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COMMUTATIVITY AND SPECTRAL PROPERTIES OF kth –ORDER

SLANT LITTLE HANKEL OPERATORS ON THE BERGMAN SPACE
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(Communicated by V. V. Peller)

Abstract. In this paper, we introduce the notion of kth -order slant little Hankel operator on
the Bergman space with essentially bounded harmonic symbols on the unit disc and obtain its
algebraic and spectral properties. We have also discussed the conditions under which kth -order
slant little Hankel operators commute.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disc and dA = dxdy denotes the
Lebesgue area measure on D , normalised so that the measure of D is 1 . Let L2(D,dA)
be the space of all Lebesgue measurable functions f on D for which

‖ f‖2 =
∫

D

| f (z)|2dA(z) < ∞.

It forms a Hilbert space with inner product

〈 f ,g〉 =
∫

D

f (z)g(z)dA(z).

The Bergman space L2
a(D,dA) consists of all analytic functions f on D such that

f ∈ L2(D,dA) and is closed subspace of Hilbert space L2(D,dA) . It is well known that
{√n+1zn}∞

n=0 is an orthonormal basis for L2
a(D,dA) and the orthogonal projection

P : L2(D,dA) −→ L2
a(D,dA) is an integral operator

P f (z) = 〈 f ,Kz〉 =
∫

D

K(z,w) f (w)dA(w),

where K(z,w) = Kw(z) = 1
(1−wz)2 is the unique reproducing kernel of L2

a(D,dA) . The

space L∞(D,dA) is the Banach space of Lebesgue measurable functions f on D such
that ‖ f‖∞ = esssup{| f (z)| : z ∈ D} < ∞ and H∞(D,dA) denotes the set of all analytic
functions of the space L∞(D,dA) .
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The theory of Hankel operators on the Hardy spaces is an important area of mathe-
matical analysis and lots of applications in different domains of mathematics have been
found such as interpolation problems, rational approximation, stationary processes or
pertubation theory [10, 11]. In the year 1996, M. C. Ho [8] investigated the basic prop-
erties of slant Toeplitz operators on Hardy spaces. After that in the year 2006, Arora
[2] introduced the class of slant Hankel operators on Hardy spaces and discussed its
characterizations.

In the present paper, we study spectral and commutative properties of kth -order
slant little Hankel operators on the Bergman space with essentially bounded harmonic
symbols. More precisely, we describe the conditions under which kth -order slant little
Hankel operators commute and we prove that spectrum and approximate point spectrum
of Sk

φ are same where φ(z) = ∑N
i=0 z i and N ∈ {0,1, · · ·2k− 1} . Basic properties of

the Hardy space and Bergman spaces can be found in [5, 6]. We refer [2, 3, 8, 12] for
the applications and extensions of study to Hankel operators, slant Toeplitz operators,
slant Hankel operators and its generalization on Hardy spaces. Let T be a bounded
linear operator on a complex Banach space X then spectrum of T is defined as the set
of all complex number λ such that λ I−T is not invertible in the algebra B(X) , where
I denotes the identity operator on X and B(X) denotes the set of all bounded linear
operators on X . The spectrum of T is classified into three categories: point spectrum,
σP(T ) ; residual spectrum, σR(T ) and continuous spectrum, σC(T ) where

σP(T ) = {λ ∈ C : ker(λ I−T ) �= (0)},
σR(T ) = {λ ∈ C : ker(λ I−T ) = (0) and Range(λ I−T)− �= X},
σC(T ) = {λ ∈ C : ker(λ I−T ) = (0) and Range(λ I−T) �= Range(λ I−T)− = X}.

There are some overlapping divisions of spectrum also, namely approximate point spec-
trum and compression spectrum where approximate point spectrum of T is the set of all
complex number λ such that λ I−T is not bounded below and compression spectrum
of T is the set of all complex number λ such that Range(λ I−T )− �= X .

2. The kth -order slant little Hankel operators on L2
a(D,dA)

Let φ ∈L∞(D,dA) then for any f ∈L2
a(D,dA) , the Toeplitz operator Tφ : L2

a(D,dA)
−→ L2

a(D,dA) is defined as Tφ ( f )= P(φ f ) and the little Hankel operator Hφ : L2
a(D,dA)

−→ L2
a(D,dA) is defined as Hφ ( f ) = PJMφ ( f ) where P is the orthogonal projection of

L2(D,dA) onto L2
a(D,dA) , J : L2(D,dA) −→ L2(D,dA) is defined by J( f (z)) = f (z )

and Mφ is the multiplication operator on L2
a(D,dA) defined as Mφ ( f ) = φ f . It is well

known that Hφ is bounded with ‖Hφ‖ � ‖φ‖∞ . For φ = ∑∞
j=0 a j z

j + ∑∞
j=1 b jz j ∈

L∞(D,dA) , the (m,n)th entry of matrix representation of little Hankel operator on
L2

a(D,dA) with respect to orthonormal basis {√n+1zn}∞
n=0 is
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〈
Hφ

√
n+1zn,

√
m+1zm

〉
=
√

n+1
√

m+1〈PJ(φzn),zm〉

=
√

n+1
√

m+1

〈
(

∞

∑
j=0

a j z
j +

∞

∑
j=1

b jz
j)zn, zm

〉

=
√

n+1
√

m+1
∞

∑
j=0

a j

〈
z jzn, zm

〉

=
√

n+1
√

m+1
(m+n+1)

am+n

and its matrix representation is

[Hφ ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
1√
2
a1

1√
3
a2

1√
4
a3

1√
5
a4 . . .

1√
2
a1

2
3a2

√
6

4 a3

√
8

5 a4

√
10
6 a5 . . .

1√
3
a2

√
6

4 a3
3
5a4

√
12
6 a5

√
15
7 a6 . . .

...
...

...
...

... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whose adjoint is given by

[Hφ ]∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
1√
2
a1

1√
3
a2

1√
4
a3

1√
5
a4 . . .

1√
2
a1

2
3a2

√
6

4 a3

√
8

5 a4

√
10
6 a5 . . .

1√
3
a2

√
6

4 a3
3
5a4

√
12
6 a5

√
15
7 a6 . . .

...
...

...
...

... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From the abovematrices, we conclude that H∗
φ = Hφ̂ where φ̂(z)= ∑∞

j=0 a j z
j +∑∞

j=1 b jz j

∈ L∞(D,dA) .
For k � 2, define Wk : L2

a(D,dA) −→ L2
a(D,dA) by Wk(zkn) = zn , Wk(zkn+p) = 0

for all n∈N∪{0} and p = 1,2, . . .k−1. Clearly, Wk is a bounded linear operator with
‖Wk‖ =

√
k and the adjoint of Wk is given by W ∗

k (zm) = km+1
m+1 zkm for m � 0 (see [9]).

In year 2008, Arora and Bhola [3] discussed about the kth -order slant Hankel
operators acting on H2 space. We extend the definition of little Hankel operators on
the Bergman space to kth -order slant little Hankel operators in the following manner:
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DEFINITION 1. For k � 2 and φ(z) = ∑∞
j=0 a j z

j + ∑∞
j=1 b jz j in L∞(D,dA) , a

linear operator Sk
φ : L2

a(D,dA) −→ L2
a(D,dA) is defined by

Sk
φ ( f ) = WkHφ ( f ) for all f ∈ L2

a(D,dA).

We call Sk
φ , the kth -order slant little Hankel operator on L2

a(D,dA) with symbol φ and

‖Sk
φ‖ = ‖WkHφ‖ � ‖Wk‖‖Hφ‖ =

√
k‖Hφ‖ �

√
k‖φ‖∞.

Thus, Sk
φ is bounded. We denote the set of all kth -order slant little Hankel operators on

L2
a(D,dA) by SHO(L2

a ).

The (m,n)th entry of matrix representation of Sk
φ on L2

a(D,dA) with respect to

orthonormal basis {√n+1zn}∞
n=0 is〈

Sk
φ
√

n+1zn,
√

m+1zm
〉

=
√

n+1
√

m+1〈WkPJ(φzn),zm〉
=
√

n+1
√

m+1〈PJ(φzn),W ∗
k zm〉

=
√

n+1
√

m+1

〈
PJ(φzn),

km+1
m+1

zkm
〉

=
√

n+1
√

m+1

〈
(

∞

∑
j=0

a j z
j +

∞

∑
j=1

b jz
j)zn,

km+1
m+1

zkm

〉

=
√

n+1(km+1)√
m+1

∞

∑
k=0

a j

〈
z jzn, zkm

〉

=
√

n+1(km+1)√
m+1(n+ km+1)

an+km

and its matrix representation is given as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
1√
2
a1

1√
3
a2

1√
4
a3

1√
5
a4 . . .

1√
2
ak

(k+1)
√

2
(k+2)

√
2
ak+1

(k+1)
√

3
(k+3)

√
2
ak+2

(k+1)
√

4
(k+4)

√
2
ak+3

(k+1)
√

5
(k+5)

√
2
ak+4 . . .

1√
3
a2k

(2k+1)
√

2
(2k+2)

√
3
a2k+1

(2k+1)
√

3
(2k+3)

√
3
a2k+2

(2k+1)
√

4
(2k+4)

√
3
a2k+3

(2k+1)
√

5
(2k+5)

√
3
a2k+4 . . .

...
...

...
...

... . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.1)

For k = 2, Sk
φ is simply called slant little Hankel operator on L2

a(D,dA) . It is denoted
by Sφ where W2 is denoted by W .

NOTE 1. Since b j does not appear in the matrix (2.1) for any natural number j
therefore we have S∑∞

j=0 a j z
j+∑∞

j=1 b jz j = S∑∞
j=0 a j z

j on L2
a(D,dA) .
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PROPOSITION 1. For φ1,φ2 in L∞(D,dA) and λ1,λ2 ∈ C then
i) Sk

λ1φ1+λ2φ2
= λ1Sk

φ1
+ λ2Sk

φ2
.

ii) J is a self adjoint unitary operator on L2(D,dA) .

The following proposition follows directly from the above matrix with respect to
the orthonormal basis.

PROPOSITION 2. The mapping Γ : L∞(D,dA)→ SHO(L2
a ) defined by Γ(φ) = Sk

φ
is linear but not one- one. For, if φ1 − φ2 ∈ zH∞(D,dA) for some φ1,φ2 ∈ L∞(D,dA)
then Sk

φ1
= Sk

φ2
. This gives that the operator Sk

φ does not have unique symbol φ .

In [4], Arora and Bhola obtained the point spectrum of kth -order slant Hankel
operators on the space H2 with symbol function z i for i � 0 and related its spectrum
and approximate point spectrum. Similar to their work, we obtain the following results.

THEOREM 1. If φ(z) = ∑N
i=0 z i ∈ L∞(D,dA) where N ∈ {0,1, · · ·2k−1} then the

point spectrum of Sk
φ is

σp(Sk
φ ) =

{
{0,1} if 0 � N < k

{0,λ1,λ2} if k � N � 2k−1,

where λ1 = 2k+3+
√

2k2+8k+9
2(k+2) and λ2 = 2k+3−

√
2k2+8k+9

2(k+2) .

Proof. Let λ ∈ σp(Sk
φ ) then there exists f �= 0 in L2

a(D,dA) such that Sk
φ f = λ f .

Consider f = ∑∞
n=0 anzn in L2

a(D,dA) then WkPJMφ ( f ) = λ f , giving

WkPJ

(
N

∑
i=0

z i
∞

∑
n=0

anz
n

)
= λ

∞

∑
n=0

anz
n

then WkP
(
∑N

i=0 ∑∞
n=0 anzi zn)= λ ∑∞

n=0 anzn . Thus,

Wk

(
N

∑
i=0

i

∑
n=0

i−n+1
(i+1)

anz
i−n

)
= λ

∞

∑
n=0

anz
n. (2.2)

Case 1. If 0 � N < k , then equation (2.2) gives ∑N
i=0

1
i+1ai = λ ∑∞

n=0 anzn . This

yields, λa0 = ∑N
i=0

1
i+1ai and λan = 0 for all n � 1.

If λ �= 0 and λ �= 1 then an = 0 for all n � 1. This yields a0 = λa0 which gives
a0 = 0 leads to f = 0, a contradiction. Hence, 0 is the eigen value of Sk

φ corresponding

to the eigen vector f (z) = ∑∞
n=0 anzn with ∑N

i=0
1

i+1ai = 0 and 1 is the eigen value of
Sk

φ corresponding to the eigen vector f (z) = a0 .

Case 2. If k � N � 2k−1, then equation (2.2) gives ∑N
i=0

1
i+1ai +∑N

i=k
k+1
i+1 ai−kz =

λ ∑∞
n=0 anzn . This yields

N

∑
i=k

k+1
i+1

ai−k = λa1,
N

∑
i=0

1
i+1

ai = λa0 and λan = 0 for all n � 2. (2.3)
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If λ �= 0 then equation (2.3) gives an = 0 for all n � 2,

a0 +
1
2
a1 = λa0 (2.4)

and

a0 +
k+1
k+2

a1 = λa1. (2.5)

On solving equations (2.4) and (2.5), it follows that a1 = 2(λ −1)a0 then substituting
the value of a1 in equation (2.5), it becomes a0(λ − λ1)(λ − λ2) = 0 where λ1 =
2k+3+

√
2k2+8k+9

2(k+2) and λ2 = 2k+3−
√

2k2+8k+9
2(k+2) .

If λ �= 0, λ �= λ1 and λ �= λ2 then a0 = 0 and a1 = 0 which gives f = 0, a
contadiction. Hence, 0 is the eigen value of Sk

φ corresponding to the eigen vector

f (z) = ∑∞
n=2 anzn and λ1 and λ2 are the eigen values of Sk

φ corresponding to the eigen
vector f (z) = a0 +a1z with a1 = 2(λ1−1)a0 and a1 = 2(λ2−1)a0 respectively. �

REMARK 1. From the proof of theorem (1), for φ(z) = ∑N
i=0 z i ∈ L∞(D,dA) we

have the following observations:
Case 1. If 0 � N < k then for any complex number λ �= 0,1 we have Range(Sk

φ −
λ I) = {(∑N

i=0
1

i+1ai − λa0)− λ ∑∞
n=1 anzn : ∑∞

n=0 anzn ∈ L2
a(D,dA)} which is dense in

L2
a(D,dA) . Therefore residual spectrum of Sk

φ −λ I , σR(Sk
φ −λ I) is empty.

Case 2. If k � N < 2k−1 then for any complex number λ except λ ∈ {0,λ1,λ2}
we obtain that Range(Sk

φ − λ I) = {(∑N
i=0

1
i+1ai − λa0) + (∑N

i=k
k+1
i+1 ai−k − λa1)z −

λ ∑∞
n=2 anzn : ∑∞

n=0 anzn ∈ L2
a(D,dA)} is dense in L2

a(D,dA) . Thus, σR(Sk
φ −λ I) = Φ .

As a consequence of the above theorem, we obtain the following result:

THEOREM 2. Let σAP(Sk
φ ) and σ(Sk

φ ) denote the approximate point spectrum

and spectrum of Sk
φ respectively, where φ(z) = ∑N

i=0 z i ∈ L∞(D,dA) and N ∈ {0,1, · · ·
2k−1} then σAP(Sk

φ ) = σ(Sk
φ ) .

Proof. It is well known that [7, 1], σ(T ) = σAP(T )
⋃

σCP(T ) for any bounded
linear operator T on Hilbert space H , where σ(T ),σAP(T ) and σCP(T ) denotes spec-
trum, approximate point spectrum and compression spectrum of T , respectively. There-
fore

σ(Sk
φ ) = σAP(Sk

φ )
⋃

σCP(Sk
φ ), (2.6)

where φ(z) = ∑N
i=0 z i ∈ L∞(D,dA) and N ∈ {0,1, · · ·2k−1} . Also from [7], we have

σR(Sk
φ ) = σCP(Sk

φ )\σP(Sk
φ ) . By remark (1), it is evident that σCP(Sk

φ ) ⊆ σP(Sk
φ ) , but

σP(Sk
φ ) ⊆ σAP(Sk

φ ) . Thus, σCP(Sk
φ ) ⊆ σAP(Sk

φ ) . Hence from equation (2.6), it follows

that σAP(Sk
φ ) = σ(Sk

φ ) . �

Similarly we conclude the following result:
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THEOREM 3. For i � 0 , the point spectrum of Sk
zi is the following:

σp(Sk
zi) =

{
{0} if i is not a multiple of (k+1)
{0,( k+1

k+2)} if i is a multiple of (k+1).

and σAP(Sk
zi) = σ(Sk

zi) .

3. Commutativity of kth -order slant little Hankel operators

In this section, we are dealing with the commutative properties of kth -order slant
little Hankel operators and we show that under some assumptions kth -order slant little
Hankel operators on L2

a(D,dA) commute if and only if the symbol functions are linearly
dependent.

THEOREM 4. Let φ(z)= ∑n
i=0 ai z

i,ζ (z)= ∑n
j=0 b j z

j be such that φ ,ζ ∈L∞(D,dA) ,
where n is any non negative integer and an �= 0 , bn �= 0 then Sk

φ and Sk
ζ commute if

and only if φ and ζ are linearly dependent.

Proof. Let φ and ζ are linearly dependent then it is obvious that Sk
φ and Sk

ζ
commute. Conversely, suppose that Sk

φ and Sk
ζ commute. If n = 0 then result is trivially

true. For n > 0 let n = kp+ r where p � 0, 0 � r � k−1 be integers. Since Sk
φ and

Sk
ζ commute therefore,

Sk
φ
∗
Sk

ζ
∗
(zp) = Sk

ζ
∗
Sk

φ
∗
(zp). (3.1)

Consider

Sk
φ
∗
Sk

ζ
∗
(zp) = PJMφ̂W ∗

k PJMζ̂W ∗
k (zp) = PJMφ̂W ∗

k PJ

(
n

∑
j=0

b j z
j kp+1

p+1
zkp

)

=
kp+1
p+1

PJMφ̂W ∗
k P

(
n

∑
j=0

b jz
j z kp

)

=
kp+1
p+1

PJMφ̂W ∗
k

(
n

∑
j=kp

( j− kp+1)
( j +1)

b jz
j−kp

)
. (3.2)

The following two cases arise:
Case 1. If r = 0 then equation (3.2) becomes

Sk
φ
∗
Sk

ζ
∗
(zp) =

1
p+1

PJMφ̂W ∗
k bn =

1
p+1

bnPJ

(
n

∑
i=0

ai z
i

)
=

1
p+1

bn

(
n

∑
i=0

aiz
i

)
.

(3.3)
Similar calculation gives

Sk
ζ
∗
Sk

φ
∗
(zp) =

1
p+1

an

(
n

∑
j=0

b jz
j

)
. (3.4)
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From equations (3.1), (3.3) and (3.4), it follows that

1
p+1

bn

(
n

∑
i=0

aiz
i

)
=

1
p+1

an

(
n

∑
j=0

b jz
j

)
. (3.5)

Since {√n+1zn}∞
n=0 forms an orthonormal basis for the Bergman space, so equation

(3.5) gives bnai = anbi for all 0 � i � n . This yields bi = λai for all 0 � i � n where
λ = bn

an
. Hence, ζ (z) = λ φ(z) .

Case 2. If r > 0 then it follows from equation (3.2) that

Sk
φ
∗
Sk

ζ
∗
(zp) =

kp+1
p+1

PJMφ̂

(
n

∑
j=kp

(k( j− kp)+1)
( j +1)

b jz
k( j−kp)

)

=
kp+1
p+1

PJ

(
n

∑
i=0

ai z
i

n

∑
j=kp

(k( j− kp)+1)
( j +1)

b jz
k( j−kp)

)

=
kp+1
p+1

P

(
n

∑
i=0

aiz
i

n

∑
j=kp

(k( j− kp)+1)
( j +1)

b j z
k( j−kp)

)

=
kp+1
p+1

P

(
n

∑
i=0

aiz
i

r

∑
q=0

(kq+1)
(q+ kp+1)

bq+kp z kq

)

=
kp+1
p+1

(
min(r,p)

∑
q=0

n

∑
i=kq

(kq+1)(i− kq+1)
(q+ kp+1)(i+1)

aibq+kpz
i−kq

)
.

(3.6)

Similarly, we can obtain

Sk
ζ
∗
Sk

φ
∗
(zp) =

kp+1
p+1

(
min(r,p)

∑
s=0

n

∑
j=ks

(ks+1)( j− ks+1)
(s+ kp+1)( j +1)

b jas+kpz
j−ks

)
.

(3.7)

Equations (3.1), (3.6) and (3.7) yield(
min(r,p)

∑
q=0

n

∑
i=kq

(kq+1)(i− kq+1)
(q+ kp+1)(i+1)

aibq+kpz
i−kq
)

=

(
min(r,p)

∑
s=0

n

∑
j=ks

(ks+1)( j− ks+1)
(s+ kp+1)( j +1)

b jas+kpz
j−ks

)
. (3.8)

Therefore for every integer m such that n− k < m � n , we have ambkp = bmakp . It

gives bm = λam where λ = bkp
akp

. Similarly from equation (3.8) it follows that for every

integer m such that n−2k < m � n−k , we have 1
kp+1ambkp + (k+1)(m+1)

(kp+2)(m+k+1)am+kbkp+1

= 1
kp+1bmakp + (k+1)(m+1)

(kp+2)(m+k+1)bm+kakp+1 . Since n− k < m+ k � n and r < k so for all
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y � 0, kp + y > n− k = kp + r − k , therefore, ambkp = bmakp implies bm = λam .
Proceeding like this, by using equation (3.8) it follows that bm = λam for 0 � m � n

where λ = bkp
akp

. Hence, ζ (z) = λ φ(z) . �

LEMMA 1. Let φ(z)=∑n
i=0 ai z

i and ζ (z)=∑m
j=0 b j z

j be such that φ ,ζ ∈L∞(D,dA)
where n and m are non negative integers with n > m. Let n = kp1 + r1 , m = kp2 + r2

where p1 , p2 , r1 , r2 are integers such that p1 , p2 � 0 , 0 � r1,r2 < k and also let
a2

kp1
+ b2

kp2
�= 0 and bm �= 0 . If Sk

φ and Sk
ζ commute then a j = 0 for each integer j

such that m < j � n.

Proof. Since Sk
φ and Sk

ζ commute, therefore,

Sk
φ
∗
Sk

ζ
∗
( f ) = Sk

ζ
∗
Sk

φ
∗
( f ) for all f ∈ L2

a(D,dA). (3.9)

The following three cases arise:
Case 1. If m = 0 and n = kp1 + r1 . Since n > m , so either p1 = 0 and 0 < r1 or

p1 > 0 and 0 � r1 < k then

Sk
φ
∗
Sk

ζ
∗
(1) = PJMφ̂W ∗

k PJMζ̂W ∗
k (1) = PJMφ̂W ∗

k (bm) = PJMφ̂ (bm)

= bmPJ(
n

∑
i=0

ai z
i) = bm

n

∑
i=0

aiz
i, (3.10)

Sk
ζ
∗
Sk

φ
∗
(1) = PJMζ̂W ∗

k PJMφ̂W ∗
k (1) = PJMφ̂W ∗

k PJ(
n

∑
i=0

ai z
i)

= PJMφ̂ (
n

∑
i=0

ki+1
i+1

aiz
ki) = bmP(

n

∑
i=0

ki+1
i+1

ai z
ki) = bma0. (3.11)

So, from equations (3.9), (3.10) and (3.11) it follows that bmai = 0 for 0 < i � n . Since
bm �= 0, therefore, ai = 0 for all i such that m < i � n .

Case 2. If m = r2 where 0 < r2 < k .
If n = r1 then since n > m , so 0 < r2 < r1 < k .

Sk
φ
∗
Sk

ζ
∗
(1) = PJMφ̂W ∗

k PJMζ̂W
∗
k (1) = PJMφ̂W ∗

k (
m

∑
j=0

b jz
j) = PJMφ̂ (

m

∑
j=0

k j +1
j +1

b jz
k j)

= PJ(
n

∑
i=0

ai z
i

m

∑
j=0

k j +1
j +1

b jz
k j) = P(

n

∑
i=0

aiz
i

m

∑
j=0

k j +1
j +1

b j z
k j) = b0

n

∑
i=0

aiz
i.

(3.12)

Sk
ζ
∗
Sk

φ
∗
(1) = PJMζ̂W ∗

k PJMφ̂W ∗
k (1) = PJMζ̂W ∗

k (
n

∑
i=0

aiz
i) = PJMζ̂ (

n

∑
i=0

ki+1
i+1

aiz
ki)

= PJ(
m

∑
j=0

b j z
j

n

∑
i=0

ki+1
i+1

aiz
ki) = P(

m

∑
j=0

b jz
j

n

∑
i=0

ki+1
i+1

ai z
ki) = a0

m

∑
j=0

b jz
j.

(3.13)
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From equations (3.9), (3.12) and (3.13) it follows that b0ai = 0 for m < i � n and
b0a j = b ja0 for 0 � j � m . In particular, for j = m , b0am = a0bm . If b0 = 0 then
a0 = 0, a contradiction as a2

kp1
+ b2

kp2
= a2

0 + b2
0 �= 0. Therefore, b0 �= 0. This yields

ai = 0 for all i such that m < i � n .
If n = kp1+r1 where p1 > 0 and 0 � r1 < k . Similar calculations gives Sk

φ
∗
Sk

ζ
∗(zp1)

= 0 and Sk
ζ
∗
Sk

φ
∗(zp1) = 1

p1+1 ∑m
j=0 b jakp1z

j . By using equation (3.9), it follows that
akp1b j = 0 for 0 � j � m . In particular, for j = m we have akp1bm = 0. Since bm �= 0,
therefore, akp1 = 0. Similarly, we obtain

Sk
φ
∗
Sk

ζ
∗
(1) =

min(r2,p1)

∑
j=0

n

∑
i=k j

(k j +1)(i− k j +1)
( j +1)(i+1)

aib jz
i−k j

and

Sk
ζ
∗
Sk

φ
∗
(1) =

m

∑
j=0

b ja0z
j.

By using equation (3.9), it follows that aib0 = 0 for n− k < i � n . Since n− k <
kp1 � n , so akp1b0 = 0 but akp1 = 0 and a2

kp1
+ b2

kp2
= a2

kp1
+ b2

0 �= 0. Therefore,
b0 �= 0. This yields ai = 0 for n− k < i � n . Also, from equation (3.9) we have
aib0 + (k+1)(i+1)

2(i+k+1) b1ak+i = 0 for all i such that n− 2k < i � n− k but ak+i = 0 for
n− k < i+ k � n . Hence, ai = 0 for n− 2k < i � n− k . Continuing in this way, we
conclude that ai = 0 for all i such that m < i � n .

Case 3. If m = kp2 where p2 > 0 and n = kp1 + r1 then since n > m so, either
p2 = p1 and 0 < r1 < k or p1 > p2 and 0 � r1 < k . By the simple calculations, we
obtain

Sk
φ
∗
Sk

ζ
∗
(zp2) =

(kp2 +1)
(p2 +1)(m+1)

bm

n

∑
i=0

aiz
i

and

Sk
ζ
∗
Sk

φ
∗
(zp2) =

(kp2 +1)
(p2 +1)

min(n−kp2,p2)

∑
q=0

m

∑
j=kq

(kq+1)( j− kq+1)
(q+ kp2 +1)( j +1)

b jaq+kp2z
j−kq.

By using equation (3.9), it follows that bmai = 0 for m < i � n but bm �= 0 which leads
to ai = 0 for all i such that m < i � n .

Case 4. If m = kp2 + r2 where p2 > 0 and 0 < r2 < k .
If n = kp1 + r1 where p1 = p2 = p (say) then since n > m , therefore, 0 < r2 <

r1 < k . Then,

Sk
φ
∗
Sk

ζ
∗
(zp) =

(kp+1)
(p+1)

min(r2,p)

∑
q=0

n

∑
i=kq

(kq+1)(i− kq+1)
(q+ kp+1)(i+1)

aibq+kpz
i−kq

and

Sk
ζ
∗
Sk

φ
∗
(zp) =

(kp+1)
(p+1)

min(r1,p)

∑
s=0

m

∑
j=ks

(ks+1)( j− ks+1)
(s+ kp+1)( j +1)

b jas+kpz
j−ks.
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From equation (3.9), it follows that aibkp = 0 for m < i � n . Also, n− k < m as
r1 < k < r2 + k , therefore, ambkp = bmakp . Since bm �= 0, so if bkp = 0 then akp = 0,
a contradiction. Hence bkp �= 0, therefore, ai = 0 for each i such that m < i � n .

If n = kp1 + r1 where p1 > p2 and 0 � r1,r2 < k . Then Sk
φ
∗
Sk

ζ
∗(zp1) = 0 and

Sk
ζ
∗
Sk

φ
∗
(zp1) =

(kp1 +1)
(p1 +1)

min(r1,p2)

∑
q=0

m

∑
j=kq

(kq+1)( j− kq+1)
(q+ kp1 +1)( j +1)

b jaq+kp1z
j−kq.

From equation (3.9) it follows that b jakp1 = 0 for m− k < j � m . In particular, for
j = m we have bmakp1 = 0. Since bm �= 0, therefore, akp1 = 0. Thus bkp2 �= 0 as
a2

kp1
+b2

kp2
�= 0. Again calculating

Sk
φ
∗
Sk

ζ
∗
(zp2) =

(kp2 +1)
(p2 +1)

min(r2,p1)

∑
q=0

n

∑
i=kq

(kq+1)(i− kq+1)
(q+ kp2 +1)(i+1)

aibq+kp2z
i−kq

and

Sk
ζ
∗
Sk

φ
∗
(zp2) =

(kp2 +1)
(p2 +1)

min(n−kp2,p2)

∑
s=0

m

∑
j=ks

(ks+1)( j− ks+1)
(s+ kp2 +1)( j +1)

b jaq+kp2z
j−kq

gives aibkp2 = 0 for n− k < i � n (using equation (3.9)). Since bkp2 �= 0 so it gives

ai = 0 for n− k < i � n . Also, 1
kp2+1aibkp2 + (k+1)(i+1)

(kp2+2)(i+k+1)ai+kbkp2+1 = 0 for all i
such that n−2k < i � n− k . Since ai+k = 0 for n− k < i+ k � n and bkp2 �= 0 leads
to ai = 0 for n−2k < i � n− k . Continuing like this, we conclude that ai = 0 for all i
such that m < i � n . �

THEOREM 5. Let φ(z) = ∑n
i=0 ai z

i and ζ (z) = ∑m
j=0 b j z

j be such that φ ,ζ ∈
L∞(D,dA) where n and m are non negative integers such that n > m. Let n = kp1 +r1 ,
m = kp2 + r2 where p1 , p2 , r1 , r2 are integers such that p1 , p2 � 0 , 0 � r1,r2 < k
and also let bkp2 �= 0 and bm �= 0 then Sk

φ and Sk
ζ commute if and only if φ and ζ are

linearly dependent.

Proof. Let φ and ζ are linearly dependent then it is obvious that Sk
φ and Sk

ζ
commute. Conversely, suppose that Sk

φ and Sk
ζ commute. Since bkp2 �= 0, therefore,

a2
kp1

+b2
kp2

�= 0. Hence, by previous lemma, a j = 0 for all integer j such that m < j �
n . Let if possible, there exists a non negative integer t with t � m such that ai = 0 for
each t < i � m and at �= 0. Then again by previous lemma, b j = 0 for all integer j
such that t < j � m but bm �= 0 so, it gives am �= 0. Hence, by theorem (4), it follows
that φ and ζ are linearly dependent. �

Acknowledgement. Support of CSIR-UGC Research Grant(UGC) [Ref. No.:
21/12/2014(ii) EU-V, Sr. No. 2121440601] to second author for carrying out the re-
search work is gratefully acknowledged.



220 A. GUPTA AND B. GUPTA

RE F ER EN C ES

[1] P. AIENA, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic
Publishers, Dordrecht, 2004.

[2] S. C. ARORA, R. BATRA AND M. P. SINGH, Slant Hankel operators, Arch. Math. (Brno) 42, 2
(2006), 125–133.

[3] S. C. ARORA AND J. BHOLA, The compression of a k th-order slant Hankel operator, Ganita 59, 1
(2008), 1–11.

[4] S. C. ARORA AND J. BHOLA, Weyl’s theorem for a class of operators, Int. J. Contemp. Math. Sci. 6,
25 (2011), 1213–1220.

[5] R. G. DOUGLAS, Banach algebra techniques in operator theory, Academic Press 49, New York-
London, 1972.

[6] P. DUREN AND A. SCHUSTER, Bergman spaces, Mathematical Surveys and Monographs, American
Mathematical Society 100, 2004.

[7] P. R. HALMOS, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto,
Ont.-London, 1967.

[8] M. C. HO, Properties of slant Toeplitz operators, Indiana Univ. Math. J. 45, 3 (1996), 843–862.
[9] Y. LU, C. LIU AND J. YANG, Commutativity of k th-order slant Toeplitz operators, Math. Nachr. 283,

9 (2010), 1304–1313.
[10] V. V. PELLER, An excursion into the theory of Hankel operators, Math. Sci. Res. Inst. Publ., Holo-

morphic spaces (Berkeley, CA, 1995) 33, Cambridge Univ. Press, Cambridge, 65–120, 1998.
[11] V. V. PELLER, Hankel operators and their applications, Springer Monographs in Mathematics,

Springer-Verlag, New York, 2003.
[12] S. C. POWER, Hankel operators on Hilbert space, Bull. London Math. Soc. 12, 6 (1980), 422–442.

(Received June 7, 2017) Anuradha Gupta
Associate professor, Delhi college of arts and commerce

Department of mathematics, Netaji Nagar, University of Delhi
Delhi, India

e-mail: dishna2@yahoo.in

Bhawna Gupta
Department of mathematics

University of Delhi
New Delhi, India

e-mail: swastik.bhawna26@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


