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ON THE SUM OF POWERS OF SQUARE MATRICES

DINESH J. KARIA, KAILASH M. PATIL AND H. P. SINGH
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Abstract. Given a 2×2 matrix A , we obtain the formula for sum of An , (n∈ Z) , using its trace
and determinant only; this includes the negative powers in the case of a nonsingular matrix too.
Here we mean by sum, the sum of all the entries of the matrix. Various special cases arising out
of values of trace and determinant are discussed and as an application we also derive Marcus-
Newman inequality proved by D. London. 2su(A3) � su(A)su(A2) , for all A ∈ F2 ∩M +

2 .

1. Introduction

The study of sum of powers of matrices was initiated by Marcus and Newman [4]
in 1962. For a nonnegative symmetric n×n matrix A , they conjectured the inequality
nsu(A3) � su(A)su(A2) . Later London, in 1966, [2], [3], disproved it for n = 4 and
proved the same for n � 3. The inequality nsu(A2) � su(A)su(A) is proved with the
help of simple counting argument in graph theory when A is a nonnegative symmet-
ric matrix by Seymour [6]. In 1985, Kankaanpää and Merikoski [1] generalized the
Marcus-Newman inequality. Merikoski [5] surveyed extensively the results related to
the trace and sums of a matrix and its powers. However, the formula of sum of the
powers of a matrix in terms of trace and determinant is not found in the literature. We
initiate the investigation of this aspect to obtain a formula for sum of a power of a
2× 2 matrix using determinant and trace of a matrix. In what follows, Δ will denote
the determinant of the matrix under consideration and Mn,Fn and M+

n will denote the
spaces of real, real symmetric and (element-wise) nonnegative n× n matrices respec-
tively, where n ∈ Z+ .

The first section is devoted to the main result observing the pattern in the sums
of higher orders of a 2× 2 matrix. As a corollary to the main result, we record many
particular cases of importance and also give, as an application, an inequality proved by
London [3]. In second section, we obtain the formula for the sum of a negative power
of A where A is a nonsingular 2×2 matrix. Again the special cases are recorded and
an analogue of the inequality for negative powers is obtained.
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2. Sum of a positive power of A

For a matrix A = [ai j] , su(A) denotes the sum of all the entries of A , that is
su(A) = ∑

i
∑
j
ai j .

While going through the rigorous computations of the sum of all entries of higher
order of a 2×2 matrix, we found the characteristic equation playing a major role. To
exhibit the power of the Cayley-Hamilton theorem and the motivation behind the proof,
we state the formulae of su(Ak) , in their final form, for some values of k . We prove the
general formula by induction in Theorem 2.1.

Let A be a 2×2 matrix.
Recall the characteristic equation of A

det(A−λ I) = λ 2−Tr(A)λ + Δ = 0.

By the Cayley Hamilton theorem, we have A2 −Tr(A)A + ΔI = 0. Multiplying both
sides by An , we get,

An+2−Tr(A)An+1 + ΔAn = 0. (1)

The sum being the linear operator, gives (2), a recurring relation, which is central
to this note.

su(An+2)−Tr(A)su(An+1)+ Δsu(An) = 0.

Rewriting the same we get the following,

su(An+2) = Tr(A)su(An+1)−Δsu(An). (2)

Putting a particular value of n and simplifying, we have the following.

su(A2) = Tr(A)su(A)−2Δ, (3)

su(A3) = su(A)(Tr(A)2 −Δ)−2ΔTr(A), (4)

su(A4) = su(A)
(

Tr(A)3 +
(−1)1

1!
2Tr(A)3−2(1)Δ

)

−2Δ
(

Tr(A)2 +
(−1)1

1!
Tr(A)2−2(1)Δ

)
,

su(A5) = su(A)
(

Tr(A)4 +
(−1)1

1!
3Tr(A)4−2(1)Δ +

(−1)2

2!
2 ·1Tr(A)4−2(2)Δ2

)

−2Δ
(

Tr(A)3 +
(−1)1

1!
2Tr(A)3−2(1)Δ

)
,

su(A6) = su(A)
(

Tr(A)5 +
(−1)1

1!
4Tr(A)5−2(1)Δ +

(−1)2

2!
3 ·2Tr(A)5−2(2)Δ2

)

−2Δ
(

Tr(A)4 +
(−1)1

1!
3Tr(A)4−2(1)Δ +

(−1)2

2!
2 ·1Tr(A)4−2(2)Δ2

)
.
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It is quite apparent that the complexity of the formula increases as the power increases.
Well within the ninth power, the formula really becomes highly involved.

su(A9) = su(A)
(

Tr(A)8 +
(−1)1

1!
7Tr(A)8−2(1)Δ +

(−1)2

2!
6 ·5Tr(A)8−2(2)Δ2

+
(−1)3

3!
5 ·4 ·3Tr(A)8−2(3)Δ3 +

(−1)4

4!
4 ·3 ·2 ·1Tr(A)8−2(4)Δ4

)

−2Δ
(

Tr(A)7 +
(−1)1

1!
6Tr(A)7−2(1)Δ +

(−1)2

2!
5 ·4Tr(A)7−2(2)Δ2

+
(−1)3

3!
4 ·3 ·2Tr(A)7−2(3)Δ3

)
.

Empirically, we reach the following formulation, which we prove by the mathe-
matical induction.

THEOREM 2.1. If A = [ai j] ∈ M2 , then

su(An+2) = su(A)
� n+1

2 �
∑
r=0

(−1)r
(

n+1− r
r

)
Tr(A)n+1−2rΔr

−2Δ
� n

2�
∑
r=0

(−1)r
(

n− r
r

)
Tr(A)n−2rΔr, (5)

where � � is the floor value function.

Proof. As already observed, (5) holds for n = 0. That is, su(A2) = Tr(A)su(A)−
2Δ . Now we assume that (5) holds for all positive integers less than n so that

su(An) = su(A)
� n−1

2 �
∑
r=0

(−1)r
(

n−1− r
r

)
Tr(A)n−1−2rΔr

−2Δ
� n−2

2 �
∑
r=0

(−1)r
(

n−2− r
r

)
Tr(A)n−2−2rΔr, (6)

su(An+1) = su(A)
� n

2�
∑
r=0

(−1)r
(

n− r
r

)
Tr(A)n−2rΔr

−2Δ
� n−1

2 �
∑
r=0

(−1)r
(

n−1− r
r

)
Tr(A)n−1−2rΔr. (7)

Now multiplying (6) by −� , and (7) by Tr(A) , and substituting in (2), we have,
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su(An+2)

= Tr(A)su(A)
� n

2�
∑
r=0

(−1)r(n−r
r

)
Tr(A)n−2rΔr−2ΔTr(A)

� n−1
2 �
∑

r=0
(−1)r

(n−1−r
r

)
Tr(A)n−1−2rΔr

−�su(A)
� n−1

2 �
∑
r=0

(−1)r(n−1−r
r

)
Tr(A)n−1−2rΔr+2Δ2

� n−2
2 �
∑

r=0
(−1)r

(n−2−r
r

)
Tr(A)n−2−2rΔr

= su(A)
� n

2�
∑
r=0

(−1)r(n−r
r

)
Tr(A)n+1−2rΔr−2Δ

� n−1
2 �
∑

r=0
(−1)r

(n−1−r
r

)
Tr(A)n−2rΔr

−su(A)
� n−1

2 �
∑
r=0

(−1)r(n−1−r
r

)
Tr(A)n−1−2rΔr+1+2Δ

� n−2
2 �
∑

r=0
(−1)r

(n−2−r
r

)
Tr(A)n−2−2rΔr+1

= su(A)

⎛
⎝� n

2�
∑
r=0

(−1)r(n−r
r

)
Tr(A)n+1−2rΔr+

� n−1
2 �
∑

r=0
(−1)r+1

(n−1−r
r

)
Tr(A)n−1−2rΔr+1

⎞
⎠

−2Δ

⎛
⎝� n−1

2 �
∑
r=0

(−1)r(n−1−r
r

)
Tr(A)n−2rΔr+

� n−2
2 �
∑

r=0
(−1)r+1

(n−2−r
r

)
Tr(A)n−2−2rΔr+1

⎞
⎠

= su(A)

⎛
⎝� n

2�
∑
r=0

(−1)r(n−r
r

)
Tr(A)n+1−2rΔr+

� n−1
2 �+1

∑
r=1

(−1)r
(n−r
r−1

)
Tr(A)n+1−2rΔr

⎞
⎠

−2Δ

⎛
⎝� n−1

2 �
∑
r=0

(−1)r(n−1−r
r

)
Tr(A)n−2rΔr+

� n−2
2 �+1

∑
r=1

(−1)r
(n−1−r

r−1

)
Tr(A)n−2rΔr

⎞
⎠

= su(A)Tr(A)n+1+su(A)

⎛
⎝� n+1

2 �
∑
r=1

(−1)r Tr(A)n+1−2rΔr ((n−r
r

)
+

(n−r
r−1

))⎞⎠

−2ΔTr(A)n−2Δ

⎛
⎝� n

2�
∑
r=1

(−1)r Tr(A)n−2rΔr
((n−1−r

r

)
+

(n−1−r
r−1

))⎞
⎠

= su(A)
� n+1

2 �
∑
r=0

(−1)r(n+1−r
r

)
Tr(A)n+1−2rΔr−2Δ

� n
2�
∑

r=0
(−1)r

(n−r
r

)
Tr(A)n−2rΔr. �

The following corollaries are important cases of Theorem 2.1.

COROLLARY 2.2. If det(A) = 0 , then su(An) = su(A) [Tr(A)]n−1 .
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COROLLARY 2.3. If Tr(A) = 0 , then

su(An) =

⎧⎨
⎩

2(−1)
n
2 Δ

n
2 if n is even;

(−1)
n−1
2 su(A)Δ

n−1
2 if n is odd.

COROLLARY 2.4. If su(A) = 0 , then

su(An+2) = −2Δ
� n

2 �
∑
r=0

(−1)r
(

n− r
r

)
Tr(A)n−rΔr.

COROLLARY 2.5. If su(A) = 0 = Tr(A) , then

su(An) =

{
2(−1)

n
2 Δ

n
2 if n is even;

0 if n is odd.

COROLLARY 2.6. If su(A) = 0 = det(A) , then su(An) = 0 for all n � 2 .

COROLLARY 2.7. If Tr(A) = det(A) = 0 , then su(An) = 0 for all n � 2 .

COROLLARY 2.8. If su(A) = Tr(A) = det(A) = 0 , then su(An) = 0 for all n � 2 .

COROLLARY 2.9. If su(A) �= 0 and det(A) = 0 , then su(An)
su(An−1) = Tr(A) .

Proof. From Corollary 2.2

su(An)
su(An−1)

=
su(A)[Tr(A)]n−1

su(A)[Tr(A)]n−2 = Tr(A). �

London [3], Kankaanpää and Merikoski [1] obtained the following as the main
theorem, we obtain the same as the application to theorem 1 for 2×2 matrix.

THEOREM 2.10. If A =
(

a b
b c

)
∈ M+

2 , then

2su(A3) � su(A)su(A2). (8)

Proof. From equations (3) and (4)

2su(A3)− su(A)su(A2)

= 2
[
su(A)(Tr(A)2−Δ)−2ΔTr(A)

]− su(A)[Tr(A)su(A)−2Δ]
= su(A)Tr(A) [2Tr(A)− su(A)]−4ΔTr(A)

= su(A)Tr(A)[a+ c−2b]−4[ac−b2]Tr(A)
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= Tr(A)[su(A)(a+ c−2b)−4ac+4b2]

= Tr(A)[(a+2b+ c)(a+ c−2b)−4ac+4b2]

= Tr(A)(a− c)2 � 0.

This completes the proof. �

REMARK 2.11.

1. If a = c , then equality holds in (8).

2. The proof of Theorem 2.1 reveals that the the inequality (8) holds even when
A ∈ M+

2 is replaced by a weaker condition Tr(A) � 0.

3. Sum of a negative power of a nonsingular matrix A

The analogue of the formula (5) for the sum of the nonnegative powers also holds
for the negative powers. We deal with the same in this section. The proof is on the same
line by means of the mathematical induction.

THEOREM 3.1. If A = [ai j] ∈ M2 , is a nonsingular matrix, then

su(A−n) =
1

Δn

⎡
⎣2

� n
2�

∑
r=0

(−1)r
(

n− r
r

)
Tr(A)n−2rΔr

−su(A)
� n+1

2 �−1

∑
r=0

(−1)r
(

n− r−1
r

)
Tr(A)n−1−2rΔr

⎤
⎦ ,

where � � is the floor value function.

Proof. Let us note that (1) and all equations based on it hold even for negative
powers of A provided A is invertible. Henceforth we shall be exploiting the same with
the assumption that A is invertible. Rewriting (2), we have for n ∈ N ,

su(A−n) =
1
Δ

[Tr(A)su(A−n+1)− su(A−n+2)]. (9)

For n = 1, in (9), we have su(A−1) = 1
Δ [Tr(A)su(A0)− su(A1)] . That is,

su(A−1) =
1
Δ

[2Tr(A)− su(A1)],

because A0 = I . We assume that the result holds for n � k . That is,

su(A−k) =
1

Δk

⎡
⎣2

� k
2�

∑
r=0

(−1)r
(

k− r
r

)
Tr(A)k−2rΔr

−su(A)
� k+1

2 �−1

∑
r=0

(−1)r
(

k− r−1
r

)
Tr(A)k−1−2rΔr

⎤
⎦ (10)
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is true and we prove it for n = k+1. Using (9) and (10),

su(A−(k+1))

=
1
Δ

[Tr(A)su(A−k)−su(A−(k−1))]

=
1

Δk+1

⎡
⎣2

� k
2�

∑
r=0

(−1)r(k−r
r

)
Tr(A)k+1−2rΔr−su(A)

� k+1
2 �−1

∑
r=0

(−1)r
(k−r−1

r

)
Tr(A)k−2rΔr

⎤
⎦

− 1
Δk

⎡
⎣2

� k−1
2 �

∑
r=0

(−1)r(k−1−r
r

)
Tr(A)k−1−2rΔr−su(A)

� k
2�−1

∑
r=0

(−1)r
(k−r−2

r

)
Tr(A)k−2−2rΔr

⎤
⎦

=
1

Δk+1

⎡
⎣2

� k
2�

∑
r=0

(−1)r(k−r
r

)
Tr(A)k+1−2rΔr+2

� k−1
2 �
∑

r=0
(−1)r+1

(k−1−r
r

)
Tr(A)k−1−2rΔr+1

⎤
⎦

− su(A)
Δk+1

⎡
⎣� k+1

2 �−1

∑
r=0

(−1)r(k−r−1
r

)
Tr(A)k−2rΔr+

� k
2�−1

∑
r=0

(−1)r+1
(k−r−2

r

)
Tr(A)k−2−2rΔr+1

⎤
⎦

=
1

Δk+1

⎡
⎣2

� k
2�

∑
r=0

(−1)r(k−r
r

)
Tr(A)k+1−2rΔr+2

� k−1
2 �+1

∑
r=1

(−1)r
(k−r
r−1

)
Tr(A)k+1−2rΔr

⎤
⎦

− su(A)
Δk+1

⎡
⎣� k+1

2 �−1

∑
r=0

(−1)r(k−r−1
r

)
Tr(A)k−2rΔr+

� k
2�
∑

r=1
(−1)r

(k−r−1
r−1

)
Tr(A)k−2rΔr

⎤
⎦

=
1

Δk+1

⎡
⎣2Tr(A)k+1+2

� k+1
2 �

∑
r=1

(−1)r
((k−r

r

)
+

(k−r
r−1

))
Tr(A)k+1−2rΔr

⎤
⎦

− su(A)
Δk+1

⎡
⎣Tr(A)k+

� k+2
2 �−1

∑
r=1

(−1)r
((k−r−1

r

)
+

(k−r−1
r−1

))
Tr(A)k−2rΔr

⎤
⎦

=
1

Δk+1

⎡
⎣2

� k+1
2 �

∑
r=0

(−1)r(k+1−r
r

)
Tr(A)k+1−2rΔr−su(A)

� k+2
2 �−1

∑
r=0

(−1)r
(k−r

r

)
Tr(A)k−2rΔr

⎤
⎦ .

�
As the special cases, we deduce the following results from Theorem 3.1.

COROLLARY 3.2. If A is a nonsingular matrix with Tr(A) = 0 , then

su(A−n) =

⎧⎪⎪⎨
⎪⎪⎩

2(−1)
n
2

(Δ)
n
2

, if n ≡ 0 mod 2;

(−1)
n+1
2 su(A)

(Δ)
n+1
2

, if n ≡ 1 mod 2.
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COROLLARY 3.3. If A is a nonsingular matrix with su(A) = 0 , then

su(A−n) =
1

Δn [2
� n

2 �
∑
r=0

(−1)r
(

n− r
r

)
Tr(A)n−2rΔr].

COROLLARY 3.4. If A is a nonsingular matrix with Tr(A) = 0 = su(A) , then

su(A−n) =

⎧⎨
⎩

2(−1)
n
2

(Δ)
n
2

, if n ≡ 0 mod 2;

0, if n ≡ 1 mod 2.

As an application of Theorem 3.1, we derive the following inequalities analogous
to Theorem 2.10.

THEOREM 3.5. If A =
(

a b
b c

)
∈ M+

2 is a nonsingular matrix, then

2su(A−3) � su(A−1)su(A−2) if Δ > 0; (11)

2su(A−3) � su(A−1)su(A−2) if Δ < 0. (12)

Proof. From Theorem 3.1,

2su(A−3)− su(A−1)su(A−2) =
2

Δ3 [2(Tr(A)3−2ΔTr(A))− su(A)(Tr(A)2 −Δ)]

− 1
Δ3 [2Tr(A)− su(A1)][2(Tr(A)2 −Δ)−Tr(A)su(A)]

=
1

Δ3 [−4ΔTr(A)+2Tr(A)2 su(A)−Tr(A)[su(A)]2]

=
Tr(A)

Δ3 [−4(ac−b2)+ su(A)(2Tr(A)− su(A))]

=
Tr(A)

Δ3 [−4ac+4b2+(a+ c+2b)(a+ c−2b)]

=
Tr(A)

Δ3 (a− c)2.

Hence the inequalities (11) and (12) follow. �

REMARK 3.6.

1. If a = c , then equality holds in the above theorem.

2. The condition A ∈ M+
2 can be made even weaker by just considering Tr(A) � 0.
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