*

_kp1 <<> L (kg + )(i—kg+ 1) o Zi_kq>
N iYq+kp

= : a
p+1 4=0 i=kg (g+kp+1)(i+1) 7
(3.6)

Similarly, we can obtain

; kp+1 (MnEe) a4 1) (G —ks+1)— .
Sk*Sk P) = b.a, —ks )
¢ Sp (&) p+1 ( _Z(‘) jgks (s+kp+1)(j+1) i

(3.7)

Equations (3.1), (3.6) and (3.7) yield

min(r,p) n (k .
g+ D(i—kg+1)_——, 4,
( 2 2 @+ kp L D)4 1) Dok

q=0 i=kq

min(ip) n (ks +1)(j —k

J— S+1) —ks

= biay s ). (3.8)
(20 j;ks (s+kp+1)(j+1) Ttk

Therefore for every integer m such that n —k < m < n, we have @by, = bya,. It

gives by, = Aa;, where A = % Similarly from equation (3.8) it follows that for every
94

integer m such that n —2k <m < n—k, we have ﬁﬂ%—i— %amkbkﬁl

= ﬁmw-y %bm#akﬁl. Since n—k <m+k < n and r < k so for all
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>0, kp+y>n—k=kp+r—k, therefore, a,by, = bnax, implies b, = Aay,.
Proceedmg like this, by using equation (3.8) it follows that b,, = Aa,, for 0 <m < n
where A = }a% Hence, {(z) =A¢(z). O

LEMMA 1. Let ¢(z)=3"ga;z' and {(z)= o b; 7! be suchthat ¢, € L*(D,dA)
where n and m are non negative integers with n > m. Let n =kp|+ry, m=kpr + 1
where pl, p2, 11, Iy are integers such that py, p» 20, 0 < r,rp < k and also let
akm —l—bkm #0 and b, # 0. IfSk and S’& commute then aj =0 for each integer j
such that m < j <n

Proof. Since S’;) and S’E commute, therefore,

S5 SE(f) = SE'Sy (f) forall f € L3(D,dA). (3.9)

The following three cases arise:
Case 1. If m=0 and n=kp +ry. Since n > m, so either p;y =0 and 0 < r; or
p1>0and 0 <r; <k then

S St (1) = PIMsWi PIMs Wy (1) = PIMgW (By) = PIM g ()

¢
n
= b PJ( Za,z =by Y. @ (3.10)
i=0 i=0
SETSE (1) = PIMWEPIMGW{ (1) = PJMq;W,j‘PJ(za_iZi)
Ski+1_ . — ki+1_ _ —
=PIMy(Y, i+1“fzk):bmp(2 T @iz") = byao. 3.11)
i=0

So, from equations (3.9), (3.10) and (3.11) it follows that b,,a; = 0 for 0 < i < n. Since
by # 0, therefore, a; = 0 for all i such that m <i < n.

Case 2. If m = ry where 0 < r, <k.

If n=r; thensince n>m,s0 0 <r, <r; <k.

* UL Zokj+1—
S5 SET(1) = PIMsW; PIMW; (1) = PIMsWi (Y, b)) = PIMy (Y, ]’+—+1b,-zk~’)
j=0 J=0
n _ m kJ+1— n_'m k]"l_l—_k _71_.
a, i —b =P Y ——b;77)=by Y a7
(3.12)
K*k* 1y _ « « < ) — o ki1 g
SE'S5T(1) = PIMW; PIMgW; (1) = PIMgW; (z=0 )—PJMé(Zé @)
o & ki+1_ & — kil . & —
=PJ(D b7’ Y~ [ k’)zP(z 2! 1 170 = 0> bjz
j=0 izo !t =0 izo T =0
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From equations (3.9), (3.12) and (3.13) it follows that bga; = 0 for m <i < n and
boaj = bjag for 0 < j<m. In particular, for j = m, boay, = agb,,. If by =0 then
ap = 0, a contradiction as aj,, +bj, = aj+ b # 0. Therefore, by # 0. This yields
a; =0 forall i suchthatm<z<n

If n=kp|+r; where p; >0 and 0 < r| < k. Similar calculations gives S’;) S’E (zP1)

=0 and Sg*sk*( 1) = S 7o bjar, 2/ . By using equation (3.9), it follows that
agp,bj =0 for 0 < j <m. In particular, for j =m we have ay,, b, =0. Since b,, #0,
therefore, ay,, = 0. Similarly, we obtain

min(ry,p1) n (k'—l—l)(i—k'-l-l) .
A T A ST

and

By using equation (3.9), it follows that a;bg =0 for n —k <i < n. Since n—k <
kpi < n, 50 agpbo =0 but @, =0 and a, +b;, = a;, +bj# 0. Therefore,
by # 0. This yields a; =0 for n —k < i < n. Also, from equation (3.9) we have
aibo + %blam =0 for all i such that n—2k < i < n—k but ag; =0 for
n—k<i+k<n. Hence, a; =0 for n —2k < i < n—k. Continuing in this way, we
conclude that a; = 0 for all i such that m < i <n.

Case 3. If m = kp, where p, > 0 and n = kp; + r| then since n > m so, either
pa=p1 and 0 <r; <k or p; > py and 0 < r; < k. By the simple calculations, we
obtain & ) .

k*ak*(pay _ D2+
S 8¢ &) = G i Dimr 1) ;

and

(kp2+1>’"""<"*""27"2> & (kg + (kg +1) -
(,2+1) 5 %, (a+kp+1)(i+1)

S]Z?*S{;*(sz) - bidgiine

By using equation (3.9), it follows that b,,a; = 0 for m < i < n but b,, # 0 which leads
to a; =0 for all i such that m <i < n.

Case 4. If m = kpr +r, where pp >0 and 0 < rp <k.

If n =kp1 +r where p; = pp = p (say) then since n > m, therefore, 0 < r, <
r1 < k. Then,

. kp+1)™m20) a0 (kg 4 1) (i — kg +1)_ -
Sk Sk Py — ( b i—k
o S¢ (&) b z]:q (@ hp D) “lario?
and )
g kp+1)""&P & (ks+1)(j—ks+1)—
sEsh (@) = b
S E=05 X & e G
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From equation (3.9), it follows that a;by, =0 for m <i<n. Also, n—k <m as
r1 <k <ry+k, therefore, a,,by, = byay,. Since b, # 0, so if by, =0 then a, =0,
a contradiction. Hence by, = 0, therefore, a; = 0 for each i such that m <i<n

If n=kp;+r; where p; > py and 0 < ry,rp < k. Then S’q“,*S’Z:*(ZI") =0 and

(kg +1)(j— kq+l)b kg
(q+kpi+ 1)(j+1) athn

% g% kp1 + 1) min(r1,p2)
Sk ™ gk 7P :(7
@ =T00T &

Il
§M§

J

From equation (3.9) it follows that b;a;, =0 for m —k < j < m. In particular, for
j— m we have byay, = 0. Since b, # 0, therefore, a, = 0. Thus by,, # 0 as

akpl +bkp2 # 0. Again calculating
* kpy+1) min(ry,p1) n (kg+1)(i—kq+1)_—
skt () = Kp2 D) by ripy
0 5 )=, 51) o ,:2,;, q+kpz+1)(l+1) i
and
‘it kpy 1) " kP2 (s 1) (j— ks 1) —

(+1) & A G+ )G+D)

gives aiby,, =0 for n—k <i<n (usmg equation (3.9)). Since by, #0 so it gives

@i =0 for n—k<i<n. Also, ploaibiy, + sy yaiskbipy 1 = 0 for all i

such that n — 2k <i<n—k. Since a; 1y =0 for n—k <i+k<n and by, # 0 leads
to a; =0 for n — 2k < i < n— k. Continuing like this, we conclude that a; =0 for all i
suchthat m<i<n. O

THEOREM 5. Let ¢(z) = X! ga;iz’ and {(z) = S"ob;z’ be such that ¢, €
L=(D,dA) where n and m are non negative integers such that n >m. Let n=kpy +ry,
m = kpy + ry where py, pa, r1, ry are integers such that py, p» 20, 0< r,rp <k

and also let by, # 0 and by, # 0 then S](; and S’E commute if and only if ¢ and § are

linearly dependent.
k

Proof. Let ¢ and { are linearly dependent then it is obvious that S’(;, and Sg

commute. Conversely, suppose that S’(; and S’Z: commute. Since by,, # 0, therefore,

akpl 4—ka72 # 0. Hence, by previous lemma, a; = 0 for all integer j such that m < j <
n. Let if possible, there exists a non negative integer ¢ with ¢ < m such that ¢; = 0 for
each 1 <i<m and a; # 0. Then again by previous lemma, b; = 0 for all integer j
such that 1 < j < m but b, # 0 so, it gives a,, # 0. Hence, by theorem (4), it follows
that ¢ and { are linearly dependent. [J
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